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Abstract We propose a certified reduced basis approach for the strong- and weak-

constraint four-dimensional variational (4D-Var) data assimilation problem for a

parametrized PDE model. While the standard strong-constraint 4D-Var approach

uses the given observational data to estimate only the unknown initial condition of

the model, the weak-constraint 4D-Var formulation additionally provides an esti-

mate for the model error and thus can deal with imperfect models. Since the model

error is a distributed function in both space and time, the 4D-Var formulation leads

to a large-scale optimization problem for every given parameter instance of the PDE

model. To solve the problem efficiently, various reduced order approaches have
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therefore been proposed in the recent past. Here, we employ the reduced basis

method to generate reduced order approximations for the state, adjoint, initial

condition, and model error. Our main contribution is the development of efficiently

computable a posteriori upper bounds for the error of the reduced basis approxi-

mation with respect to the underlying high-dimensional 4D-Var problem. Numerical

results are conducted to test the validity of our approach.

Keywords Variational data assimilation � 4D-Var � Strong-constraint
4D-Var � Weak-constraint 4D-Var � Reduced-order models � Reduced
basis method � A posteriori error estimation � PDE-constrained optimization �
Parameter estimation

1 Introduction

The goal of four-dimensional variational (4D-Var) data assimilation is to estimate

unknown control variables of a dynamical system—classically the initial condition

of the system—that provide the best fit of the system outputs with observation data

over a specific time interval (Courtier 1997; Dimet and Talagrand 1986; Lorenc

1981, 1986; Sasaki 1970). The use of 4D-Var data assimilation is prevalent in

oceanography (Bennett 1993) and meteorology (Lynch 2015), where the dynamical

system is described by partial differential equations (PDEs); see the recent texts

(Law et al. 2015; Reich and Cotter 2015) and references therein for variational data

assimilation in general.

We consider two variants of the 4D-Var problem. In the traditional strong-

constraint 4D-Var formulation, the model is assumed to be ‘‘perfect’’ and only the

initial conditions serve as the (unknown) control variable. The weak-constraint 4D-

Var formulation additionally accounts for an imperfect model in the traditional

formulation by introducing and finding a forcing term to account for the model

error. In the weak-constraint case, the unknown initial condition and unknown

model-error forcing term thus serve as control variables; for various weak-constraint

formulations see e.g. Trémolet (2006).

The 4D-Var problem is usually cast as an optimization problem and has very

close connections to optimal control theory (Vermeulen and Heemink 2006). A cost

functional is introduced consisting of two terms in the classical strong-constraint

formulation: the first term penalizes the misfit between the (unknown) initial

condition and its prior background information and the second term penalizes the

distance between the predicted system outputs and the observation data. In the

weak-constraint case, another term is added which penalizes the model-error

forcing. The optimal estimate of the initial condition is then found by minimizing

the cost functional subject to the governing equations of the dynamical system, i.e.,

the PDE. After discretization of the PDE using classical techniques such as finite

elements or volumes, the 4D-Var problem results in a large-scale optimization

problem which is typically very expensive to solve due to the high-dimensional state

and control variable spaces and the associated computation of the cost functional,
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gradient, and possibly Hessian. Note that in the discretized weak-constraint

formulation, the model-error forcing is also assumed to be spatially distributed and

thus has approximately the same dimension as the state and initial condition. To

lower the tremendous computational cost for solving the problem, an incremental

approach has been proposed in Courtier et al. (1994).

Another way to speed up the solution process is a reduced-order approach; such

approaches have been proposed successfully for the strong-constraint 4D-Var

formulation in, for example, Cao et al. (2007), Daescu and Navon (2008), Dimitriu

et al. (2010), Hoteit and Köhl (2006), Robert et al. (2005), Vermeulen and Heemink

(2006) and Ştefănescu et al. (2015). There are two kinds of 4D-Var reduced-order

approaches in the literature: In the first approach (Hoteit and Köhl 2006; Robert

et al. 2005; Vermeulen and Heemink 2006), a reduced basis space is introduced, e.g.

using empirical orthogonal functions, for only the control variable (initial

condition). By limiting the search space to the reduced space, the optimization

cost per iteration decreases and the convergence improves (at least during the first

few iterations). In the second approach (Cao et al. 2007; Daescu and Navon 2008;

Dimitriu et al. 2010), a reduced-order model for the system dynamics using proper

orthogonal decomposition (POD) is additionally introduced. This leads to an

additional speed-up and significant overall computational savings compared to

reducing only the control space. All of these approaches also consider adapting the

basis during the optimization. However, to the best of our knowledge, a posteriori

error bounds to assess the sub-optimality of the reduced-order 4D-Var solutions

have not yet been developed.

In this paper, we develop efficiently evaluable a posteriori error bounds for

reduced order solutions of the strong- and weak-constraint 4D-Var data assimilation

problem. We consider the standard quadratic 4D-Var cost functional constrained by

parametrized linear parabolic PDEs involving noisy observations in time. Our final

goal is not only to recover the ‘‘usual’’ 4D-Var control variables, i.e., the initial

condition and model-error forcing, but also the model parameters. A preliminary

improvement of the model itself before estimating the state can result in an

improved state estimate, see e.g. the application in Habert et al. (2016). We thus

obtain a bilevel optimization problem where the outer optimization stage is

performed over the model parameters after an inner optimization stage identical to

the standard 4D-Var setting, i.e., an optimization over control variables for given

fixed model parameters. In this paper, we focus mainly on the inner optimization

stage and propose a posteriori error bounds for the control variable. Our main

contributions are as follows:

• In Sect. 3, we consider the strong-constraint 4D-Var formulation. We employ

the reduced basis method to generate reduced order approximations for the

solution of the parametrized 4D-Var problem, i.e., the state, adjoint, and control

variables (i.e., the initial condition). We then propose an a posteriori error bound

for the control variable that allows us to assess the error between the reduced-

order 4D-Var solution and 4D-Var solution of the underlying high-dimensional

FE approximation.
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• In Sect. 4, we extend the reduced basis approximation and a posteriori error

estimation procedure from the strong- to the weak-constraint case. For

simplicity of exposition, we consider the model-error forcing as the only

unknown control variable in this section.

• In Sect. 5, we combine the results from the two previous sections and consider

problems with unknown initial condition and model-error forcing.

With the assumption of affine parameter dependence, the reduced-order 4D-Var

problems and the a posteriori error bounds can be efficiently evaluated using an

offline-online computational decomposition. Problems involving material parame-

ters often naturally satisfy an affine parameter dependence, and even geometric

parameters can often be treated after introducing suitable affine mappings onto a

reference domain (Rozza et al. 2008). Furthermore, the dimension reduction as well

as the a posteriori error bound formulation presented in this paper still hold even for

non-affine problems. However, for non-affine problems the computations can no

longer be decomposed into offline-online stages, and the online computational

efficiency thus suffers. To address this issue, the non-affine case can be treated using

the empirical interpolation method (EIM) which replaces the non-affine terms using

an affine approximation and thus allows us to regain the online-computational

efficiency; we refer the interested reader e.g. to Barrault et al. (2004), Grepl et al.

(2007) and Maday et al. (2007).

We present numerical results for the strong- and weak-constraint setting in

Sect. 6. We consider the dispersion of a pollutant governed by a convection-

diffusion equation with a Taylor–Green vortex velocity field. Our goal is to recover

the initial condition (in the strong-constraint case) or the model-error forcing (in the

weak-constraint case) given noisy measurements of the pollutant concentration at

five spatial locations over time. Since we focus on the solution of the inverse

problem here, we limit our test case to low Peclet numbers up to 50. The reason is

that high Peclet numbers pose significant challenges for model reduction even for

the forward problem itself: the high Peclet regime may require stabilization and

faces a growing Kolmogorov N-width and associated increase of the reduced order

spaces. However, even Peclet numbers below 50 are still practically relevant and do

appear in realistic scenarios, see e.g., Marshall et al. (2006).

We note that there is a close connection between the 4D-Var problem

formulation and optimal control and that a posteriori error bounds for reduced

order solutions to optimal control problems have been developed previously.

However, rigorous and efficiently evaluable error bounds have been proposed

mainly for elliptic problems KG2012,Kaercher2017,NRMsps2012), whereas error

bounds for parabolic optimal control problems are either not rigorous (Dedè 2010)

or not (online-)efficient (Tröltzsch and Volkwein 2009). The only exception for

parabolic problems is Kärcher and Grepl (2014), which considers only scalar time-

dependent controls and is based on a pertubation argument, often resulting in a more

conservative error bound (Kärcher et al. 2017).

Finally, we note that the reduced basis method has already been used in a

parameterized-background data-weak approach to variational data assimilation in

Maday et al. (2015a, b). However, this previous work considers the elliptic case and
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presents a relaxation of the 3D-Var setting, whereas we consider the time-dependent

case using the classical 4D-Var formulation. Before introducing some preliminary

definitions and assumptions in the following section, we do note that although we

consider the 4D-Var problem here, our approach directly applies to the 3D-Var

setting since the two are formally similar (Lynch 2015).

2 Preliminaries

In this section, we introduce the necessary ingredients and definitions for the

subsequent discussion. The 4D-Var problem is usually cast in a fully discrete

setting; we thus directly consider a spatial finite element (FE) and temporal finite

difference (FD) discretization using the weak variational formulation. We

summarize the continuous formulation of the 4D-Var problem in ‘‘Appendix 1’’.

Let Ye with H1
0ðXÞ � Ye � H1ðXÞ be a Hilbert space of functions over the

bounded Lipschitz domain X � Rd; d 2 N; with boundary C: The inner product and
induced norm associated with Ye are given by ð�; �ÞY and j�j jjY ¼

ffiffiffiffiffiffiffiffiffiffiffi

ð�; �ÞY
p

;

respectively. We assume that the norm j�j jjY is equivalent to the H1ðXÞ-norm and

denote the dual space of Ye by Y 0
e: We also introduce the Hilbert space for the

control, Ue ¼ L2ðXÞ; together with its inner product ð�; �ÞU ; induced norm j�j jjU ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

ð�; �ÞU
p

; and associated dual space U0
e: Furthermore, let D � RP be a prescribed P-

dimensional compact set in which our P-tuple input parameter l ¼ ðl1; . . .; lPÞ
resides.

We divide the time interval [0, T] with fixed final time T into K subintervals of

equal length s ¼ T
K
and define tk ¼ k s; 0� k�K; and K ¼ f1; . . .;Kg: We also

introduce two conforming finite element approximation spaces Y � Ye and U � Ue

of typically large dimension N Y ¼ dimðYÞ and N U ¼ dimðUÞ; note that Y and U

shall inherit the inner product and norm from Ye and Ue; respectively. We shall

assume that the spaces Y ;U and the number of timesteps K are large enough – i.e. Y

and U are sufficiently rich and the time-discretization sufficiently fine – such that

the FE-FD approximation guarantees a desired accuracy over the whole parameter

domain D:
We next introduce the (for the sake of simplicity) parameter-independent bilinear

forms mðw; vÞ ¼ ðw; vÞL2ðXÞ for all w; v 2 L2ðXÞ and bð�; �Þ : U � Y ! R: We

assume that bð�; �Þ is continuous, i.e.

cb ¼ sup
w2Unf0g

sup
v2Ynf0g

bðw; vÞ
jwj jjU jvj jjY

\1: ð1Þ

We also introduce the parameter-dependent bilinear form að�; �; lÞ : Y � Y ! R;
which we assume to be continuous, coercive,
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aðlÞ ¼ inf
v2Ynf0g

aðv; v; lÞ
jvj jj2Y

� a[ 0 8l 2 D; ð2Þ

and affinely parameter-dependent,

aðw; v; lÞ ¼
X

Qa

q¼1

Hq
aðlÞ aqðw; vÞ 8w; v 2 Y; 8l 2 D; ð3Þ

for some (preferably) small integer Qa: Here, the coefficient functions H
q
a : D ! R

are continuous and depend on l; but the continuous bilinear forms aq : Y � Y ! R

do not depend on l:
We also require the continuous linear functional f ð�Þ : Y ! R and the continuous

and linear (observation) operator C : Y ! D; where D is a suitable Hilbert space of

observations with inner product ð�; �ÞD and norm j�j jjD: Although a more general

setting is possible, we consider here the observation space D ¼ Rl and the

observation operator given by C/ ¼ ðh1ð/Þ; . . .; h‘ð/ÞÞT ; where hi 2 Y 0 are linear

output functionals. The continuity constant of the operator C is given by

cc ¼ sup
v2Ynf0g

jCvj jjD
jvj jjY

: ð4Þ

For the development of the a posteriori error bounds we assume that we have access

to a positive lower bound aLBðlÞ : D ! Rþ for the coercivity constant aðlÞ defined
in (2) such that

0\a� aLBðlÞ� aðlÞ 8l 2 D: ð5Þ

We note that aLBðlÞ is used in the a posteriori error bound formulation to replace

the actual coercivity constants. Whereas the constants cb and cc are parameter-

independent and can thus be computed once offline, we require that the coercivity

lower can be efficiently evaluated online, i.e., the computational cost is independent

of the FE dimension N : Various recipes exist to obtain such bounds (Huynh et al.

2007; Rozza et al. 2008).

3 Strong-constraint 4D-Var

In this section, we consider the strong-constraint 4D-Var data assimilation problem.

The extension to the weak-constraint case is considered in Sect. 4.

3.1 Problem statement

For a given parameter l 2 D; the classical 4D-Var problem can be stated as the

minimization problem
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min
y2YK ; u2U

Jðy; u; lÞ s:t: y 2 YK solves

mðyk; vÞ þ s aðyk; v; lÞ ¼ mðyk�1; vÞ þ sf ðvÞ 8v 2 Y ; 8k 2 K;

ð6Þ

with initial condition mðy0; vÞ ¼ mðu; vÞ for all v 2 Y; and cost functional Jð�; �; lÞ :
YK � U ! R given by

Jðy; u; lÞ ¼ 1

2
ju� udj jj2U þ s

2

X

K

k¼1

jCyk � zkd
�

�

�

�j2D: ð7Þ

Here ud 2 U is the background state (also referred to as the prior), i.e., the best

estimate of the true initial condition u 2 U prior to measurements being available,

and zkd 2 D; k 2 K; is the given data, e.g., observed outputs. The first term in the

cost functional penalizes the deviation of the initial condition from the background

state, the second term penalizes the deviation of the predicted outputs from the

given data/observed outputs. The relative weight of both terms is affected by the

choice of the ð�; �ÞU and ð�; �ÞD inner products. Note that we use u for the unknown

control/initial condition to signify the similarity to optimal control and the notation

Jð�; �; lÞ to indicate the implicit dependence of the cost functional J on the parameter

l through the state y. However, to simplify the notation we often do not explicitly

state the dependence of the state and control on the parameter, i.e., we use yk and u

instead of ykðlÞ and uðlÞ; respectively.
We would like to point out that the first term in (7) represents a Tichonov

regularization of the cost functional and that the regularization parameter is

‘‘hidden’’ in the choice of the inner product. We refer to Engl et al. (1996) for

regularization of inverse problems in general and to Puel (2009) for Tichonov

regularization in data assimilation. Furthermore, we note that the choice of the norm

for the data misfit term depends on the characteristics of the noise and is inspired by

Gaussian noise in this paper. Different noise characteristics may require a different

choice of norm; we refer e.g. to Rao et al. (2017) for a discussion using L1 and

Huber norms instead of the L2 norm. The approach presented in the following is

restricted to the case of Gaussian noise.

Employing a Lagrangian approach, we obtain the associated necessary, and in

our setting sufficient, first-order optimality conditions: Given l 2 D; the optimal

solution ðy�; p�; u�Þ 2 YK � YK � U satisfies

mðy�;k � y�;k�1;/Þ þ s aðy�;k;/; lÞ ¼ s f ð/Þ 8/ 2 Y; 8k 2 K; ð8aÞ

mðy�;0;/Þ ¼ mðu�;/Þ 8/ 2 Y; ð8bÞ

mðu; p�;k � p�;kþ1Þ þ s aðu; p�;k; lÞ ¼ s zkd � Cy�;k;Cu
� �

D
8u 2 Y ; 8k 2 K;

ð8cÞ

u� � ud;wð ÞU�mðw; p�;1Þ ¼ 0 8w 2 U; ð8dÞ
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where the final condition of the adjoint is given by p�;Kþ1 ¼ 0: Concerning the

existence and uniqueness of the 4D-Var problem specifically and of saddle point

problems in general we refer to Bröcker (2017) and Benzi et al. (2005).

3.1.1 Algebraic formulation

The 4D-Var problem is usually stated using an algebraic formulation (Ide et al.

1997). We thus briefly outline the algebraic equivalent of (6) by introducing a basis

for the finite element spaces Y and U such that Y ¼ spanf/y
i ; i ¼ 1; . . .;N Yg and

U ¼ spanf/u
i ; i ¼ 1; . . .;N Ug; respectively. We express the state, adjoint, and

control, respectively, as

yk ¼
P

N Y

i¼1

yki/
y
i ; pk ¼

P

N Y

i¼1

yki/
y
i ; u ¼

P

N U

i¼1

ui/
u
i ;

and denote the corresponding coefficient vectors by yk ¼ ½yk1; . . .; ykN Y
	T 2 RN Y ;

pk ¼ ½pk1; . . .; pkN Y
	T 2 RN Y ; and u ¼ ½u1; . . .; uN U

	T 2 RN U : We thus obtain the

algebraic formulation of the classical 4D-Var minimization problem

min Jðy; u; lÞ ¼ 1

2
ðu� ubÞTUðu� ubÞ þ

s
2

X

K

k¼1

Cyk � zkd
� �T

D Cyk � zkd
� �

;

s:t: yk 2 RN Y solves Myk þ sAðlÞyk ¼ Myk�1 þ sF 8k 2 K;

with initial condition My0 ¼ Muu:

ð9Þ

Here M 2 RN Y�N Y ; AðlÞ 2 RN Y�N Y ; F 2 RN Y ; and C 2 R‘�N Y are the usual finite

element mass matrix, stiffness matrix, load vector, and state-to-output matrix with

entries Mij ¼ mð/y
j ;/

y
i Þ; AijðlÞ ¼ að/y

j ;/
y
i ;lÞ; Fi ¼ f ð/y

i Þ; and Cij ¼ hið/y
j Þ;

respectively. The matrix Mu 2 RN Y�N U is given by ðMuÞij ¼ mð/u
j ;/

y
i Þ: Further-

more, the matrices U 2 RN Y�N Y with entries Uij ¼ ð/y
j ;/

y
i ÞU and D 2 R‘�‘ with

entries Dij ¼ ðej; eiÞD can be identified as the inverses of the background and

observation error covariance matrices, respectively. Here, ei denotes the ith unit

vector in R‘:
The derivation and algebraic formulation of the optimality system (8) is standard

and thus omitted for brevity. Further, in our problem setting the first-discretize-then-

optimize and first-optimize-then-discretize strategies lead to the same algebraic

formulation of the first-order optimality system. For more details on these two

approaches, we refer to Hinze et al. (2009) and for time-dependent problems

specifically to Stoll and Wathen (2013).

3.2 Reduced basis approximation

We first assume that we are given the reduced basis spaces YN � Y for the state and

adjoint, and U0
N � U for the control. Here, 1�N �Nmax is the number of iterations
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of the POD-Greedy sampling procedure to construct the spaces YN and U0
N discussed

in Sect. 4.4. Note that the dimensions NYðNÞ :¼ dimðYNÞ and N0
UðNÞ :¼ dimðU0

NÞ
of the reduced basis spaces depend on N but are in general not equal to N.

Furthermore, the basis functions of YN and U0
N are orthogonalized with respect to

the ð�; �ÞY and ð�; �ÞU inner product, respectively.

We next replace the finite element approximation of the PDE constraint in the

4D-Var problem statement (6) with its reduced basis approximation. For a given

parameter l 2 D, the reduced-order 4D-Var data assimilation problem can thus be

stated as

min
yN2YK

N
; uN2U0

N

JðyN ; uN ; lÞ s:t: yN 2 YK
N solves

mðykN ; vÞ þ s aðykN ; v; lÞ ¼ mðyk�1
N ; vÞ þ sf ðvÞ 8v 2 YN ; 8k 2 K;

ð10Þ

with initial condition mðy0N ; vÞ ¼ mðuN ; vÞ for all v 2 YN .

We can again employ a Lagrangian approach to obtain the reduced-order

optimality system: Given any l 2 D, the optimal solution ðy�N ; p�N ; u�NÞ 2 YK
N �

YK
N � U0

N satisfies

m y
�;k
N � y

�;k�1
N ;/

� �

þ s a y
�;k
N ;/; l

� �

¼ s f ð/Þ 8/ 2 YN ; 8k 2 K; ð11aÞ

m y
�;0
N ;/

� �

¼ m u�N ;/
� �

8/ 2 YN ; ð11bÞ

m u; p�;kN � p
�;kþ1
N

� �

þ s a u; p�;kN ; l
� �

¼ s zkd � Cy
�;k
N ;Cu

� �

D
8u 2 YN ; 8k 2 K;

ð11cÞ

u�N � ud;w
� �

U
�m w; p�;1N

� �

¼ 0 8w 2 U0
N ; ð11dÞ

where the final condition of the adjoint is given by p
�;Kþ1
N ¼ 0. The reduced-order

optimality system can be solved efficiently using an offline-online computational

procedure which is briefly discussed in Sect. 3.4.

Note that we use a single reduced basis ansatz and test space for the state and

adjoint equations for two reasons: first, a single space for state and adjoint

guarantees the stability of the reduced-order optimality system (Gerner and Veroy

2012); and second, the reduced-order optimality system (11) reflects the reduced-

order 4D-Var problem (10) only if the spaces of the state and adjoint equations are

identical. Since the state and adjoint solutions need to be well-approximated using

the single space YN ; we combine both snapshots of the state and adjoint equations

into the reduced basis space YN :
We also note that the dynamics of the state and adjoint are often different, and

thus separate spaces for the state and adjoint would be beneficial concerning the

computational efficiency, i.e., the dimension of the state/adjoint reduced basis space

and thus the overall dimension of the reduced-order optimality system would be
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considerably smaller. However, this requires a Petrov–Galerkin projection for the

state and adjoint with associated detriment concerning the stability.

3.3 A posteriori error estimation

We turn to the a posteriori error estimation procedure. Although we consider a

parametrized problem here, we note that the error bounds proposed below can also

be used in the non-parametrized reduced-order setting and are independent of how

the reduced-order spaces are constructed, i.e., the bound directly applies to reduced-

order approaches where the spaces are constructed e.g. using empirical orthogonal

functions, POD, or dual-weighted POD (Daescu and Navon 2008).

As mentioned above, our main goal is to rigorously bound the error in the optimal

control, u� � u�N . This will allow us to confirm the fidelity of the reduced-order 4D-

Var solution efficiently during the online stage. Our a posteriori error bounds are

also crucial in the construction of the reduced basis spaces by the POD-Greedy

algorithm (see Sect. 3.5).

To begin, we require the residuals

rkyð/; lÞ ¼ f ð/Þ � a y
�;k
N ;/; l

� �

� 1

s
m y

�;k
N � y

�;k�1
N ;/

� �

8/ 2 Y ; k 2 K; ð12Þ

rkpðu; lÞ ¼ zkd � Cy
�;k
N ;Cu

� �

D
�a u; p�;kN ; l
� �

� 1

s
m u; p�;kN � p

�;kþ1
N

� �

8u 2 Y; k 2 K;
ð13Þ

ruðw; lÞ ¼ m w; p�;1N

� �

� u�N � ud;w
� �

U
8w 2 U: ð14Þ

We also define

Ry ¼ s
X

K

k¼1

jrky
�

�

�

�

�

�
j2Y 0

 !1=2

; Rp ¼ s
X

K

k¼1

jrkp
�

�

�

�

�

�
j2Y 0

 !1=2

; ð15Þ

and the errors eky ¼ y�;k � y
�;k
N , ekp ¼ p�;k � p

�;k
N , and eu ¼ u� � u�N . Note that we use

jrky;p
�

�

�

�

�

�
jY 0 and jruj jjU0 as a shorthand notation for jrky;pð�; lÞ

�

�

�

�

�

�
jY 0 and jruð�;lÞj jjÞU0 ,

respectively. We can now state our main result:

Proposition 1 Let u� and u�N be the optimal solutions of the full-order and

reduced-order 4D-Var problems, (6) and (10), respectively. The error satisfies

ju� � u�N
�

�

�

�jU �Du
NðlÞ :¼ c1ðlÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1ðlÞ2 þ c2ðlÞ
q

8l 2 D; ð16Þ

where c1ðlÞ and c2ðlÞ are given by
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c1ðlÞ ¼
1

2
jruð�; lÞj jjU0 þ

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aLBðlÞ
p Rp

 !

; and ð17Þ

c2ðlÞ ¼
ffiffiffi

2
p

þ 1

aLBðlÞ
RyRp þ

c2c
2ðaLBðlÞÞ2

R2
y

 !

: ð18Þ

Proof We start from the error-residual equations obtained from (8) and the

definitions of the residuals

m eky � ek�1
y ;/

� �

þ s a eky;/; l
� �

¼ s rkyð/; lÞ; 8/ 2 Y ; k 2 K; ð19Þ

m u; ekp � ekþ1
p

� �

þ s a u; ekp; l
� �

¼ s rkpðu; lÞ � s Ceky;Cu
� �

D
;

8u 2 Y ; k 2 K;

ð20Þ

ðeu;wÞU � m w; e1p

� �

¼ ruðw; lÞ; 8w 2 U; ð21Þ

where eKþ1
p ¼ 0 and e0y ¼ eu. We first choose / ¼ ekp in (19) and take the sum from

k ¼ 1 to K to get

X

K

k¼1

m eky � ek�1
y ; ekp

� �

þ s
X

K

k¼1

a eky; e
k
p; l

� �

¼ s
X

K

k¼1

rky ekp; l
� �

: ð22Þ

Similarly, choosing u ¼ eky in (20) and summing from k ¼ 1 to K we obtain

X

K

k¼1

m eky; e
k
p � ekþ1

p

� �

þ s
X

K

k¼1

a eky; e
k
p; l

� �

¼ s
X

K

k¼1

rkp eky;l
� �

� s
X

K

k¼1

jCeky
�

�

�

�

�

�
j2D:

ð23Þ

Finally, from (21) with w ¼ eu we have

jeuj jj2U � m eu; e
1
p

� �

¼ ruðeu; lÞ: ð24Þ

By adding Eqs. (23) and (24), and then subtracting (22) we get
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X

K

k¼1

m ek�1
y ; ekp

� �

�
X

K

k¼1

m eky; e
kþ1
p

� �

� mðeu; e1pÞ þ jeuj jj2U

¼ � s
X

K

k¼1

rky ekp;l
� �

þ s
X

K

k¼1

rkp eky; l
� �

þ ruðeu; lÞ � s
X

K

k¼1

jCeky
�

�

�

�

�

�
j2D:

ð25Þ

Since e0y ¼ eu, and e
Kþ1
p ¼ 0, the left-hand side of (25) reduces to jeuj jj2U and we thus

obtain

jeuj jj2U þ s
X

K

k¼1

jCeky
�

�

�

�

�

�
j2D ¼ � s

X

K

k¼1

rky ekp; l
� �

þ s
X

K

k¼1

rkp eky; l
� �

þ ruðeu; lÞ

� s
X

K

k¼1

jrky
�

�

�

�

�

�
j2Y 0

 !1=2

s
X

K

k¼1

jekp
�

�

�

�

�

�
j2Y

 !1=2

þ s
X

K

k¼1

jrkp
�

�

�

�

�

�
j2Y 0

 !1=2

s
X

K

k¼1

jeky
�

�

�

�

�

�
j2Y

 !1=2

þ jruj jjU0 jeuj jjU :

ð26Þ

From the proof for the spatio-temporal energy norm bound in Grepl and Patera

(2005) and Kärcher and Grepl (2014) we know that

s
X

K

k¼1

jeky
�

�

�

�

�

�
j2Y �

s

ðaLBðlÞÞ2
X

K

k¼1

jrky
�

�

�

�

�

�
j2Y 0 þ

1

aLBðlÞ
mðeu; euÞ
|fflfflfflfflffl{zfflfflfflfflffl}

¼ jeuj jj2U

: ð27Þ

We need an analogous result for the adjoint. To this end, we first choose u ¼ ekp in

(20) to obtain

m ekp; e
k
p � ekþ1

p

� �

þ s a ekp; e
k
p; l

� �

¼ s rkp ekp; l
� �

� s Ceky;Ce
k
p

� �

D
: ð28Þ

We next note from the Cauchy–Schwarz inequality and Young’s inequality that

2m ekp; e
kþ1
p

� �

�m ekp; e
k
p

� �

þ m ekþ1
p ; ekþ1

p

� �

; ð29Þ

and also that

2 s Ceky;Ce
k
p

� �

D
� 2 s jCeky

�

�

�

�

�

�
jD jCekp
�

�

�

�

�

�
jD � 2 s jCeky

�

�

�

�

�

�
jD cc jekp

�

�

�

�

�

�
jY

� 2 s c2c
aLBðlÞ

jCeky
�

�

�

�

�

�
j2D þ s aLBðlÞ

2
jekp
�

�

�

�

�

�
j2Y ;

ð30Þ

where we also used the definition of the constant cc. Finally, again from Young’s

inequality we obtain
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2 s rkp ekp; l
� �

� 2 s
aLBðlÞ

jrkp
�

�

�

�

�

�
j2Y 0 þ

s aLBðlÞ
2

jekp
�

�

�

�

�

�
j2Y : ð31Þ

By summing two times (28) from k ¼ 1 to K and invoking (29), (30), and (31), we

obtain

m e1p; e
1
p

� �

þ s
X

K

k¼1

a ekp; e
k
p; l

� �

� 2 s
aLBðlÞ

X

K

k¼1

jrkp
�

�

�

�

�

�
j2Y 0 þ

2 s c2c
aLBðlÞ

X

K

k¼1

jCeky
�

�

�

�

�

�
j2D; ð32Þ

and hence

s
X

K

k¼1

jekp
�

�

�

�

�

�
j2Y �

2 s

ðaLBðlÞÞ2
X

K

k¼1

jrkp
�

�

�

�

�

�
j2Y 0 þ 2

cc
aLBðlÞ

	 
2

s
X

K

k¼1

jCeky
�

�

�

�

�

�
j2D: ð33Þ

Using the inequalities (27) and (33) in (26), invoking the definitions (15), and noting

that ða2 þ b2Þ1=2 � jaj þ jbj, it follows that

jeuj jj2U þ s
X

K

k¼1

jCeky
�

�

�

�

�

�
j2D � jruj jjU0 jeuj jjU þ Rp

1

ðaLBðlÞÞ2
R2
y þ

1

aLBðlÞ
jeuj jj2U

" #1=2

þ Ry

2

ðaLBðlÞÞ2
R2
p þ 2

cc
aLBðlÞ

	 
2

s
X

K

k¼1

jCeky
�

�

�

�

�

�
j2D

" #1=2

� jruj jjU0 jeuj jjU þ Rp

1

aLBðlÞ
Ry þ

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aLBðlÞ
p jeuj jjU

" #

þ Ry

ffiffiffi

2
p

aLBðlÞ
Rp þ

ffiffiffi

2
p

cc
aLBðlÞ

s
X

K

k¼1

jCeky
�

�

�

�

�

�
j2D

 !1=2
2

4

3

5:

ð34Þ

We now use Young’s inequality to bound

Ry

ffiffiffi

2
p

cc
aLBðlÞ

s
X

K

k¼1

jCeky
�

�

�

�

�

�
j2D

 !1=2

� c2c
2ðaLBðlÞÞ2

R2
y þ s

X

K

k¼1

jCeky
�

�

�

�

�

�
j2D; ð35Þ

and thereby eliminate the second term on the left-hand side of the inequality (34) to

obtain

jeuj jj2U � jruj jjU0 jeuj jjU þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aLBðlÞ
p Rp jeuj jjU

þ
ffiffiffi

2
p

þ 1

aLBðlÞ
RyRp þ

c2c
2ðaLBðlÞÞ2

R2
y :

ð36Þ

Using the definitions of c1ðlÞ and c2ðlÞ in (17) and (18), respectively, (36) sim-

plifies to
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jeuj jj2U � 2 c1ðlÞ jeuj jjU � c2ðlÞ� 0: ð37Þ

We obtain the desired result by bounding the error jeuj jjU by the larger root of the

quadratic inequality. h

We note that we currently cannot assess the tightness of the error bound (16) by

providing an a priori upper bound for the effectivity, i.e., the ratio of the bound to

the error. We present numerical results for the effectivity in Sect. 6.2.

3.4 Computational procedure

We briefly comment on the computational procedure to solve the reduced-order 4D-

Var problem and to evaluate the error bound. Given the affine parameter

dependence, the offline-online decomposition for the reduced basis approximation

is already quite standard in the reduced basis literature (Rozza et al. 2008); for the

parabolic case considered in this paper, we also specifically refer to Grepl and

Patera (2005) and Kärcher and Grepl (2014). The evaluation of the a posteriori error

bounds requires the following ingredients:

– The dual norm of the residuals jrky
�

�

�

�

�

�
jY 0 , jrkp
�

�

�

�

�

�
jY 0 , and jruj jjU0 ;

– The coercivity lower bound aLBðlÞ and the constant cc.

For the construction of the coercivity lower bound, aLBðlÞ, various recipes exist

(Huynh et al. 2007; Prud’homme et al. 2002; Veroy et al. 2002). The specific

choices for our numerical tests are stated in Sect. 6. The constant cc is parameter-

independent and can be computed by solving a generalized eigenproblem. The

offline-online evaluation of the dual norms of the residuals is standard and hence

omitted (Rozza et al. 2008). For a summary of the computational cost in the

parabolic optimal control context, we refer to Kärcher and Grepl (2014).

We solve the full-order and reduced-order 4D-Var problems with a precondi-

tioned Newton-CG method on the ‘‘reduced’’ cost functional jðu; lÞ :¼ JðyðuÞ; u; lÞ,
i.e., we eliminate the PDE-constraint in the minimization problem. The control mass

matrix is used as a preconditioner. We present results for the number of CG

iterations in Sect. 6. Overall, the online computational cost to solve the reduced-

order 4D-Var problem and to evaluate the a posteriori error bound depends only on

the reduced basis dimensions NY and N0
U , and is independent of N .

3.5 Greedy algorithm

To construct the reduced basis spaces YN and U0
N , we use the POD-Greedy sampling

procedure in Algorithm 1. Here, Ntrain � D is a finite but suitably large training

sample, l1 2 Ntrain is the initial parameter value, Nmax the maximum number of

greedy iterations, and �tol;min [ 0 a prescribed error tolerance. We also define the

relative error bound Du
N;relðlÞ ¼ Du

NðlÞ= ju�NðlÞ
�

�

�

�jU . Furthermore, for a given time

history vk 2 Y; k 2 K, the operator PODYðfvk : k 2 KgÞ returns the largest POD-
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mode with respect to the ð�; �ÞY inner product (normalized with respect to the Y-

norm), and vkproj;NðlÞ denotes the Y-orthogonal projection of vkðlÞ onto the reduced

basis space YN .

In steps 6 and 7 of Algorithm 1 we expand the reduced basis space YN with the

largest POD mode of both the state and the adjoint solution. Note that we apply the

POD in these two steps to the time history of the optimal state and adjoint projection

errors, i.e., e
y;k
proj;NðlÞ ¼ y�;kðlÞ � y

�;k
proj;NðlÞ and e

p;k
proj;NðlÞ ¼ p�;kðlÞ � p

�;k
proj;NðlÞ;

k 2 K, and not to the solutions ykðlÞ; k 2 K, and pkðlÞ; k 2 K.1 This ensures

that the POD modes are already orthogonal with respect to the ð�; �ÞY inner product

and that we add only new information to YN which is not yet captured in the reduced

basis.

In step 8 we expand the reduced basis space U0
N with the optimal control at l�.

Due to the time-dependence of the state and adjoint, it is possible that a specific

parameter ~l is picked several times by the greedy search in step 9. Before expanding

U0
N , we thus need to check if the new snapshot is already contained in the reduced

basis space U0
N�1, and consequently discard linearly dependent snapshots. By

construction, we thus have dimðU0
NÞ�N and dimðYNÞ ¼ 2N (although it is

theoretically possible that dimðYNÞ� 2N, we did not observe this case in the

numerical results). Finally, we note that information from the data assimilation cost

functional enters through the adjoint equation and the adjoint snapshots into YN .

Algorithm 1 Sampling Procedure: Strong-constraint 4D-Var
1: Choose Ξtrain ⊂ D, μ1 ∈ Ξtrain, Nmax, and tol,min > 0
2: Set N ← 0, YN ← {}, U0

N ← {}
3: Set μ∗ ← μ1 and Δu

N,rel(μ
∗) ← ∞

4: while Δu
N,rel(μ

∗) tol,min and N ≤ Nmax do

5: N ← N + 1
6: ζ1 = PODY ey,k

proj,N−1(μ
∗) : k ∈ K , YN ← YN−1 ⊕ span{ζ1}

7: ζ2 = PODY ep,k
proj,N (μ∗) : k ∈ K , YN ← YN ⊕ span{ζ2}

8: U0
N ← U0

N−1 ⊕ span{u∗(μ∗)}
9: μ∗ ← argmax

μ∈Ξtrain

Δu
N,rel(μ)

10: end while

4 Weak-constraint 4D-Var

We next consider the weak-constraint 4D-Var data assimilation problem, thus

accounting for possible model errors in the dynamical system. For simplicity, we

assume in this section that the initial condition is known and that we are interested

only in bounding the model error. We consider the combined problem (unknown

initial condition and model error) in the next section.

1 For the first iteration of the algorithm we define vkproj;0ðlÞ ¼ 0, and hence e
y;k
proj;0ðlÞ ¼ ykðlÞ and

e
p;k
proj;0ðlÞ ¼ pkðlÞ.
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4.1 Problem statement

To emphasize the relation between the weak-constraint 4D-Var problem and the

optimal control setting, we denote in this section the model error by u. However, the

model error is now time-dependent, i.e., u ¼ uk; k 2 K, and appears in every time

step of the dynamical system. For a given parameter l 2 D, the weak-constraint 4D-

Var problem is then given by the minimization problem

min
y2YK ; u2UK

Jðy; u; lÞ s:t: y 2 YK solves

mðyk; vÞ þ s aðyk; v; lÞ ¼ mðyk�1; vÞ þ s bðuk; vÞ þ s f ðvÞ

8v 2 Y; 8k 2 K;

ð38Þ

with initial condition mðy0; vÞ ¼ mðy0; vÞ for all v 2 Y ; and cost functional Jð�; �;lÞ :
YK � UK ! R given by

Jðy; u; lÞ ¼ s
2

X

K

k¼1

juk � ukd
�

�

�

�j2U þ s
2

X

K

k¼1

jCyk � zkd
�

�

�

�j2D: ð39Þ

We note that the cost functional now contains the contribution of the model error uk

as a sum over all time steps. In the optimal control setting, ukd 2 U; k 2 K denotes

the desired optimal control. In the data assimilation setting, however, ukd is usually

set to zero since the model error is generally assumed to be unbiased (Law et al.

2015). We also note that a constant (known) bias can be taken into account by

adjusting the right-hand side f(v). Similar to the strong-constraint formulation,

zkd 2 D, k 2 K, are the observed outputs.

We again obtain the associated necessary and sufficient first-order optimality

conditions using a Lagrangian approach: Given l 2 D, the optimal solution

ðy�; p�; u�Þ 2 YK � YK � UK satisfies

m y�;k � y�;k�1;/
� �

þ s aðy�;k;/; lÞ ¼ s bðuk;/Þ þ s f ð/Þ 8/ 2 Y ; 8k 2 K;

ð40aÞ

mðy0;/Þ ¼ mðy0;/Þ 8/ 2 Y; ð40bÞ

mðu; p�;k � p�;kþ1Þ þ s aðu; p�;k; lÞ ¼ s zkd � Cy�;k;Cu
� �

D
8u 2 Y ; 8k 2 K;

ð40cÞ

s u�;k � ukd;w
� �

U
�s bðw; p�;kÞ ¼ 0 8w 2 U; 8k 2 K; ð40dÞ

where the final condition of the adjoint is given by p�;Kþ1 ¼ 0. We note that the

adjoint equation of the weak-constraint formulation (40c) is identical to the adjoint

of the strong constraint formulation (8c).
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4.2 Reduced basis approximation

We again assume that we are given the reduced basis spaces YN � Y for the state

and adjoint and UN � U for the control. Whereas the construction of the space YN
directly follows from the discussion in Sect. 3.5 for the strong-constraint case, the

construction of UN needs to be adjusted to account for the time-dependence of the

model error. We briefly outline the procedure in Sect. 4.4.

For a given parameter l 2 D, we can now state the weak-constraint reduced-

order 4D-Var data assimilation problem as follows

min
yN2YK

N
; uN2UK

N

JðyN ; uN ; lÞ s:t: yN 2 YK
N solves

m ykN ; v
� �

þ s a ykN ; v; l
� �

¼ m yk�1
N ; v

� �

þ s b ukN ; v
� �

þ s f ðvÞ

8v 2 YN ; 8k 2 K;

ð41Þ

with initial condition mðy0N ; vÞ ¼ mðy0; vÞ for all v 2 YN . The reduced-order opti-

mality system directly follows from (40) and is thus omitted.

4.3 A posteriori error estimation

We first introduce the residuals for the weak-constraint case

~rkyð/; lÞ ¼ f ð/Þ þ b u
�;k
N ;/

� �

� a y
�;k
N ;/; l

� �

� 1

s
m y

�;k
N � y

�;k�1
N ;/

� �

8/ 2 Y; k 2 K;
ð42Þ

~rkpðu; lÞ ¼ zkd � Cy
�;k
N ;Cu

� �

D
�a u; p�;kN ; l
� �

� 1

s
m u; p�;kN � p

�;kþ1
N

� �

8u 2 Y ; k 2 K;
ð43Þ

~rkuðw; lÞ ¼ m w; p�;kN

� �

� u
�;k
N � ud;w

� �

U
8w 2 U; k 2 K: ð44Þ

Since the adjoint equations (40c) and (8c) are identical, the adjoint residual is

actually equivalent to the strong-constraint case, i.e., rkp ¼ ~rkp. Similar to (15), we

introduce the sums from k ¼ 1 to K of the dual norms of the residuals as

~Ry;p ¼ s
X

K

k¼1

j~rky;pð�; lÞ
�

�

�

�

�

�
j2Y 0

 !1=2

; ~Ru ¼ s
X

K

k¼1

j~rkuð�; lÞ
�

�

�

�j2U0

 !1=2

; ð45Þ

and the time-dependent model error eku ¼ u�;k � u
�;k
N . We may now state our main

result:

Proposition 2 Let u�;k and u
�;k
N , k 2 K, be the optimal solutions of the full-order

and reduced-order 4D-Var problems (38) and (41), respectively. The error satisfies
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s
X

K

k¼1

ju�;k � u
�;k
N

�

�

�

�

�

�
j2U

 !1=2

� ~Du
NðlÞ :¼ c1ðlÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1ðlÞ2 þ c2ðlÞ
q

8l 2 D; ð46Þ

where c1ðlÞ and c2ðlÞ are given by

c1ðlÞ ¼
1

2
~Ru þ

ffiffiffi

2
p

cb
aLBðlÞ

~Rp

	 


; and ð47Þ

c2ðlÞ ¼
2
ffiffiffi

2
p

aLBðlÞ
~Ry
~Rp þ

c2c
2ðaLBðlÞÞ2

~R2
y

 !

: ð48Þ

Proof The proof follows partly from the proof of Proposition 1; we thus stress the

differences and refer to the previous proof whenever possible. We again start from

the error-residual equations which are now given by

m eky � ek�1
y ;/

� �

þ s a eky;/; l
� �

¼ s ~rkyð/; lÞ þ s bðeku;/Þ; 8/ 2 Y; k 2 K;

ð49Þ

m u; ekp � ekþ1
p

� �

þ s a u; ekp; l
� �

¼ s ~rkpðu; lÞ � s Ceky;Cu
� �

D
; 8u 2 Y ; k 2 K;

ð50Þ

s eku;w
� �

U
�s b w; ekp

� �

¼ s ~rkuðw; lÞ; 8w 2 U; k 2 K; ð51Þ

where eKþ1
p ¼ 0 and e0y ¼ 0, since we guarantee that y0 2 YN . We now choose

/ ¼ ekp in (49), u ¼ ekp in (50), and w ¼ eku in (21), sum all equations from from

k ¼ 1 to K and combine them following the proof of Proposition 1 to obtain

s
X

K

k¼1

jeku
�

�

�

�j2U þ s
X

K

k¼1

jCeky
�

�

�

�

�

�
j2D

¼ � s
X

K

k¼1

~rky ekp; l
� �

þ s
X

K

k¼1

~rkp eky;l
� �

þ s
X

K

k¼1

~rku eku; l
� �

� ~Ry s
X

K

k¼1

jekp
�

�

�

�

�

�
j2Y

 !1=2

þ~Rp s
X

K

k¼1

jeky
�

�

�

�

�

�
j2Y

 !1=2

þ~Ru s
X

K

k¼1

jeku
�

�

�

�j2U

 !1=2

:

ð52Þ

We next bound the primal error. Since the primal equation contains the model error

on the right-hand side, we need to extend the proof from Grepl and Patera (2005) for

the spatio-temporal energy norm bound to include the extra term on the right-hand

side. The derivation is similar to the one for the bound of the adjoint in the proof of

Proposition 1 [cf. (28)–(33)], but instead of bounding the ð�; �ÞD inner product using
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Cauchy–Schwarz and the constant cc, we invoke the continuity of the bilinear form

bð�; �Þ. We can thus derive the bound

s
X

K

k¼1

jeky
�

�

�

�

�

�
j2Y �

2 s

ðaLBðlÞÞ2
X

K

k¼1

jrky
�

�

�

�

�

�
j2Y 0 þ 2

cb
aLBðlÞ

	 
2

s
X

K

k¼1

jeku
�

�

�

�j2U : ð53Þ

Furthermore, since the adjoint of the strong- and weak-constraint case are equiva-

lent, we can directly use the bound (33). Using the inequalities (53) and (33) in (52),

invoking the definitions (45), and noting that ða2 þ b2Þ1=2 � jaj þ jbj, it follows that

s
X

K

k¼1

jeku
�

�

�

�j2U þ s
X

K

k¼1

jCeky
�

�

�

�

�

�
j2D

� ~Ru þ
ffiffiffi

2
p

cb
aLBðlÞ

~Rp

� �

�

s
X

K

k¼1

jeku
�

�

�

�j2U
�1=2

þ 2
ffiffiffi

2
p

aLBðlÞ
~Ry
~Rp þ

ffiffiffi

2
p

cc
aLBðlÞ

~Ry s
X

K

k¼1

jCeky
�

�

�

�

�

�
j2D

 !1=2

:

ð54Þ

We again use Young’s inequality to bound

~Ry

ffiffiffi

2
p

cc
aLBðlÞ

s
X

K

k¼1

jCeky
�

�

�

�

�

�
j2D

 !1=2

� c2c
2ðaLBðlÞÞ2

~R2
y þ s

X

K

k¼1

jCeky
�

�

�

�

�

�
j2D; ð55Þ

and thereby eliminate the second term on the left-hand side of (54) to obtain

s
X

K

k¼1

jeku
�

�

�

�j2U � ~Ru þ
ffiffiffi

2
p

cb
aLBðlÞ

~Rp

� �

s
X

K

k¼1

jeku
�

�

�

�j2U

 !1=2

þ 2
ffiffiffi

2
p

aLBðlÞ
~Ry
~Rp þ

c2c
2ðaLBðlÞÞ2

~R2
y :

ð56Þ

Using the definitions of c1ðlÞ and c2ðlÞ in (47) and (48), respectively, we obtain

s
X

K

k¼1

jeku
�

�

�

�j2U � 2 c1ðlÞ s
X

K

k¼1

jeku
�

�

�

�j2U

 !1=2

�c2ðlÞ� 0; ð57Þ

The desired result follows again by using the larger root of the quadratic inequality

as a bound for the error. h

The offline-online computational procedure in the weak-constraint case is

analogous to the strong-constraint case discussed in Sect. 3.4 and therefore omitted.

Note that we additionally require the constant cb now, which is parameter-

independent and can be computed by solving a generalized eigenproblem (similar to

cc). For the Newton–CG method, we use the block-diagonal matrix

blkdiagðsM; . . .; sMÞ as a preconditioner.
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Similar to the strong-constraint case, we again cannot assess the tightness of the

error bound (46) by providing an a priori upper bound for the associated effectivity.

Instead, we present numerical results for the weak-constraint case also in Sect. 6.2.

4.4 Greedy algorithm

The POD-Greedy sampling procedure to construct the reduced basis spaces YN and

UN in the weak-constraint case is very similar to the strong-constraint case. We

summarize the procedure in Algorithm 2 and comment only on the differences.

First, since we assume in this section that the initial condition y0 is known, we

initialize the reduced basis space YN with y0=ky0kY . Second, we additionally require

the operator PODUðfvk : k 2 KgÞ, which returns the largest POD mode with respect

to the ð�; �ÞU inner product (and normalized with respect to the U-norm). Also,

vkprojU;NðlÞ denotes the U-orthogonal projection of v
kðlÞ onto the reduced basis space

UN and e
u;k
projU;N

ðlÞ ¼ u�;kðlÞ � u
�;k
projU;N

ðlÞ denotes the time history of the optimal

model-error forcing. Since the model-error forcing is time-dependent, we simply

replace step 8 in Algorithm 1 with a POD-step and add only the largest POD mode f
to UN . We note that the POD modes f are orthogonal with respect to the ð�; �ÞU inner

product and that we now usually have dimðUNÞ ¼ N and dimðYNÞ ¼ 2N þ 1 (due to

the initial condition), i.e., the reduced basis space UN is enriched in every greedy

step. Again, it is theoretically possible that dimðUNÞ�N and dimðYNÞ� 2N þ 1,

although we did not observe this case in the numerical results.

Algorithm 2 Sampling Procedure: Weak-constraint 4D-Var
1: Choose Ξtrain ⊂ D, μ1 ∈ Ξtrain, Nmax, and tol,min > 0
2: Set N ← 0, YN ← {y0/ y0 Y }, UN ← {}
3: Set μ∗ ← μ1 and Δ̃u

N,rel(μ
∗) ← ∞

4: while Δ̃u
N,rel(μ

∗) tol,min and N ≤ Nmax do

5: N ← N + 1
6: ζ1 = PODY ey,k

proj,N−1(μ
∗) : k ∈ K , YN ← YN−1 ⊕ span{ζ1}

7: ζ2 = PODY ep,k
proj,N (μ∗) : k ∈ K , YN ← YN ⊕ span{ζ2}

8: ζ = PODU eu,k
projU ,N−1(μ

∗) : k ∈ K , UN ← UN−1 ⊕ span{ζ}
9: μ∗ ← argmax

μ∈Ξtrain

Δ̃u
N,rel(μ)

10: end while

5 Combined 4D-Var formulation

We now combine the results from the previous two sections and consider the

classical 4D-Var data assimilation problem including model error.

5.1 Problem statement

For a given parameter l 2 D, we now consider the minimization problem
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min
y2YK ; u2UKþ1

Jðy; u; lÞ s:t: y 2 YK solves

mðyk; vÞ þ s aðyk; v; lÞ ¼ mðyk�1; vÞ þ s bðuk; vÞ þ s f ðvÞ

8v 2 Y ; 8k 2 K;

ð58Þ

with initial condition mðy0; vÞ ¼ mðu0; vÞ for all v 2 Y ; and cost functional Jð�; �; lÞ :
YK � UKþ1 ! R given by

Jðy; u; lÞ ¼ 1

2
ju0 � u0d
�

�

�

�j2U þ s
2

X

K

k¼1

juk � ukd
�

�

�

�j2U þ s
2

X

K

k¼1

jCyk � zkd
�

�

�

�j2D: ð59Þ

In addition to the error between the predicted and observed outputs, the cost

functional now contains the deviation of the initial condition from the background

state, u0d 2 U; as well as the model error for all time steps. As mentioned earlier, in

the data assimilation context we usually have u0d 6¼ 0 and ukd ¼ 0; 1� k�K, i.e., the

background state is nonzero whereas the model error is assumed to have zero mean.

The associated necessary and sufficient first-order optimality conditions are thus:

Given l 2 D, the optimal solution ðy�; p�; u�Þ 2 YK � YK � UKþ1 satisfies

m y�;k � y�;k�1;/
� �

þ s aðy�;k;/; lÞ ¼ s bðuk;/Þ þ s f ð/Þ 8/ 2 Y ; 8k 2 K;

ð60aÞ

mðy�;0;/Þ ¼ mðu0;/Þ 8/ 2 Y ð60bÞ

mðu; p�;k � p�;kþ1Þ þ s aðu; p�;k; lÞ ¼ s zkd � Cy�;k;Cu
� �

D
8u 2 Y ; 8k 2 K;

ð60cÞ

s u�;k � ukd;w
� �

U
�s bðw; p�;kÞ ¼ 0 8w 2 U; 8k 2 K; ð60dÞ

u�;0 � u0d;w
� �

U
�mðw; p�;1Þ ¼ 0 8w 2 U; ð60eÞ

where the final condition of the adjoint is given by p�;Kþ1 ¼ 0.

5.2 Reduced basis approximation and error estimation

The reduced-order problem follows directly from (58) and (59) by restricting the

state, adjoint, and control spaces to their respective reduced basis spaces. We again

introduce an integrated space YN for the state and adjoint, and two separate spaces

for the ‘‘control,’’ i.e., U0
N for the initial condition u0N and UN for the model error

ukN ; k 2 K. The greedy procedure to generate these spaces simply combines the

algorithms introduced in Sects. 3.5 and 4.4.

For any given l 2 D, we can now state the reduced-order minimization problem

as follows
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min
yN2YK

N
; uN2U0

N
�UK

N

JðyN ; uN ; lÞ s:t: yN 2 YK
N solves

m ykN ; v
� �

þ s a ykN ; v; l
� �

¼ m yk�1
N ; v

� �

þ s b ukN ; v
� �

þ s f ðvÞ

8v 2 YN ; 8k 2 K;

ð61Þ

with initial condition mðy0N ; vÞ ¼ mðu0N ; vÞ for all v 2 YN . The reduced-order opti-

mality system directly follows from (60) and is thus omitted.

The a posteriori error bound result is a combination of the strong- and weak-

constraint case. In addition to the residuals of the state ~rky , adjoint ~r
k
p, and model

error ~rku defined in (42), (43), and (44), we also require the residual

r0uðw; lÞ ¼ m w; p�;1N

� �

� u
�;0
N � u0d;w

� �

U
8w 2 U: ð62Þ

The a posteriori error bound is given in the following proposition.

Proposition 3 Let u�;k and u
�;k
N be the optimal solutions of the full-order and

reduced-order 4D-Var problems (58) and (61), respectively. The error satisfies

ju�;0 � u
�;0
N

�

�

�

�j2U þ s
X

K

k¼1

ju�;k � u
�;k
N

�

�

�

�

�

�
j2U

 !1=2

� D̂u
NðlÞ :¼ c1ðlÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1ðlÞ2 þ c2ðlÞ
q

8l 2 D;

ð63Þ

where c1ðlÞ and c2ðlÞ are given by

c1ðlÞ ¼
1

2
jr0uð�; lÞ
�

�

�

�j2U0 þ ~R2
u

� �1=2

þ 2 c2b
ðaLBðlÞÞ2

þ 1

aLBðlÞ

 !1=2

~Rp

0

@

1

A ð64Þ

and

c2ðlÞ ¼
2
ffiffiffi

2
p

aLBðlÞ
~Ry
~Rp þ

c2c
2ðaLBðlÞÞ2

~R2
y

 !

: ð65Þ

The proof follows from the proofs of Propositions 1 and 2 and is thus omitted.

The offline-online decomposition is analogous to our previous discussion in

Sect. 3.4.

6 Numerical results

6.1 Problem description

We consider the dispersion of a pollutant governed by a convection-diffusion

equation with a Taylor–Green vortex velocity field. The concentration of the
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pollutant is measured at five spatial locations over time. The computational domain

is X ¼ ð� 1; 1Þ2 and we assume homogeneous Dirichlet boundary conditions on the

lower boundary CD and homogeneous Neumann boundary conditions on the

remaining boundary CN . The Péclet number serves as our parameter, i.e., we have

l ¼ Pe 2 D ¼ ½10; 50	. The bilinear form a is thus given by

aðw; v; lÞ ¼ 1

l

Z

X
rw � rv dxþ

Z

X
ðb � rwÞv dx; ð66Þ

and the velocity field is bðxÞ ¼ ðsinðpx1Þ cosðpx2Þ;� cosðpx1Þ sinðpx2ÞÞT . The

domain X with measurement sites as well as the velocity field are sketched in Fig. 1.

Our model problem is motivated by the source reconstruction of a (possibly)

accidental release of an agent, where the velocity field is known (Krysta et al. 2006;

Krysta and Bocquet 2007). Although we consider a fixed velocity field here, our

problem formulation also directly applies to (affinely) parametrized velocity fields.

We do not consider an additional forcing term and thus set f 
 0. The inner

product on Ye ¼ fv 2 H1ðXÞ : vjCD

 0g is defined as ðw; vÞY ¼ 1

2
aðw; v; lrefÞ þ

1
2
aðv;w; lrefÞ for the reference parameter lref ¼ 30. Since b is divergence-free and

b � n 
 0 on C, one can show that a is coercive and that the symmetric part of a is

given by 1=l
R

X rw � rv dx. Hence we can use the min-theta approach to construct

a coercivity lower bound: aLBðlÞ :¼ lref=l. For details, we refer to Appendix B.3 of
Kärcher (2017).

We choose the time interval I ¼ ½0; 8	 and a time step size s ¼ 0:04 resulting in

K ¼ 200 time steps. For the space discretization we introduce a spatial mesh with an

element size of h ¼ 0:04 and corresponding linear finite element approximation

spaces Y ¼ U with N Y ¼ N U ¼ 13;131 degrees of freedom. We assume that the

xx11

xx22
11

11

-1-1
-1-1

ΓΓDD

ΓN ΓΓNN

ΓΓNN

11 22

3344

55

Fig. 1 Left: sketch of the computational domain with measurement locations X1; . . .;X5. The centers of

the sensors are located at ð� 0:6;� 0:6ÞT and ð0; 0ÞT ; their width and height is 0.1. The colors match those
in Fig. 3. Right: plot of the Taylor–Green vortex velocity field. The blue dot indicates the center

ð� 0:1; 0:8ÞT of the Gaussian serving as initial condition. (Color figure online)
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(unknown true) initial condition y0true is given by a spatial Gaussian function with

mean ð�0:1; 0:8ÞT and covariance matrix r2I, where r ¼ 0:1 and I is the identity

matrix (the center of the Gaussian is shown as a blue dot in Fig. 1). The average

concentrations over the measurement domains shown in Fig. 1 serve as our five

outputs hið/Þ ¼ jXij�1 R

Xi
/ dx, i ¼ 1; . . .; 5. We then generate noisy measurements

by adding white noise to the outputs computed from the full-order model for the

(unknown true) parameter ltrue ¼ 30 with initial condition y0true such that

zkd ¼ Cyk;true þ gk, where gk 2 R5; k 2 K; is a vector containing uncorrelated

Gaussian noise in each entry, i.e., gki �Nð0; 0:052Þ; i ¼ 1; . . .; 5; k 2 K . The

inverse observation covariance matrix is given by D ¼ 10I. In practice, the choice

10 produces acceptable results for the 4D Var problem (a thorough discussion of the

impact of Tychonov regularization on 4D-Var is beyond the scope of this paper; we

refer to Puel (2009) for more details). In the strong-constraint case, we assume an

optimal prior and set the prior mean ud to be equal to the true initial condition. In the

weak-constraint case, we set bð�; �Þ ¼ mð�; �Þ to account for the model-error forcing

and ukd ¼ 0; k 2 K; i.e., the model-error forcing is assumed to be unbiased and have

zero mean. In both cases, the inverse prior covariance matrix U is given by the mass

matrix.

A preconditioned Newton–CG method takes between 30 s for l ¼ 10 (requiring

31 CG iterations) and 54 s for l ¼ 50 (requiring 56 CG iterations) to solve the full-

order strong-constraint 4D-Var problem. For the weak-constraint case, the solution

time ranges from 114 s (l ¼ 10, 81 CG iterations) to 189 s (l ¼ 50, 137 CG

iterations). In Fig. 2, we plot the concentration of the pollutant for three different

parameter values and various timesteps. The influence of the Taylor–Green vortex

and the Péclet number on the solutions is clearly visible. In Fig. 3 on the left, we

plot the five true outputs Cyk;true over time (the numbering and color of the curves

correspond to the sketch in Fig. 1). The corresponding noisy measurements zkd used

for the data assimilation are shown on the right. We note that all computations were

performed in Matlab on a computer with 2.6 GHz Intel Core i7 processor and

16 GB of RAM.

6.2 Reduced-order 4D-Var approach

We consider the strong- and weak-constraint 4D-Var data assimilation problem

separately and present results for the performance of the reduced-order approach for

each setting. We thus build different reduced basis spaces for the strong- and weak-

constraint case by employing the Greedy sampling procedure described in Sects. 3.5

and 4.4, respectively. For both, we choose lstart ¼ 10 and a training set consisting

of 40 equidistant parameters over the parameter domain D. We also set the number

of Greedy iterations to Nmax ¼ 80 (strong) and Nmax ¼ 100 (weak) resulting in a

relative error bound tolerance of approximately 10�2.

In Fig. 4 we plot the maximum relative error and error bound over a test sample

consisting of 20 randomly chosen parameters in D versus the number of Greedy

iterations N. The relative error and bound are defined as
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ju�ðlÞ � u�NðlÞ
�

�

�

�jU= ju�ðlÞj jjU and Du
NðlÞ= ju�ðlÞj jjU in the strong-constraint case,

and by
�

s
PK

k¼1 ju�;kðlÞ � u
�;k
N ðlÞ

�

�

�

�

�

�
j2U
�1=2

=
�

s
PK

k¼1 ju�;kðlÞ
�

�

�

�j2U
�1=2

and ~Du
NðlÞ=

�

s
PK

k¼1 ju�;kðlÞ
�

�

�

�j2U
�1=2

in the weak-constraint case. We observe that the error

and bound converge at the same rate and that the effectivities, i.e., the ratio of the

bound and the error, thus remain almost constant over N. The mean effectivities

Fig. 2 State solution for the true initial condition y0true and for three different parameters l
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over the test sample for Nmax are 480 in the strong-constraint case and 40 in the

weak-constraint case. We note that the maximum dimensions of the reduced basis

state/adjoint and control spaces are NY ;max ¼ 2Nmax ¼ 160 and N0
U;max ¼ 21 (strong-

constraint), and NY ;max ¼ 2Nmax þ 1 ¼ 201 and NU;max ¼ Nmax ¼ 100 (weak-con-

straint). Especially in the strong-constraint case, we thus obtain a considerable

reduction in the dimension of the control space from N ¼ 13; 131 to N0
U;max ¼ 21.

This will also be reflected in the required number of CG iterations to solve the

reduced-order 4D-Var problem (see below).

We next report on the online computational times of our reduced-order approach.

Similar to the full-order approach, the reduced-order solution times also depend on

l (smaller for l ¼ 10 and higher for l ¼ 50) and of course also strongly on N. We

first consider the strong-constraint case: the solution times for the reduced-order 4D-

Var problem range from 10 ms to 1.37 s, and the evaluation of the a posteriori error

bound Du
NðlÞ takes between 2.8 and 29 ms. We note that the computation of the

error bound is much faster than the solution of the 4D-Var problem itself.

Furthermore, we note that the computational time to evaluate the error bound

depends only on N and not on l (i.e., evaluating the bound for fixed N at l ¼ 10 or

l ¼ 50 takes the same time). The overall online speed-up for N ¼ Nmax thus ranges

from approximately 23–40.

Fig. 3 Outputs CykðltrueÞ and associated noisy output measurements zkd over time

Fig. 4 Maximum relative control error and error bound over number of Greedy iterations N for strong-
constraint case (left) and weak-constraint case (right)
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In the weak-constraint case, the solution times for the reduced-order 4D-Var

problem range from 99 ms to 12.6 s, and the evaluation of the a posteriori error

bound ~Du
NðlÞ takes between 4.8 and 71 ms. Again, the evaluation of the error bound

is much faster than the solution of the 4D-Var problem itself. The online speed-up

for N ¼ Nmax is now approximately 15.

In order to illustrate the connection between the approximation error and the

online solution time, we plot the average online solution time of the reduced-order

4D-Var problem versus the average relative error over the test sample in Fig. 5.

Recall that the full-order solution takes approximately 30–54 s for the strong-

constraint case and 114–189 s for the weak-constraint case.

We next show results for the number of CG iterations required to solve the

reduced-order 4D-Var problem. In Fig. 6, we plot the number of CG iterations as a

function of the parameter l for various values of N and NU on the left for the strong-

constraint case and on the right for the weak-constraint case. In the same plots, we

also show the number of CG iterations required to solve the full-order problem. We

observe a different behavior in the strong- and weak-constraint case. We first note

that in the weak-constraint case the number of reduced-order CG iterations

converges to the number of full-order CG iterations with increasing N. However, in

the strong-constraint case the number of reduced-order CG iterations is bounded by

N0
U , which is significantly smaller than N. The number of reduced-order CG

iterations is thus almost constant over l for given N and considerably smaller than

the number of full-order CG iterations even for N ¼ Nmax.

Finally, we consider the outer minimization problem and try to estimate the

unknown true parameter ltrue ¼ 30 which leads to the noisy measurements. To this

end, we define the ‘‘optimal’’ parameters l� and l�N which minimize the full-order

and reduced-order cost functionals

l� ¼ arg min
l2D

J�ðlÞ and l�N ¼ arg min
l2D

J�NðlÞ; ð67Þ

respectively. We compute the optimal estimated parameters l� and l�N using the

Matlab routine fminbnd, which needs only evaluations of the full-order and

reduced-order cost functional. We also define the maximum relative cost functional

Fig. 5 Average online solution time of the reduced-order 4D-Var problem over the average relative error
for strong-constraint case (left) and weak-constraint case (right)
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error emax
J;N ¼ maxl2D jJ�ðlÞ � J�NðlÞj=jJ�ðlÞj and parameter error

el;N :¼ jl� � l�N j=jl�j. We present these errors for the strong- and weak-constraint

case as a function of N in Table 1. We observe that in both cases the cost functional

error and parameter error converge very fast, i.e., the reduced-order approach allows

us to recover the optimal parameter l�. We also note that the (full-order) optimal

parameter is close to the true parameter in the strong-constraint case (l� ¼ 29:67 vs.
ltrue ¼ 30), but that this is not true in the weak-constraint case (l� ¼ 45:36 vs.

ltrue ¼ 30). Since l�N ! l� with increasing N, this is of course also true for—and

the best we can expect of—the reduced-order optimal parameters.

7 Conclusion

In this paper, we considered the strong- and weak-constraint 4D-Var data

assimilation problem. We presented a reduced-order approach to the 4D-Var

problem based on the reduced basis method and proposed rigorous and efficiently

evaluable a posteriori error bounds for the optimal control, i.e., the initial condition

Fig. 6 Required number of CG iterations for solving the full- and reduced-order 4D-Var problem in
dependence of the parameter l and the number of Greedy iterations N. Strong-constraint case (left) and
weak-constraint case (right)

Table 1 Error in cost functional

and estimated parameter over

number of Greedy iterations N

Note that l� ¼ 29:67 (strong)

and l� ¼ 45:36 (weak)

N emax
J;N (strong) el;N (strong) emax

J;N (weak) el;N (weak)

10 3.12e-01 4.18e-01 2.44e-01 6.02e-02

20 7.36e-03 1.30e-01 1.70e-02 9.33e-03

30 8.22e-04 1.42e-03 3.51e-03 1.70e-04

40 1.24e-04 4.99e-04 6.37e-04 3.26e-04

50 1.14e-05 2.98e-05 2.05e-04 3.53e-05

60 4.36e-06 1.27e-05 9.70e-05 3.90e-05

70 3.92e-07 4.18e-06 3.58e-05 1.93e-05

80 8.76e-08 9.71e-08 1.05e-05 4.12e-06

90 – – 4.17e-06 2.51e-06

100 – – 1.94e-06 3.09e-06
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in the strong-constraint setting and the model-error forcing in the weak-constraint

setting. For both instances we showed numerical results confirming the validity of

the proposed approach. We also presented theoretical results for the combined case

with unknown initial condition and model-error forcing.

We note that although we consider a parametrized problem here, the error bounds

can also be used in the non-parametrized reduced-order setting and are independent

of how the reduced-order spaces are constructed. The bound thus directly applies to

reduced-order approaches where the spaces are constructed, e.g., using empirical

orthogonal functions, POD, or dual-weighted POD (Daescu and Navon 2008). We

also believe that the error bounds can be gainfully applied in a multi-fidelity

approach to solve the 4D-Var problem, e.g., in a trust-region approach as proposed

in Chen et al. (2011) and Du et al. (2013).

Although we also presented results for the error in the cost functional and for

estimating the unknown model parameter, we currently cannot provide rigorous and

sharp a posteriori error bounds for these quantities. Furthermore, we considered only

a fixed setting for the noise level and regularization parameter here; a detailed

analysis of the influence of these parameters on the performance of the reduced

order model has not been performed. These are topics of current and future research

in our groups.

Appendix 1: Continuous 4D-Var formulation

The strong-constraint 4D-Var problem for a linear parabolic PDE on ð0; TÞ � X,
with X a Lipschitz domain,

otyþ Ay ¼ f ; yjoX ¼ 0; yð0Þ ¼ u; ð68Þ

is classically rewritten as the optimal control problem:

Findðy�; u�Þ 2 arginf
ðy;uÞ2Y�Usatisfiesð68Þ

J

with a lower semi-continuous cost functional

J ¼ k
2
ju� udj jj2U þ 1

2

Z T

0

jCy� zdj jj2D ð69Þ

on the tensor-product of Y :¼ fy 2 L2ð0; T;H1
0ðXÞÞ; oty 2 L2ð0; T;H�1ðXÞÞg and

U :¼ L2ðXÞ. If the observation operator C has a unique continuation in Y, J is

coercive and strictly convex. Then, if f 2 L2ðð0; TÞ � XÞ so the set of admissible

states is non-empty, there exists a unique solution, see e.g. Fursikov (2000). To

characterize and compute the solution, one can use duality techniques following

Pontryagin et al. (1964) or Ekeland and Temam (1976). On introducing a Lagrange

multiplier ðp�; v�Þ 2 Y � U, p�ðTÞ ¼ 0 for the constraint, it is classical that the

solution should satisfy (Marchuk and Shutyaev 2002)
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ðu�;wÞU � ðkv�;wÞU ¼ ðud;wÞU 8w 2 U ð70aÞ

ðp�ð0Þ;uÞY � ðv�;uÞU ¼ 0 ð70bÞ

ðCy�;CuÞD � otp
� � ATp�;u

� �

Y
¼ ðCzd;CuÞD 8u 2 Y ð70cÞ

ðy�ð0Þ;/ÞY � ðu�;/ÞU ¼ 0 ð70dÞ

oty
� þ Ay�;/ð ÞY¼ ðf ;/ÞY 8/ 2 Y ð70eÞ

which is a well-posed saddle-point problem, well-approximated by the discretiza-

tion (8) (Ern and Guermond 2010), again under the condition that the observation

operator C has a unique continuation in Y. Note that first adequately discretizing

J then leads to exactly the same discrete Euler–Lagrange equations as (8).

The weak-constraint 4D-Var problem is also classical, see e.g. Fursikov (2000).

The optimal control problem becomes

Findðy�; u�Þ 2 arginf
ðy;uÞ2Yy0

�Usatisfiesð71Þ
J

for

otyþ Ay ¼ f þ Bu; yjoX ¼ 0; yð0Þ ¼ y0; ð71Þ

with the lower semi-continuous cost functional

J ¼ 1

2

Z T

0

ju� udj jj2U þ 1

2

Z T

0

jCy� zdj jj2D ð72Þ

on the tensor-product of Yy0 :¼ fy 2 L2ð0; T ;H1
0ðXÞÞ; oty 2

L2ð0;T ;H�1ðXÞÞ; yð0Þ ¼ y0g and U :¼ L2ðð0; TÞ � XÞ; the saddle-point becomes

ðu�;wÞU � ðBTp�;wÞY ¼ ðud;wÞU 8w 2 U ð73aÞ

ðCy�;CuÞD � otp
� � ATp�;u

� �

Y
¼ ðCzd;CuÞD 8u 2 Y ð73bÞ

oty
� þ Ay�;/ð ÞY�ðBu�;/ÞY ¼ ðf ;/ÞY 8/ 2 Y ð73cÞ

while existence and uniqueness of a soluion still hold under the same conditions.
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Hoteit I, Köhl A (2006) Efficiency of reduced-order, time-dependent adjoint data assimilation

approaches. J Oceanogr 62(4):539–550. https://doi.org/10.1007/s10872-006-0074-2

Huynh DBP, Rozza G, Sen S, Patera AT (2007) A successive constraint linear optimization method for

lower bounds of parametric coercivity and inf-sup stability constants. C R Acad Sci Paris

345(8):473–478. https://doi.org/10.1016/j.crma.2007.09.019

Ide K, Courtier P, Ghil M, Lorenc A (1997) Unified notation for data assimilation: operational, sequential

and variational. J Meteorol Soc Jpn 75:181–189
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Tröltzsch F, Volkwein S (2009) POD a-posteriori error estimates for linear-quadratic optimal control

problems. Comput Optim Appl 44:83–115. https://doi.org/10.1007/s10589-008-9224-3

Vermeulen PTM, Heemink AW (2006) Model-reduced variational data assimilation. Mon Weather Rev

134(10):2888–2899. https://doi.org/10.1175/MWR3209.1

Veroy K, Rovas DV, Patera AT (2002) A posteriori error estimation for reduced-basis approximation of

parametrized elliptic coercive partial differential equations: convex inverse bound conditioners.

ESAIM Control Optim CA 8:1007–1028. https://doi.org/10.1051/cocv:2002041

Reduced basis approximation and a posteriori error... 695

123

https://doi.org/10.1256/qj.05.224
https://doi.org/10.1007/s10589-008-9224-3
https://doi.org/10.1175/MWR3209.1
https://doi.org/10.1051/cocv:2002041

	Reduced basis approximation and a posteriori error bounds for 4D-Var data assimilation
	Abstract
	Introduction
	Preliminaries
	Strong-constraint 4D-Var
	Problem statement
	Algebraic formulation

	Reduced basis approximation
	A posteriori error estimation
	Computational procedure
	Greedy algorithm

	Weak-constraint 4D-Var
	Problem statement
	Reduced basis approximation
	A posteriori error estimation
	Greedy algorithm

	Combined 4D-Var formulation
	Problem statement
	Reduced basis approximation and error estimation

	Numerical results
	Problem description
	Reduced-order 4D-Var approach

	Conclusion
	Appendix 1: Continuous 4D-Var formulation
	References




