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Abstract
Microgrids provide power to remote communities and at operational sites that are 
not connected to a grid. We consider such a microgrid that consists of batteries, 
photovoltaics, and diesel generators, and optimize the components it comprises and 
a corresponding dispatch strategy at hourly fidelity so as to minimize procurement, 
operations and maintenance, and fuel costs. The system is governed by constraints 
such as meeting demand and adhering to component interoperability and capabil-
ity. Our contribution lies in the introduction to this optimization model of a set of 
constraints that incorporates capacity fade of a battery and temperature effects. 
We show, using data from a forward operating base and solving the corresponding 
instances for a time horizon of 8760 h, that higher temperatures decrease resistance, 
leading to better round-trip energy efficiency, but at the same time increase capacity 
fade of the battery, resulting in a higher overall operating cost. In some cases, the 
procurement strategy is robust to the fade of the battery, but fade can influence bat-
tery state of charge and power output as the available battery capacity degrades over 
time and with use.
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1 � Introduction and literature review

Hybrid power systems can be used to produce energy to meet demand at remote 
sites such as forward operating bases (FOBs), secured places outside of their 
own borders from which countries support combat operations. We use an opti-
mization model to determine: (1) the procurement strategy, i.e., the number and 
type of energy-producing technologies selected, and (2) the dispatch strategy, 
i.e., the amount of energy provided by each of the technologies, to meet load at 
a FOB while minimizing cost and fuel use. The available technologies include 
diesel generators, photovoltaic cells (PV) and batteries, the latter of which allow 
us to store energy and provide dispatchable power quickly (Das et al. 2015; Liu 
et al. 2015). Without loss of generality, we consider lithium-ion batteries, which 
have both advantages and disadvantages over other commercially available bat-
tery types such as lead acid, nickel cadmium and nickel-metal hydride (Tan et al. 
2013; Zhao et al. 2015).

Power output from a battery is influenced by many factors including its type, 
its capacity, its charge and discharge rates, the number of charge and discharge 
cycles it has undergone, and the conditions in which it is used, e.g., hot or cold 
climates. The behavior of the battery affects the hybrid system’s ability to per-
form efficiently and, therefore, to meet load. Limited by slow electrochemical 
processes, such as the formation of a solid-electrolyte interphase in the negative 
electrode (Pinson and Bazant 2013), capacity decreases in rechargeable batteries 
over thousands of cycles. We refer to this decrease as capacity fade.

Previous work incorporates a nonlinear set of battery constraints into a design 
and dispatch optimization model such as ours in which average battery output is 
modeled as a function of the “physics-based nonlinear, nonconvex relationship 
between current and voltage” (Scioletti et al. 2016). This work introduces a rate-
capacity effect which allows for an adjusted state of charge of the battery. In their 
optimization model, termed (  ), Scioletti et  al. take into account the effects of 
the rate of discharge on battery capacity. This is an improvement over previous 
models because it lowers the overestimation of discharge capabilities. However, 
(  ) does not consider capacity fade directly; rather, it limits the number of bat-
tery life cycles after which the battery cannot be used. We improve upon (  ) by 
introducing a newer model, henceforth referred to as (  ), that includes battery 
temperature and capacity fade effects. Instead of limiting battery life to a prede-
termined number of cycles, we calculate the loss of capacity within the battery 
based on its size, ambient temperature and ampere-hour throughput. The capac-
ity fade model (  ) is a mixed-integer nonlinear program (MINLP), which, for 
realistic instances, proves to be difficult to solve and, in fact, intractable after the 
horizon extends beyond 300 time periods. To increase tractability, we apply lin-
earization techniques to the MINLP to create an approximate mixed-integer linear 
program (MILP). Although a solution from this model does not guarantee the 
feasibility and/or optimality of the MINLP, the former model can be an effective 
alternative that allows us to solve instances containing up to 8,760 hourly time 
periods (corresponding to one year’s worth of load data). We compare linearized 
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versions of (  ), with capacity fade, and (  ), without capacity fade, and show that 
incorporating capacity fade can improve the level of detail in the corresponding 
model of a microgrid.

Several optimization papers provide methodologies and solutions for mixed-
integer linear programs that address meeting energy loads (Scioletti et al. 2016; 
Morais et al. 2010; Pruitt et al. 2014; Goodall et al. 2017; Zachar and Daoutidis 
2015). Pruitt et al. (2014) investigate a system that is grid-connected and incor-
porates a solid oxide fuel cell for cooling and heating, along with generators and 
PV. Zachar and Daoutidis (2015) also use an MILP to optimize a grid-connected 
DG system, but they consider wind and microturbines among their renewables. 
Morais et al. (2010) combine a fuel cell with wind and batteries in their model. 
Several more use both exact and heuristic optimization techniques (Ashok 2007; 
Daud and Ismail 2012; Katsigiannis and Georgilakis 2008; Bala and Siddique 
2009; Koutroulis et al. 2006; Merei et al. 2013) or the simulation model Hybrid 
Optimization Model for Electric Renewables (HOMER) (Givler and Lilienthal 
2005; Kamel and Dahl 2005; Rehman and Al-Hadhrami 2010; Shaahid and El-
Amin 2009).

Papers that model distributed generation with batteries include Bala and Siddique 
(2009), Rehman and Al-Hadhrami (2010), Kaldellis et  al. (2011), Scioletti et  al. 
(2017), Merei et al. (2013), Shaahid and El-Amin (2009), Ikeda and Ooka (2015), 
Morais et al. (2010), Manwell and McGowan (1993), and Dufó-Lopez and Bernal-
Agustin (2005). Rehman and Al-Hadhrami (2010) and Shaahid and El-Amin (2009) 
employ HOMER, which simulates hybrid systems, in their work. HOMER incorpo-
rates a kinetic battery model (Manwell and McGowan 1993), which assumes that the 
change in capacity is a nonlinear function of the charge and discharge rates and mod-
els a battery’s capacity as two tanks, one that is immediately available for discharge 
and another that is chemically bound. Bala and Siddique (2009) use the Hybrid 
Optimization by Genetic Algorithms model developed by Dufó-Lopez and Bernal-
Agustin (2005). This model improves on the kinetic battery model (Manwell and 
McGowan 1993) used in HOMER by optimizing over the battery state of charge, as 
opposed to a user-entered value. Kaldellis et al. (2011) consider a PV, wind and bat-
tery system for 10- and 20-year time horizons. They employ lead-acid batteries but 
do not take into account battery degradation over time. They cite Hua et al. (2006), 
who warn about the capacity loss in lead-acid batteries operated in remote locations 
due to sulfation of the electrodes and stratification of the electrolyte. In Hua et al. 
(2006), the authors show that batteries maintain capacity well, under test conditions, 
over two- and three-year spans. Merei et al. (2013) model three battery types—lead-
acid, lithium-ion and vanadium redox-flow—in a DG system with wind, PV and 
diesel generators. Their lithium-ion battery model is based on the work of Buller 
(2002), but they introduce an aging factor that depends on state of charge, tempera-
ture and data. Our work differs from that of Merei et al. (2013) in that they use a 
genetic algorithm, implemented in Matlab and Simulink, while we use an optimiza-
tion model and provide a more detailed, mathematical approach to battery capacity 
fade. Morais et al. (2010) use an MILP that includes wind, PV, fuel cells and battery 
storage; however, their constraints do not account for capacity fade or temperature 
effects.
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Our main contribution lies in the introduction of a set of constraints to a mixed-
integer programming model that incorporates battery capacity fade and tempera-
ture effects; models that do not include rate-capacity effects overestimate discharge 
capabilities. Such microgrid models exist, as do models that capture battery capacity 
fade and temperature effects (Pinson and Bazant 2013; Hua et al. 2006). However, to 
the best of our knowledge, these models have not been combined. We use explicit, 
mathematical expressions for the capacity fade that discretize time; to enhance trac-
tability, we linearize these expressions. The remainder of this paper is organized as 
follows: Sect. 2 details capacity fade behavior. Section 3 provides a mathematical 
model that incorporates the capacity fade behavior from Sect. 2, while Sect. 4 out-
lines a heuristic we use to help solve our model. Section 5 discusses the correspond-
ing results, and Sect. 6 concludes.

2 � Capacity fade effects

In this section, we detail battery capacity fade effects and introduce the necessary 
simplifications to some battery chemistry equations that allow us to model these 
effects in (  ). These include limits to the charge and discharge rate of the battery 
given other system constraints, as well as the linearization of nonlinear curves defin-
ing the relationship between percentage capacity lost and ampere-hour throughput, 
using piecewise linear functions.

We employ the following notation to provide the battery chemistry equations rel-
evant to (  ). Our notational convention is as follows: lower-case letters (a) represent 
parameters and indices, upper-case letters (A) represent variables, and script upper-
case letters (  ) represent sets. Superscripts and accents distinguish between param-
eters and variables that use the same base letter, while subscripts identify elements 
of a set. Some parameters and variables are defined only for certain set elements, 
which are listed in each definition. Plus signs ( + ) indicate power entering a technol-
ogy (i.e., power in); minus signs (−) indicate power exiting (i.e., power out). Units 
are provided with each parameter and variable definition. The term “twins,” denoted 
by the subscript k, refers to a tuple or a multiple of a certain technology type. 

Symbol Explanation Units

Sets
b ∈  Batteries (integer)
k ∈  Battery twins (integer)
n ∈  Total pieces of slope values in piecewise linear function (integer)
t ∈  Time periods (h)
Parameters
āb Ampere-hour threshold for percentage capacity change (leveling) of battery b (Ah)
brate
b

Coefficient of loss as a function of crate for battery b (J/mol)
crate
b

Charge or discharge rate of battery b (unitless)
kc
b
, kr

b
Temperature coefficient for capacity and resistance, respectively, of battery b (K)

mbn Slope coefficient for ampere-hour throughput for battery b, piece n [(Ah)−0.45]
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Symbol Explanation Units

qbt Capacity loss LiFePO4 constant (includes temperature) for battery b in time 
period t

[(Ah)−0.55]

R Universal gas constant (JK−1mol−1)
sb Size of battery b (Ah)

�
ref

b
Battery b reference temperature (K)

�t Ambient temperature in time period t (K)
�c
bt

Capacity temperature coefficient of battery b in time period t (unitless)
�r
bt

Resistant temperature coefficient of battery b in time period t (unitless)

�c
bt
= e

kc
b

(

1

�t
−

1

�
ref

b

)

∀b ∈ , t ∈ 

(1)

�r
bt
= e

kr
b

(

1

�t
−

1

�
ref

b

)

∀b ∈ , t ∈ 

(2)

Variables
Abkt Cumulative ampere-hour throughput (charge and discharge) in battery b twin 

k up to time period t
(Ah)

Qbkt Battery b twin k percentage capacity loss up to time period t (percentage)

The percentage capacity loss of battery b, twin k, up to time period t ( Qbkt ), is a 
function of temperature, size of the battery, and the ampere-hour throughput. It can be 
calculated using the following equation (Wang et al. 2011):

in which

Assumption of a constant charge and discharge rate

C rate, crate
b

 , is a measure of the rate of battery charge and/or discharge relative to 
its maximum capacity and is defined as the amount of current one is able to extract 
from a battery that is in a fully charged state, i.e., state of charge equals one, until it 
is in a fully discharged state, i.e., state of charge equals zero, in 1 h; we assume that 
there are no transport limitations. For example, if a battery has a capacity of 4800 
mAh, a 1C rate corresponds to 4800 mA. And, if the battery is discharged at low 
current (e.g., 48 mA or a C/100 rate), the battery holds some charge for 100 h. In 
our case, the value varies only from 0C to 1C, because 1 h is the minimum time step 
in our model. If the battery discharges entirely in 1 h at a rate of 1C, it discharges 
completely in 2 h at a rate of C/2 (MIT Electric Vehicle Team 2005). We use C/2 
as an average rate of battery operations in order to choose the parameter values for 
simplifying the expression given in Eq. (3), the result of which is given in Eq. (4):

(3)Qbkt = brate
b

⋅ e

(

−31,700+370.3⋅crate
b

R⋅�t

)

(Abkt)
0.55

∀b ∈ , k ∈ , t ∈  ,

brate
b

= 448.96(crate
b

)
2
− 6301.1 ⋅ crate

b
+ 33, 840 ∀b ∈ .

(4)
Qbkt = 31, 630 ⋅ e

(

−31,514.9

R⋅�t

)

(Abkt)
0.55

∀b ∈ , k ∈ , t ∈ 
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Choosing a C/2 rate of cycling as an average current does not compromise the accu-
racy of Eq.  (3) for the range of operations shown in Fig.  1, which (1) compares 
the output of the simplified expression given in Eq. (4) with the general expression 
given in Eq. (3), and (2) shows that, for low rates of charge and/or discharge, the dif-
ference in capacity loss between 1C and C/10 is negligible.

Calculating Qbkt for differently sized batteries

The expression derived in Eq. (4) is valid for an A123 battery with 2.44 ampere hour 
(Ah) capacity. However, the optimization model () chooses from different battery 
sizes. To consider several different battery sizes, we scale the size using the ampere 
hour calculation in Eq. (5):

Equation (5) shows that a battery with size 4.88 Ah, sb , has less degradation for the 
same ampere-hour throughput relative to that of a 2.44 Ah battery. Figure 2 plots the 
percentage capacity lost against ampere-hour throughput for up to 8 million Ah for 
six different battery sizes.

The approximate ampere-hour throughput that leads to a given percentage degra-
dation can be calculated using Eq. (6). We give an example of that calculation using 
20% degradation and provide a summary for six different battery sizes, from 25 to 
250 kWh, in Table 1. We choose 20% to illustrate the effect of capacity fade as a 
function of battery size given by Eq. (6).

(5)Qbkt = 31, 630 ⋅ e

(

−31,514.9

R⋅�t

)

(

Abkt ⋅
2.44

sb

)0.55

∀b ∈ , k ∈ , t ∈ 

Fig. 1   Percentage capacity lost through battery use at different C rates with the simplified formula given 
in Eq. (4). Note that the curve generated using the simplified formula lies on top of the 1C rate, C/2 rate 
and C/10 rate curves
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Linearization of ampere-hour throughput term

The term (Abkt)
0.55 causes computational issues in the optimization framework, so 

we simplify the term by using piecewise linear approximations based on the slope 
parameter mbn , where n ∈  = {1, 2} , and a breakpoint āb , as shown in Fig. 3. The 
values for mb1 , mb2 and āb are calculated so as to minimize the sum of squared errors 
between the nonlinear and piecewise linear functions.

For Abkt < āb:

(6)20 = 31, 630 ⋅ e

(

−31,514.9

8.3⋅298

)

(

Abkt ⋅
2.44

sb

)0.55

∀b ∈ , k ∈ , t ∈ 

(7)
Qbkt = 31, 630 ⋅ e

(

−31,514.9

R⋅�t

)

(Abkt ⋅ mb1) ∀b ∈ , k ∈ , t ∈ 

Fig. 2   Percentage capacity lost, Qbkt , versus ampere-hour throughput for different battery sizes, sb (plots 
derived from Eq. (5))

Table 1   Different battery 
sizes and Ah throughput that 
cause 20% capacity loss, in 
approximately 3600 equivalent 
cycles

Battery size (kWh) Capacity (Ah) Ah throughput for 
20% degradation at 
298 K

250 1136.36 8,178,726
200 909.09 6,542,979
150 681.81 4,907,234
100 454.54 3,271,490
50 227.27 1,635,745
25 113.63 817,872.6
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For Abkt ≥ āb:

where, in Eqs.  (7) and (8), mb1 is the slope of the line in the region Abkt < āb and 
mb2 is the slope of the line after Abkt equals or surpasses the value of āb . The values 
of these slope parameters are obtained by minimizing the error between the linear 
approximations in Eqs. (7) and (8) and the original curves given by Eq. (5). Table 2 
provides the values of the parameters for battery sizes between 25 kWh and 250 
kWh. Figure 3 shows a plot of the linear approximation of two of these sizes (i.e., 25 
kWh and 250 kWh).

In practical applications, battery operations are subject to variations in temper-
ature and current that occur over time. Therefore, we evaluate capacity degrada-
tion (i.e., percentage capacity loss) for each battery and twin for every time period 
( ΔQbkt ) as a function of temperature and ampere-hour throughput.

(8)
Qbkt = 31, 630 ⋅ e

(

−31,514.9

R⋅𝜃t

)

(mb1āb + mb2(Abkt − āb)) ∀b ∈ , k ∈ , t ∈ 

Table 2   Parameter values 
used in piecewise linear 
approximation for the 
percentage capacity loss of 
different batteries

Battery size 
(kWh)

āb mb1 × 10−4 mb2 × 10−5

250 728,466.7 0.94 2.05
200 516,368.5 1.24 2.61
150 413,466.7 1.63 3.36
100 192,341.3 3.26 5.08
50 138,068.8 5.32 9.94
25 126,619.4 7.79 16.30

Fig. 3   Linear approximation for capacity loss (%) in two different battery systems, 25  kWh and 
250 kWh, as a function of Amphere hour throughput
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For Abkt < āb:

For Abkt ≥ āb:

where, as we show in Sect. 3.4 and the related constraints, the use of a binary vari-
able Ybknt controls the implementation of this piecewise linear function. Note that 
ΔQbkt is the percentage capacity loss and ΔAbkt is the ampere-hour throughput in 
a given time period t, whereas Qbkt and Abkt represent the cumulative percentage 
capacity loss and ampere-hour throughput, respectively, for the time horizon from 
the initial time period up to time t. Equations (9) and (10) can be notationally sim-
plified by defining qbt = 31, 630 ⋅ e(−31,514.9∕(R�t)).

For Abkt < āb:

For Abkt ≥ āb:

3 � Capacity fade portion of the optimization model

In this section, we provide a nonlinear constraint set for the part of the battery model 
that incorporates capacity fade; we term this part ( 1 ). The objective function and 
the remainder of the constraint set, which we term ( 2 ), are given in Appendix 1. 
The combination, then, of ( 1 ) and ( 2 ) forms the model () . We introduce addi-
tional notation here; notation used but not introduced here is given in Sect. 2, and 
the notational conventions there apply. 

Symbol Explanation Units

Sets
j ∈  All battery and generator technologies

k ∈ ̂b
All battery twins of type b

k ∈ ̂j
Identical twins of technology j, given by size, type, and manufacturer

Parameters
�r
b
, �c

b
Loss terms for resistance and rate capacity for battery b, respectively (Ohm, h)

av
b
, bv

b
Voltage slope and intercept coefficients for battery b, respectively (V)

b0
b

Initial state of charge of battery b (unitless)
ĉ−
bt

Rate-capacity slope of battery b in time period t (h)

(9)
ΔQbkt = 31, 630 ⋅ e

(

−31,514.9

R⋅�t

)

(mb1 ⋅ ΔAbkt) ∀b ∈ , k ∈ , t ∈ 

(10)
ΔQbkt = 31, 630 ⋅ e

(

−31,514.9

R⋅�t

)

(mb2 ⋅ ΔAbkt) ∀b ∈ , k ∈ , t ∈ 

(11)ΔQbkt = qbt(mb1 ⋅ ΔAbkt) ∀b ∈ , k ∈ , t ∈ 

(12)ΔQbkt = qbt(mb2 ⋅ ΔAbkt) ∀b ∈ , k ∈ , t ∈ 
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Symbol Explanation Units

c
ref

b
Manufacturer-specified initial capacity of battery b (Ah)

r
ref

bt
Internal resistance of battery b as a function of temperature in time period t (Ohm)

� Length of one time period (h)
Variables
Bsoc
bkt

State of charge of battery b twin k in time period t (fraction)

C
eff

bkt
Variable capacity of battery b twin k in time period t (Ah)

C−

bkt
Battery b twin k discharge capacity in time period t (h)

I+
bkt
, I−

bkt
Charge and discharge current of battery b twin k in time period t, respectively (A)

P+

bkt
,P−

bkt
Aggregate power into and out of battery b twin k in time period t, respectively (W)

Rint
bkt

Internal resistance of battery b twin k in time period t (Ohm)
Wjk 1 if technology j, twin k is procured, 0 otherwise (binary)
Ybknt 1 if battery b twin k piece n is used in time period t, 0 otherwise (binary)

3.1 � Mathematical formulation

Problem (1)

subject to

Battery power: See Sect. 3.2

Capacity and current: See Sect. 3.3

(13a)P+

bkt
= (av

b
b0
b
+ bv

b
+ Rint

bkt
I+
bkt
)I+
bkt

∀b ∈ , k ∈ ̂b, t = 1

(13b)P−

bkt
= (av

b
b0
b
+ bv

b
− Rint

bkt
I−
bkt
)I−
bkt

∀b ∈ , k ∈ ̂b, t = 1

(13c)P+

bkt
= (av

b
Bsoc
bk,t−1

+ bv
b
+ Rint

bkt
I+
bkt
)I+
bkt

∀b ∈ , k ∈ ̂b, t ∈  ⧵ {1}

(13d)P−

bkt
= (av

b
Bsoc
bk,t−1

+ bv
b
− Rint

bkt
I−
bkt
)I−
bkt

∀b ∈ , k ∈ ̂b, t ∈  ⧵ {1}

(14a)C
eff

bkt
⋅ Bsoc

bkt
= c

ref

b
⋅ b0

b
⋅Wbk + 𝜏(I+

bkt
− I−

bkt
) ∀b ∈ , k ∈ ̂b, t = 1

(14b)C
eff

bkt
⋅ Bsoc

bkt
= C

eff

bk,t−1
⋅ Bsoc

bk,t−1
+ 𝜏(I+

bkt
− I−

bkt
) ∀b ∈ , k ∈ ̂b, t ∈  ⧵ {1}

(14c)I−
bkt

≤

(

c
ref

b

𝜏 + C−

bkt

)

b0
b
⋅Wbk ∀b ∈ , k ∈ ̂b, t = 1
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Capacity fade: See Sect. 3.4

Nonnegativity and binary restrictions

(14d)I−
bkt

≤

(

C
eff

bk,t−1

𝜏 + C−

bkt

)

Bsoc
bk,t−1

∀b ∈ , k ∈ ̂b, t ∈  ⧵ {1}

(15a)Rint
bkt

= r
ref

bt

(

Wbk + 𝛼r
b
Qbkt

)

∀b ∈ , k ∈ ̂b, t ∈ 

(15b)Qbkt = 𝜏qbt

∑

n∈

mbn(I
+

bkt
+ I−

bkt
)Ybknt ∀b ∈ , k ∈ ̂b, t = 1

(15c)

Qbkt − Qbk,t−1 = 𝜏qbt

∑

n∈

mbn(I
+

bkt
+ I−

bkt
)Ybknt ∀b ∈ , k ∈ ̂b, t ∈  ⧵ {1}

(15d)C
eff

bkt
= c

ref

b
⋅Wbk

(

1 −
Qbkt

100

)

∀b ∈ , k ∈ ̂b, t ∈ 

(15e)C−

bkt
= ĉ−

bt

(

Wbk + 𝛼c
b
Qbkt

)

∀b ∈ , k ∈ ̂b, t ∈ 

(15f)
∑

n∈

Ybknt = Wbk ∀b ∈ , k ∈ ̂b, t ∈ 

(15g)Abkt = 𝜏(I+
bkt

+ I−
bkt
) ∀b ∈ , k ∈ ̂b, t = 1

(15h)Abkt = Abk,t−1 + 𝜏(I+
bkt

+ I−
bkt
) ∀b ∈ , k ∈ ̂b, t ∈  ⧵ {1}

(15i)Abkt ≥ āb(Wbk − Ybknt) ∀b ∈ , k ∈ ̂b, t ∈  , n = 1

(15j)Abkt ≥ ābYbknt ∀b ∈ , k ∈ ̂b, t ∈  , n = 2

(16a)
Abkt,B

soc
bkt
,C

eff

bkt
,C−

bkt
, I+

bkt
, I−

bkt
,P+

bkt
,P−

bkt
,Qbkt,R

int
bkt

≥ 0 ∀b ∈ , k ∈ ̂b, t ∈ 

(16b)Wbk binary ∀b ∈ , k ∈ ̂b
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3.2 � Battery power

Constraints (13a) and (13b) show the nonlinear relationship between power, current, 
and resistance for power into and power out of the battery, respectively, in the initial 
time period, while (13c) and (13d) give the power into and out of the battery for 
every subsequent time period.

3.3 � Capacity and current

Equations (14a) and (14b) calculate the available capacity of the battery in the ini-
tial and each subsequent time period, respectively, based on the amount of charge 
and discharge current passing through the battery. The variable I−

bkt
 is maximally 

bounded in constraints (14c) and (14d) by the relationship between the capacity, 
state of charge, and the discharge capacity of the battery for the initial and subse-
quent time periods, respectively.

3.4 � Capacity fade

As the battery ages, its available capacity decreases while the resistance increases. 
Equation (15a) shows the effects of temperature and degradation on the resistance 
of a battery. Constraints (15b) and (15c) provide the relationship between the cumu-
lative capacity loss and the current in the initial and all subsequent time periods, 
respectively. The variable capacity is calculated based on capacity degradation 
according to a percentage loss over time such that the capacity in each time period is 
less than the original reference capacity of the battery; see constraint equation (15d). 
Constraint (15e) relates the discharge capacity to the cumulative loss in each time 
period. Constraint (15f) equates the sum 

∑

n∈ Ybknt to one if the battery is procured, 
and zero otherwise. This ensures that the slope of the piecewise linear function is 
either ( mb1 ) or ( mb2 ), as shown in Fig. 3. Constraints (15g) and (15h) calculate the 
change in ampere-hour throughput in each time period based on the current charging 
and discharging from the battery. Constraints (15i) and (15j) ensure that once Abkt 
surpasses the value of āb , n shifts from one to two. For any values of Abkt less than 
āb , n is equal to one.

4 � Heuristic

We present a heuristic, which we term  , that produces an initial feasible solution to 
(  ) by simulating two different, myopic dispatch policies, 1and 2 , for each possi-
ble combination of technologies. We simulate both policies, and choose the one with 
the lower cost. We term the design and dispatch solution a design-dispatch pair. 
The heuristic  supplies the lowest-cost design-dispatch pair to a branch-and-bound 
solver as a “warm start,” which can reduce solution time significantly. Additionally, 

(16c)Ybknt binary ∀b ∈ , k ∈ ̂b, n ∈  , t ∈ 
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because these dispatch policies do not include any information on future time peri-
ods, they are easier to implement in a microgrid controller than a strategy that 
includes clairvoyance of future loads and PV resources.

We adopt the dispatch policies developed by Scioletti et  al. (2017), which aim 
to (1) maximize fuel efficiency by attempting to run the diesel generators at their 
rated capacity whenever possible, (2) use the maximum allowable energy from PV 
systems to minimize fuel costs, and (3) employ the batteries to balance the load and 
provide additional spinning reserve while meeting goals (1) and (2). Both 1and 
2   initialize all diesel generators to be off at each time period, and incrementally 
add diesel capacity by turning off the lowest-capacity running generator and turn-
ing on that of the next larger size if it is offline; otherwise, the policies turn on the 
smallest generator in the design. 1 stops adding capacity when the load and spin-
ning reserve requirements are met for the time period, while 2 continues until an 
exchange or addition precludes diesel generators from running at their rated capaci-
ties without curtailing PV power output. Figure 4 provides a flowchart for 2 ; an 
analogous flowchart for 1 is available in Scioletti et al. (2017), and pseudocode for 
1 is available in Appendix 2.

Our heuristic differs from the one developed by Scioletti et al. (2017) in how the 
upper bounds on battery charge and discharge are calculated, and the assignment 
of battery dispatch decision variables given power flow in each time period. This 
allows our heuristic to provide a design-dispatch pair that is feasible for the battery 
constraints. In what follows, we develop a method for calculating upper bounds on 
battery power input and output, and then provide procedures for assigning dispatch 
decisions feasible for () when battery power flow is provided as input.

For the derivations in the following sections, we use this notation, in addition to 
that already defined: 

Fig. 4   A flowchart illustrating the myopic dispatch strategy for heuristic 2 under a given design deci-
sion
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Symbol Explanation Units

Parameters
𝚤
b
, 𝚤b Minimum and maximum current allowed for battery b, 

respectively
(A)

s
b
, s̄b Minimum and maximum allowed state of charge in bat-

tery b, respectively
(fraction)

p̄b Maximum power rating of battery b (W)

4.1 � Maximum discharge power

Calculating the maximum charge or discharge power for a battery requires the state 
of the battery in the previous time period ( t − 1 ), which is defined by Qbk,t−1 , Bsoc

bk,t−1
 , 

and Abk,t−1 . With these inputs, we can obtain the maximum current into or out of 
the battery, which, in turn, inform the maximum charge or discharge power in time 
period t, respectively.

Let Ī−
bkt

 be the maximum discharge current for battery b, twin k in period t, given 
the battery’s state at t − 1 . Constraints (14c)–(14d) provide an upper bound for I−

bkt
 

that uses Ceff

bk,t−1
 , Bsoc

bk,t−1
 , and C−

bkt
 . The former two variables are inputs for t > 1 , and 

are equal to cref
b

 and b0
b
 , respectively, for t = 1 . Constraint (15e) shows that C−

bkt
 is a 

function of Qbkt , which, in turn, is a function of the inputs Qbk,t−1 and Ybknt , and the 
variable I−

bkt
 , in constraints (15b) and (15c), with Qbk,t−1 ← 0 for t = 1 . We therefore 

substitute Qbkt and C−

bkt
 with the right-hand sides of Eqs. (15b)–(15c) and Eq. (15e), 

respectively, to obtain the following quadratic equations, which we solve for the var-
iable Ī−

bkt
 : 

Section “Maximum discharge current” of Appendix 3 details the full derivation of 
Eq. (17b), from which we assign the smallest positive-valued root to Ī−

bkt
 . We then 

make the adjustment:

to ensure that I−
bkt

= Ī−
bkt

 is feasible for constraints  (14a), (14b), and the simple 
bounds on discharge current (see constraint (27c)).

(17a)

(

ĉ−
bt
𝛼c
b
𝜏qbtmbn

)(

Ī−
bkt

)2
+
(

𝜏 + ĉ−
bt

)

Ī−
bkt

− c
ref

b
b0
b
= 0, ∀b ∈ , k ∈ ̂b, t = 1

(17b)

(

ĉ−
bt
𝛼c
b
𝜏qbtmbn

)(

Ī−
bkt

)2
+
(

𝜏 + ĉ−
bt

(

1 + 𝛼c
b
Qbk,t−1

))

Ī−
bkt

− C
eff

bk,t−1
Bsoc
bk,t−1

= 0,

∀b ∈ , k ∈ ̂b, t ∈  ⧵ {1}.

Ī−
bkt

← min{Ī−
bkt
, c

ref

b
(b0

b
− s

b
)∕𝜏, 𝚤b}, t = 1

Ī−
bkt

← min{Ī−
bkt
,C

eff

bk,t−1
(Bsoc

bk,t−1
− s

b
)∕𝜏, 𝚤b}, t ∈  ⧵ {1},



193

1 3

Optimal design and dispatch of a hybrid microgrid system…

We note that the value mbn used to determine Qbkt in constraints  (15b) and (15c) 
depends on Abkt , which, in turn, depends on the value of I−

bkt
 per con-

straints (15g) and (15h). Heuristic  uses mb1 when Abk,t−1 ≤ āb , and mb2 otherwise 
as a first pass; after calculating Abkt ,  determines whether a switch from mb1 to mb2 is 
necessary, i.e., Abk,t−1 ≤ āb < Abkt , and resolves Eqs. (17a)–(17b) using mb2 as needed.

Next, we use Ī−
bkt

 as input to update Qbkt according to Eqs. (15b) and (15c), which 
we use to calculate Rint

bkt
 via constraint (15a). Then, constraints (13b), (13d) and the 

simple bounds on power output (see constraint (27b)) are used to obtain the maxi-
mum power output for the battery in period t, which we call P̄−

bkt
 : 

4.2 � Maximum charge power

Upper bounds on the charge current for battery b, twin k in period t are deter-
mined by the simple bounds on battery state of charge and charge current in con-
straints  (27f) and  (27d), respectively, and the state-of-charge tracking in con-
straints (14a) and (14b). The latter constraint includes Ceff

bkt
 , which requires the value 

of Qbkt in constraint  (15d). Therefore, we apply substitutions similar to those of 
Sect. 4.1 to obtain the maximum charge current, which we call Ī+

bkt
 : 

Section “Maximum charge current” of Appendix 3 details the derivation in Eq. (19b). 
To obtain P̄+

bkt
 , we calculate Ī+

bkt
 via Eqs. (19a)–(19b), then calculate Qbkt . We substi-

tute Rint
bkt

 with Qbkt via constraint (15a), then use constraints (13a), (13c), and (27a) to 
obtain the maximum charge power, P̄+

bkt
 : 

(18a)P̄−

bkt
= min

{

p̄b, (a
v
b
b0
b
+ bv

b
− r

ref

bt
Ī−
bkt
)Ī−
bkt

}

, ∀b ∈ , k ∈ ̂b, t = 1

(18b)
P̄−

bkt
= min

{

p̄b, (a
v
b
Bsoc
bk,t−1

+ bv
b
− (r

ref

bt
(1 + 𝛼r

b
Qbkt))Ī

−

bkt
)Ī−
bkt

}

,∀b ∈ , k ∈ ̂b, t ∈  ⧵ {1}.

(19a)Ī+
bkt

= min

⎧

⎪

⎨

⎪

⎩

𝚤b,
c
ref

b
(s̄b − b0

b
)

𝜏 +
s̄bc

ref

b
𝜏qbtmbn

100

⎫

⎪

⎬

⎪

⎭

, ∀b ∈ , k ∈ ̂b, t = 1

(19b)

Ī+
bkt

= min

⎧

⎪

⎨

⎪

⎩

𝚤b,

s̄bc
ref

b

�

1 −
Qbk,t−1

100

�

− C
eff

bk,t−1
Bsoc
bk,t−1

𝜏 +
s̄bc

ref

b
𝜏qbtmbn

100

⎫

⎪

⎬

⎪

⎭

, ∀b ∈ , k ∈ ̂b, t ∈  ⧵ {1}.

(20a)
P̄+

bkt
= min

{

p̄b, (a
v
b
b0
b
+ bv

b
+ (r

ref

bt
(1 + 𝛼r

b
Qbkt))Ī

+

bkt
)Ī+
bkt

}

, ∀b ∈ , k ∈ ̂b, t = 1

(20b)
P̄+

bkt
= min

{

p̄b, (a
v
b
Bsoc
bk,t−1

+ bv
b
+ (r

ref

bt
(1 + 𝛼r

b
Qbkt))Ī

+

bkt
)Ī+
bkt

}

,∀b ∈ , k ∈ ̂b, t ∈  ⧵ {1}.
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4.3 � Discharge variables

When the battery is discharging, we first solve for the required current out of 
the battery, then assign dispatch variables in a specific order, given in Algo-
rithm  1. For battery b, twin k, at period t, P−

bkt
> 0 , Bsoc

bk,t−1
 , Qbk,t−1 , and Abk,t−1 

are inputs. Constraints  (13b)  and  (13d) relate P−

bkt
 to I−

bkt
 and Rint

bkt
 , the lat-

ter of which can be substituted for a function of Qbk,t−1 , Abk,t−1 , and I−
bkt

 using 
constraints  (15a),  (15b)–(15c),  and  (15g)–(15h); for t = 1 , we substitute 
Bsoc
bkt

← b0
b
, Qbk,t−1 ← 0, and Abk,t−1 ← 0 . Then, we solve the following cubic equa-

tions with I−
bkt

 as a variable: 

Section “Discharge current given power output” of Appendix  3 details the deri-
vation in Eq.  (21b), from which a positive real-valued root feasible for con-
straints (14c),  (14d), and (27c) yields I−

bkt
 ; this, in turn, is used to assign the other 

dispatch variables shown in Algorithm 1. 

(27c),

(27c),

(27c),

(21a)
− r

ref

bt
𝛼r
b
𝜏qbtmbn

(

I−
bkt

)3
− r

ref

bt

(

I−
bkt

)2
+
(

av
b
b0
b
+ bv

b

)

I−
bkt

− P−

bkt
= 0,

∀b ∈ , k ∈ ̂b, t = 1.

(21b)

− r
ref

bt
𝛼r
b
𝜏qbtmbn

(

I−
bkt

)3
− r

ref

bt

(

1 + 𝛼r
b
Qbk,t−1

)(

I−
bkt

)2
+

(

av
b
Bsoc
bk,t−1

+ bv
b

)

I−
bkt

− P−

bkt
= 0,

∀b ∈ , k ∈ ̂b, t ∈  ⧵ {1}.
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4.4 � Charge variables

We obtain battery decision variable values when the battery is charging in a man-
ner similar to Algorithm 1. We obtain I+

bkt
 , using P+

bkt
> 0 and the battery state as 

input, and perform analogous substitutions to those of Sect. 4.3. We then solve 
the cubic equations: 

in which I+
bkt

 is a variable, and use a positive real-valued root feasible for con-
straint (27d). Section “Charge current given power input” of Appendix 3 details the 
derivation of Eq. (22b), and Algorithm 2 demonstrates how we assign the remaining 
battery decision variables for battery b, twin k in period t. 

(22a)
r
ref

bt
𝛼r
b
𝜏qbtmbn(I

+

bkt
)
3
+ r

ref

bt
(I+
bkt
)
2
+ (av

b
b0
b
+ bv

b
)I+
bkt

− P+

bkt
= 0,

∀b ∈ , k ∈ ̂b, t = 1

(22b)

r
ref

bt
𝛼r
b
𝜏qbtmbn(I

+

bkt
)
3
+ r

ref

bt
(1 + 𝛼r

b
Qbk,t−1)(I

+

bkt
)
2
+ (av

b
Bsoc
bk,t−1

+ bv
b
)I+
bkt

− P+

bkt
= 0,

∀b ∈ , k ∈ ̂b, t ∈  ⧵ {1},
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5 � Results

The nonlinear model proves to be intractable for a time horizon greater than 300 h, 
even using the nonlinear-feasible heuristic solution as a “warm start.” To solve the 
model for longer time horizons, we linearize (  ) using exact reformulations and 
good approximations (see, e.g., Scioletti et al. 2017), summarized in section “Lin-
earization” of Appendix 1. We implement the MILP in the AMPL modeling lan-
guage (Fourer et al. 2003) and solve it using CPLEX (IBM 2013), Version 12.7.0.0 
on Linux Quad-Quad core CPUs running at 2.93 GHz, on a Dell Power Edge R430 
server with 32 GB of RAM.

Hereafter, we refer to the linearized version of (  ) simply as (  ); the “no-fade” 
case of (  ) represents the solution obtained from the linearized version of (  ), 
which is representative when battery lifecycles have not been exhausted, a reasona-
ble assumption over a time horizon of a year. The mathematical optimization model 
(  ) uses hourly energy demand (Wh), temperature (ºC), and solar irradiance values 
( W∕m2 ) as input. We examine the results from running the linearized version of (  ) 
using simulated loads for FOBs in Bagram and Buenos Aires obtained from the 
SAGE study (Engels et al. 2014) conducted by Pacific Northwest National Labs (see 
Fig. 5). We compare the base case of “no fade” with output from () using various 
levels of fade from “regular fade,” which we term “1× ,” up to eight times the regu-
lar fade, which we term “8× .” These heightened cases of fade represent: (1) system 
behavior under harsher-than-usual operations in which, for example, the ambient 
conditions are very hot; and (2) the amount of fade that might be expected over time 
horizons longer than the year for which we run our model instances.

5.1 � Capacity fade effects

Table 3 shows the output from (  ) for Bagram and Buenos Aires, for 8760 h, with 
no capacity fade ( mb1 = 0 and mb2 = 0 ), the regular capacity fade effect (1× fade), 
the regular effect accelerated by a factor of four (4× ), and by a factor of eight (8× ). 
All instances are solved to within approximately 5% of optimality, although some 
require more than 16 h of runtime. The results demonstrate that the objective func-
tion value increases with fade, as expected, although at low values of fade, the 
increase is negligible. Instances with higher fade values and smaller batteries (which 
are used to a greater extent) can yield differences of more than 1.5%. Other expected 
trends borne out by the results are an increase in fuel use (for which contradictions 
are attributed to the optimality gap) and also in cumulative capacity loss. The results 
for each case are obtained via optimized strategies with respect to the specific fade 
case we consider. Empirical tests show that the solutions from the cases with less 
aggressive fade are not, in fact, feasible in the models with more aggressive fade, 
demonstrating the need for models that capture this degradation in the battery.

Figure  6 demonstrates the battery state-of-charge behavior for different levels 
of fade. For the case of 8 × fade, the distribution of the state of charge exhibits a 
less pronounced peak than for the cases with lower levels of fade. Additionally, 
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the higher state-of-charge values are more prevalent for cases in which the fade 
is greater. For these cases, the battery capacity is effectively reduced; therefore, 
in order to fulfill the power demand for a given time period, the battery capacity 
required is a greater fraction of its effective capacity for that time period, i.e., it must 
operate at a higher state of charge.

5.2 � Temperature effects

We run the optimization model for the 1 ×-fade case, increasing the input tempera-
ture for the Bagram site by 10 °C and 20 °C, to show the effect of temperature on 
the model output. We use battery temperatures higher than those of the surround-
ings because, during battery use, a fraction of energy is dissipated in the form of 
heat, which keeps the temperature of the battery at a higher value than that of its 
surroundings (unless the battery system possesses an active cooling system); fur-
thermore, because the aging of a battery depends on its temperature, incorporating 
the higher temperatures into the study more accurately captures aging (Karimi and 
Li 2013). To this end, we consider the effect of temperature on the variables Rint

bkt
 , 

Qbkt , C−

bkt
 and Bsoc

bkt
 . The temperature variation is shown in Fig. 7, and the results from 

the optimization model, using those temperatures as input, are given in Table 4. As 
expected, fuel use and objective function value increase with increasing tempera-
ture, i.e., increasing fade; because the fade values are not as pronounced as those in 
Sect. 5.1, the differences between the runs are not as stark.

Figure  8 shows the effect of temperature on the internal resistance (left) and 
percentage capacity loss (right) of a 250 kW battery over 8760 h. As temperature 
increases, battery internal resistance decreases because the diffusion processes 

Fig. 5   Plots of Bagram (left) 
and Buenos Aires (right) energy 
demand, 

∑

t∈ (1 + k̄)dP
t
 , over a 

time horizon of 8760 h, |  |
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Fig. 6   Histogram showing the state of charge, Bsoc
bkt

 , of the 250 kWh battery for different model configura-
tions over 8760 h for the Bagram location

Table 3   Output from (  ) for Bagram and Buenos Aires for 8760 h for a 250 kWh battery and, for Bue-
nos Aires, also with a 100 kWh battery

OVF refers to the objective function value as given in Eq.  (23). All models are solved to within a 5% 
optimality gap (also referred to as a MIP, or mixed-integer programming, gap) or run for 60,000 s

OFV ($) MIP Gap (%) ∑

t∈ F̃t (gal.) Qbkt (%) Time (s)

Bagram 250 kW Battery
No Fade 2,204,361.41 2.58 34,655.6 0.00 60,001
Fade 1 × 2,207,836.96 5.71 34,722.7 3.68 60,003
Fade 4 × 2,209,060.94 4.93 34,745.2 14.72 60,001
Fade 8 × 2,213,076.60 6.00 34,820.3 29.42 60,004
Buenos Aires 250 kW Battery
No Fade 1,881,749.57 1.09 29,170.6 0.00 13,643
Fade 1 × 1,883,826.87 3.57 29,213.0 6.02 20,000
Fade 4 × 1,882,916.13 3.88 29,193.4 23.96 40,001
Fade 8 × 1,883,616.78 2.93 29,207.7 48.21 60,002
Buenos Aires 100 kW Battery
No Fade 1,832,744.34 2.00 29,666.1 0.01 44,075
Fade 1 × 1,832,200.73 3.80 29,655.9 8.70 60,001
Fade 4 × 1,839,642.27 5.35 29,796.5 32.45 60,001
Fade 8 × 1,862,219.32 5.62 30,222.3 56.90 60,002
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related to lithium ions and lithium accelerate; this acceleration leads to diminished 
transport resistance, hence, less internal resistance, as shown by Eq. (2). Decreased 
internal resistance leads to better round-trip energy efficiency at higher tempera-
tures, whereas at lower temperatures, the higher internal resistance leads to less 
energy efficiency per cycle. However, at high temperatures, the rate of capacity 
fade causing side reactions also increases, leading to higher loss of active material 
(i.e., lithium), and, hence, higher capacity fade, as shown by Eqs. (9) and (10). Fig-
ure  8 (right side) indicates that a 10 °C increase in temperature profile increases 
the capacity fade from 3.69% to 5.81%, and that a 20 °C increase in temperature 
profile increases the capacity fade to 8.86% over the course of a year. Similar effects 
occur with a load from Buenos Aires. A temperature increase of 10 °C leads to a 
percentage capacity loss change from 6.02 to 9.17. However, the battery is over-
sized for our instances, as evidenced by the fact that the maximum power out of the 

Fig. 7   Temperatures used as input to the optimization model. The original temperature used for Bagram 
(average temperature of 5.15 °C) is given as � ; � + 10 and � + 20 are the temperatures increased by 10 °C 
and 20 °C for each time period, respectively

Table 4   Model output: objective function value (OFV), MIP gap, fuel use and percentage capacity fade 
Qbkt for 8760 h and a 250 kW battery using varied input temperatures for Bagram and Buenos Aires

All of the runs reached a time limit of 20,000 s

OFV MIP gap (%) Total fuel consump-
tion (gal.)

Qbkt

Buenos Aires
BA8760 � 1,883,826.87 3.57% 29,213.0 6.0215
BA8760 � + 10 1,884,048.25 3.75% 29,217.2 9.1728
BA8760 � + 20 1,885,343.53 3.18% 29,240.1 13.5393
Bagram
BG8760 � 2,209,147.53 4.16% 34,747.9 3.6871
BG8760 � + 10 2,207,771.63 4.06% 34,721.2 5.8134
BG8760 � + 20 2,211,090.13 5.63% 34,785.4 8.8571
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battery (127.82 kW) is 51.1% of the maximum capacity of the battery (250 kW). 
As a result, we do not see any appreciable change in power output because it never 
nears the capacity of the battery, even after degradation.

There is evidence that if the battery capacity is more closely sized to the battery 
power output, there is lower power generation from the battery as it fades. Indeed, to 
this end, Fig. 9 shows the power output from a 100 kWh battery for the 8 ×-fade, 4 ×
-fade and 1 ×-fade cases; due to the time-compressed nature of the graph, the power 
variance is difficult to discern. Additionally, greater variance would be apparent at 
finer, e.g., one-minute, time granularity, but incorporating this detail is beyond the 
scope of the paper. See Husted et  al. (2018) for a similar model with one-minute 
time fidelity in which rapid changes in power are apparent.

6 � Conclusion

The capacity fade model given in (  ) provides a realistic update to the lifecy-
cle counting approach present in (  ). The results from (  ) show that there is an 
increase in: (1) objective function value (total microgrid costs), (2) fuel use, and (3) 
capacity loss with increasing battery fade. Moreover, at best, this increase is more 
pronounced if solutions from a model that does not consider fade are evaluated in 
a model that does; at worst, said solutions are infeasible. Capacity fade in smaller 
batteries has a greater effect on microgrid costs and fuel use, because these batter-
ies are used to a greater extent and/or more often at their maximum capacity. We 
also document the effect of temperature on battery capacity and performance. More 

Fig. 8   Internal resistance (left) 
and capacity fade (right) of a 
250 kW battery for varying 
temperatures from an average of 
5.15 °C to 25.15 °C for 8760 h
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specifically, we show that higher temperatures lead to lower resistance and discharge 
capacity which, in turn, cause faster battery capacity loss. We have developed a 
model that combines the complexities of battery chemistry with the optimization 
of a microgrid that contains a battery. This type of model will allow researchers to 
explore the effects of various sizes and types of batteries in a microgrid or even a 
grid-connected setting with much greater detail than was previously possible. Future 
work might employ the decomposition techniques from Zolan et al. (2018) to more 
quickly solve linear versions of our model, and to capture the approximations we 
make to the nonlinearities, although extensive modifications would be necessary to 
incorporate battery fade.

Acknowledgements  The authors would like to thank Dr. Mark Spector, Office of Naval Research (ONR) 
for full support of this research effort under contract Award #N000141310839, and several anonymous 
referees whose comments significantly improved the paper.

Appendix 1: Remainder of the mathematical formulation

We present the mathematical formulation of the optimization model other than the 
battery fade constraints, referred to as (2) . This part of the formulation is largely 
borrowed from the one given in Scioletti et al. (2017). We do not redefine notation 
presented in the body of the paper; that given here is in addition, and follows the 
conventions given in Sect. 2. 

Fig. 9   Power output from a 100  kW battery for Buenos Aires for 8760  h for the cases of 1 × fade 
(orange), 4 × fade (grey) and 8 × fade (yellow). (Color figure online)
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Symbol Explanation Units

Sets
g ∈  ⊂  All generator technologies (integer)

k ∈ ̂g
All generator twins of type g (integer)

s ∈  All PV panel types (integer)
Parameters

a
f
g, b

f
g, c

f
g

Fuel consumption coefficients for generator g ( gal

W2h
,
gal

Wh
,
gal

h
)

�+

b
, �−

b
Bi-directional converter slope-intercept parameter for battery b (W)

�+
b
, �−

b
Bi-directional converter slope parameter for battery b (unitless)

c̃j Cost of procuring one twin of technology type j ($/twin)
cs Cost of procuring one panel of technology type s ($/panel)
dP
t

Average power demand in time period t (W)

�
f

t
Fuel cost penalty in time period t ($/gal)

�j Cycle cost penalty for technology type j [$/(h)]
�+
j
, �−

j
Electric efficiency of power flow into and out of technology type j, 

respectively
(fraction)

�st Power output of technology type s in time period t ( W

panel
)

k̂ Spinning reserve coefficient (fraction)

k̄ Overage load coefficient (fraction)
ks Spinning reserve required relative to PV power (fraction)
kalt
g

Electric derating factor of generator g for altitude (fraction)

k
temp

gt
Electric derating factor of generator g in time t for temperature (fraction)

l̄j Maximum lifetime of technology type j (generator hours)
n̄s Maximum number of allowable PV panels of technology type s (panels)
� Ratio of base operation duration to time horizon length (fraction)
p
j
, p̄j Minimum and maximum power rating, respectively, of technology type j (W)

vnom
b

Nominal voltage for battery b (V)
Variables
B+

bkt
1 if battery type b, twin k is charging in time period t, 0 otherwise (binary)

B−

bkt
1 if battery type b, twin k is discharging in time period t, 0 otherwise (binary)

Bc
bkt

Maximum capacity available of battery type b, twin k in time period t (W)
F̃t

Amount of fuel used in time period t (gal)
Ggkt 1 if technology g, twin k is being used in time period t, 0 otherwise (binary)
Ljk Number of expended lifetime hours for technology type j, twin k (h)
P+

jkt
,P−

jkt
Aggregate power into and out of technology type j, twin k in time period 

t, respectively
(W)

PPV
st

Aggregate power out of PV technology type s in time period t (W)
Xs Integer number of PV panels of technology type s to procure (panels) (integer)
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Problem (2)
minimize

subject to (see section “System operations” of appendix) 

(23)
�

j∈

�

k∈̂j

c̃jWjk +

�

s∈

csXs + 𝜈

⎛

⎜

⎜

⎝

�

j∈

�

k∈̂j

𝜖jLjk +
�

t∈

𝛿
f

t F̃t

⎞

⎟

⎟

⎠

(24a)

∑

b∈

∑

k∈̃b

𝜂−
b
P−

bkt
− 𝛼−

b
B−

bkt

(1 + 𝛽−
b
)

−

∑

b∈

∑

k∈̃b

(

P+

bkt
+ 𝛽+

b
P+

bkt

𝜂+
b

+ 𝛼+

b
B+

bkt

)

+

∑

g∈

∑

k∈̃g

𝜂−
g
P−

gkt
+

∑

s∈

PPV
st

≥ (1 + k̄)dP
t
∀t ∈ 

(24b)

∑

b∈

∑

k∈̂b

Bc
bkt

− 𝛼−

b
Wbk

(1 + 𝛽−
b
)

+

∑

g∈

∑

k∈̂g

(

p̄gk
alt
g
k
temp

gt Ggkt − P−

gkt

)

≥ ks
∑

s∈

PPV
st

∀t ∈ 

(24c)Wj,k−1 ≥ Wjk ∀j ∈  , k ∈ ̂j ∶ k > 1

(24d)Ljk ≤
l̄j

𝜈
Wjk ∀j ∈  , k ∈ ̂j

(24e)Bc
bkt

≤ p̄bWbk ∀b ∈ , k ∈ ̂b, t ∈ 

(24f)Bc
bkt

≤
(b0

b
− s

b
Wbk)c

ref

b
vnom
b

𝜏
∀b ∈ , k ∈ ̂b, t = 1

(24g)Bc
bkt

≤
(Bsoc

bk,t−1
− s

b
Wbk)c

ref

b
vnom
b

𝜏
∀b ∈ , k ∈ ̂b, t ∈  ⧵ {1}

(24h)
∑

b∈

∑

k∈̂b

Bc
bkt

+

∑

g∈

∑

k∈̂g

p̄gGgkt ≥ (1 + k̂)

(

dP
t
−

∑

s∈

PPV
st

)

∀t ∈ 
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(see section “Generator operations” of appendix) 

(see section “PV operations” of appendix) 

(see section “Battery operations” of appendix) 

 (Nonnegativity and integrality) 

(25a)p
g
Ggkt ≤ P-

gkt
≤ p̄gk

alt
g
k
temp

gt Ggkt ∀g ∈ , k ∈ ̂g, t ∈ 

(25b)F̃t ≥ 𝜏
∑

g∈

∑

k∈̂g

(af
g
(P−

gkt
)
2
+ bf

g
P−

gkt
+ cf

g
Ggkt) ∀t ∈ 

(25c)Lgk ≥
∑

t∈

Ggkt ∀g ∈ , k ∈ ̂g, t ∈ 

(25d)Ggkt ≤ Wgk ∀g ∈ , k ∈ ̂g, t ∈ 

(25e)Gg,k−1,t ≤ Ggkt ∀g ∈ , k ∈ ̂g, t ∈  ∶ k > 1

(25f)P−

g,k−1,t
≤ P−

gkt
∀g ∈ , k ∈ ̂g, t ∈  ∶ k > 1

(26a)PPV
st

≤ �stXs ∀s ∈  , t ∈ 

(26b)Xs ≤ n̄s ∀s ∈ 

(27a)p
b
B+

bkt
≤ P+

bkt
≤ p̄bB

+

bkt
∀b ∈ , k ∈ , t ∈ 

(27b)p
b
B−

bkt
≤ P−

bkt
≤ p̄bB

−

bkt
∀b ∈ , k ∈ , t ∈ 

(27c)𝚤
b
B−

bkt
≤ I−

bkt
≤ 𝚤bB

−

bkt
∀b ∈ , k ∈ , t ∈ 

(27d)𝚤
b
B+

bkt
≤ I+

bkt
≤ 𝚤bB

+

bkt
∀b ∈ , k ∈ , t ∈ 

(27e)B+

bkt
+ B−

bkt
≤ Wbk ∀b ∈ , k ∈ , t ∈ 

(27f)s
b
Wbk ≤ Bsoc

bkt
≤ s̄bWbk ∀b ∈ , k ∈ , t ∈ 

(28a)Ljk,P
−

jkt
,P+

jkt
≥ 0 ∀j ∈  , k ∈ ̂j, t ∈ 
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The following descriptions pertain to the objective function and all constraints in ( 2

).

Objective function

The objective function minimizes the sum of four terms: (1) the cost associated with 
procuring various battery and generator technologies; (2) the cost associated with 
procuring PV panels; (3) an arbitrarily weighted measure of the hours of lifetime 
used by each technology over the total length of operation (tailored to generators, in 
this case); and (4) a weighted measure of the baseline cost of fuel.

System operations

Constraint (24a) ensures that the demand for power is met at every hour. The 
first term represents the power being discharged from the batteries, accounting 
for inverter losses; the second term represents the power to charge the batteries, 
accounting for rectifier losses; the third term represents the power from the gen-
erators, accounting for power system losses; and the fourth term reflects the con-
tributions of PV power. The right-hand side is the product of the forecast demand 
for the time period and an overage load factor. Constraint (24b) enforces “spinning 
reserve” via the use of a dispatchable technology (i.e., generator or battery) capable 
of meeting a fraction of the power provided by PV. To break symmetry, constraint 
(24c) ensures that the procurement of twins of technology j occurs in a fixed order. 
Constraint (24d) limits technology lifetime. Constraint (24e) bounds the capacity of 
a battery to a minimum and maximum value. Constraints (24f) and (24g) ensure 
that the battery capacity is less than the amount of power the battery can deliver in 
the current time period based on the state of charge at the end of the previous time 

(28b)F̃t ≥ 0 t ∈ 

(28c)PPV
st

≥ 0 ∀s ∈  , t ∈ 

(28d)Bc
bkt
,Bsoc

bkt
≥ 0 ∀b ∈ , k ∈ ̂b, t ∈ 

(28e)Xs ≥ 0 integer ∀s ∈ 

(28f)Ggkt binary ∀g ∈ , k ∈ ̂g,∀t ∈ 

(28g)B+

bkt
,B−

bkt
binary ∀b ∈ , k ∈ ̂b,∀t ∈ 

(28h)Wjk binary ∀j ∈  , k ∈ ̂j
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period. Constraint (24h) enforces that the “spinning reserve” from the additional dis-
patchable technology (generator or battery) is at least a (fixed) fraction of the net 
demand.

Generator operations

Constraint (25a) binds a generator, if running, to a value between a minimum and 
maximum manufacturer-specified power level. Constraint (25b) determines the 
amount of fuel used by a generator during time period t. Constraint (25c) counts 
lifetime hours of the generators. Constraint (25d) ensures that only procured genera-
tors are available for dispatch. Constraints (25e) and (25f) prioritize the use of tech-
nology twins to reduce symmetry.

PV operations

Constraint (26a) limits the PV output power per panel to �st . The predicted solar 
panel output results from a PVWatts simulation run a priori, which accounts for per-
formance characteristics such as location, panel efficiency, tilt, and angle. The num-
ber of panels considered for procurement is limited by constraint (26b), given the 
expected land area available.

Battery operations

Constraints (27a) and (27b) bound the net power flow of each battery per time 
period, while constraints (27c) and (27d) similarly constrain the current flow. Con-
straint (27e) prevents simultaneous charge and discharge. Constraint (27f) bounds 
the battery state of charge between minimum and maximum values if the battery is 
procured.

Linearization

The mathematical formulation of (  ) contains several nonlinearities. In order to 
make the model more tractable, we linearize these by using the methods below.

For the product of a binary variable and a continuous one, we use an exact lineariza-
tion, for example, by defining a variable Zbknt as that product, as in constraint (15b), and 
replacing it with the inequalities below:

Zbknt = I+
bkt
Ybknt ∀b ∈ , k ∈ ̂b, t ∈ 

Zbknt ≤ MYbknt ∀b ∈ , k ∈ ̂b, t ∈ 

I+
bkt

≤ MYbknt ∀b ∈ , k ∈ ̂b, t ∈ 

−M(1 − Ybknt) ≤ I+
bkt

− Zbknt ≤ M(1 − Ybknt) ∀b ∈ , k ∈ ̂b, t ∈ 

I+
bkt
, Zbknt ≥ 0 ∀b ∈ , k ∈ ̂b, t ∈ 

Ybknt binary
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where M is a sufficiently large number.
The remainder of the nonlinearities are products of two and three continuous 

variables: 

Bilinear terms

RI+
bkt

The product of Rint
bkt

 and I+
bkt

RI−
bkt The product of Rint

bkt
 and I−

bkt

BI+
bkt

The product of Bsoc
b,k,t−1

 and I+
bkt

BI−
bkt

The product of Bsoc
b,k,t−1

 and I−
bkt

IC−

bkt
The product of I−

bkt
 and C−

bkt

CBbkt The product of Ceff

bkt
 and Bsoc

bkt

Trilinear terms

RII+
bkt

The product of RI+
bkt

 and I+
bkt

RII−
bkt

The product of RI−
bkt

 and I−
bkt

 corresponding to the following bilinear and trilinear terms:

To linearize the products of two and three continuous variables, we use an approxi-
mation given by McCormick (1976) and Androulakis et al. (1995). An example of 
that approximation for the bilinear case follows, where the lower-case letters repre-
sent lower and upper bounds on the respective variable.

Appendix 2: Heuristic 1 pseudocode

Algorithm 3 provides the pseudocode for 1 . 

Rint
bkt

⋅ I+
bkt
,Rint

bkt
⋅ I−

bkt
,Bsoc

bkt
⋅ I+

bkt
,Bsoc

bkt
⋅ I−

bkt
, I+

bkt
⋅ C−

bkt
,C

eff

bkt
⋅ Bsoc

bkt
,Rint

bkt
⋅ I+

bkt
⋅ I+

bkt
,Rint

bkt
⋅ I−

bkt
⋅ I−

bkt

RI+
bkt

≥ rint
bkt
I+
bkt

+ i+
bkt
Rint
bkt

− rint
bkt
i+
bkt

∀b ∈ , k ∈ , t ∈ 

RI+
bkt

≥ r̄int
bkt
I+
bkt

+ ī+
bkt
Rint
bkt

− r̄int
bkt
ī+
bkt

∀b ∈ , k ∈ , t ∈ 

RI+
bkt

≤ rint
bkt
I+
bkt

+ ī+
bkt
Rint
bkt

− rint
bkt
ī+
bkt

∀b ∈ , k ∈ , t ∈ 

RI+
bkt

≤ r̄int
bkt
I+
bkt

+ i+
bkt
Rint
bkt

− r̄int
bkt
i+
bkt

∀b ∈ , k ∈ , t ∈  .
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Appendix 3: Heuristic derivations

The following four sections show the calculations for determining the values for maxi-
mum discharge current, maximum charge current and those values given power output. 
Section “Dispatch decision variables given an idle battery” of this appendix gives the 
values of specific battery variables when the battery is idle.

Maximum discharge current

We detail the derivation of Eq. (17b), which calculates the maximum discharge current 
for battery b, twin k in period t > 1 , given the battery state variables Ceff

bk,t−1
 , Bsoc

bk,t−1
 , 

and Qbk,t−1 . For t = 1 , we substitute Ceff

bk,t−1
← c

ref

b
, Bsoc

bk,t−1
← b0

b
, and Qbk,t−1 ← 0 . We 

assume I+
bkt

= 0 and Wbk = 1 in the derivations of Qbkt and C−

bkt
 , respectively.

Therefore, a positive root to the quadratic equation

with Ī−
bkt

 as a variable, yields a valid upper bound on the decision variable I−
bkt

.

Maximum charge current

We detail the derivation of Eq. (19b), which calculates the maximum charge current 
for battery b, twin k in period t > 1 , given the battery state variables Ceff

bk,t−1
 , Bsoc

bk,t−1
 , 

(14 d) ∶ Ī−
bkt

=

C
eff

bk,t−1
Bsoc
bk,t−1

𝜏 + C−

bkt

(15c) ∶ Qbkt = Qbk,t−1 + 𝜏qbtmbnĪ
−

bkt

⇒ Ī−
bkt

=

C
eff

bk,t−1
Bsoc
bk,t−1

𝜏 + ĉ−
bt
(1 + 𝛼c

b
Qbkt)

=

C
eff

bk,t−1
Bsoc
bk,t−1

𝜏 + ĉ−
bt
(1 + 𝛼c

b
(Qbk,t−1 + 𝜏qbtmbnĪ

−

bkt
))

(15e) ∶ C−

bkt
= ĉ−

bt
(1 + 𝛼c

b
Qbkt)

(

ĉ−
bt
𝛼c
b
𝜏qbtmbn

)(

Ī−
bkt

)2
+
(

𝜏 + ĉ−
bt

(

1 + 𝛼c
b
Qbk,t−1

))

Ī−
bkt

− C
eff

bk,t−1
Bsoc
bk,t−1

= 0,
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and Qbk,t−1 . For t = 1 , we substitute Ceff

bk,t−1
← c

ref

b
, Bsoc

bk,t−1
← b0

b
, and Qbk,t−1 ← 0 . We 

assume I−
bkt

= 0 and Wbk = 1 in the derivations of Qbkt and Ceff

bkt
 , respectively.

Discharge current given power output

We detail the derivation of Eq.  (21), which calculates the discharge current for 
battery b, twin k in period t > 1 , given the power output, P−

bkt
 , and the battery state 

variables Bsoc
bk,t−1

 and Qbk,t−1 . For t = 1 , we substitute Bsoc
bk,t−1

← b0
b
 and Qbk,t−1 ← 0 . 

We assume I+
bkt

= 0 and Wbk = 1 in the derivations of Qbkt and Rint
bkt

 , respectively.

Therefore, a positive, real-valued root to the cubic equation

(15d) ∶ C
eff

bkt
= c

ref

b

(

1 −
Qbkt

100

)

(15c) ∶ Qbkt = Qbk,t−1 +
(

𝜏qbtmbn

)

Ī+
bkt

(14b) ∶ C
eff

bkt
s̄b = C

eff

bk,t−1
Bsoc
bk,t−1

+ 𝜏 Ī+
bkt

⇒ C
eff

bkt
= c

ref

b

(

1 −
Qbk,t−1

100
−

(𝜏qbtmbn)Ī
+

bkt

100

)

⇒ s̄bc
ref

b

(

1 −
Qbk,t−1

100
−

(𝜏qbtmbn)Ī
+

bkt

100

)

= C
eff

bk,t−1
Bsoc
bk,t−1

+ 𝜏 Ī+
bkt

⇒ s̄bc
ref

b

(

1 −
Qbk,t−1

100

)

− C
eff

bk,t−1
Bsoc
bk,t−1

=

(

𝜏 +
𝜏qbtmbn

100

)

Ī+
bkt

⇒ Ī+
bkt

=

s̄bc
ref

b

(

1 −
Qbk,t−1

100

)

− C
eff

bk,t−1
Bsoc
bk,t−1

𝜏 +
𝜏qbtmbn

100

(13d) ∶ P−

bkt
= (av

b
Bsoc
bk,t−1

+ bv
b
− Rint

bkt
I−
bkt
)I−
bkt

(15a) ∶ Rint
bkt

= r
ref

bt
(1 + �r

b
Qbkt)

(15c) ∶ Qbkt = Qbk,t−1 − �qbtmbnI
−

bkt

⇒ P−

bkt
=

(

av
b
Bsoc
bk,t−1

+ bv
b
−

(

r
ref

bt

(

1 + �r
b
Qbkt

)

)

I−
bkt

)

I−
bkt

=

(

av
b
Bsoc
bk,t−1

+ bv
b
−

(

r
ref

bt

(

1 + �r
b

(

Qbk,t−1 + �qbtmbnI
−

bkt

))

)

I−
bkt

)

I−
bkt

= −r
ref

bt
�r
b
�qbtmbn

(

I−
bkt

)3
− r

ref

bt

(

1 + �r
b
Qbk,t−1

)(

I−
bkt

)2
+

(

av
b
Bsoc
bk,t−1

+ bv
b

)

I−
bkt

−r
ref

bt
�r
b
�qbtmbn

(

I−
bkt

)3
− r

ref

bt

(

1 + �r
b
Qbk,t−1

)(

I−
bkt

)2
+

(

av
b
Bsoc
bk,t−1

+ bv
b

)

I−
bkt

− P−

bkt
= 0
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yields a value for I−
bkt

 that is feasible for model ().

Charge current given power input

We detail the derivation of Eq.  (22), which calculates the discharge current for 
battery b, twin k in period t > 1 , given the power input, P+

bkt
 , and the battery state 

variables Bsoc
bk,t−1

 and Qbk,t−1 . For t = 1 , we substitute Bsoc
bk,t−1

← b0
b
 and Qbk,t−1 ← 0 . 

We assume I−
bkt

= 0 and Wbk = 1 in the derivations of Qbkt and Rint
bkt

 , respectively.

Therefore, a positive, real-valued root to the cubic equation

yields a value for I+
bkt

 that is feasible for model ().

Dispatch decision variables given an idle battery

If P+

bk
= P−

bkt
= 0 , then we make the following decision variable assignments:
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