
RESEARCH ARTICLE

GoNDEF: an exact method to generate all non-dominated
points of multi-objective mixed-integer linear programs

Seyyed Amir Babak Rasmi1 • Metin Türkay1

Received: 1 March 2018 / Revised: 30 July 2018 / Accepted: 30 July 2018 /
Published online: 7 August 2018
� Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Most real-world problems involve multiple conflicting criteria. These problems are

called multi-criteria/multi-objective optimization problems (MOOP). The main task

in solving MOOPs is to find the non-dominated (ND) points in the objective space

or efficient solutions in the decision space. A ND point is a point in the objective

space with objective function values that cannot be improved without worsening

another objective function. In this paper, we present a new method that generates

the set of ND points for a multi-objective mixed-integer linear program (MOMILP).

The Generator of ND and Efficient Frontier (GoNDEF) for MOMILPs finds that the

ND points represented as points, line segments, and facets consist of every type of

ND point. First, the GoNDEF sets integer variables to the values that result in ND

points. Fixing integer variables to specific values results in a multi-objective linear

program (MOLP). This MOLP has its own set of ND points. A subset of this set

establishes a subset of the ND points set of the MOMILP. In this paper, we present

an extensive theoretical analysis of the GoNDEF and illustrate its effectiveness on a

set of instance problems.

Keywords Multi-objective optimization � Mixed-integer linear programming � Non-
dominated point � Exact method

1 Introduction

Many decision making processes deal with multiple decision criteria. Problems that

inherently contain more than one decision criterion are found in a wide range of

decision problems in engineering, business, health care, medicine, and chemistry.

& Metin Türkay

mturkay@ku.edu.tr

Seyyed Amir Babak Rasmi

srasmi14@ku.edu.tr

1 Department of Industrial Engineering, Koç University, Istanbul 34450, Turkey

123

Optimization and Engineering (2019) 20:89–117
https://doi.org/10.1007/s11081-018-9399-0(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-018-9399-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-018-9399-0&domain=pdf
https://doi.org/10.1007/s11081-018-9399-0

Such problems include genetic network stability, facility location, forward/reverse

logistics, urban transportation, and portfolio optimization. Moreover, even single

objective problems may be converted to multiple-objective problems to explore the

trade-offs between different issues. In the literature of MOOPs, a variety of solution

methods were applied to real-world problems such as resource management

problems (Can and Erol 2014; Vadenbo et al. 2014), (sustainable) location/trans-

portation problems (Abounacer et al. 2014; Anvari and Turkay 2017; Pascual-

González et al. 2016; Charkhgard et al. 2018), disaster planning (Najafi et al. 2013),

aerodynamic shape optimization (Nadarajah and Tatossian 2010), vehicle design

(Gobbi 2013), and RNA structure prediction (Saule and Giegerich 2015).

There are different solution methods for MOOPs that can be categorized into two

broad groups: interactive and non-interactive methods. Interactive methods generate

the solutions that are more important for decision makers based on their preferences.

For example, Alves and Clı́maco (2007) and Miettinen et al. (2016) study

interactive methods for MOOPs. Non-interactive methods assume that there is no

preference between ND points. On the other hand, exact methods are designed to

find either all or a subset of ND points or the efficient solutions set when non-

interactive approaches are used. Moreover, evolutionary algorithms find approxi-

mate solutions to cover a large subset of the ND points set (e.g., Zitzler 1999; Deb

2001; and Deb et al. 2002).

MOOPs can be categorized into different classes depending on the type of

variables and the form of the objective functions and/or constraints. In one aspect,

variables can have continuous or discrete values to form a feasible region in the

decision space. When there are k number of objective functions, the image of a n-
dimensional feasible region onto the objective space is a k-dimensional polyhedron

(the dimension of this polyhedron may be less than k) if all variables are continuous;
if all variables are discrete (integer or binary), this image becomes a set of single

points. Moreover, if both continuous and discrete variables exist, such as mixed-

integer programming problems, this image becomes a finite number of most k-
dimensional polyhedra in the objective space (we discuss each polyhedron of this

case in Sect. 2). The objective functions and constraints of a problem can also be

linear or nonlinear that alter the characteristics of the polyhedra. With these

differences in the MOOP characteristics, the problem can be categorized into multi-

objective (non)linear problem (MO(N)LP), multi-objective integer (non)linear

problem (MOI(N)LP), and multi-objective mixed-integer (non)linear problem

(MOMI(N)LP).

The concepts of the conventional simplex method with a single objective

function to find the ND extreme points of MOLPs are used by Evans and Steuer

(1973) and Yu and Zeleny (1975). They provide a thorough theoretical analysis of

MOLPs that is built on by other studies (Rudloff et al. 2017; Schechter 2005). Many

researchers used similar concepts between 1970 and 1990 to design different

algorithms for solving MOLPs (Steuer 1994). Moreover, Ehrgott et al. (2007)

present an effective algorithm to find the entire ND points of MOLPs. In general, a

number of studies in MOLPs are provided [see Wiecek et al. (2016) for more

discussion].

123

90 S. A. B. Rasmi, M. Türkay

MOI(L)Ps are more complicated than MOLPs. These problems have attracted a

great deal of attention to generate a subset, an approximation, or all ND points using

(non)interactive methods. Decomposition of 0–1 MOLP into a series of linear/

integer programming sub-problems similar to Benders decomposition has been

studied (Jahanshahloo et al. 2005; Tohidi and Razavyan 2012). The scalarization

techniques are the methods that convert a MOOP to a number of single objective

problems with some constraints. These single objective problems must be solved

using a systematic approach to generate a large number of ND points. Scalarization

techniques are the most preferred techniques to find all or a subset of the ND points

(Ehrgott 2006). Weighted-sum scalarization methods (Jorge 2009; Lokman and

Köksalan 2013; Sylva and Crema 2004) and the characteristics of the �-constraint
method (Özlen and Azizoglu 2009; Özlen et al. 2014; Mavrotas and Florios 2013)

for solving MOIPs are used. Boland et al. (2017b, 2016, 2014) present algorithms to

generate the ND points set of tri-objective integer linear programs (TOILP).

Moreover, finding the Nadir point and optimizing a function over the set of efficient

solutions are studied for MOILPs (Boland et al. 2017a). In addition, the ND points

set of a MOIP includes too many ND points for large-scale MOIPs; thus, it is more

practical to find a subset of this set considering the preferences of decision makers

(Lokman and Köksalan 2014).

Exact solution methods for MOOPs with both continuous and integer variables

were occasionally addressed in the literature. MOMILPs are very practical for real-

world problems since continuous variables often represent operational decisions,

and binary/integer variables show strategic/managerial decisions in mathematical

programming problems. The class of bi-objective MILPs (BOMILP) is a subclass of

MOMILPs with only two objective functions. Belotti et al. (2013), Vincent et al.

(2013), Stidsen et al. (2014), Boland et al. (2015), Soylu and Yildiz (2016), and

Fattahi and Turkay (2018) propose exact algorithms to generate all ND points of

BOMILPs. These algorithms use different methods to find integer solutions that

generate ND points. Moreover, since the ND points set of a BOMILP consists of

points and line segments, these studies use different techniques to find the ND line

segments.

Regarding general MOMILPs with more than two objective functions, a branch-

and-bound approach for solving these problems is provided in order to compare the

solutions to a reference point determined by decision makers. This approach

employs scalarization methods to find a ND point which is close to the reference

point in the objective space (Alves and Climaco 2000). An algorithm to solve 0–1

MOMILP for small and medium size problems is presented by Mavrotas and

Diakoulaki (2005). The main approach is based on evaluating all possible

combinations of binary variables, then finding the ND extreme points of the

remaining MOLP, and removing the dominated points by previously-found ND

points. These studies do not address the entire ND points of MOMILPs in the form

of facets. One important type of ND points is the extreme supported ND (ESN)

point. ESN points are the extreme points of the convex hull of all ND points. The set

of these ND points is very important and interesting for decision makers. Özpeynirci

Ö and Köksalan (2010) and Przybylski et al. (2010) present algorithms to generate

all ESN points. Alves and Costa (2016) propose a method to find all ESN points of

123

GoNDEF: an exact method to generate all non-dominated… 91

tri-objective mixed-integer linear programs (TOMILP). Note that the presence of

unsupported ND points and non-extreme supported ND points make generating the

entire ND points of a MOMILP difficult (Boland et al. 2015).

To the best of our knowledge, the existing exact algorithms do not address all ND

points of MOMILPs in the form of k0-dimensional facets (0� k0 � k � 1 and k� 3).

Moreover, although these algorithms find all ND points theoretically, they do not

find all entries of the ND points set in practice. In this paper, we present an

innovative method to find the ND points of a general MOMILP in the form of

facets.

In this paper, we analyze MOMILPs and their ND points in Sect. 2. In this

section, an illustrative example is provided for showing the outputs of the GoNDEF.

Our groundbreaking method, the GoNDEF, is presented in four steps in Sect. 3. In

the description of each step, we also provide theoretical statements to support the

accuracy of our method. Then, in Sect. 4, we examine the GoNDEF on a set of

instance problems. Finally, we summarize the contributions of the GoNDEF to

multi-objective optimization in Sect. 5, where we outline our conclusions.

2 Problem definition

A general MOMILP is given in (1).

max zðx; yÞ ¼ CCxþ CZy

s:t: ACxþ AZy� b; x 2 Rn; y 2 Zq;
ð1Þ

where zðx; yÞ ¼ ðz1ðx; yÞ; . . .; zkðx; yÞÞ, x and y are n and q-vectors of continuous and
integer variables, respectively. CC and CZ are k � n and k � q matrices, respec-

tively. AC and AZ are m� n and m� q matrices, respectively, and b is a m-vector. If
we set y to a specific vector of integer values (e.g., �y), MOMILP given in (1) is

converted to a MOLP. Let sub-MOLPð�yÞ be the MOLP found after fixing integer

variables of a MOMILP to �y as follows:

sub-MOLPð�yÞ :
max zðx; �yÞ ¼ CCxþ CZ �y

s:t: ACx� b� AZ �y; x 2 Rn:

ð2Þ

Note that CZ �y is a constant k-vector that does not change the efficient solutions of
the sub-MOLP given in (2). To simplify our notation, we denote the feasible region

of (2) by Sð�yÞ :¼ fx 2 Rn j ACx� b� AZ �yg. Therefore, the feasible region of (1)

can be shown as fx 2 SðyÞ; y 2 Zqg. Moreover, assume that S(y) for an arbitrary

feasible y is a closed convex set and there are a finite number of integer solutions

which result in nonempty S(y). For the simplicity, we call each entry of the set of

feasible integer solutions, the integer solution.

In general, the objective functions of a MOOP are conflicting; hence, the concept

of optimality is replaced by the Pareto optimality where one aims to generate the

ND points set. If a ND point in the objective space results in the vector of objective

123

92 S. A. B. Rasmi, M. Türkay

function values ẑ, then there is no (x, y) such that fx 2 SðyÞ; y 2 Zq; ziðx; yÞ� ẑi; i ¼
1; . . .; kg and at least for one i in f1; . . .; kg, ziðx; yÞ[ẑi. Consequently, if zðx̂; ŷÞ ¼ ẑ
for a feasible ðx̂; ŷÞ, then ðx̂; ŷÞ is an efficient solution.

Let the image of Sð�yÞ onto the objective space be a k-dimensional closed convex

polyhedron. Then, the boundary of this polyhedron is a number of connected

ðk � 1Þ-dimensional facets. Moreover, the ND points set of the problem given in (2)

is a subset of these facets. Note that each ND facet is the convex hull of a number of

ND extreme points. Yu and Zeleny (1975) propose a multi-criteria simplex method

to solve MOLPs. This method provides all ND extreme points, all ND facets, and

identifies adjacent ND extreme points. Let NDEP �y and NDFC �y be the set of all ND

extreme points and all ND facets, respectively. Next, we define an efficient integer

solution and a ND facet for MOMILPs.

Definition 1 If �x 2 Sð�yÞ exists such that ð�x; �yÞ is an efficient solution of (1), then

�y—as the integer part of this efficient solution—is an efficient integer solution.

Regarding Definition 1, the existence of at least one efficient solution such as ð�x; �yÞ
suffices to call �y, an efficient integer solution. Note that there may exist infinite

number of efficient solutions correspond to �y as an efficient integer solution.

Definition 2 Let F be the convex hull of some ND extreme points of (2) and a ND

facet for the sub-MOLP. If �z 2 F exists such that �z is ND for the MOMILP given in

(1), then F is a ND facet for the MOMILP. In this case, facet F is either completely

or partially ND.

We provide an instance of MOMILP with three objective functions (TOMILP

where k ¼ 3). Figure 1 shows this instance in the objective space from two different

perspectives (see Appendix 1 for the formulation). We show the existing polyhedra

by green, red, and blue colors. Note that fixing the vector of integer variables to each

1z

2z

3z

1
z

2z

3z

B

A
E

C
D

F

G

H

I

B

A

C

D

F

G

H

I

10

9

8

7

6

5

4

3

2

1

0

10

9

8

7

6

5

4

3

2

1

0

987
65

4321
0

1
2

3
4

5
6

7
8

9
10

0
2

4
6

8
10 0 1 2 3 4 5 6 7 8 9

Fig. 1 The illustration of the example in Appendix 1 in the objective space

123

GoNDEF: an exact method to generate all non-dominated… 93

integer solution gives a polyhedron. We denote these integer solutions by

yGR :¼ ð1; 0; 0Þ, yRE :¼ ð0; 1; 0Þ, and yBL :¼ ð0; 0; 1Þ. Then, the images of SðyGRÞ,
SðyREÞ, and SðyBLÞ onto the objective space correspond to the green, red, and blue

polyhedra, respectively. Moreover, note that each polyhedron also corresponds to a

sub-MOLP because the integer variables are fixed to (1, 0, 0), (0, 1, 0), or (0, 0, 1).

In this paper, if z1 and z2 are two different points in the objective space, then

½z1; z2� denotes the line segment in the objective space between z1 and z2. We also

use ‘‘[]’’ and ‘‘()’’ to show closed and open intervals, respectively. For example,

½�C ;�F Þ is a line segment that includes point �C but not point �F .

In this illustrative example, ½�A ;�B � is the ND points set of the green polyhedron.

Then, we determine NDEPyGR ¼ f�A ;�B g, NDFCyGR ¼ fConvexHullf�A ;�B gg and

identify that �A and �B are adjacent (�A ¼ ð6; 3; 10Þ and �B ¼ ð3; 6; 10Þ). This line
segment also provides a subset of the ND points set of the MOMILP. The ND points

set of sub-MOLPðyREÞ is the convex hull of points �C ;�F ;�G , and �H where

�C ¼ ð8; 0; 9Þ, �F ¼ ð1; 7; 9Þ, �G ¼ ð3; 9; 3Þ, and �H ¼ ð10; 2; 3Þ. Note that

NDEPyRE ¼ f�C ;�F ;�G ;�H g and NDFCyRE ¼ fConvexHullf�C ;�F ;�G ;�H gg.
These four points form a ND facet for the red polyhedron (ignoring the green

and blue polyhedra); however, it is a partially ND facet for the MOMILP. This facet

is not completely ND since a subset of its points is dominated by ½�A ;�B � (see
Definition 2). We find NDEPyBL ¼ NDFCyBL ¼ f�I g (�I ¼ ð8; 2; 5Þ) by solving sub-

MOLPðyBLÞ. Note that the ND facet of sub-MOLPðyBLÞ is a 0-dimensional facet.

Moreover, point �I is not ND for the MOMILP since it is dominated by some points

that belong to the red polyhedron (e.g., (8.02, 2.54, 5.16) which is in

ConvexHullf�C ;�F ;�G ;�H g and dominates �I). In this case, there are no ND

points in the blue polyhedron and hence yGR ¼ ð1; 0; 0Þ and yRE ¼ ð0; 1; 0Þ are the

efficient integer solutions.

Finding extreme points is an important task in optimization problems and the

edges are shown as the convex hull of adjacent extreme points. In Fig. 1, facet

�C ��F ��G ��H is formed by four edges (line segments) which are the

boundaries of the facet. Specifying the ND segments of these edges (e.g., ½�C ;�D Þ,1
½�F ;�G �, and ½�F ;�E Þ where �D ¼ ð6; 2; 9Þ and �E ¼ ð2; 6; 9Þ) provides a better and
more clear presentation of the partially ND facets since the dominance of the

boundaries are identified.

In the next section, we present our method, the GoNDEF, which generates the

ND facets of a MOMILP (�C ��F ��G ��H and ½�A ;�B � in the instance

associated with Fig. 1) and the ND segments of the edges between pairs of adjacent

ND extreme points (e.g., ½�C ;�D Þ and ð�E ;�F � which are the ND segments of the

edge ½�C ;�F �).
Regarding the partially ND facets, assume that F is a partially ND facet such as

�C ��F ��G ��H . Let z1; . . .; znF be the corner points of F and ND extreme

points. Hence, all points of F are in the convex hull of fz1; . . .; znFg. Our method

identifies this facet as a ND facet since it includes at least one ND point and our

method does not identify which parts of F is dominated. The GoNDEF identifies the

1 Note that point �D is not included in the set of ND points since �D is dominated by �A . Point �D is a

weakly ND point. Then, we do not address this type of points.

123

94 S. A. B. Rasmi, M. Türkay

dominated parts of F if only they are shown as the segments of the edges between

adjacent ND extreme points. Regarding this issue, assume that we present F to one

as a ND facet and he is interested in point �z :¼
PnF

j¼1 kjz
j where

PnF
j¼1 kj ¼ 1 and

kj [0; 8j ¼ 1; . . .; nF . Then, he can check the dominance of �z by solving the MILP

given in (3) and discussed in Sect. 3.1.

3 GoNDEF: an innovative method for solving MOMILPs

We present a new method that solves a general MOMILP with a unique algorithmic

approach. The GoNDEF iteratively finds an integer solution. Then, the method

solves the sub-MOLP associated with this integer solution if it is an efficient integer

solution (see Definition 1). Note that solving each sub-MOLP results in its ND

points in the form of most ðk � 1Þ-dimensional facets (set NDFC) and the ND

extreme points (set NDEP). We use straightforward operations and excluding

constraints and solve single objective LPs/MILPs to generate the ND points set.

Note that we focus on the objective function space and the ND points. Since the

number of objective functions is less than the number of variables in general and the

objective space is more preferable for decision makers, working in the objective

space is more interesting for researchers. Algorithms that operate in the space of

decision variables such as Armand and Malivert (1991), Armand (1993) and Sayin

(1996) generate efficient solutions, and if there is more than one efficient solution

associated with a ND point, they are generated. The computational effort in the

algorithms which work in the objective space, however, are less.

The GoNDEF method consists of four main steps. Let EIS be the set of explored

efficient integer solutions. We set EIS :¼ ; at the start of the algorithm.

Step 1 Find an efficient integer solution �y such that �y 62 EIS. Then,

EIS :¼ EIS [f�yg. Terminate the algorithm if such an efficient integer

solution does not exist. Step 1

Step 2 Solve sub-MOLPð�yÞ, which gives NDEP�y and NDFC �y. Step 2

Step 3 Identify the ND segments of each edge between pairs of adjacent ND

extreme points in NDEP �y. Step 3

Step 4 Identify the ND facets of the MOMILP in NDFC �y by filtering completely

dominated facets out. Go to Step 1. Step 4

Assume that we find an efficient integer solution in Step 1 for a MOMILP.

Hence, some ND points of the sub-MOLP associated with this efficient integer

solution are ND for the MOMILP. The ND frontier of this sub-MOLP is generated

in Step 2. In this frontier, there are edges between pairs of adjacent ND extreme

points and facets. Note that solving sub-MLOPs in Step 2 of the GoNDEF could

become very time-consuming. Hence, Step 1 generates integer solutions that are

efficient in order to save computational effort. In other words, we do not solve the

sub-MOLPs of integer solutions which do not contribute to the ND points set. In

Step 3, we identify which segments of these edges are dominated and which

segments are ND for the MOMILP. Regarding Step 4, set NDFC contains a number

123

GoNDEF: an exact method to generate all non-dominated… 95

of facets that are ND for the sub-MOLP. Note that a facet in NDFC is completely

dominated, partially ND, or completely ND for the MOMILP. Then, in Step 4, we

filter the completely dominated facets out and show the ND facets of the MOMILP.

3.1 Step 1: finding the efficient integer solutions

In Step 1, we aim to find integer solutions that are efficient in order to avoid solving

the sub-MOLPs that do not contribute to the ND points set. The following MILP

problem is a reformulation of two problems provided by Steuer and Choo (1983)2

and Mavrotas and Diakoulaki (2005) to check the dominance of a point.

DZ ðẑ; Yexc;ExCÞ :

max
Xk

i¼1

�i

s:t: ziðx; yÞ � �i � ẑi; i ¼ 1; . . .; k;

x 2 SðyÞ; y 2 ZqnYexc;ExC;
�i � 0; i ¼ 1; . . .; k;

ð3Þ

where ẑ 2 Rk is a point in the objective space. ExC is the set of constraints to

exclude the dominated cone of some points from the feasible region. Let exdð�zÞ be
the set of constraints that exclude the dominated cone of �z 2 Rk in the objective

space. Then, exdð�zÞ :¼ f�zi þ d� ziðx; yÞ þMti;
Pk

i¼1 ti � k � 1; ti 2 f0; 1g; i ¼
1; . . .; kg excludes the dominated cone of �z where M is a sufficiently large positive

number and d is a sufficiently small positive number. Note that if �z is a ND point and

we add exdð�zÞ to (3), then d ¼ 0 may result in a point that is weakly ND. So, we can

establish the constraints in ExC using exd(.)’s. Moreover, Yexc is the set of excluded
integer solutions using no-good constraints (Hooker 1994, 2011; Soylu and Yildiz

2016). Assume that (3) is feasible, then ðxD; yDÞ denotes the solution that results in

optimal objective function value and zD :¼ zðxD; yDÞ. Note that DZðẑ; Yexc;ExCÞ
results in yD 62 Yexc. Moreover, zD dominates ẑ and is not in the dominated cone of

some points that their dominated cones are excluded.

In the GoNDEF, the problem given in (3) is used in two ways based on the value

of entries of vector ẑ.

DZ1 Assume that both Yexc and ExC are empty sets, and x̂ 2 SðŷÞ; ŷ 2 Zq exist such

that ẑ ¼ zðx̂; ŷÞ. Then, if the optimal objective function value is zero or DZ is

infeasible, then ẑ is a ND point. Otherwise, ẑ is dominated by zD.

Remark 1 Assume that ẑ is ND for the sub-MOLPðŷÞ. Then, DZðẑ; ŷ; ;Þ can be

used for checking the dominance of ẑ. If the optimal objective function value is zero

or DZ is infeasible, then ẑ is a ND point.

2 This study provides a similar formulation to minimize Tchebycheff distance between the points in the

objective space and the Ideal point.

123

96 S. A. B. Rasmi, M. Türkay

DZ2 Assume that ẑ is an arbitrary point in Rk and the feasible region of (3) is not

empty. Moreover, assume that Yexc ¼ ExC ¼ ;. Then, zD is ND.

Proof The optimal objective function value is
Pk

i¼1ðzDi � ẑiÞ. Assume to the

contrary that zD is dominated. Then, a ND point such as zND :¼ zðxND; yNDÞ exists
such that zNDi � zDi , i ¼ 1; . . .; k, and at least for one i, zNDi [zDi . Then,

Pk
i¼1ðzDi �

ẑiÞ\
Pk

i¼1ðzNDi � ẑiÞ which contradicts that the optimal objective function value is
Pk

i¼1ðzDi � ẑiÞ. h

Let zS be an approximation of the Nadir point (ANP) of (1) such that zS is

dominated by the Nadir point. For example, zSi :¼ minfziðx; yÞjx 2 SðyÞ; y 2 Zqg,
for i ¼ 1; . . .; k. Then, all ND points of (1) are included in the feasible region of

DZðzS; ;; ;Þ.
In the next two subsections, we provide a method to check the efficiency of an

integer solution and find all efficient integer solutions.

3.1.1 Checking the efficiency of an integer solution

Let y	 be an integer solution and we aim to find a ND point in the image of Sðy	Þ
onto the objective space. If such a ND point exists, then y	 is an efficient integer

solution. Otherwise, y	 is not an efficient integer solution. In Algorithm 1, we

develop a method to check the efficiency of y	. If we set Yexc :¼ Zqnfy	g, then
DZðzS; Yexc;ExCÞ in the second line of Algorithm 1 results in zD that is ND for sub-

MOLPðy	Þ (for discussion, see DZ2).3 If, regarding DZ1, zD is ND for the

MOMILP, then yD is an efficient integer solution. Otherwise (line 8 of Algorithm 1),

we find a point such as zD1 that dominates zD (line 9). Then, we add the constraints

that exclude the dominated cone of zD1 to ExC and return to the second line of

Algorithm 1. Note that if we do not update ExC, the same dominated point will be

found in the next iteration.

In each iteration of Algorithm 1, we add new constraints to

DZðzS;Zqnfy	g;ExCÞ that tighten the region fx 2 Sðy	Þg. These new constraints

exclude the dominated regions in fzðx; y	Þjx 2 Sðy	Þg. We iteratively continue this

3 Note that y 2 ZqnfZqnfy	gg is equivalent to fixing y to y	.

123

GoNDEF: an exact method to generate all non-dominated… 97

procedure to find a ND point or see the infeasibility of DZ in the second line. Then,

Algorithm 1 stops in two cases:

Alg1-1 DZðzS;Zqnfy	g;ExCÞ becomes infeasible due to ExC which removes

all solutions in Sðy	Þ (line 4). The infeasibility of DZ shows that all

solutions in the region fðx; y	Þjx 2 Sðy	Þg are inefficient.

Alg1-2 We find a ND point such as zD :¼ zðxD; y	Þ where xD 2 Sðy	Þ (line 7).

3.1.2 Finding all efficient integer solutions

In this section, we present a method to generate all efficient integer solutions in Step

1. This method is shown in Algorithm 2 and at some of the iterations of this

algorithm, Algorithm 1 is called.

In Algorithm 2, we solve DZðzS; Yexc;ExCÞ iteratively. In each iteration, the

solution of the problem given in (3) leads to a potentially ND point (for discussion,

see DZ2). Note that due to Yexc :¼ ;, at the first iteration, zD is ND. However, in the

next iterations, we add some constraints to DZ by updating Yexc (line 7 of Algorithm

2) and ExC (lines 10 and 13). Then, we cannot guarantee that zD is ND. zD may be

dominated by some points in fzðx; yÞjx 2 SðyÞ; y 2 Yexcg which have been already

excluded. Our method solves DZðzD; fyDg; ;Þ to check the dominance of zD (line 6).

If zD is ND, then yD is an efficient integer solution. Note that if zD is dominated by a

ND point such as zD1, then we cannot determine the efficiency of yD. Hence, we use

Algorithm 1 in line 12 to check if yD is an efficient integer solution. If x 2 SðyDÞ
exists such that zðx; yDÞ is ND, then yD is an efficient integer solution. Hence, we

define zD :¼ zðx; yDÞ and exclude the dominated cone of zD for the next iteration

(line 13). We continue this process until DZðzS; Yexc;ExCÞ becomes infeasible due

to ExC and/or Yexc.

Without loss of generality, for the simplicity of presentation, we illustrate this

part of our method on a maximization BOMILP example provided in Fig. 2. There

are six polyhedra corresponding to integer solutions in Fig. 2. We set the ANP point

to (0, 1) and show by the blue point. At the first iteration, we solve DZðzS; ;; ;Þ.

123

98 S. A. B. Rasmi, M. Türkay

Optimal objective function value is 19 (14þ 5) and found at � (Fig. 2b). Let � be

associated with integer solution y1. � is ND and hence, y1 is an efficient integer

solution. At the next iteration (Fig. 2c), ExC :¼ fexdð�Þg and Yexc :¼ fy1g.
Solution of DZðzS; fy1g; exdð�ÞÞ happens at ` which is ND. Then, we update ExC
and Yexc. At the next iteration (Fig. 2d), we solve

DZðzS; fy1; y2g; fexdð�Þ; exdð`ÞgÞ. The result, ´, is ND. Hence, y3 is an efficient

0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

12

12

1z

2z

ANP Point

(a)

0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

12

12

1z

2z

1

1y

(b)

0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

12

12

1z

2z

1

2

2y

(c)

0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

12

12

1z

2z

1

2

3

3y

(d)

0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

12

12

1z

2z

1

2

3

4 4y

0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

12

12

1z

2z

1

2

3

4

5 4y

0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

12

12

1z

2z

1

2

3

4

5

5y
6y

(e)

(f) (g)

Fig. 2 An illustrative example for finding all efficient integer solutions in Step 1 (hatched regions are
excluded due to ExC and dashed-lines denote the polyhedra excluded due to Yexc)

123

GoNDEF: an exact method to generate all non-dominated… 99

integer solution. We update Yexc and ExC. At the next iteration (Fig. 2e), solving

DZðzS; Yexc;ExCÞ results in ˆ. ˆ is dominated by some points in the polyhedron

associated with y3. Then, we check the efficiency of y4 by using Algorithm 1 and

find ˜ that is ND (Fig. 2f). Then, we set Yexc :¼ fy1; y2; y3; y4g and

ExC :¼ fexdð�Þ; exdð`Þ; exdð´Þ; exdð˜Þg. At the next iteration (Fig. 2g), DZ is

infeasible and hence there are no more efficient integer solutions.

Note that Algorithm 2 iterates four times and there are six integer solutions. Since

we exclude some regions by ExC, the algorithm does not enumerate all integer

solutions and performs effectively. For example, Fig. 2g shows that y5 and y6 are not
in the set of excluded integer solutions. They are excluded due to ExC. In

Proposition 1, we show that the provided process in Algorithm 2 generates all

efficient integer solutions.

Proposition 1 Let �y be an arbitrary efficient integer solution for an instance of (1),
then Algorithm 2 identifies �y as an efficient integer solution at one iteration.

Proof Let �x 2 Sð�yÞ such that �z :¼ zð�x; �yÞ is ND. If Algorithm 2 does not find a point

such as �z, there are two possibilities:

1—�z is excluded because of the constraints in ExC. ExC excludes the dominated

cone of some ND points. Moreover, �z is ND and is not in the dominated cone of

other points. Then, the constraints of the set ExC do not exclude �z. Note that we

assume that the value of d in constraints exd is sufficiently small. Then, a ND point

such as �z is not excluded in the objective space due to a large value of d.
2—�z is excluded because �y 2 Yexc. We start with Yexc :¼ ;. At each iteration, we

add the integer solution of solving DZðzS; Yexc;ExCÞ to Yexc. Hence if �y 2 Yexc, then
at an iteration where �y 62 Yexc, zðx̂; �yÞ such that x̂ 2 Sð�yÞ have been found by solving

DZðzS; Yexc;ExCÞ. At that iteration, if zðx̂; �yÞ is ND, then �y have been found as an

efficient integer solution. If zðx̂; �yÞ is not ND, then we have identified �y as an

efficient integer solution by applying Algorithm 1.Then, �y 2 Yexc cannot be a reason
for not identifying �y as an efficient integer solution. h

We remark that since our method finds all efficient integer solutions, it provides

all integer solutions associated with a same ND point. For example, assume that �z is

ND and equal to zðx1; y1Þ and zðx2; y2Þ (x1 2 Sðy1Þ and x2 2 Sðy2Þ). Then, our

method finds both y1 and y2.

3.2 Step 2: solving the sub-MOLPs

In this step, integer variables are fixed. Then, we aim to solve the associated sub-

MOLP. For this purpose, we exploit the multi-criteria simplex method (Yu and

Zeleny 1975). Simplex method for single objective linear programs starts with a

number of decision variables as the basic variables (xB) which are non-zero. Then, at
each iteration of a maximization problem, it selects a decision variable such as xj
(the current value is zero) from the non-basic variables (xN) as the entering decision

variable. The values of the reduced costs are the main selection criterion for the

entering decision variable. Then, the entering variable will take a positive value in

the next iteration. Let RCj be the reduced cost of jth decision variable (xj); the value

123

100 S. A. B. Rasmi, M. Türkay

of RCj shows that entering xj into the basis will increase the objective function value
with the slope of �RCj. Hence, the decision variable with the most negative RC is

selected as the entering decision variable. The leaving variable is selected using the

minimum ratio test such that the feasibility is not violated in the next iteration. At

each iteration, the current solution is adjacent with the solution of the previous

iteration.

When we deal with more than one objective function, the RCj changes to RCij as

the reduced cost corresponds to the ith objective function and jth decision variable

(i ¼ 1; . . .; k). Assume that we are interested in a tri-objective LP and the current

basis results in a ND extreme point with values zcr ¼ ðzcr1 ; zcr2 ; zcr3 Þ. The current

efficient extreme solution has a number of adjacent solutions where some of them

are efficient. By selecting different non-basic variables as the entering variable,

these adjacent solutions are found. We can modify the selecting criteria such that the

next adjacent solution is an efficient solution. For example, assume that x1 is a non-
basic variable and RCi1 [0 for all i ¼ 1; 2; 3. Therefore, selecting x1 as the entering

variable results in z1 such that z1i\zcri for all i ¼ 1; 2; 3. Hence, selecting x1 as the

entering variable results in a dominated point. On the other hand, assume that x2 is
another non-basic variable and ðRC12;RC22;RC32Þ ¼ ð2;�3; 0Þ. Hence, entering x2
to the basis results in z2 such that z21\zcr1 , z

2
2 [zcr2 , and z23 ¼ zcr3 . Then, if x

2 enters

the basis, the new extreme solution will be potentially efficient.

Yu and Zeleny (1975) provide an algorithm to find all ND extreme points (NDEP
set) and ND facets (NDFC set) of a MOLP. They also present a number of

mathematical conditions for selecting the entering decision variable and identifying

the extreme points which belong to one facet.

3.3 Step 3: finding the ND segments of each edge

We find the efficient integer solutions in Step 1 and NDEP/NDFC sets

corresponding to the efficient integer solutions in Step 2. The edges of polyhedra

in the objective space are the line segments between pairs of adjacent ND extreme

points. In this section, we provide a method to find the ND segments of these edges.

Figure 3 shows an illustrative example in the objective space for a maximization

BOMILP instance; five polyhedra correspond to five integer solutions (y1; . . .; y5)
exist. In this example, we are interested in finding the ND segments on the edge

between � and `. Note that � and ` are two adjacent ND extreme points of sub-

MOLP(y1). Moreover, let ˆ ¼ k�þ ð1� kÞ` for a k 2 ½0; 1�. Then, ˆ�� denotes

point ðk� �Þ�þ ð1� kþ �Þ` in the objective space where � is a sufficiently small

positive number. We use this notation in the description of the illustrative example

provided in Fig. 3.

We solve DZð�; fy1g; ;Þ to check the dominance of �. � is dominated and

solving DZ results in some point(s) such as zðx; y2Þ where x 2 Sðy2Þ. Then, we aim

to find a segment in the convex hull of� and ` (edge ½�;`�) starting from � which

is dominated by the points in fzðx; y2Þjx 2 Sðy2Þg. The linear program given in (4)

results in an optimal value of a that gives ´ if z0 :¼ �, z00 :¼ �y 2, and �y :¼ y2. Let

123

GoNDEF: an exact method to generate all non-dominated… 101

aE be the optimal value of a. Then, ´ ¼ aE�þ ð1� aEÞ`. Due to Proposition 2,

½�;´Þ is a dominated segment.

EDG1 ðz0; z00; �yÞ :
min a

s:t: x 2 Sð�yÞ;
ziðx; �yÞ� az0i þ ð1� aÞz00i ; i ¼ 1; . . .; k;

0� a� 1:

ð4Þ

Proposition 2 Let z0 and z00 be two adjacent ND extreme points. z0 is dominated by

some zðx; �yÞ such that x 2 Sð�yÞ. Moreover, let aE be the optimal value of a in solving
(4). Then, segment ½z0; aEz0 þ ð1� aEÞz00Þ is dominated.

Proof Assume that zðx0; �yÞ dominates z0 and ziðxa; �yÞ� aEz0i þ ð1� aEÞz00i , for all
i ¼ 1; . . .; k (x0; xa 2 Sð�yÞ). Let ẑ be an arbitrary point in segment ½z0; aEz0 þ ð1�
aEÞz00Þ such that ẑ ¼ kz0 þ ð1� kÞ

�
aEz0 þ ð1� aEÞz00

�
and k 2 ð0; 1�. Moreover, let

�z :¼ zðkx0 þ ð1� kÞxa; �yÞ ¼ kzðx0; �yÞ þ ð1� kÞzðxa; �yÞ.4 Then, �z dominates ẑ

0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

12

12

1z

2z

1

2

3

4

5

7

6
1y

2y 3y

4y

5y

Fig. 3 An illustrative example for finding the ND segments of the edge ½�;`� in Step 3

4 Note that kx0 þ ð1� kÞxa 2 Sð�yÞ since Sð�yÞ is a convex set.

123

102 S. A. B. Rasmi, M. Türkay

because kziðx0; �yÞ þ ð1� kÞziðxa; �yÞ� kz0i þ ð1� kÞ
�
aEz0i þ ð1� aEÞz00i

�
for all

i ¼ 1; . . .; k, and �z 6¼ ẑ. h

Next, we calculate DZð´��; fy1g; ;Þ. ´�� is dominated by some points in the

polyhedron associated with y3. Then, we solve EDG1ð´��;`; y3Þ that results in an

optimal value of a which gives point ˆ. Hence, segment ½´;ˆÞ is dominated. Note

that ˆ is dominated and ˆ
�� is ND (ˆ is a weakly ND point). Then, we aim to find

a segment in the convex hull of ˆ�� and ` starting from ˆ
�� that is ND. The MILP

given in (5) results in an optimal value of a that gives ˜ if z0 :¼ ˆ
��, z00 :¼ `, and

Yexc :¼ fy1g. The optimal value of a (aE) is a value such that

˜ ¼ aEˆ�� þ ð1� aEÞ`. Due to Proposition 3, ½ˆ��;˜Þ is a ND segment.

EDG2 ðz0; z00; YexcÞ :
max a

s:t:x 2 SðyÞ; y 2 ZqnYexc;
ziðx; yÞ� az0i þ ð1� aÞz00i ; i ¼ 1; . . .; k;

0� a� 1:

ð5Þ

Proposition 3 Let z0 and z00 be two adjacent ND extreme points and z0 is ND. Let z0

and z00 correspond to integer solution y0. Assume that Yexc :¼ fy0g. Moreover, let aE

be the optimal value of a in solving (5). Then, segment ½z0; aEz0 þ ð1� aEÞz00Þ is ND.

Proof Assume to the contrary that a k 2 ð0; 1� exists such that kz0 þ ð1�

kÞ
�
aEz0 þ ð1� aEÞz00

�
is dominated. Then, ðkþ aEÞz0 þ ð1� kÞð1� aEÞz00 is

dominated. We conclude that optimal value of a in EDG2 given in (5) is greater

than or equal to kþ aE that contradicts the optimality of aE. h

In the following lemma, we explain the reason behind excluding y0 in Proposition

3.

Lemma 1 Under the conditions described in Proposition 3, if we do not exclude y0,

then EDG2 ðz0; z00; ;Þ results in aE ¼ 1:

For finding the ND segments in segment ½˜;`�, note that ˜ and ˜
�� are

dominated (˜ is a weakly ND point). Similar to the discussed procedure for finding

a ND segment starting from �, we again solve EDG1ð˜��;`; y4Þ to find ¯. ¯ and

¯
�� is ND. Then, we solve EDG2 ð¯��;`; fy1gÞ, which results in ˘. We identify

½¯;˘Þ as a ND segment. Then, we identify that ˘ and ˘
�� are dominated. Hence,

we solve EDG1ð˘��;`; y5Þ, which results in aE ¼ 0 and shows that there is no ND

segment in ½˘��;`�. Then, we are finished with finding the ND segments in the

edge ½�;`�. Segments ðˆ;˜Þ and ½¯;˘Þ are the ND segments.

We show all steps discussed for solving example in Fig. 3 in an algorithmic

presentation in Algorithm 3. This algorithm shows the process for finding the ND

segments of the edge ½z0; z00� associated with ~y. Note that if z0 is ND and

EDG2ðz0; z00; f~ygÞ is infeasible, then there is no z(x, y) such that x 2 SðyÞ,

123

GoNDEF: an exact method to generate all non-dominated… 103

y 2 Zqnf~yg, and ziðx; yÞ� az0i þ ð1� aÞz00i for all i ¼ 1; . . .; k. Hence, ½z0; z00� will be
a ND segment.

We can use some information obtained in Step 3 for generating efficient integer

solutions. We mention this issue in the following remark.

Remark 2 While finding dominated/ND segments of the edges in Step 3, we find

some ND points that dominate some segments of the edges. These points are

associated with some efficient integer solutions which might not be found due to the

value of d in ExC constraints. Hence, we can use this information and identify them

as efficient integer solutions.

3.4 Step 4: identifying the ND facets

The ND points set of a MOMILP includes the ND points in the form of k0-
dimensional facets (0� k0 � k � 1). Hence if k� 3, we cannot address the entire ND

points by showing points and line segments only. In Step 2, we generate the ND

facets of the sub-MOLPs while we have not identified if they are ND for the

MOMILP. Then, in this section, we aim to characterize the entire ND facets and

filter out the facets which are completely dominated using the following:

FC1 Information obtained from Step 3 (ND points in the form of points and line

segments).

FC2 Using excluding constraints iteratively to find a ND point in a facet.

Assume that we are interested in finding the ND points associated with �y. Let F
be a ND facet of sub-MOLPð�yÞ in the objective space (F 2 NDFC �y). We

characterize F by its corners that are ND extreme points. Let zj, j ¼ 1; . . .; nF , be

the extreme points of F. Then, F is ConvexHullfz1; . . .; znFg. Note that per extreme

point zj, j ¼ 1; . . .; nF , there is at least one adjacent extreme point in

fzp; p 2 f1; . . .; nFg; p 6¼ jg. In Sects. 3.4.1 and 3.4.2, we show the processes to

check the dominance of facet F.

123

104 S. A. B. Rasmi, M. Türkay

3.4.1 FC1

Assume that we aim to find 2-dimensional ND facets of the instance associated with

Fig. 1. Facet �C ��F ��G ��H is generated in Step 2. We can supply this facet as a

ND facet if �C ;�F ;�G ; or�H is ND—although it may be a partially ND facet. Now,

assume that all of these points are dominated and facet �C ��F ��G ��H has a ND

segment in its edges. Again we can claim that this facet is ND.

In general, we identify all ND extreme points and the ND segments of the edges

in Sect. 3.3 (Step 3). We admit that facet F is ND if at least one zj, j ¼ 1; . . .; nF , is

ND. If zj is dominated for all j ¼ 1; . . .; nF , then we look for a ND segment in the

edges between adjacent ND extreme points of F. If at least one ND segment exists,

then F is a ND facet.

Let zj be dominated for all j ¼ 1; . . .; nF . Moreover, assume that there is no ND

segment in the edges between pairs of adjacent ND extreme points associated with

F. Then, we may identify F as a dominated facet using Proposition 4.

Proposition 4 Let all extreme points of facet F be dominated by the points that are
associated with the same integer solution (ŷ). Then, F is completely dominated.

Proof Let zðxj; ŷÞ dominate zj and xj 2 SðŷÞ for all j ¼ 1; . . .; nF . Moreover, assume

that �z ¼
PnF

j¼1 kjz
j,
PnF

j¼1 kj ¼ 1, and kj 2 ½0; 1� for all j ¼ 1; . . .; nF (�z 2 F). Then,

ẑ ¼
PnF

j¼1 kjzðxj; ŷÞ dominates �z since kjziðxj; ŷÞ� kjz
j
i for all i ¼ 1; . . .; k, and

j ¼ 1; . . .; nF . Note that at least for one i and j, kjziðxj; ŷÞ[kjz
j
i. Moreover, ẑ is the

convex combination of zðxj; ŷÞ, j ¼ 1; . . .; nF . Then, x 2 SðŷÞ exists such that

zðx; ŷÞ ¼ ẑ. h

3.4.2 FC2

Assume that we cannot identify the dominance of F using the discussed methods in

Sect. 3.4.1. In Sect. 3.1.1, we examine the efficiency of an integer solution (�y) using
excluding constraints iteratively. We find a ND point such as zðx; �yÞ such that

x 2 Sð�yÞ. In the current section, we present an algorithm similar to Algorithm 1 to

find a ND point such as zðx; �yÞ that is in F. Therefore, zðx; �yÞ is in the convex hull of

z1, …, and znF in the objective space. We provide a MILP in (6) for finding a

potentially ND point in F. The solution of the formulation given in (6) results in

points which are in the convex hull of F’s corners. Hence, these points will be in the

facet F. Moreover, the set of constraints in ExC guarantees that the point which is

the result of DF is not in the dominated cone of previously found ND points.

123

GoNDEF: an exact method to generate all non-dominated… 105

DFðz1; . . .; znF ; �y;ExCÞ :

max
Xk

i¼1

�i

s:t: ziðx; �yÞ � �i � zSi ; i ¼ 1; . . .; k;

ziðx; �yÞ ¼
XnF

j¼1

kjz
j
i; i ¼ 1; . . .; k;

XnF

j¼1

kj ¼ 1;

0� kj � 1; j ¼ 1; . . .; nF ;

x 2 Sð�yÞ;ExC;
�i � 0; i ¼ 1; . . .; k:

ð6Þ

Let ExC :¼ ;. Then, the feasible region of (6) is x 2 Sð�yÞ such that their images

onto the objective space are in ConvexHullfz1; . . .; znFg. Algorithm 4 works similar

to Algorithm 1. It finds a point in F that is not dominated by previously found ND

points and is ND.

4 Numerical experiments

We illustrate the effectiveness of the GoNDEF on a set of MOMILP instances.

These instances are generated similar to the instances used by Boland et al. (2015)

and Mavrotas and Diakoulaki (2005). The mathematical formulation of the

instances and the range of parameters are provided in Appendix 2. We implement

our algorithm in MATLAB R2017b and ILOG CPLEX 12.5 optimizer using a PC

with Pentium IV processor at 3.00 GHz and with 32.0 GB of RAM.

We classify our instance problems based on the number of objective functions

(k), the number of constraints (m), the number of continuous variables (n), and the

number of integer variables (q). In this section, instance size denotes m, n, and q for

short. We also randomly generate five different instances per each problem and

report average values. Note that we also indicate the number of solved LPs and

MILPs (# LP and # MILP), the number of the efficient integer solutions (# eff. int.

123

106 S. A. B. Rasmi, M. Türkay

sol.),5 and total CPU time in seconds (CPUT (sec.)). Since the complexity of the

problem increases by instance size, we show the average cost of finding an efficient

integer solution. We report the average number of solved MILPs (# MILP per eff.

int. sol.) and the average CPU time that is consumed for finding an efficient integer

solution (CPUT per eff. int. sol. (sec.)). Then, the number of MILPs per efficient

integer solution and CPU time per efficient integer solution refer to ‘‘# MILP per

eff. int. sol.’’ and ‘‘CPUT per eff. int. sol. (sec.)’’, respectively.

The value of d in the excluding constraints of the set ExC modifies excluding

regions (it is discussed in Sect. 3.1); the larger values of d result in the larger

excluding regions. However, the probability of missing an efficient integer solution

increases. We test our method with di for the ith objective function where

i ¼ 1; ::; k. Let di be equal to the multiplication of D and the range of ith objective

function. In the instances that we used, the average value of di for i ¼ 1; . . .; 4, is
ðd1; d2; d3; d4Þ ¼ ð1:42; 1:36; 1:36; 1:34Þ if D ¼ 0:001.

Tables 1, 2, and 3 show the numerical results for MOMILP instances to find the

efficient integer solutions with D ¼ 0:1, D ¼ 0:01, and D ¼ 0:001, respectively. In
these tables, we solve instances for finding the efficient integer solutions without

solving the sub-MOLPs. Hence, the number of ND segments and facets are not

reported.

Table 1 Solving MOMILP instances with binary variables using Algorithm 2 for finding the efficient

integer solutions (D ¼ 0:1)

k m n q #

MILP

eff. int.

sol.

CPUT

(sec.)

MILP per eff. int.

sol.

CPUT per eff. int. sol.

(sec.)

2 10 5 5 10 1.6 0.10 6.25 0.06

2 20 10 10 41.8 7.2 1.37 5.81 0.19

2 30 15 15 52.4 6.8 1.84 7.71 0.27

2 40 20 20 109 13.8 4.05 7.90 0.29

2 50 25 25 261.6 19.6 18.41 13.35 0.94

3 10 5 5 15.4 3.6 0.19 4.28 0.05

3 20 10 10 105.6 26.2 4.84 4.03 0.18

3 30 15 15 379.6 47.4 34.93 8.01 0.74

3 40 20 20 830.4 55 181.19 15.10 3.29

3 50 25 25 3459.8 151.4 5603.94* 22.85 37.01

4 10 5 5 16 4.2 0.19 3.81 0.04

4 20 10 10 184.8 36.6 11.32 5.05 0.31

4 30 15 15 995.6 125.6 492.79 7.93 3.92

4 40 20 20 1987.4 193.4 2554.68 10.28 13.21

4 50 25 25 3470.8 549.8 7207.98* 6.31 13.11

*There are instances that took more than 2 h

5 This number is the computed number of the efficient integer solutions for the instances terminated due

to the time limit.

123

GoNDEF: an exact method to generate all non-dominated… 107

Table 2 Solving MOMILP instances with binary variables using Algorithm 2 for finding the efficient

integer solutions (D ¼ 0:01)

k m n q #

MILP

eff. int.

sol.

CPUT

(sec.)

MILP per eff. int.

sol.

CPUT per eff. int. sol.

(sec.)

2 10 5 5 34 2 0.42 17.00 0.21

2 20 10 10 48.8 9.6 1.53 5.08 0.16

2 30 15 15 60.8 8.2 2.15 7.41 0.26

2 40 20 20 119 15.8 5.17 7.53 0.33

2 50 25 25 256.2 20.8 22.34 12.32 1.07

3 10 5 5 61.2 3.8 0.84 16.11 0.22

3 20 10 10 190.6 32.2 7.19 5.92 0.22

3 30 15 15 496.2 57.2 41.25 8.67 0.72

3 40 20 20 1112.8 80.2 144.62 13.88 1.80

3 50 25 25 4395.4 221.6 5642.99* 19.83 25.46

4 10 5 5 35.8 4.4 0.55 8.14 0.13

4 20 10 10 419.6 46.8 17.58 8.97 0.38

4 30 15 15 1759 164 590.00 10.73 3.60

4 40 20 20 3164.6 254 2981.48 12.46 11.74

4 50 25 25 6015.8 629.8 7210.12* 9.55 11.45

*There are instances that took more than 2 h

Table 3 Solving MOMILP instances with binary variables using Algorithm 2 for finding the efficient

integer solutions (D ¼ 0:001)

k m n q # MILP # eff. int.

sol.

CPUT

(sec.)

MILP per eff. int.

sol.

CPUT per eff. int. sol.

(sec.)

2 10 5 5 264.4 2 2.77 132.20 1.38

2 20 10 10 195.6 10.2 3.65 19.18 0.36

2 30 15 15 244 9.6 4.83 25.42 0.50

2 40 20 20 317.4 18.6 9.06 17.06 0.49

2 50 25 25 479.6 30 20.72 15.99 0.69

3 10 5 5 516.4 3.8 7.47 135.89 1.96

3 20 10 10 916.4 32.8 21.10 27.94 0.64

3 30 15 15 2292.2 66.6 88.82 34.42 1.33

3 40 20 20 6537 92 314.90 71.05 3.42

3 50 25 25 21005.8 263.8 6009.70* 79.63 22.78

4 10 5 5 200.8 4.6 3.58 43.65 0.78

4 20 10 10 2651 48.2 62.02 55.00 1.29

4 30 15 15 10289.6 181.4 899.01 56.72 4.96

4 40 20 20 18106.6 281.6 3793.56 64.30 13.47

4 50 25 25 32365.6 670.6 7208.62* 48.26 10.75

*There are instances that took more than 2 h

123

108 S. A. B. Rasmi, M. Türkay

We aim to show the impact of changing the number of objective functions and

instance size on the performance of the GoNDEF for finding the efficient integer

solutions. First, note that if we consider the results of Tables 1, 2, and 3, the number

of the efficient integer solutions increases faster than the number of integer

variables. Second, there is a large increase in the number of the efficient integer

solutions when a new objective function is added to an instance. Hence, our method

requires more CPU time and solves more MILPs to generate more efficient integer

solutions for larger instances with larger number of objective functions. In terms of

the number of MILPs per efficient integer solution, we show that finding an efficient

integer solution is not significantly costlier when the number of objective functions

or instance size increases. For example, in some instances, the number of MILPs per

efficient integer solution decreases by the number of objective functions or instance

size. Then, we conclude that our method shows a reasonable performance on the

provided set of instances regarding the number of MILPs per efficient integer

solution. Note that our method does not show a similar performance in terms of

CPU time per efficient integer solution.

In Fig. 4, we summarize the results of solving TOMILP and quad-objective

MILP (QOMILP) instances shown in Tables 1, 2, and 3. We compare the

performance of our method with different values of D. In this figure, horizontal axes

denote different instance sizes. Moreover, vertical axes denote the number of MILPs

per efficient integer solution, CPU time per efficient integer solution, and the

number of the efficient integer solutions in Fig. 4a–c, respectively. We show the

results associate TOMILP instances by continuous lines and the results of QOMILP

instances by dashed lines. In addition, blue, red, and green colors associate

D ¼ 0:001, D ¼ 0:01, and D ¼ 0:1, respectively. Note that the larger values of # eff.
int. sol. denote a better performance of the GoNDEF with a specific value of D.
However, the smaller values of # MILP per eff. int. sol. and # CPUT per eff. int. sol.

indicate a better performance.

Figure 4a shows that the GoNDEF with D ¼ 0:01 and D ¼ 0:1 solves TOMILP

and QOMILP instances significantly better than the GoNDEF with D ¼ 0:001. In
terms of CPU time per efficient integer solution, Fig. 4b shows that in solving

TOMILP and QOMILP instances with m ¼ 10 and m ¼ 20, the GoNDEF with

D ¼ 0:001, D ¼ 0:01, and D ¼ 0:1 have similar performances. However, the

0

20

40

60

80

100

120

140

m=10 m=20 m=30 m=40 m=50

M

IL
P

pe
r e

ff.
 in

t.
so

l.

TOMILP, Δ=0.001 QOMILP, Δ=0.001

0

5

10

15

20

25

30

35

40

m=10 m=20 m=30 m=40 m=50
C

PU
T

pe
r e

ff.
 in

t.
so

l.
(s

ec
.)

TOMILP, Δ=0.01 QOMILP, Δ=0.01

0

100

200

300

400

500

600

700

m=10 m=20 m=30 m=40 m=50

ef

f.
in

t.
so

l.

TOMILP, Δ=0.1 QOMILP, Δ=0.1

(a) (b) (c)

Fig. 4 The results of the GoNDEF performance by changing D, the number of objective functions, and
instance size

123

GoNDEF: an exact method to generate all non-dominated… 109

GoNDEF with D ¼ 0:1 performs significantly better than the GoNDEF with D ¼
0:01 and D ¼ 0:001 in solving TOMILP and QOMILP instances with m ¼ 40 and

m ¼ 50. On the other hand, in Fig. 4c, we show that the GoNDEF with D ¼ 0:1
performs worse than the GoNDEF with D ¼ 0:01 and D ¼ 0:001 in terms of the

number of efficient integer solutions. Hence, we decide to use D ¼ 0:01 for the rest

of numerical experiments. It provides a fair analysis for finding efficient integer

solutions and the ND points set.

We summarize the issues mentioned in Fig. 4, in the following items:

• When the number of objective functions increases, the complexity of the

problem and solution time significantly increase.

• For a real MOMILP, a good value for D can be decided based on the structure of

the problem, the size of the problem, and what we aim to provide for the owner

of the problem.

• In order to find the best value for D, testing a large number of values from

0.0001 to 0.3 (this range may change regarding the problem), deeply analyzing

the trade-offs between the outputs, and considering time performances are

helpful.

• Very small values for D result in a low time performance; however, they do not

significantly increase the number of outputs. Hence, D 2 ½0:01; 0:05� can be

reasonable.

Let U be the upper bound of integer variables (yj �U for all j ¼ 1; . . .; q). In
Table 4, we test the GoNDEF for solving MOMILP instances with U ¼ 2 and

D ¼ 0:01. We compare the results of Table 4 with Table 2 in Table 5. When we

change U ¼ 1 to U ¼ 2, two main issues appear that increase the complexity of

problem: 1—a larger feasible region due to more integer solutions, and 2—necessity

of using no-good constraints for integer variables that are more complex than no-

good constraints for binary variables.

Table 5 shows the percentage of changes in the number of integer solutions (%

change in # of integer solutions), the number of solved MILPs (% change in #

MILP), and total CPU time (% change in CPUT) when U ¼ 1 changes to U ¼ 2.

Note that we provide the changes for the classes in which all instances are

completely solved. Regarding this table, the increases in the number of solved

MILPs are smaller than the increases in the number of integer solutions. However,

changes are significantly larger in terms of CPU time for solving TOMILP and

QOMILP instances (not BOMILP instances).

In Table 6, we report the results of solving MOMILP instances with binary

variables and D ¼ 0:01. Hence, we report the number of ND segments (# ND

segments) and the number of ND facets (# ND facets). Note that the number of ND

segments refers to the sum of separate single points and line segments. The last four

columns show the performance of the GoNDEF in terms of CPU time. We report the

percentage of CPU time that is consumed for solving the sub-MOLPs (% MOLP

CPUT). Moreover, in the last two columns, we show the spent CPU time for finding

a ND facet averagely. Column 12 shows the average CPU time for finding a ND

123

110 S. A. B. Rasmi, M. Türkay

facet and column 13 shows the average CPU time without considering the

consumed CPU time for solving the sub-MOLPs for finding a ND facet.

Table 6 shows that there is a large difference between BOMILPs and MOMILPs

(with k� 3) in terms of complexity. Moreover, by increasing instance size, the

Table 4 Solving MOMILP instances with integer variables (U ¼ 2) using Algorithm 2 for finding the

efficient integer solutions (D ¼ 0:01)

k m n q #

MILP

eff. int.

sol.

CPUT

(sec.)

MILP per eff. int.

sol.

CPUT per eff. int. sol.

(sec.)

2 10 5 5 34 2 0.37 17.00 0.18

2 20 10 10 58.8 9 1.78 6.53 0.20

2 30 15 15 59.2 9.8 2.75 6.04 0.28

2 40 20 20 165.4 19.6 10.28 8.44 0.52

2 50 25 25 520.2 26.6 91.98 19.56 3.46

3 10 5 5 61.2 3.8 0.88 16.11 0.23

3 20 10 10 218.4 36.8 11.57 5.93 0.31

3 30 15 15 560.8 79.4 203.74 7.06 2.57

3 40 20 20 1321.8 107.8 577.44 12.26 5.36

3 50 25 25 3646.4 255 6991.34* 14.30 27.42

4 10 5 5 35.8 4.4 0.52 8.14 0.12

4 20 10 10 536.6 62.2 30.83 8.63 0.50

4 30 15 15 2269.2 238.8 2470.97 9.50 10.35

4 40 20 20 3371.4 359 7216.00* 9.39 20.10

4 50 25 25 4286 652.4 7215.94* 6.57 11.06

*There are instances that took more than 2 h

Table 5 Comparison between Tables 2 (U ¼ 1) and 4 (U ¼ 2)

k m n q % change in # of integer solutions % change in # MILP % change in CPUT

2 10 5 5 0.0 0.0 - 12.0

2 20 10 10 56.8 20.5 16.1

2 30 15 15 172.3 - 2.6 27.6

2 40 20 20 222.5 39.0 98.8

2 50 25 25 476.8 103.0 311.7

3 10 5 5 0.0 0.0 5.2

3 20 10 10 56.8 14.6 60.9

3 30 15 15 172.3 13.0 394.0

3 40 20 20 222.5 18.8 299.3

3 50 25 25 476.8 – –

4 10 5 5 0.0 0.0 - 5.7

4 20 10 10 56.8 27.9 75.3

4 30 15 15 172.3 29.0 318.8

4 40 20 20 222.5 – –

4 50 25 25 476.8 – –

123

GoNDEF: an exact method to generate all non-dominated… 111

Ta
bl
e
6

S
o
lv
in
g
M
O
M
IL
P
in
st
an
ce
s
w
it
h
b
in
ar
y
v
ar
ia
b
le
s
b
y
th
e
G
o
N
D
E
F
(D

¼
0
:0
1
)

k
m

n
q

#
L
P

#
M
IL
P

#
ef
f.
in
t.

so
l:
		

#
N
D

se
g
m
en
ts

#
N
D

fa
ce
ts

%
M
O
L
P

C
P
U
T

C
P
U
T

(s
ec
.)

C
P
U
T
p
er

fa
ce
t

C
P
U
T
(n
o
M
O
L
P
)
p
er

fa
ce
t

2
1
0

5
5

1
7
.2

4
5
.6

2
4
.4

0
9
.6
7

0
.5
2

–
–

2
2
0

1
0

1
0

2
5
1

1
6
0
.2

9
.8

3
5
.2

0
9
.6
6

4
.2
4

–
–

2
3
0

1
5

1
5

4
0
7
.8

2
1
5

8
.6

6
1
.2

0
1
0
.8
9

6
.3
0

–
–

2
4
0

2
0

2
0

1
6
9
8
.2

6
4
9
.2

1
7
.2

1
7
9

0
1
2
.3
1

2
4
.1
0

–
–

2
5
0

2
5

2
5

6
2
8
6
.6

1
8
2
4
.6

2
9
.2

4
5
9
.6

0
1
2
.6
5

9
7
.3
7

–
–

3
1
0

5
5

1
0
8
.8

1
2
2
.6

3
.8

3
2
.2

1
1
.6

1
3
.3
1

1
.5
8

0
.1
3
6

0
.1
1
8

3
2
0

1
0

1
0

4
3
0
7
.4

1
6
2
2
.4

3
2
.2

7
5
1
.8

2
7
7
.2

1
2
.6
7

4
2
.4
0

0
.1
5
3

0
.1
3
4

3
3
0

1
5

1
5

2
1
0
3
6
.4

6
1
6
6
.8

5
8
.6

2
9
4
9
.4

1
1
8
8
.4

1
3
.0
2

2
2
6
.4
2

0
.1
9
1

0
.1
6
6

3
4
0

2
0

2
0

1
3
3
4
8
4
.8

2
2
7
8
0
.2

8
4
.8

9
9
5
3
.2

4
7
2
0

2
1
.1
6

1
1
2
5
.2
0

0
.2
3
8

0
.1
8
8

3
5
0

2
5

2
5

1
0
0
9
5
8
7
.6

1
4
6
8
6
7
.4

2
9
2
.4

6
3
3
4
7

2
9
8
8
5
.6

1
4
.3
0

3
0
1
7
0
.1
8
*

1
.0
1
0

0
.8
6
5

4
1
0

5
5

1
8
8
.6

1
4
2

4
.4

5
6
.6

9
.8

1
7
.2
7

2
.1
4

0
.2
1
8

0
.1
8
1

4
2
0

1
0

1
0

4
9
7
4
0
.4

6
5
4
1
.2

4
7
.8

3
2
6
3
.6

1
0
4
9

2
9
.6
9

2
2
3
.0
5

0
.2
1
3

0
.1
5
0

4
3
0

1
5

1
5

1
2
0
0
7
5
8
.6

6
9
6
6
5

1
6
6
.8

3
7
6
1
6

1
8
8
1
4
.2

5
3
.7
8

7
9
1
6
.9
6

0
.4
2
1

0
.1
9
4

4
4
0

2
0

2
0

2
5
0
6
0
5
7
.2

1
3
1
8
6
0
.2

1
4
6
.2

8
0
0
7
3
.6

4
5
3
4
0
.2

7
2
.9
9

3
2
1
5
2
.6
0
*

0
.7
0
9

0
.1
9
2

4
5
0

2
5

2
5

1
6
0
4
8
8
9
.4

6
9
6
7
4
.6

3
6
.6

4
7
0
5
4
.8

3
2
0
0
5
.6

8
9
.0
7

3
8
2
7
9
.4
0
*

1
.1
9
6

0
.1
3
1

*
T
h
er
e
ar
e
in
st
an
ce
s
th
at

to
o
k
m
o
re

th
an

1
0
h

*
*
T
h
e
sm

al
l
d
if
fe
re
n
ce
s
in

th
is
co
lu
m
n
co
m
p
ar
in
g
w
it
h
T
ab
le

2
ar
e
d
u
e
to

R
em

ar
k
2

123

112 S. A. B. Rasmi, M. Türkay

number of ND segments and facets significantly increase. Regarding solving the

sub-MOLPs, in Sects. 3 and 3.1, we describe that solving them is a time-consuming

part of our method (e.g., when k ¼ 4 and m ¼ 40=50, 73%/89% of the total CPU

time are consumed for solving the sub-MOLPs). Therefore, we compare the results

of the columns 12 and 13 to discuss the impact of solving the sub-MOLPs on CPU

time per ND facet. Although the average CPU time for finding a ND facet without

considering the solution time of the sub-MOLPs fairly increases by instance size,

this increase is significantly smaller than the increase in column 12. Then, CPU time

for solving the sub-MOLPs significantly affects the average CPU time for finding a

ND facet.

5 Conclusions

In this paper, we present the GoNDEF method to find all ND points of a general

MOMILP. Our method presents the ND points in the objective space in the form of

ND facets. The dimensions of these facets vary from 0 to k � 1. In order to provide

a more clear and practical representation of the partially ND facets, the GoNDEF

identifies the ND segments of the edges between pairs of adjacent ND extreme

points.

The innovative characteristics of the GoNDEF are highly efficient and practical

for solving MOMILPs. By choosing appropriate values for the ANP point, we can

simply generate the ND points such that their associated objective function values

are in some specific ranges. Moreover, we can modify the solution method of sub-

MOLPs to generate efficient solutions of MOMILPs in the decision space. Note that

integer/binary variables are more important than continuous variables in terms of

managerial issues; our method can generate all efficient integer solutions. This

characteristic allows us to generate all efficient integer solutions significantly faster

than generating all ND points. The computational results from solving a set of

instance problems indicate that the GoNDEF generates the entire set or a large

subset of the ND points.

Finally, any progress in solving MOLPs improves the performance of the

GoNDEF significantly. Moreover, a MOMILP includes a large number of the ND

facets. Focusing on the solutions that are more interesting for decision makers is a

crucial topic for future study.

Acknowledgements Financial support for this work by TUPRAS under grant OS.00054 is gratefully

acknowledged. MT gratefully acknowledges the computational infrastructure support provided by the

IBM Corporation through the IBM SUR award. The authors acknowledge valuable comments and

suggestions provided by Emre Alper Yıldırım, Emre Mengi, Seyed Mojtaba Hosseini, Ali Fattahi,

Matthias Ehrgott, and referees of Optimization and Engineering journal.

123

GoNDEF: an exact method to generate all non-dominated… 113

Appendix 1: The formulation of our illustrative instance given
in Fig. 1

We provide a mathematical formulation for Fig. 1. Note that there may be other

formulations to provide a feasible region corresponding to Fig. 1. Let M be a

sufficiently large positive number, x ¼ ðx1; x2; x3Þ� 0, and y ¼ ðy1; y2; y3Þ 2 f0; 1g3.

max zðx; yÞ ¼ ðx1; x2; x3Þ
s.t.

x1 � 6þMð1� y1Þ;
x2 � 6þMð1� y1Þ;
7�Mð1� y1Þ� x1 þ x2 � 9þMð1� y1Þ;
4�Mð1� y1Þ� x3 � 10þMð1� y1Þ;

� 6�Mð1� y2Þ� x1 � x2 � 8þMð1� y2Þ;
8�Mð1� y2Þ� x1 þ x2;

3�Mð1� y2Þ� x3;

3x1 þ 3x2 þ 2x3 � 42þMð1� y2Þ;

4�Mð1� y3Þ� x1 � 8þMð1� y3Þ;
x2 � 2þMð1� y3Þ;
x3 � 5þMð1� y3Þ;
y1 þ y2 þ y3 ¼ 1;

xi � 0; 8i ¼ 1; 2; 3;

yi 2 f0; 1g; 8i ¼ 1; 2; 3:

Appendix 2: Generating instance problems

In the following mathematical formulation we have k objective functions, m
constraints, q binary variables, and n continuous positive variables. The size of

instance is displayed as k � m� ðnþ qÞ. Uj is an integer value that shows the upper

bound of variable yj for j ¼ 1; . . .; q.

123

114 S. A. B. Rasmi, M. Türkay

max ztðx; yÞ ¼
Xn

i¼1

ctixi þ
Xq

j¼1

f tj yj; 8t ¼ 1; . . .; k

s.t.

Xn

i¼1

aijxi þ a0jyj � bj; 8j ¼ 1; . . .; q;

Xn

i¼1

aijxi � bj; 8j ¼ qþ 1; . . .;m� 1;

Xq

j¼1

yj �
q

3
;

xi 2 Rþ; 8 i ¼ 1; . . .; n;

yj 2 f0; 1; . . .;Ujg; 8 j ¼ 1; . . .; q;

where, in the described benchmarks, the objective function coefficients of the

continuous variables, binary variables, the right hand sides of the constraints, and

the matrix of coefficients (for both continuous and binary variables) are drawn from

uniformly distributed random numbers in the ranges [�10; 10], [�200; 200], [50,
100], and [�1; 20], respectively. In addition, the sparsity of coefficient matrix is 40

percent.

References

Abounacer R, Rekik M, Renaud J (2014) An exact solution approach for multi-objective location-

transportation problem for disaster response. Comput Oper Res 41:83–93

Alves MJ, Clımaco J (2000) An interactive reference point approach for multiobjective mixed-integer

programming using branch-and-bound. Eur J Oper Res 124(3):478–494

Alves MJ, Clı́maco J (2007) A review of interactive methods for multiobjective integer and mixed-integer

programming. Eur J Oper Res 180(1):99–115

Alves MJ, Costa JP (2016) Graphical exploration of the weight space in three-objective mixed integer

linear programs. Eur J Oper Res 248(1):72–83

Anvari S, Turkay M (2017) The facility location problem from the perspective of triple bottom line

accounting of sustainability. Int J Prod Res 55(21):6266–6287

Armand P (1993) Finding all maximal efficient faces in multiobjective linear programming. Math

Program 61(1–3):357–375

Armand P, Malivert C (1991) Determination of the efficient set in multiobjective linear programming.

J Optim Theory Appl 70(3):467–489

Belotti P, Soylu B, Wiecek MM (2013) A branch-and-bound algorithm for biobjective mixed-integer

programs. Optimization Online. http://www.optimization-online.org/DB_FILE/2013/01/3719.pdf

Boland N, Charkhgard H, Savelsbergh M (2014) A simple and efficient algorithm for solving three

objective integer programs. Optimization Online. http://www.optimization-online.org/DB_FILE/

2014/09/4534.pdf

Boland N, Charkhgard H, Savelsbergh M (2015) A criterion space search algorithm for biobjective mixed

integer programming: the triangle splitting method. INFORMS J Comput 27(4):597–618

Boland N, Charkhgard H, Savelsbergh M (2016) The l-shape search method for triobjective integer

programming. Math Program Comput 8(2):217–251

Boland N, Charkhgard H, Savelsbergh M (2017a) A new method for optimizing a linear function over the

efficient set of a multiobjective integer program. Eur J Oper Res 260(3):904–919

123

GoNDEF: an exact method to generate all non-dominated… 115

http://www.optimization-online.org/DB_FILE/2013/01/3719.pdf
http://www.optimization-online.org/DB_FILE/2014/09/4534.pdf
http://www.optimization-online.org/DB_FILE/2014/09/4534.pdf

Boland N, Charkhgard H, Savelsbergh M (2017b) The quadrant shrinking method: a simple and efficient

algorithm for solving tri-objective integer programs. Eur J Oper Res 260(3):873–885

Can E, Erol S (2014) A multi-objective mixed integer linear programming model for energy resource

allocation problem: the case of turkey. Gazi Univ J Sci 27(4):1157–1168

Charkhgard H, Takalloo M, Haider Z (2018) Bi-objective autonomous vehicle repositioning problem with

travel time uncertainty http://www.optimization-online.org/DB_HTML/2017/06/6104.html

Deb K (2001) Multi-objective optimization using evolutionary algorithms, vol 16. Wiley, New York

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm:

NSGA-II. IEEE Trans Evolut Comput 6(2):182–197

Ehrgott M (2006) A discussion of scalarization techniques for multiple objective integer programming.

Ann Oper Res 147(1):343–360

Ehrgott M, Puerto J, Rodriguez-Chia A (2007) Primal-dual simplex method for multiobjective linear

programming. J Optim Theory Appl 134(3):483–497

Evans JP, Steuer R (1973) A revised simplex method for linear multiple objective programs. Math

Program 5(1):54–72

Fattahi A, Turkay M (2018) A one direction search method to find the exact nondominated frontier of

biobjective mixed-binary linear programming problems. Eur J Oper Res 266(2):415–425

Gobbi M (2013) A k, k-e optimality selection based multi objective genetic algorithm with applications to

vehicle engineering. Optim Eng 14(2):345–360

Hooker J (2011) Logic-based methods for optimization: combining optimization and constraint

satisfaction, vol 2. Wiley, New York

Hooker JN (1994) Logic-based methods for optimization. In: Principles and practice of constraint

programming. Springer, Berlin, Heidelberg, pp 336–349

Jahanshahloo GR, Hosseinzadeh F, Shoja N, Tohidi G (2005) A method for generating all efficient

solutions of 0–1 multi-objective linear programming problem. Appl Math Comput 169(2):874–886

Jorge JM (2009) An algorithm for optimizing a linear function over an integer efficient set. Eur J Oper

Res 195(1):98–103

Lokman B, Köksalan M (2013) Finding all nondominated points of multi-objective integer programs.

J Glob Optim 57(2):347–365

Lokman B, Köksalan M (2014) Finding highly preferred points for multi-objective integer programs. IIE

Trans 46(11):1181–1195

Mavrotas G, Diakoulaki D (2005) Multi-criteria branch and bound: a vector maximization algorithm for

mixed 0–1 multiple objective linear programming. Appl Math Comput 171(1):53–71

Mavrotas G, Florios K (2013) An improved version of the augmented e-constraint method (augmecon2)

for finding the exact pareto set in multi-objective integer programming problems. Appl Math

Comput 219(18):9652–9669

Miettinen K, Hakanen J, Podkopaev D (2016) Interactive nonlinear multiobjective optimization methods.

In: Multiple criteria decision analysis. Springer, New York, pp 927–976

Nadarajah SK, Tatossian C (2010) Multi-objective aerodynamic shape optimization for unsteady viscous

flows. Optim Eng 11(1):67–106

Najafi M, Eshghi K, Dullaert W (2013) A multi-objective robust optimization model for logistics

planning in the earthquake response phase. Transp Res Part E: Logist Transp Rev 49(1):217–249

Özlen M, Azizoğlu M (2009) Multi-objective integer programming: a general approach for generating all

non-dominated solutions. Eur J Oper Res 199(1):25–35

Özlen M, Burton BA, MacRae CA (2014) Multi-objective integer programming: an improved recursive

algorithm. J Optim Theory Appl 160(2):470–482

Özpeynirci Ö, Köksalan M (2010) An exact algorithm for finding extreme supported nondominated points

of multiobjective mixed integer programs. Manag Sci 56(12):2302–2315

Pascual-González J, Jiménez-Esteller L, Guillén-Gosálbez G, Siirola JJ, Grossmann IE (2016) Macro-

economic multi-objective input-output model for minimizing CO2 emissions: application to the US

economy. AIChE J 62(10):3639–3656

Przybylski A, Gandibleux X, Ehrgott M (2010) A recursive algorithm for finding all nondominated

extreme points in the outcome set of a multiobjective integer programme. INFORMS J Comput

22(3):371–386

Rudloff B, Ulus F, Vanderbei R (2017) A parametric simplex algorithm for linear vector optimization

problems. Math Program 163(1–2):213–242

Saule C, Giegerich R (2015) Pareto optimization in algebraic dynamic programming. Algorithms Mol

Biol 10(1):1

123

116 S. A. B. Rasmi, M. Türkay

http://www.optimization-online.org/DB_HTML/2017/06/6104.html

Sayin S (1996) An algorithm based on facial decomposition for finding the efficient set in multiple

objective linear programming. Oper Res Lett 19(2):87–94

Schechter M (2005) A correction to the connectedness of the Evans–Steuer algorithm of multiple

objective linear programming. Found Comput Dec Sci 30(4):351–360

Soylu B, Yıldız GB (2016) An exact algorithm for biobjective mixed integer linear programming

problems. Comput Oper Res 72:204–213

Steuer RE (1994) Random problem generation and the computation of efficient extreme points in multiple

objective linear programming. Comput Optim Appl 3(4):333–347

Steuer RE, Choo EU (1983) An interactive weighted Tchebycheff procedure for multiple objective

programming. Math Program 26(3):326–344

Stidsen T, Andersen KA, Dammann B (2014) A branch and bound algorithm for a class of biobjective

mixed integer programs. Manag Sci 60(4):1009–1032

Sylva J, Crema A (2004) A method for finding the set of non-dominated vectors for multiple objective

integer linear programs. Eur J Oper Res 158(1):46–55

Tohidi G, Razavyan S (2012) An l1-norm method for generating all of efficient solutions of multi-

objective integer linear programming problem. J Ind Eng Int 8(1):1–8

Vadenbo C, Hellweg S, Guillén-Gosálbez G (2014) Multi-objective optimization of waste and resource

management in industrial networks—part I: model description. Resour Conserv Recycl 89:52–63

Vincent T, Seipp F, Ruzika S, Przybylski A, Gandibleux X (2013) Multiple objective branch and bound

for mixed 0–1 linear programming: corrections and improvements for the biobjective case. Comput

Oper Res 40(1):498–509

Wiecek MM, Ehrgott M, Engau A (2016) Continuous multiobjective programming. Springer, New York,

pp 739–815

Yu PL, Zeleny M (1975) The set of all nondominated solutions in linear cases and a multicriteria simplex

method. J Math Anal Appl 49(2):430–468

Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications, vol

63. Ithaca, Shaker

123

GoNDEF: an exact method to generate all non-dominated… 117

	GoNDEF: an exact method to generate all non-dominated points of multi-objective mixed-integer linear programs
	Abstract
	Introduction
	Problem definition
	GoNDEF: an innovative method for solving MOMILPs
	Step 1: finding the efficient integer solutions
	Checking the efficiency of an integer solution
	Finding all efficient integer solutions

	Step 2: solving the sub-MOLPs
	Step 3: finding the ND segments of each edge
	Step 4: identifying the ND facets
	FC1
	FC2

	Numerical experiments
	Conclusions
	Acknowledgements
	Appendix 1: The formulation of our illustrative instance given in Fig. 1
	Appendix 2: Generating instance problems
	References

