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Abstract This paper addresses the compliance minimization of a truss, where the

number of available nodes is limited. It is shown that this optimization problem can

be recast as a second-order cone programming with a cardinality constraint. We

propose a simple heuristic based on the alternative direction method of multipliers.

The efficiency of the proposed method is compared with a global optimization

approach based on mixed-integer second-order cone programming. Numerical

experiments demonstrate that the proposed method often finds a solution having a

good objective value with small computational cost.
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1 Introduction

It is common to use the ground structure method (Topping 1983; Kirsch 1989;

Bendsøe et al. 1994) for truss topology optimization, where the cross-sectional

areas of the truss members are treated as design variables to be optimized.

Particularly, compliance minimization with continuous design variables is a convex

problem (Bendsøe et al. 1994; Ohsaki 2011), and can be solved efficiently. An

optimal solution of this problem often consists of too many members (including

ones that are too thin) connected by many nodes1 and, hence, is regarded as too

complex a design from the viewpoint of practical manufacturability. Also, the

fabrication cost of a truss usually increases as the number of nodes increases. To

obtain a practically acceptable truss design, Asadpoure et al. (2015) proposed to

minimize the weighted sum of the structural weight and the fabrication cost related

to the number of members. In this method, the number of members is approximated

by using a regularized Heaviside step function. Torii et al. (2016) used the same

approach to take into account the number of nodes. In this paper, we consider the

compliance minimization of a truss subject to an explicit upper bound constraint on

the number of nodes.

The number of nodes in structural optimization has also been discussed in the

layout optimization of trusses. In the classical layout optimization, we minimize the

total weight of the members when the allowable stress is specified. When the

potential locations of nodes of a truss are not limited, the optimal solution becomes

a so-called truss-like continuum with infinitely many nodes (Hegemier and Prager

1969; Michell 1904). Prager (1978, 1977) showed that, by adding the weight of the

nodes to the objective function, the problem has an optimal solution with a finite

number of nodes. To avoid complex truss design, Parkes (1975) proposed to

introduce modification of member lengths such that, at each node, a constant is

added to the length of each member connected to the node. As a post-processing

step for this method, He and Gilbert (2015) proposed to make use of geometry

optimization. Similarly, Mazurek et al. (2011) defined a so-called performance

index, by using member lengths and axial forces, to assess the cost of a structure;

see also Mazurek (2012). The number of nodes in a truss is not specified explicitly

in the methods in the literature (Asadpoure et al. 2015; Torii et al. 2016; Parkes

1975; He and Gilbert 2015; Mazurek 2012; Mazurek et al. 2011) cited above.

In this paper, based on the ground structure method we deal with the compliance

minimization problem of a truss subjected to an upper bound constraint on the

number of nodes (i.e., a cardinality constraint on the set of nodes). This design

optimization problem essentially consists of two decisions: We first select a set of

nodes, satisfying the cardinality constraint, among the candidate nodes in a ground

structure, and then find the optimal cross-sectional areas of the members connected

to the selected nodes. The first decision gives a combinatorial attribute to the design

optimization problem. In this paper, we show that this optimization problem can be

recast as a mixed-integer second-order cone programming (MISOCP) problem; see

Sect. 3.2. Since an SOCP problem can be solved efficiently with a primal-dual

1 See, for example, Fig. 6 in Sect. 6.
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interior-point method (Anjos and Lasserre 2012; Ben-Tal and Nemirovski 2001), we

can compute a globally optimal solution of an MISOCP problem with, e.g., a

branch-and-bound method. Several software packages are available for this purpose

(Andersen et al. 2003; Gurobi Optimization, Inc. 2016). However, due to its large

computational cost, the MISOCP approach can be applied only to small- to

medium-size truss optimization problems. The reader may refer to Bertsimas and

Shioda (2009) and Miyashiro and Takano (2015) for applications of MISOCP to

variable selection in statistics, and to Kanno (2013, 2016a, b) and Kočvara (2017)

for applications in structural optimization.

We refer to the number of nonzero components of a real vector as the ‘0-norm of

the vector.2 We refer to an upper bound constraint on the ‘0-norm of a vector, i.e.,

an ‘0-norm constraint, as a cardinality constraint (i.e., an upper bound constraint on

the cardinality of the support of the vector). Cardinality constraints, as well as ‘0-
norm minimization, frequently appear in diverse fields including variable selection

in statistics, image processing, compressed sensing, and portfolio selection

(Natarajan 1995; Chartrand 2007; Bruckstein et al. 2009; Candès et al. 2008;

Gotoh et al. 2018; Le Thi et al. 2015; Zheng et al. 2014; Burdakov et al. 2016;

Bertsimas and Shioda 2009; Cui et al. 2013). An application of ‘0-minimization to

structural design generating link mechanisms can be found in Ohsaki et al. (2014).

In this paper, we show that truss topology optimization with a limited number of

nodes can be formulated as cardinality-constrained SOCP; see Sect. 3.1.

The alternating direction method of multipliers (ADMM) is an algorithm for

convex optimization (Boyd et al. 2010). For various nonconvex optimization

problems, it is known that ADMM can often serve as a simple but powerful heuristic

(Takapoui et al. 2018; Kanamori and Takeda 2014; Chartrand and Wohlberg 2013;

Magnússon et al. 2016; Chartrand 2012; Diamond et al. 2018). This motivates us to

develop a simple heuristic based on ADMM, to find approximate solutions to the

problem of truss topology optimization with a limited number of nodes. The

proposed method is expected to find a local optimal solution having a reasonable

objective value with small computational cost. In control theory, ADMM has been

used for various sparsity-promoting optimal control methods, including the design

of sparse feedback gains (Lin et al. 2013), sparse output feedback (Arastoo et al.

2015), and sparse gain matrices for the extended Kalman filter (Masazade et al.

2012).

The paper is organized as follows: Sect. 2 provides an overview of necessary

background for the ADMM. Sect. 3 formulates the truss topology optimization

problem with a limited number of nodes as cardinality-constrained SOCP, and

recasts it as MISOCP. Section 4 presents a heuristic based on ADMM to solve the

cardinality-constrained SOCP formulation. Section 5 is devoted to a discussion on

the treatment of overlapping members in a ground structure. Section 6 reports

results of numerical experiments. Some conclusions are drawn in Sect. 7.

2 Although this number is not a norm, it is common to call it the ‘0-norm (Bruckstein et al. 2009;

Burdakov et al. 2016; Candès et al. 2008; Chartrand 2007; Gotoh et al. 2018; Le Thi et al. 2015; Zheng

et al. 2014).
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In our notation, > denotes the transpose of a vector or a matrix. We use 1 ¼
ð1; 1; . . .; 1Þ> to denote the all-ones vector. For vectors x ¼ ðxiÞ 2 Rn and

y ¼ ðyiÞ 2 Rn, we write x� y if xi � yi ði ¼ 1; . . .; nÞ. We use kxk to denote the

Euclidean norm (or the ‘2-norm) of x, i.e., kxk ¼
ffiffiffiffiffiffiffiffi

x>x
p

. We denote by kxk0 the

number of nonzero components of x, which is the so-called ‘0-norm of x. For a finite
set T, let |T| denote the cardinality of T, i.e., the number of elements in T. If we

define suppðxÞ � f1; . . .; ng by suppðxÞ ¼ fi 2 f1; . . .; ng j xi 6¼ 0g, then

kxk0 ¼ j suppðxÞj. For a set S � Rn, we denote by dS : Rn ! R [ fþ1g the

indicator function of S, which is defined by

dSðxÞ ¼
0 if x 2 S;

þ1 if x 62 S:

�

For a closed set S � Rn, the projection of a point z 2 Rn onto S, denoted

PSðzÞ 2 Rn, is defined by

PSðzÞ 2 S; kz�PSðzÞk ¼ minfkz� xk j x 2 Sg:

If S is closed and convex, then PSðzÞ exists uniquely for any point z 2 Rn. The n-

dimensional second-order cone, denoted Ln, is defined by

Ln ¼ fðs0; s1Þ 2 R� Rn�1 j ks1k� s0g:

The n-dimensional rotated second-order cone, denoted Kn, is defined by

Kn ¼ fðx; y; zÞ 2 Rn�2 � R� R j x>x� yz; y� 0; z� 0g:

We recall that ðx; y; zÞ 2 Kn if and only if ðyþ z; y� z; 2 xÞ 2 Ln. We use Uða; bÞ to
denote the continuous uniform distribution on the interval ða; bÞ � R.

2 Fundamentals of alternating direction method of multipliers

In this section, we briefly outline the alternating direction method of multipliers

(ADMM) for solving convex optimization problems; see Boyd et al. (2010) for

more accounts.

Let f : Rn ! R [ fþ1g and g : Rm ! R [ fþ1g be closed proper convex

functions. Consider the following convex optimization problem in variables x 2 Rn

and z 2 Rm:

Minimize
x;z

f ðxÞ þ gðzÞ ð1aÞ

subject to Axþ Bz ¼ c: ð1bÞ

Here, A 2 Rl�n and B 2 Rl�m are constant matrices, and c 2 Rl is a constant vector.

The augmented Lagrangian of problem (1) is defined as
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Lqðx; z; yÞ ¼ f ðxÞ þ gðzÞ þ y>ðAxþ Bz� cÞ þ q
2
kAxþ Bz� ck2; ð2Þ

where q[ 0 is the penalty parameter, and y 2 Rl is the Lagrange multiplier (also

called the dual variable). At each iteration of ADMM, we update xk, zk, and yk as

xkþ1 :¼ argmin
x

Lqðx; zk; ykÞ; ð3Þ

zkþ1 :¼ argmin
z

Lqðxkþ1; z; ykÞ; ð4Þ

ykþ1 :¼ yk þ qðAxkþ1 þ Bzkþ1 � cÞ: ð5Þ

The so-called scaled form of ADMM is defined below. Letting v ¼ y=q, we see that
(2) is reduced to

~Lqðx; z; vÞ ¼ f ðxÞ þ gðzÞ þ q
2
kAxþ Bz� cþ vk2 � q

2
kvk2: ð6Þ

By using ~Lq in (6), the iteration of ADMM given by (3), (4), and (5) is written as

xkþ1 :¼ argmin
x

~Lqðx; zk; vkÞ; ð7Þ

zkþ1 :¼ argmin
z

~Lqðxkþ1; z; vkÞ; ð8Þ

vkþ1 :¼ vk þ Axkþ1 þ Bzkþ1 � c: ð9Þ

We refer to the form given in (7), (8), and (9) as the scaled form of ADMM, and we

refer to v as the scaled dual variable.

Primarily, ADMM is an algorithm for solving convex optimization problems. It

is known that ADMM can often serve as an efficient heuristic for diverse nonconvex

optimization problems; see, e.g., Takapoui et al. (2018), Kanamori and Takeda

(2014), Chartrand and Wohlberg (2013), Magnússon et al. (2016), Chartrand

(2012), and Boyd et al. (2010, Sect. 9). For nonconvex problems, ADMM does not

necessarily converge. Also, when it converges, the obtained solution is not

necessarily a global optimum. Furthermore, the obtained solution can depend on the

penalty parameter and the initial point. Nevertheless, ADMM can be a simple

algorithm, and can be efficient in the sense that it often converges to a solution with

a good objective value.

3 Design optimization with limited number of nodes

In Sect. 3.1, we define truss topology optimization subject to an upper bound

constraint on the number of nodes. In Sect. 3.2, we show that this problem can be

recast as an MISOCP problem.
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3.1 Problem setting

Following the ground structure approach, consider an initial truss consisting of

many candidate members that are connected by nodes with given locations. The

cross-sectional areas of the members are treated as the design variables to be

optimized. It is worth noting that the ground structure may involve some

overlapping members, an example is shown in Fig. 1. The necessity, as well as

the treatment, of overlapping members in a ground structure is thoroughly discussed

in Sect. 5. We use m, l, and d to denote the number of members, the number of

nodes, and the number of degrees of freedom of the nodal displacements,

respectively.

Let xi ði ¼ 1; . . .;mÞ denote the member cross-sectional areas. We use KðxÞ 2
Rd�d to denote the stiffness matrix, which can be written as

KðxÞ ¼
X

m

i¼1

E

ci
xibib

>
i :

Here, ci is the undeformed member length, E is the Young modulus, and bi 2 Rd is a

constant vector reflecting the member connectivity and the direction cosine of

member i. For a given external load vector p 2 Rd, the compliance of the truss,

denoted pðxÞ, is defined by

pðxÞ ¼ supf2p>u� u>KðxÞu j u 2 Rdg: ð10Þ

Let Vð[ 0Þ denote the specified upper bound on the structural volume. The con-

ventional compliance minimization problem is formulated as follows:

Minimize
x

pðxÞ ð11aÞ

subject to x� 0; ð11bÞ

c>x�V: ð11cÞ

This is a convex problem, and can be recast as follows (Ben-Tal and Nemirovski

2001, Sect. 3.4.3):

1 2

3

4 5

6

7 8
9 10

11 12

j

Fig. 1 An example of ground
structure with overlapping
members

332 Y. Kanno, S. Fujita

123



Minimize
x;q;w

X

m

i¼1

wi ð12aÞ

subject to wixi �
ci

E
q2i ; i ¼ 1; . . .;m; ð12bÞ

x� 0; ð12cÞ

X

m

i¼1

qibi ¼ p; ð12dÞ

c>x�V : ð12eÞ

Constraints (12b) and (12c) can be rewritten equivalently as the rotated second-

order cone constraints

ð
ffiffiffiffiffiffiffiffiffi

ci=E
p

qi;wi; xiÞ 2 K3; i ¼ 1; . . .;m:

These constraints also can be rewritten equivalently as the second-order cone

constraints

wi þ xi �
wi � xi

2
ffiffiffiffiffiffiffiffiffi

ci=E
p

qi

� �
�

�

�

�

�

�

�

�

; i ¼ 1; . . .;m:

Thus, the conventional compliance minimization, (12), can be recast as an SOCP

problem (Ben-Tal and Nemirovski 2001, Sect. 3.4.3); see also Kanno (2016a) and

Kočvara (2017).

We are now in a position to consider an upper bound constraint on the number of

nodes in a truss design. Let n denote the specified upper bound. For the jth node

ðj ¼ 1; . . .; lÞ, define IðjÞ � f1; . . .;mg as the set of indices of the members

connected to node j. For example, in the case of Fig. 1, we have

IðjÞ ¼ f1; 2; 7; 10; 11g. Defining zj ðj ¼ 1; . . .; lÞ by

zj ¼
X

i2IðjÞ
xi; ð13Þ

we see that the number of nodes is equal to kzk0. For notational simplicity, we write

(13) as

z ¼ Zx

with a constant matrix Z 2 Rl�m. The upshot is that compliance minimization

subject to an upper bound constraint on the number of existing nodes is formulated

as follows:
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Minimize
x;z

pðxÞ ð14aÞ

subject to x� 0; ð14bÞ

c>x�V; ð14cÞ

z ¼ Zx; ð14dÞ

kzk0 � n: ð14eÞ

As mentioned above, the conventional compliance minimization in (11) can be

recast as an SOCP problem. Therefore, problem (14) can be reduced to a cardi-

nality-constrained SOCP problem. In Sect. 3.2, we present its MISOCP

reformulation.

3.2 MISOCP formulation

In this section, we show that problem (14) can be recast as an MISOCP problem.

For node j ðj ¼ 1; . . .; lÞ, we introduce a new variable, sj 2 f0; 1g, to indicate

whether the node vanishes (sj ¼ 0) or exists (sj ¼ 1). The relationship between sj
and zj can be given as

0� zj �Msj;

where M[ 0 is a sufficiently large constant. The upper bound constraint on the

number of existing nodes is written in terms of s1; . . .; sl as

X

l

j¼1

sj � n:

This observation, in conjunction with the SOCP reformulation of problem (11),

allows us to conclude that problem (14) is reduced to the following MISOCP

problem:
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Minimize
x;q;w;z;s

X

m

i¼1

wi ð15aÞ

subject to wi þ xi �
wi � xi

2
ffiffiffiffiffiffiffiffiffi

ci=E
p

qi

� �
�

�

�

�

�

�

�

�

; i ¼ 1; . . .;m; ð15bÞ

X

m

i¼1

qibi ¼ p; ð15cÞ

c>x�V ; ð15dÞ

z ¼ Zx; ð15eÞ

z�Ms; ð15fÞ

X

l

j¼1

sj � n; ð15gÞ

s 2 f0; 1gl: ð15hÞ

Here, the optimization variables are x 2 Rm, q 2 Rm, w 2 Rm, z 2 Rl, and s 2 Rl.

Although problem (15) is a fairly straightforward extension of the existing SOCP

formulation for problem (11), it cannot be found in literature to the best of the

authors’ knowledge.

4 Simple heuristic based on alternating direction method of multipliers

In this section, we present an ADMM as a heuristic for solving problem (14).

For notational simplicity, define F � Rm and G � Rl by

F ¼ fx 2 Rm j x� 0; c>x�Vg;
G ¼ fz 2 Rl j kzk0 � ng:

We see that problem (14) can be written as follows:

Minimize pðxÞ þ dFðxÞ þ dGðzÞ ð16aÞ

subject to Zx� z ¼ 0: ð16bÞ

The augmented Lagrangian for problem (16) is formulated as

Lqðx; z; yÞ ¼ pðxÞ þ dFðxÞ þ dGðzÞ þ y>ðZx� zÞ þ q
2
kZx� zk2; ð17Þ

where q[ 0 is the penalty parameter, and y 2 Rl is the Lagrange multiplier. Letting

v ¼ y=q, we see that (17) is reduced to
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~Lqðx; z; vÞ ¼ pðxÞ þ dFðxÞ þ dGðzÞ þ
q
2
kZx� zþ vk2 � q

2
kvk2:

Using ~Lq, we can write the iterations of ADMM in scaled form as

xkþ1 :¼ argmin
x

n

pðxÞ þ dFðxÞ þ
q
2
kZx� zk þ vkk2

o

; ð18Þ

zkþ1 :¼ argmin
z

n

dGðzÞ þ
q
2
kZxkþ1 � zþ vkk2

o

; ð19Þ

vkþ1 :¼ vk þ Zxkþ1 � zkþ1: ð20Þ

The first step of ADMM in (18) means that xkþ1 is an optimal solution of the

following convex optimization problem:

Minimize pðxÞ þ q
2
kZx� zk þ vkk2 ð21aÞ

subject to x� 0; ð21bÞ

c>x�V : ð21cÞ

This problem can be recast as an SOCP problem. To see this, using the SOCP

formulation of problem (11), we rewrite problem (21) as follows:

Minimize
X

m

i¼1

wi þ
q
2
t ð22aÞ

subject to t�kZx� zk þ vkk2; ð22bÞ

wi þ xi �
wi � xi

2
ffiffiffiffiffiffiffiffiffi

ci=E
p

qi

� �
�

�

�

�

�

�

�

�

; i ¼ 1; . . .;m; ð22cÞ

X

m

i¼1

qibi ¼ p; ð22dÞ

c>x�V ; ð22eÞ

where t 2 R is an auxiliary variable. Since constraint (22b) is a rotated second-order

cone constraint3

3 It can also be rewritten as

t þ 1�
t � 1

2ðZx� zk þ vkÞ

� �
�

�

�

�

�

�

�

�

;

which is a second-order cone constraint.
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ðZx� zk þ vk; t; 1Þ 2 Klþ2;

problem (22) is an SOCP problem. We adopt a primal-dual interior-point method

for solving this problem. Next, the second step of ADMM in (19) can be written as

zkþ1 2 PGðZxkþ1 þ vkÞ; ð23Þ

where PG is the projection onto G.4 We can compute (23) easily (Boyd et al. 2010,

Chap. 9); for a point z 2 Rl, PGðzÞ keeps the n largest magnitude components of z
and zeros out the other components. In this way, each step of ADMM in (18), (19),

and (20) can be carried out very easily.

5 On overlapping members

Unlike the conventional compliance minimization of a truss, overlapping members

in a ground structure are not redundant for the optimization problem considered in

this paper. This section explains the treatment of overlapping members.

We begin by reviewing that overlapping members in a ground structure is

redundant for the conventional compliance minimization problem of a truss. For

example, consider the ground structure shown in Fig. 2a. Here, any two nodes are

connected by a member, but overlapping of members is avoided by removing the

longer member when two members overlap. The leftmost nodes are pin-supported.

(a)

(b) (c)

Fig. 2 An example of truss topology optimization and hinge cancellation. a The problem setting; b the
optimal solution; and c the final design after hinge cancellation

4 Since G is nonconvex, the projection of a point onto G is not necessarily unique.
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The vertical external force is applied to the bottom rightmost node. Figure 2b shows

the optimal solution of the compliance minimization problem, i.e., problem (11).

This solution has four horizontal consecutive members that are connected by nodes

supported only in the direction of those members. A sequence of such members is

sometimes called a chain (Achtziger 1999). In this example, without changing the

objective value, we can remove three intermediate nodes to replace the chain with a

single longer member. This procedure is called hinge cancellation (Achtziger 1999;

Rozvany 1996). As a result of hinge cancellation, we obtain the final truss design

shown in Fig. 2c. Thus, longer overlapping members, like the horizontal member in

Fig. 2c, are unnecessary to a ground structure. In contrast, when we consider a

constraint on a number of nodes, the optimal solution depends on the existence of

overlapping members in a ground structure. For example, the truss in Fig. 2b has

five free nodes, while the one in Fig. 2c has two free nodes. Thus, hinge cancellation

can possibly change the feasibility of the cardinality constraint and, hence,

overlapping members in a ground structure are not redundant.5

When we consider a ground structure with some overlapping members, the

existence of overlapping members in an obtained solution is not allowed from a

practical point of view. The method proposed in Sect. 4 does not consider explicitly

the constraint prohibiting presence of overlapping members. Nevertheless, in

practice, a solution obtained by the proposed method often has no overlapping

members, as illustrated through numerical experiments in Sect. 6.

Within the framework of MISOCP, we can explicitly incorporate the constraints

prohibiting the presence of mutually overlapping members in a truss design. To do

this, besides s 2 f0; 1gl in Sect. 3.2, we use additional binary variables t 2 f0; 1gm
to indicate whether each member vanishes or exists. Namely, ti ¼ 0 means that

member i is removed, while ti ¼ 1 means that member i exists. The relationship

between ti and xi is given by

0� xi �Mti

where M[ 0 is a sufficiently large constant. Recall that I(j) denotes the set of

indices of members connected to node j; see Sect. 4. The relationship between ti
ði 2 IðjÞÞ and sj is given by

ti � sj; 8i 2 IðjÞ:

Let D denote the set of pairs of indices of members that mutually overlap. Namely,

ði1; i2Þ 2 D means that member i1 and member i2 cannot exist simultaneously. This

constraint is written as

ti1 þ ti2 � 1; 8ði1; i2Þ 2 D:

The upshot is that the truss topology optimization problem can be formulated as the

following MISOCP problem:

5 Such non-redundancy of overlapping members is also known for truss topology optimization

considering, e.g., the self-weight load (Bendsøe et al. 1994; Kanno and Yamada 2017) and the member

buckling constraints (Mela 2014; Guo et al. 2005).
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Minimize
X

m

i¼1

wi ð24aÞ

subject to wi þ xi �
wi � xi

2
ffiffiffiffiffiffiffiffiffi

ci=E
p

qi

� �
�

�

�

�

�

�

�

�

; i ¼ 1; . . .;m; ð24bÞ

X

m

i¼1

qibi ¼ p; ð24cÞ

c>x�V ; ð24dÞ

x�Mt; ð24eÞ

ti � sj ð8i 2 IðjÞÞ; j ¼ 1; . . .; l; ð24fÞ

s� 0; ð24gÞ

X

l

j¼1

sj � n; ð24hÞ

ti1 þ ti2 � 1; 8ði1; i2Þ 2 D; ð24iÞ

t 2 f0; 1gm: ð24jÞ

It is worth noting that the binary constraints on s1; . . .; sk can be omitted.

6 Numerical experiments

In this section, we report on numerical experiments on the method presented in

Sect. 4. In Sect. 6.1, we describe implementation details of the algorithm and the

problem settings of the numerical experiments. The computational results of the

proposed ADMM approach, together with a comparison with the MISOCP

approach, are presented in Sects. 6.2, 6.3, and 6.4. Empirical evidences of our

stopping criterion and selection of initial points are presented in Sects. 6.5 and 6.6,

respectively. Section 6.7 presents an application of the proposed method to robust

truss optimization, which is recast as a mixed-integer semidefinite programming

problem.

6.1 Implementation and problem settings

At each iteration of the proposed method, we solved problem (22) by using CVX

ver. 2.1, a MATLAB package for specifying and solving convex optimization

problems (Grant and Boyd 2008, 2016). As a solver, we used SDPT3 ver. 4.0
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(Tütüncü et al. 2003) on MATLAB ver. 9.1.0. The cvx_precision of CVX is

set to best, which means that the solver continues as long as it can make progress

(Grant and Boyd 2016). For comparison, we solved the MISOCP problem in (15)

with a global optimization approach. The value of M in constraint (15f) is set to

1:0� 105 in m.6 We used PICOS ver. 1.1.2, a Python interface to diverse

optimization solvers (Sagnol 2017). MOSEK ver. 8.0.1 (Andersen et al. 2003) was

used as the solver. Computation was carried out on two 3:2GHz Intel Xeon E5-2667
v4 processors with 256GB RAM.

In practice, we slightly modify the original version of ADMM introduced in

Sect. 2 so that the penalty parameter in the augmented Lagrangian is gradually

increased. Specifically, q in subproblem (22) is given by

qkþ1 :¼ minflqk; qmaxg;

where l ([ 1) and qmax ð[ q0Þ are constants. In the following, we set l ¼ 1:5,

q0 ¼ 1, and qmax ¼ 106. Define Jk0 � f1; . . .; lg by

Jk0 ¼ fj 2 f1; . . .; lg j zkj � �g;

where we set � ¼ 0:1mm2. We terminate the ADMM when

l� jJk0 j � n

is satisfied. Then we solve problem (11) with the additional constraints

X

i2IðjÞ
xi ¼ 0; 8j 2 Jk0

to generate the final output. As for the initial point for the ADMM, we examine two

cases:

– Initial point (A): z0 :¼ Zx0 and v0 :¼ 0, where x0 is an optimal solution of

problem (11).

– Initial point (B): z0 :¼ Zx0 and v0 :¼ 0 with x0 :¼ ðV=c>1Þ1.

It should be clear that only z0 and v0 are used as input data of the ADMM; x0 is not
required as input.

Consider the problem setting shown in Fig. 3. The nodes are aligned on a 1m�
1m grid. We vary the values of NX and NY to generate problem instances with

diverse sizes. The number of free nodes in this ground structure is NXðNY þ 1Þ. The
members in a ground structure are generated as follows: We first consider all

possible members such that any two nodes are connected by a member. Then, we

remove members that are longer than a specified value, 5m in Sects. 6.2 and 6.3 and

7m in Sect. 6.4. It is worth noting that the ground structure retains overlapping

members.

6 Through our preliminary numerical experiments it was found that the computational cost required by

MOSEK does not change drastically depending on the value of M.
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In the following examples, the Young modulus is E ¼ 20GPa, and the specified

upper bound for the structural volume is V ¼ 2NXNY � 105 mm3. As for p, the
external vertical force of 100 kN is applied to the bottom rightmost node. Let n be

the upper bound on the number of free nodes. In other words, the number of

supports is not restricted in the following examples, and l in the previous sections

denotes the number of free nodes of a ground structure.

6.2 Example (I)

In this section, we set the upper bound for the existing free nodes to n ¼ 4. As for

problem instances, we consider ðNX;NYÞ ¼ ð5; 2Þ, (5, 3), and (5, 4) in Fig. 3.

Figure 4 shows the optimal solutions7 of the conventional compliance minimization

without the constraint on the number of nodes, i.e., problem (11), where the width of

Fig. 3 The problem setting for
numerical experiments with
ðNX ;NY Þ ¼ ð5; 2Þ

(a) (b)

(c)

Fig. 4 Example (I). The optimal solutions of the compliance minimization problem (without the
cardinality constraint). a ðNX ;NY Þ ¼ ð5; 2Þ; b ðNX ;NY Þ ¼ ð5; 3Þ; and c ðNX ;NY Þ ¼ ð5; 4Þ

7 To obtain these solutions, we used the ground structures without overlapping members.
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each member is proportional to its cross-sectional area. Table 1 reports the optimal

values, denoted ŵ, the number of members (m), and the number of degrees of

freedom of the nodal displacements (d). As mentioned in Sect. 5, the intermediate

nodes on a chain in Fig. 4 can be removed without changing the objective value.

After this hinge cancellation procedure, the numbers of free nodes in Fig. 4a–c

become 9, 7, and 5, respectively, as listed in Table 1.

Figure 5 shows the solutions obtained by the proposed ADMM for the problem

with the limited number of free nodes. In Fig. 5b we see that the number of free

nodes is 3 ð\nÞ. It should be clear that x0 used to generate initial point (A) for the

ADMM is in general different from the one in Fig. 4, because x0 is computed from

the ground structure involving the overlapping members. Indeed, x0 for

ðNX ;NYÞ ¼ ð5; 2Þ, (5, 3), and (5, 4) have 12, 15, and 13 free nodes, respectively.

Thus, the number of nodes is decreased successfully by the proposed method. It is

observed that the solutions in Fig. 4a, b have too many members from a practical

point of view. In contrast, we can see in Fig. 5a, b that the number of members is

decreased as a result of optimization with the limitation of the number of nodes. The

computational results of the ADMM are listed in Table 2, where w	 is the objective
value of the obtained solution, ‘‘#iter.’’ is the number of iterations required before

convergence, and ‘‘time’’ is the computational time. As mentioned before, we

examine two different values, denoted (A) and (B), for z0 and v0. The one which

yields the better objective value is indicated by ‘‘	.’’ It is observed in Table 2 that,

for every instance, the objective value of the solution obtained by the ADMM

approach is identical to the optimal value of the problem without the limitation of

the number of nodes (i.e., problem (11)). Since problem (11) can be regarded as a

relaxation problem, the solutions obtained by the proposed ADMM are globally

optimal. This also illustrates that, in general, the compliance minimization of a truss

has more than one optimal solution, and the optimal solutions may have different

numbers of nodes.

Table 1 Characteristics of the

problem instances for the

numerical experiments

ðNX ;NY Þ m d ŵ (J) #Free nodes

(5,2) 147 30 12100.00 9

(5,3) 264 40 5007.41 7

(5,4) 411 50 2812.50 5

(8,2) 273 48 34515.63 15

(9,2) 315 54 45125.00 8

(8,4) 750 80 6937.81 10

(9,4) 863 90 8900.28 10

(8,6) 1296 112 3080.39 10

(9,6) 1489 126 3847.25 12
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For comparison, we also solved the MISOCP problem (15) with a global

optimization approach. Table 2 lists the obtained results,8 where �w is the objective

value. The solutions obtained by the MISOCP solver are identical to the ones

obtained by the ADMM approach.

Table 2 Computational results of example (I)

ðNX ;NY Þ ADMM MISOCP

Init. sol. w	 (J) w	=ŵ #iter Time (s) �w (J) Time (s)

(5,2) 	 (A) 12100.00 1.000 5 3.6 12100.00 0.72

	 (B) 12100.00 1.000 3 2.2

(5,3) 	 (A) 5007.41 1.000 5 3.2 5007.41 1.69

(B) 5052.45 – 3 2.0

(5,4) 	 (A) 2812.50 1.000 2 2.6 2812.50 0.52

	 (B) 2812.50 1.000 3 3.8

(a) (b)

(c)

Fig. 5 Example (I). The solutions obtained by the proposed method for the compliance minimization
problem with the cardinality constraint (n ¼ 4). a ðNX ;NY Þ ¼ ð5; 2Þ; b ðNX ;NY Þ ¼ ð5; 3Þ; and c
ðNX ;NY Þ ¼ ð5; 4Þ

8 It should be clear that no initial point was assigned for the MISOCP approach, although in Table 2, for

convenience of presentation, the results of MISOCP are placed in the rows concerning the results of the

ADMM with initial point (A).
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6.3 Example (II)

As for instances with larger sizes, consider NX, NY = (8,2), (9,2), (8,4), (9,4), (8,6),

and (9, 6). In this section, we set the upper bound for the number of free nodes to

n ¼ 5.

6.3.1 Results

Figure 6 collects the optimal solutions without limiting the number of nodes. The

number of free nodes after applying hinge cancellation is reported in Table 1.

Figure 7 shows the solutions obtained by the ADMM approach. The number of free

nodes in Fig. 7e is 4 (\n). Two nodes can be removed from the solution in Fig. 7a,

which results in a truss design with three free nodes. It is observed in Figs. 6 and 7

that the limitation of the number of nodes often yields a solution with fewer

members. Also, very thin members are observed in Fig. 6, while such thin members

do not appear in Fig. 7. These two features of the solutions in Fig. 7 are considered

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Example (II). The optimal solutions of the compliance minimization (without the cardinality
constraint). a ðNX ;NY Þ ¼ ð8; 2Þ; b ðNX ;NY Þ ¼ ð9; 2Þ; c ðNX ;NY Þ ¼ ð8; 4Þ; d ðNX ;NY Þ ¼ ð9; 4Þ; e
ðNX ;NY Þ ¼ ð8; 6Þ; and f ðNX ;NY Þ ¼ ð9; 6Þ
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practically preferable. The initial design x0 used for generating initial points (A) for

the ADMM to solve ðNX;NYÞ ¼ ð8; 2Þ, ð9; 2Þ; . . .; ð9; 6Þ have 20, 18, 19, 20, 24, and
26 free nodes, respectively.

It is observed in Table 3 that the ADMM terminates after at most 20 iterations.

The increase of the objective value over the optimal value of the problem without

the cardinality constraint is quite small, i.e., the increase by at most about 10%.

Particularly, for ðNX;NYÞ ¼ ð8; 4Þ and (9, 4) we have only about a 1% increase.

Thus, it is often the case that the number of nodes can be reduced at the expense of

only a small increase of the compliance.

The computational results of the MISOCP approach are listed in Table 3.

Figure 8 collects the obtained solutions. For ðNX ;NYÞ ¼ ð8; 4Þ, the solution obtained
by MISOCP is identical to the one obtained by the ADMM; i.e., the ADMM found a

global optimal solution. For ðNX ;NYÞ ¼ ð9; 4Þ, it is observed in Table 3 that the

objective values obtained by the two methods are almost the same, but the two

solutions are slightly different as seen in Fig. 7d and 8d. The largest value of w	= �w
is 1.072 in the case of ðNX;NYÞ ¼ ð8; 2Þ. It is also worth noting that, for ðNX;NYÞ ¼
ð8; 6Þ and (9, 6), although the global optimal solutions in Fig. 8e, f involve very thin

(a) (b)

(c) (d)

(e) (f)

Fig. 7 Example (II). The solutions obtained by the ADMM for the compliance minimization problem
with the cardinality constraint (n ¼ 5). a ðNX ;NY Þ ¼ ð8; 2Þ; b ðNX ;NY Þ ¼ ð9; 2Þ; c ðNX ;NY Þ ¼ ð8; 4Þ; d
ðNX ;NY Þ ¼ ð9; 4Þ; e ðNX ;NY Þ ¼ ð8; 6Þ; and f ðNX ;NY Þ ¼ ð9; 6Þ

ADMM for truss optimization with limited number of nodes 345

123



Table 3 Computational results of example (II)

ðNX ;NY Þ ADMM MISOCP

Init. sol. w	 (J) w	=ŵ w	= �w #iter Time (s) �w (J) Time (s)

(8,2) 	 (A) 37515.63 1.087 1.072 11 9.0 35006.93 13.42

	 (B) 37515.63 1.087 1.072 13 9.8

(9,2) 	 (A) 50000.00 1.108 1.070 20 18.8 46722.20 19.92

	 (B) 50000.00 1.108 1.070 18 16.5

(8,4) 	 (A) 7031.25 1.013 1.000 11 46.4 7031.25 4.30

	 (B) 7031.25 1.013 1.000 6 24.5

(9,4) (A) 9167.44 – – 13 77.2

	 (B) 9000.00 1.011 1.000 8 46.7 8999.91 12.20

(8,6) 	 (A) 3287.84 1.067 1.038 10 80.3 3168.98 76.22

(B) 3440.05 – – 7 54.1

(9,6) (A) 4353.91 – – 9 96.5

	 (B) 4221.65 1.097 1.060 12 122.1 3983.34 112.08

(a) (b)

(c) (d)

(e) (f)

Fig. 8 Example (II). The optimal solutions obtained from the MISOCP formulation for the compliance
minimization problem with the cardinality constraint (n ¼ 5). a ðNX ;NY Þ ¼ ð8; 2Þ; b ðNX ;NY Þ ¼ ð9; 2Þ; c
ðNX ;NY Þ ¼ ð8; 4Þ; d ðNX ;NY Þ ¼ ð9; 4Þ; e ðNX ;NY Þ ¼ ð8; 6Þ; and f ðNX ;NY Þ ¼ ð9; 6Þ
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members, the solutions obtained by the ADMM shown in Fig. 7e, f do not have such

a thin member.

It is observed from Table 3 that the proposed ADMM often converges more

quickly than the MISOCP solver; exceptions are ðNX ;NYÞ ¼ ð8; 4Þ and (9, 4). The

computational time required by the MISOCP solver varies drastically depending on

the problem instances. In contrast, the number of iterations required by the ADMM

is almost independent of the problem instances. Since the computation time required

for solving the SOCP subproblem of the ADMM depends on the problem size, it is

possible to roughly estimate the total computational cost of the ADMM from the

problem size. This might be considered one of advantages of ADMM over

MISOCP.

As mentioned in Sect. 5, the proposed method does not incorporate a constraint

prohibiting overlapping members. Nevertheless, for the problems with limitation of

the number of nodes, all the solutions obtained in Sect. 6 do not involve overlapping

members.

6.3.2 MISOCP with slenderness constraints

Constraints preventing the presence of very thin members observed in Fig. 8e, f can

be handled within the framework of mixed-integer programming (MIP) (Kanno and

Yamada 2017). Recall problem (24) in Sect. 5, where ti is a binary variable

indicating whether member i exists or vanishes. Let xmin [ 0 denote the specified

lower bound for the member cross-sectional area. The constraint avoiding the

existence of too-thin members, which we refer to as slenderness constraints, can be

formulated as

xmint� x�Mt: ð25Þ

In problem (24), we replace constraint (24e) with (25). The constraint avoiding the

presence of overlapping members, (24i), is not considered. We solve this MISOCP

problem for the instances ðNX;NYÞ ¼ ð8; 6Þ and (9, 6) with xmin ¼ 200mm2. The

obtained solutions are shown in Fig. 9. Both solutions have parallel consecutive

(a) (b)

Fig. 9 The optimal solutions of example (II) with the constraints avoiding the presence of thin members.
a ðNX ;NY Þ ¼ ð8; 6Þ; and b ðNX ;NY Þ ¼ ð9; 6Þ
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members that are connected by nodes supported only in the direction of those

members. The intermediate nodes can be removed without changing the optimal

value. Hence, the number of free nodes of these solutions is essentially two. The

objective value of the solution for ðNX ;NYÞ ¼ ð8; 6Þ is 3168.97 J, which is slightly

less than that for the case without the slenderness constraints in Table 3. This is due

to computational error in computing the objective value via the finite element

method. In the solution shown in Fig. 7e, i.e., in the solution obtained by the

ADMM without the slenderness constraints, the cross-sectional area of the thinnest

member is 75:4mm2. Hence, this solution is not globally optimal under the slen-

derness constraint. The computational time required by MOSEK is 365.0 s. The

objective value of the solution for ðNX;NYÞ ¼ ð9; 6Þ is 4028.94 J. This is larger than

that for the case without the slenderness constraints as expected, and is less than that

of the solution obtained by the ADMM. Since the cross-sectional area of the

thinnest member of the solution shown in Fig. 7f is 146:7mm2, Hence, the solution

shown in Fig. 7f is not globally optimal under the slenderness constraints. The

computational time required by MOSEK to find the solution in Fig. 9b was

1676.0 s, which is much larger than the computational time of the ADMM.

6.4 Example (III)

Consider problem instances ðNX ;NY ; nÞ ¼ ð12; 6; 6Þ; ð13; 6; 6Þ, and (14, 6, 7). The

maximum member length in a ground structure is set to 7m.

Figure 10 shows the solutions obtained by the proposed ADMM approach. The

ADMM terminates with a solution having n free nodes. One of these nodes vanishes

in post-processing. The objective value as well as the computational cost is reported

in Table 4.

(a) (b)

(c)

Fig. 10 Example (III). The solutions obtained by ADMM for the compliance minimization problem with
the cardinality constraint. a ðNX ;NY ; nÞ ¼ ð12; 6; 6Þ; b ðNX ;NY ; nÞ ¼ ð13; 6; 6Þ; and c
ðNX ;NY ; nÞ ¼ ð14; 6; 7Þ,
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Figure 11 collects the optimal solutions found by the MISOCP approach. These

solutions use exactly n free nodes. It is observed from Table 4 that the objective

value obtained by the ADMM for the largest instance, ðNX;NY ; nÞ ¼ ð14; 6; 7Þ, is
very close to the optimal value. In contrast, for ðNX;NY ; nÞ ¼ ð13; 6; 6Þ the objective
value obtained by the ADMM is more than 20% larger than the optimal value.

However, the computational cost of the ADMM is much less than the MISOCP

approach (which requires more than four hours). Thus, the quality of the solution

obtained by the ADMM approach can possibly be very good, although in general it

depends on problem instances. As the problem size increases, the computational

cost of the ADMM approach becomes much smaller compared with the MISOCP

approach.

Table 4 Computational results of example (III)

ðNX ;NY ; nÞ ADMM MISOCP

Init. sol. w	 (J) w	= �w #iter Time (s) �w (J) Time (s)

(12, 6, 6) 	 (A) 7817.72 1.115 10 531.7 7012.95 3492.34

(B) 9527.47 10 516.7

(13,6,6) 	 (A) 10142.88 1.228 10 642.6 8258.85 14675.17

(B) 13631.69 11 793.7

(14,6,7) 	 (A) 9720.09 1.018 9 724.2 9550.97 14657.54

(B) 14928.49 14 1148.6

(a) (b)

(c)

Fig. 11 Example (III). The optimal solutions obtained by MISOCP for the compliance minimization
problem with the cardinality constraint. a ðNX ;NY ; nÞ ¼ ð12; 6; 6Þ; b ðNX ;NY ; nÞ ¼ ð13; 6; 6Þ; and c
ðNX ;NY ; nÞ ¼ ð14; 6; 7Þ
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6.5 On heuristic for stopping ADMM

As mentioned in Sect. 6.1, we use a heuristic criterion for stopping the ADMM.

Namely, we stop the ADMM when the cardinality constraint is satisfied with �
tolerance. Then, as post-processing, we solve the compliance minimization

problem, (11), specifying the set of vanishing nodes. This section presents some

empirical justification for this procedure. Namely, it is illustrated through numerical

experiments that with this heuristic procedure the number of subproblems to be

solved is drastically reduced, without missing out solutions having better objective

values. We use the problem instances in Sect. 6.3.

We performed the following experiment. The ADMM is run until it terminates

with a small tolerance, namely, kxkþ1 � xkk� 10�1 (in mm2) is satisfied. This

requires many more iterations than the procedure described above. In the iteration

history, we select every iterate that satisfies the cardinality constraint, i.e., that

satisfies l� jJk0j � n. For every selected iterate, we run the post-processing, i.e., we

solve problem (11), specifying the set of vanishing nodes.

The computational results are listed in Table 5, where ~K and ~Kp are the number

of iterations required before convergence and the number of iterates that

approximately satisfy the cardinality constraint, respectively. For all the ~Kp iterates,

the post-processing yields the same solution as the one reported in Table 3. In the

case ðNX ;NY ; nÞ ¼ ð9; 2; 5Þ with initial point (A), the ADMM does not converge

after 100 iterations. In this iteration history, there exist 77 iterates satisfying the

cardinality constraint approximately. From all of them, the post-processing

generates the solution reported in Table 3. In a nutshell, the set of vanishing nodes

does not change, even if the ADMM iterations are continued after the iterate at

which our heuristic stopping criterion is satisfied.

For ease of comparison, the number of iterations reported in Table 3 is listed

again as K	 in Table 5. Our stopping criterion reduces the number of iterations from
~K to K	, without changing the final output. It is worth noting that the solutions

Table 5 The computational

results when the ADMM is run

until convergence to evaluate

effectiveness of the heuristic

stopping criterion

ðNX ;NY ; nÞ Init. sol. ~K ~Kp K	

(8,2,5) (A) 35 18 11

(8,2,5) (B) 35 18 13

(9,2,5) (A) 100y 77y 20

(9,2,5) (B) 81 58 18

(8,4,5) (A) 27 15 11

(8,4,5) (B) 21 15 6

(9,4,5) (A) 29 15 13

(9,4,5) (B) 25 15 8

(8,6,5) (A) 26 12 10

(8,6,5) (B) 21 15 7

(9,6,5) (A) 24 16 9

(9,6,5) (B) 36 25 12

350 Y. Kanno, S. Fujita

123



found between the ðK	 þ 1Þth iteration and the ~Kth iteration do not necessarily

satisfy the cardinality constraint within an �-tolerance.

6.6 On choice of initial points

Since we apply an ADMM to a nonconvex problem, the obtained solution may

depend on the choice of initial points. In Sect. 6.1, we suggested using two initial

points, (A) and (B), and adopt the better solution as the final output. In this section,

we perform comparison with the results obtained by using randomly generated

initial points to empirically justify our selection. As for two representative instances

for which initial points (A) and (B) lead to different solutions, we use ðNX;NY ; nÞ ¼
ð5; 3; 4Þ in Sect. 6.1 and ðNX ;NY ; nÞ ¼ ð9; 4; 5Þ in Sect. 6.2 in the following

numerical experiments.

As for randomly generated initial points, we examine two cases:

– Initial point (C): x0 :¼ ðV=c>nÞn, z0 :¼ Zx0, and v0 :¼ Zx0 � z0 ¼ 0, where
n 2 Rm is a random vector with entries independently drawn from Uð0; 1Þ.

– Initial point (D): x0 :¼ ðV=c>nÞn, z0 :¼ Zx0, and v0 :¼ maxfz01; . . .; z0l gf, where
n 2 Rm and f 2 Rl are random vectors with entries independently drawn from

Uð0; 1Þ.

We generate 100 samples of each of these initial points, and run our ADMM

approach from every sample. Table 6 reports the minimum value, maximum value,

mean, and variance of the objective value.

For ðNX;NY ; nÞ ¼ ð5; 3; 4Þ with initial point (C), in all the cases the ADMM

converges to the same solution. This solution is the one obtained by using initial

point (B), as shown in Table 2. Therefore, using initial point (A) yielded a better

solution (which is globally optimal) than using 100 samples of (C). In contrast,

when initial point (D) was adopted, the global optimal solution is obtained from 7

sampled initial points, among 100 trials. From the other 93 samples, the ADMM

converges to the solution obtained with initial point (B). The mean and the variance

of the objective value are listed in Table 6. In this manner, it is demonstrated that

the global optimal solution, easily obtained by carrying out our ADMM procedure

with initial point (A), is rarely obtained from randomly generated initial points.

For ðNX ;NY ; nÞ ¼ ð9; 4; 5Þ with initial point (C), the best solution is the same as

the one obtained from initial point (B) in Table 3. This is not globally optimal.

Among 100 trials, 67 sampled initial points yield this solution. In contrast, the

objective value of the worst solution is larger than the one obtained from initial

Table 6 Computational results

of ADMM from randomly

generated initial points

ðNX ;NY ; nÞ Init. sol. Min. (J) Max. (J) Mean (J) Var. (J2)

(5,3,4) (C) 5052.45 5052.45 5052.45 0.00

(5,3,4) (D) 5007.41 5052.45 5049.74 115.56

(9,4,5) (C) 9000.00 9143.42 9039.78 3344.71

(9,4,5) (D) 9000.00 9768.04 9076.47 13916.47
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point (A). By using initial point (D), the variance of the objective value increased,

but the global optimal solution was not obtained. Thus, the ADMM with randomly

generated initial points could not find a solution better than the one obtained from

initial point (B).

In short, for these two problem instances, using many randomly generated initial

points does not yield a better solution. Therefore, using initial points (A) and

(B) might be considered a reasonable selection.

6.7 Application to robust optimization against uncertainty in external load

The ADMM approach presented in this paper can easily be extended to the case in

which the external load possesses uncertainty. The set of nodes at which the external

forces can possibly be applied is supposed to be specified. Then we consider the

robust optimization against the uncertainty, under the upper bound constraint on the

number of nodes. In this section, we examine the efficiency of the ADMM applied

to this problem, as an example of optimization problems that are not handled with

current mainstream MIP solvers. The computation in this section was carried out on

a 2.2 GHz Intel Core i5 processor with 8 GB RAM.

As a concrete instance, consider the problem setting shown in Fig. 3. The

external force is applied at the bottom right node, but this time its direction and

magnitude are assumed to be uncertain. Without loss of generality, let p1 and p2

Table 7 Computational results of the robust optimization problem with the cardinality constraint

ðNX ;NY ; nÞ ADMM MISDP

Init. sol. w	 (J) w	= �w #iter Time (s) �w (J) #iter Time (s)

(5,2,4) 	 (A) 12156.25 1.000 3 7.8 12156.25 22 11.8

	 (B) 12156.25 1.000 3 6.7

(5,3,4) 	 (A) 5044.91 1.000 5 6.6 5044.91 9 7.6

(B) 5089.95 – 3 4.7

(5,4,4) 	 (A) 2840.63 1.000 2 6.7 2840.63 5 10.9

	 (B) 2840.63 1.000 3 7.4

(8,2,5) 	 (A) 37605.63 1.071 11 16.5 35096.94 238 293.1

	 (B) 37605.63 1.071 13 18.2

(9,2,5) 	 (A) 50101.25 1.070 20 32.0 46823.47 1484 2396.2

	 (B) 50101.25 1.070 14 20.6

(8,4,5) 	 (A) 7076.25 1.000 11 67.0 7076.25 37 334.1

	 (B) 7076.25 1.000 6 34.3

(9,4,5) (A) 9218.06 – 13 110.6

	 (B) 9050.63 1.000 6 47.0 9050.63 69 1026.2

(8,6,5) 	 (A) 3317.84 1.037 10 118.8 3198.98 573 21992.7

(B) 26377.74 – 19 358.5

(9,6,5) (A) 4387.66 – 9 148.6

	 (B) 4255.40 z 12 181.9 4387.66z 300z 16468.0z
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denote the horizontal and vertical components, respectively, of this external force.

The set of possible realizations of the external load is defined by

P ¼ fðp1; p2; 0; . . .; 0Þ> j p1 ¼ p01w1; p2 ¼ p02w2; kðw1;w2Þk� 1g;

where p01 ¼ 30 kN and p02 ¼ 100 kN. With referring to (10), we see that the com-

pliance in the worst case is given by

p̂ðxÞ ¼ supf2p>u� u>KðxÞu j u 2 Rd; p 2 Pg:

In the following, we consider the minimization problem of this function.

(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Fig. 12 The solutions obtained by the ADMM applied to the robust optimization problem. a
ðNX ;NY ; nÞ ¼ ð5; 2; 4Þ; b ðNX ;NY ; nÞ ¼ ð5; 3; 4Þ; c ðNX ;NY ; nÞ ¼ ð5; 4; 4Þ; d ðNX ;NY ; nÞ ¼ ð8; 2; 5Þ; e
ðNX ;NY ; nÞ ¼ ð9; 2; 5Þ; f ðNX ;NY ; nÞ ¼ ð8; 4; 5Þ; g ðNX ;NY ; nÞ ¼ ð9; 4; 5Þ; h ðNX ;NY ; nÞ ¼ ð8; 6; 5Þ; and i
ðNX ;NY ; nÞ ¼ ð9; 6; 5Þ
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When the constraint on the number of nodes is not considered, it is known that

this optimization problem can be recast as semidefinite programming (SDP) (Ben-

Tal and Nemirovski 1997). Since the upper bound constraint on the number of nodes

is treated as presented in Sect. 3.2, the optimization problem under this constraint

can be recast as mixed-integer semidefinite programming (MISDP). For compar-

ison, we solve this MISDP problem with YALMIP (Löfberg 2004), which finds a

global optimal solution with a branch-and-bound method (Löfberg 2004). We used

YALMIP with the default setting, in which SDP subproblems are solved with

SeDuMi ver. 1.3 (Pólik 2005; Sturm 1999). Alternatively, consider the problem

(a) (b)

(c)

Fig. 13 The optimal solutions of the robust optimization problem obtained by YALMIP. a
ðNX ;NY ; nÞ ¼ ð8; 2; 5Þ; b ðNX ;NY ; nÞ ¼ ð9; 2; 5Þ; and c ðNX ;NY ; nÞ ¼ ð8; 6; 5Þ

(a) (b)

(c)

Fig. 14 The solutions obtained by ADMM for the large-scale robust optimization problems. a
ðNX ;NY ; nÞ ¼ ð12; 6; 6Þ; b ðNX ;NY ; nÞ ¼ ð13; 6; 6Þ; c ðNX ;NY ; nÞ ¼ ð14; 6; 7Þ;
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obtained by replacing the objective function of (14) by p̂. It is fairly straightforward

to apply the ADMM in Sect. 4 to this optimization problem. The subproblem solved

to update the variable x at each iteration is formulated as SDP.

Table 7 reports the computational results. For five instances,

ðNX ;NY ; nÞ ¼ ð5; 2; 4Þ, (5, 3, 4), (5, 4, 4), (8, 4, 5), and (9, 4, 5), the ADMM

approach found the global optimal solutions. In all these cases, the computational

cost of the ADMM is smaller than that of YALMIP. The difference of

computational cost increases as the problem size increases. For

ðNX ;NY ; nÞ ¼ ð9; 6; 5Þ, YALMIP did not terminate after 300 iterations. The best

solution is the same as the one found by the ADMM with initial point (A), but a

better solution was found by the ADMM with initial point (B). For three instances,

ðNX ;NY ; nÞ ¼ ð8; 2; 5Þ, (9, 2, 5), and (8, 6, 5), the solutions found by the ADMM

are not optimal. The difference between the obtained objective value and the

optimal value is 7% or less, like in the cases in Sect. 6.3. The computational time

required by YALMIP is more than 10 times (in some cases, more than 100 times)

larger than that of the ADMM. Figure 12 collects the solutions obtained by the

ADMM. The global optimal solutions that could not be obtained by the ADMM are

shown in Fig. 13. The set of nodes in Fig. 12d is much different from that in

Fig. 13a. The solution in Fig. 12e has only one node that is not included in the

solution in Fig. 13b. Similarly, the difference between the solutions in Figs. 12h and

13c is the location of one node.

Figure 14 shows the solutions obtained by the ADMM for problem instances

with larger sizes. The computational results are listed in Table 8. A global

optimization method, YALMIP, cannot solve these problems within a reasonable

amount of time.

7 Conclusions

In this paper, we have studied the compliance minimization of a truss with a limited

number of nodes. It has been shown that this optimization problem can be

formulated as a cardinality-constrained SOCP problem. We have proposed a simple

and efficient heuristic based on an ADMM.

Table 8 Computational results

of the ADMM approach applied

to the robust optimization

problem with the cardinality

constraint

ðNX ;NY ; nÞ Init. sol. w	 (J) #iter Time (s)

(12,6,6) 	 (A) 7862.67 10 771.7

(B) 9572.47 10 730.5

(13,6,6) 	 (A) 10191.63 10 972.2

(B) 13680.44 12 1108.4

(14,6,7) 	 (A) 9772.59 9 1033.9

(B) 14980.99 14 1614.1
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The problem considered in this paper can also be formulated as an MISOCP

problem involving the so-called big-M. In the numerical experiments, we compared

the proposed ADMM approach with a global optimization approach using this

MISOCP formulation. For small-size problem instances, it has been confirmed that

the ADMM can find a global optimal solution. For middle-size instances, the

objective value of the solution obtained by the ADMM is often close to the optimal

value. The number of iterations of the ADMM is almost the same for instances with

different sizes. In contrast, the computational cost required by a standard MISOCP

solver depends strongly on instances, even if the instances have similar sizes.

In the numerical experiments, it has also been illustrated that, for some problem

instances, the compliance minimization problem of a truss has some different

optimal solutions, and the number of nodes can be decreased without losing

optimality. In most other cases, the number of nodes can be decreased at the

expense of only a small increase of the compliance.
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