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Abstract Today’s gas markets demand more flexibility from the network operators
which in turn have to invest in their network infrastructure. As these investments are
very cost-intensive and long-lasting, network extensions should not only focus on a
single bottleneck scenario, but should increase the flexibility to fulfill different demand
scenarios. In this work, we formulate a model for the network extension problem for
multiple demand scenarios and propose a scenario decomposition in order to solve
the resulting challenging optimization tasks. In fact, each subproblem consists of a
mixed-integer nonlinear optimization problem.Valid bounds on the objective value are
derived even without solving the subproblems to optimality. Furthermore, we develop
heuristics that prove capable of improving the initial solutions substantially. The results
of computational experiments on realistic network topologies are presented. It turns
out that our method is able to solve these challenging instances to optimality within a
reasonable amount of time.
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1 Introduction

Gas transmission networks are complex structures that consist of passive elements
and active, controllable elements such as valves and compressors. The behavior of the
passive elements is entirely governed by the laws of physics, and the network operator
has no means to influence that behavior. Pipes are the most important representative of
that group.Other passive elements are for examplemeasurement equipment that causes
a pressure drop or artificial resistor modeling e.g., extensive piping within stations.
Active elements on the other hand are controlled by the networkoperator. Several active
elements exist: Valves can be open or closed and are ameans to decouple different parts
of the network. Compressors and control valves can increase and decrease the pressure
within technical limitations. For planning purposes, the relationship of flow through
a pipe and the resulting pressure difference is appropriately modeled by a nonlinear
equation. The description of the active elements on the other side involves discrete
decisions, e.g., whether a valve is open or closed. Therefore, the model to describe
a gas network is a Mixed-Integer Nonlinear Program (MINLP) and its feasible set is
non-convex in general.

Recent changes in the regulation of the German gas market are creating new chal-
lenges for Transmission System Operators (TSO). Especially the unbundling of gas
transport and trading reduces the influence of network operators on transportation
requests. Greater flexibility in the network is therefore demanded, and the networks
have to be extended accordingly. Traditionally, deterministic planning approaches
focus on one bottleneck situation. Accordingly, the solutions are fine-tuned to that
scenario. In practice, however, the TSOs are obliged by the regulators and by contracts
with gas traders to ensure a feasible network operation in a large range of different
demand scenarios (also known as nominations). Considering uncertainty in the form
of a set of scenarios leads to more flexible network extensions that can meet future
demands more efficiently. Furthermore, one can think of having available historical
data scenarios for typical and relevant nominations against which protection is sought.
In order to be protected against such a finite set of different flow scenarios, we model
the problem in a robust optimization framework. The advantage of such a solution
determined through this approach is feasible for all such historical ‘typical’ scenarios.
It is furthermore not necessary to know anything about the distribution of the uncertain
data.

Determining best possible network extensions at minimum cost is a difficult task
as the network can be extended in various ways. In principle, any two points can be
connected by a new pipe, and pipes are available in different standardized diameters.
Building an additional pipe next to an existing one is called looping. Loops are the
favorite extensions of network operators as they are considerably cheaper than new
pipes as the regulatory process is much simpler and the TSO most often already owns
the land the pipe is built on. In addition to pipes, new active elements can also be
added anywhere in the network. Hence, generating meaningful extension candidates
is a challenging task on its own. In this work we assume that extension candidates are
given as part of the input to the problem, and we consider the question of choosing a
subset that renders all scenarios feasible at minimal cost.
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While typically network extensions increase the transport capacity of a network,
they can also causenew infeasibilities.Anewpipe allowsflowbut couples the pressures
at the end nodes, possibly rendering previously feasible transport requests infeasible.
An additional valve retains all possibilities of the original network. Closing the valve
forbids flow over the pipe, which effectively removes the pipe from the system.

Gas network operation problems have been considered in the literature in various
contexts and in different settings, mainly for the nominal versions in which uncertain-
ties are ignored. The recent book by Koch et al. (2015) as well as the state-of-the-art
survey of Ríos-Mercado and Borraz-Sánchez (2015) cover the main issues in great
detail. We briefly summarize some further relevant references in the following. For
further pointers to the literature, we refer to the above two documents. As an important
result, it has been shown in Collins et al. (1978) and Ríos-Mercado et al. (2002) that
the feasible flow of a given demand scenario for a network without pressure bounds
is uniquely determined. Furthermore, some simplifications can be applied due to the
fact that all pressure variables as well as the flow variables on a spanning tree can be
eliminated from the system; see Gotzes et al. (2016). However, only a few contribu-
tions exist that take uncertainties into account. The thesis of Midthun (2007) develops
mathematical optimization models for different natural gas optimization problems. In
Tomasgard et al. (2007), a complex capacity booking problem with stochastically dis-
tributed demands is studied. In Fodstad et al. (2016) stochastic programming is used
for minimum-cost topology planning for the European gas transport under demand
uncertainty. A detailed case study is presented. Furthermore, in Hellemo et al. (2013),
the task of designing gas network extensions together with some investment decisions
is presented. The corresponding mathematical optimization model is complex and
is approached via multi-stage stochastic programming techniques. Finally, scenario
decomposition has been applied in Gabriel et al. (2012) to gas market models.

In this work, we present a robust model for gas network extension that protects
the TSO against a finite set of scenarios (i.e., transport requests). The novelty of our
work consists in the development of a branch-and-bound algorithm based on scenario
decomposition that solves the network extension problem for the individual scenarios
as subproblems. The algorithm provides lower bounds on the obtainable cost such
that the quality of solutions can be accessed. While the algorithm is guaranteed to find
the optimum solution, we incorporate heuristic methods that prove capable of finding
high-quality solutions and in turn speed up the optimization. A computational study of
realistic network topologies shows the effectiveness of our approach. Our method is
able to solve challenging instances with up to 256 scenarios, whose scenario-expanded
minlp formulations have hundreds of thousands of variables and constraints, to global
optimality in a reasonable amount of time.

This work was performed in the research project ForNe1 in cooperation with the
German gas network operator Open Grid Europe GmbH. Parts of this paper have been
published in Schweiger (2016, 2017).

This paper is organized as follows. Section 2 gives an overview of the mathematical
model for gas networks and its extension. The decomposition method is presented in

1 ForNe—Research Cooperation Network Optimization: http://www.zib.de/projects/forne-research-
cooperation-network-optimization.
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Sect. 3 together with some details about primal and dual bounds and results on the
ability to reuse solutions from previous optimization runs over the same scenario. Sec-
tion 4 presents the results of computational experiments. Section 5 discusses planned
future work on the topic.

2 Models and algorithms for gas network optimization

2.1 Modeling gas transportation networks

In this section,wedescribe themathematical optimizationmodel for topologyplanning
in a deterministic setting.We restrict our presentation to the level needed to understand
the mathematical structure of the problem. The reader is referred to Koch et al. (2015)
and Pfetsch et al. (2014) for further details on the assumptions underlying our model
and for precise formulas for the coefficients.

The gas network is modeled as a directed graph G = (V, A), where the arcs A
are physical network components. Within the network, gas is to be transported from
entries to exits. The flow at these points is given by a so-called nomination and is
modeled by a vector qnom ∈ R

V where positive and negative values of qnomu mean
that flow is leaving and entering the network at node u, respectively.

We assume a steady-state model where dynamic effects are not taken into account
and pressure within the arcs is assumed to be constant. One consequence is that the
nomination has to be balanced, i.e.,

∑
u∈V qnomu = 0, as the gas in the network cannot

be used to balance short-term imbalances. We introduce pressure variables pu to track
the pressure at node u ∈ V . Flow through an element is modeled by a variable qa for
arc a ∈ A. Flows in the direction of the arcs are encoded by positive values for qa while
negative values encode flow in the reverse direction. We assume a homogeneous gas
composition. Under this assumption, gas blending effects at the nodes can be ignored,
and the flow respects the flow conservation constraints

∑

a∈δ+(u)

qa −
∑

a∈δ−(u)

qa = qnomu ,

where δ−(u) and δ+(u) are the arcs entering and leaving node u, respectively. Flow
conservation constraints at all nodes ensure that the flow is compliant with the given
nomination. Additionally, flow and pressure can have technical upper and lower
bounds.

The relationship between flow and pressure depends on the network element, i.e.,
on the type of the arc. Generally, network elements can be partitioned into two groups:
Passive and active elements. In the following, we will briefly review the model for
pipes as the most prominent representative of a passive element and the models of the
different active elements.
Pipes Pipes are used to transport gas over long distances. A difference in the pressures
in the end points is needed for gas to flow. Mathematically, the relationship between
the pressure at the end nodes u and v of a pipe a and the flow qa is modeled by the
equation
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αa |qa |qa = p2u − βa p
2
v (1)

The parameters αa and βa are determined by the properties of the pipe and are assumed
to be constant.

The right-hand side can be linearized by reformulating it using variables for the
square of the pressure πu = p2u . Since the pressure is always positive (above the atmo-
spheric pressure), this reformulation does not introduce ambiguities. Furthermore, we
introduce an auxiliary variable za and split the equation into a nonlinear and a linear
equation:

αa |qa |qa = za (2)

za = πu − βaπv. (3)

The only remaining nonlinearity is then present in Eq. (2); see Fig. 1 for a plot. The
algorithmic approach to handle this nonlinearity is described in Sect. 2.3. Themodel of
some network elements, e.g., compressors, needs pressure variables. In this case, the
pressure variable is added to the model together with the coupling constraint πu = p2u ;
otherwise it is omitted.
Active elements: valve, control valve, and compressor The three most important active
elements are valves, control valves and compressors. Valves can be used to disconnect
parts of the network. Control valves have the additional feature that they are able to
reduce the pressure while compressors can increase the pressure. In contrast to pipes,
whose behavior is completely ruled by gas physics, the state of active elements can
be controlled by the network operator and might be changed frequently to influence
the behavior of the network.

The simplest active element is a valve. Valves have two possible states, open and
closed, which is modeled by a binary variable sa . An open valve (sa = 1) does not
cause a change in the pressure and allows flowwithin some technical bounds. A closed
valve (sa = 0) does not allow flow, but completely decouples the pressures at both
end points. Mathematically, the conditions for a valve a = (u, v) can be expressed as
follows:

sa = 0 ⇒ qa = 0 (4)

sa = 1 ⇒ pu = pv (5)

These implications can be implemented using indicator or so-calledBig-Mconstraints;
see Bonami et al. (2015) for a recent review.

In addition to open (called “bypass”) and closed, control valves and compressors
have an additional possible state: the active state. In this state, the actual increase
or decrease of pressure takes place. Compressors and control valves use two binary
variables sbpa and saca to decide the state of the element. If sbpa = 1, then the element is
in bypass mode. If saca = 1, the element is in active mode. If both variables are zero,
the element is closed.

A control valve a = (u, v) allows the reduction of the pressure in the direction of
the flow within certain bounds Δa and Δa when in active state. The constraints for a
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control valve are thus:

sbpa = 0, saca = 0 ⇒ qa = 0 (6)

sbpa = 1, saca = 0 ⇒ pu = pv (7)

sbpa = 0, saca = 1 ⇒
{
qa ≥ 0

0 < Δa ≤ pu − pv ≤ Δa
(8)

sbpa + saca ≤ 1 (9)

Eqs. (6)–(8) describe the three states. Inequality (9) ensures that exactly one of the
three states is selected.

Compressors are by far the most complex elements. The pressure increase depends
on the flow and is governed by the so-called characteristic diagram (see for example
Odom and Muster 2009 or Percell and Ryan 1987), which typically is a non-convex
set. We use a linear approximation to the characteristic diagram and remain with the
statement that the triple (pu, pv, qa) must be in a certain polytope.

Since bypass and closed state of compressors and control valves behave identically
to a valve, we also model valves with the two binary variables sbpa and saca , but fix saca
to zero.

The question whether a network allows feasible operation for a given nomination
qnom is called nomination validation. Nomination validation is a challenging task that
network operators routinely face in daily operation as well as in tactical and strategic
planning. Formulated in this way, it is a feasibility problem without an objective
function. We refer to Koch et al. (2015) and Pfetsch et al. (2014) for a more detailed
description of the network elements and their coefficients as well for details on the
nomination validation problem.

2.2 Deterministic network extension

In this section, we extend the feasibility problem of checking whether a nomination
allows a feasible operation in a network to the selection of a cost-optimal set of
network extensions that allows the operation of a previously infeasible nomination.
More details on the approach for deterministic network extension can be found in
Fügenschuh et al. (2011).

For this question to be well posed, we assume a set of possible extension candidates
E is given. An extension e ∈ E can be a new pipe to be constructed (possibly as a loop)
or the insertion of an active element at the beginning or end of an existing pipe in the
network. In the case of a new pipe, an active element is always added at one of the
end-points. This is not only important for our model, but has a practical background.
A new pipe connects previously unconnected or only loosely connected parts of the
network and might affect the flow and pressure distribution in the entire network.
In the extreme case, the construction of a new pipe can render previously feasible
nominations infeasible. Closing the active element at the end-points neutralizes the
effect of the pipe and yields the original network.
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We assign an integer variable xe to each extension candidate e ∈ E . Control valves
and compressors have all the capabilities of valves with an additional active state.
Therefore, when the active state is not used, a much cheaper valve should be con-
structed instead of a control valve or a compressor. There are three possible outcomes
of the investment decision for extension e which are translated into the variable xe:

xe = 0: Do not construct e.
xe = 1: Construct extension e with a valve instead of the proposed active element.
xe = 2: Construct extension e with the proposed active element.

If the active element is a valve, then xe can take only the values 0 and 1. The three
options form a hierarchy, where every option is at least as powerful as the ones with
a smaller value, but usually at a higher cost.

The general approach consists in extending the network by the candidates and
penalizing the use of the extensions by cost on the binary variables of the corresponding
active elements. The operation decision of the active element is then translated into the
decision about whether and how the extension is constructed. Consider for example a
new pipe or loop and its corresponding active element. As closing the active element
means that no flow goes through the pipe and the effect of the pipe is neutralized, no
cost is associated with the closed state. Using the bypass state means that flow goes
along the pipe, but the active element is not used in its active state. Thus, it suffices to
construct a valve to activate and deactivate the new pipe. The cost for the bypass state
is thus the cost for the new pipe plus the cost of a valve. Finally, if the active state is
used, then the pipe and the proposed element have to be constructed, and therefore
the cost associated with the active state is the cost of the pipe plus the cost of the
proposed active element. The translation from the operation variables sbpa and saca to
the investment variable xe is in this case

xe = sbpa + 2saca .

In the other case of an active element being added to the end of an existing pipe,
the meanings of bypass and closed state are reversed. When in bypass, the proposed
element has no effect and no costs occur; when in closed state, a valve has to be
constructed:

xe = 1 − sbpa + saca .

The cost for the extension e is modeled by an increasing function ce(xe) which is
evaluated only at integer points. Using the variables sbpa and saca the objective can be
formulated easily.

We denote by F the set of all vectors x = (xe)e∈E such that the extended network
allows a feasible operation. In our situation, a closed form description of F is not at
hand, and optimization over this set corresponds to the solution of a non-convexminlp
due to the complex model for physics and discrete decisions. In an abstract form, the
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deterministic extension planning problem can now be stated as

min c(x) (SingleScen)

s.t. x ∈ F

This formulation is complete, but hides the difficulties in describing and optimizing
over the setF . Anminlpmodel of this problem can be solved by different techniques.
The approach used in this paper uses an outer approximation of the nonlinear function
that is refined in the course of the algorithm and is described in the following section.
An alternative is the approximation or relaxation of the nonlinear function by piecewise
linear functions, which yields, anmilp to be solved (see for example Koch et al. 2015).

2.3 Algorithmic approach for the deterministic network extension problem

The model has two complicating features: Discrete decisions and nonlinear equations.
Discrete decisions are essential to model the settings of active devices, which are
naturally discrete. Nonlinearities arise from the model of the gas physics and add
to the nonconvexity of the feasible set. The result is a non-convex minlp, which is
a very broad class of mathematical programs and belongs to the most challenging
optimization tasks that are currently studied. In this section we briefly describe the
algorithmic framework which most minlp solvers use to tackle such a problem. We
sketch only the basic principles and refer to Berthold et al. (2012) and Vigerske (2012)
for the details on the algorithm and the implementation in the solver SCIP. SCIP has
been extended to solve gas network optimization problems effectively, and ourmethod
uses the corresponding subroutines in the subproblems.

The algorithmic paradigm to handle both features is branch-and-bound. To this
end, we first construct a linear relaxation for the nonlinear equation Eq. (2). This is
done by replacing the non-convex set of feasible points by a larger set that contains
all feasible points, but is described solely by linear inequalities. The convex hull of
the feasible points yields the best relaxation, but it is not necessarily a polyhedron
as its number of extreme points and rays is not necessarily finite. Figure 1a shows
the feasible set for the equation |qa |qa = za as a solid line and a linear relaxation as
a shaded area. Usually the relaxation is strengthened by additional valid inequalities
(also called cutting planes) during the algorithm.

The relaxation is then used within an LP-based branch-and-bound algorithm.When
a relaxation is integer feasible, however, it is not necessarily feasible for the nonlinear
problem as the nonlinear equation is relaxed. If the point is in the interior of the convex
hull of the feasible points it cannot be separated by a linear cutting plane without also
cutting off feasible points. In this case, the two subproblems are created by splitting the
domain of za into two parts. As the domain of za is smaller in both subproblems, the
relaxation can be improved and the current solution of the relaxation can be separated.
Branching on a continuous variable is generally referred to as spatial branching. The
effect of spatial branching is then illustrated in Fig. 1b, where the branching point is
za = 0 and the outer approximations in both branches are drawn in the same picture.
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(a) (b)
Fig. 1 Nonlinear equation |qa |qa = za and a linear approximation on the original interval (a) and after
one branching at qa = 0 (b)

3 Gas network topology planning for multiple scenarios

The extension of the gas infrastructure involves long-lasting and cost-intensive invest-
ments. The operators therefore seek extensions that solve several potential bottleneck
situations at once, are flexible in the future operation and play well with possible
subsequent network extensions. Clearly, deterministic optimization does not respect
any of these objectives. Instead it selects a set of extensions that is tailored towards
the particular nomination that might not be relevant for the future. It is therefore of
high importance to consider several nominations simultaneously in order to avoid
over-tuning and prepare the network for a large range of different flow distribution
patterns.

When facing protection against uncertainties in an optimization problem, several
options exist. Robust optimization is a framework to protect against uncertainty in
the input data of an optimization problem. Instead of assuming that the data that
describes the objective and the constraints is known, the input data is assumed to real-
ize within an uncertainty set. The decisions that are to be determined then must be
robust, i.e., they need to be feasible no matter how the data manifests with the uncer-
tainty set. Furthermore, a robust solution is sought that yields the best guaranteed cost.
In recent decades, robust mathematical optimization has received increased attention.
Here, we can briefly mention some relevant references. Soyster (1973) can be seen
as one of the first references to linear programming under uncertainty. In this work,
column-wise uncertainty is assumed. Later, Ben-Tal and Nemirovski (1999) consid-
ered constrained-wise uncertain linear optimization problems. Among other things,
the book by Kouvelis and Yu (1997) introduced the concept of minimax regret as
a special modeling approach for robust protection against uncertainties. For robust
combinatorial optimization, Bertsimas and Sim (2003) presented a flexible robustness
approach for a computationally tractable robust counterpart that is protected against at
most Γ realized uncertainties, where Γ is given as input. The book by Ben-Tal et al.
(2009) covers many of these mathematical theories and approaches. Gorissen et al.
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(2015) gives a recent overview of effective reformulations and algorithms, together
with how they can be applied in practice.

In order to solve robust optimization tasks effectively, we can derive equivalent
reformulations of the robust problems such that the corresponding robust counter-
parts become computationally and algorithmically tractable. For linear mixed-integer
problems, such tractable robust counterparts can be derived for several classes of
uncertainty sets, such as conic or polyhedral sets. Thismeans that robustmixed-integer
optimization tasks can be solved effectively in practice. As we are facing a complex
minlp here, much less is known about tractable robust counterparts. We therefore con-
sider a discrete uncertainty set that consists of a finite number of nominations. This
reflects the situation in which different scenarios are collected from historical data or
from future forecasts, which was also the case for our industry partner. We will refer
to the elements in the uncertainty set as scenarios.

The decision variables in our application naturally decompose into two stages:
In the first stage, we decide which extensions are constructed. In the second stage,
we determine the operational decisions, i.e., the control of the active devices and
the resulting physical values such as pressure and flow, for all scenarios. While the
first-stage decisions are taken once for all scenarios, the second-stage decisions
are taken independently in each scenario and have to take the first-stage decisions
into account. Accommodating robust multi-stage optimization problems is an active
research field, and several different approaches have been proposed, among them
Adjustable Robust Optimization (Ben-Tal et al. 2004) and Recoverable Robust Opti-
mization (Liebchen et al. 2009).

In the context of our multi-scenario extension planning problem, the scenarios
represent nominations and we seek a set of extensions at minimal cost such that the
resulting network allows the feasible operation of all scenarios. We stress that in
the different scenarios not all extensions that have been constructed have to be used.
However, the hierarchical model of network extensions from Sect. 2.2 ensures that the
extensions can always be used at a smaller level.

The problem can then be formulated as a two-stage robust program. The first-stage
variables y indicate the extent to which extensions are constructed. This decision is
independent of the scenario. In a particular scenario ω, the second-stage variables
xω ∈ Fω describe the extent to which the extensions are used. The multi-scenario
problem can then be stated as:

min c(y) (MultiScen)

s.t. xω ∈ Fω for all ω ∈ Ω (10)

xω ≤ y for all ω ∈ Ω (11)

y ≤ y ≤ y (12)
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Constraint (11) ensures that an extension used in at least one scenario is constructed.
Together with the increasing objective function c(y), (11) and the lower bound on y
from (12) form the linearization of

y = max

(

max
ω∈Ω

xω, y

)

. (13)

Clearly, all variables have to be nonnegative, but we state explicit bounds as they will
be handy in the description of the algorithm in Sect. 3.1. Integrality constraints can be
omitted as they are encoded inFω for xω and enforced by (13). Note that this model is
valid only because the extensions form a hierarchy where more expensive extensions
only add functionality. The model also accounts for the fact that extensions might be
used to a smaller extent than possible.

This model can also be viewed as a two-stage stochastic programming problem.
While in robust optimization all scenarios from the uncertainty set have to be feasible
at a minimal cost, in two-stage stochastic optimization a probability distribution on the
scenarios in the second stage is given and the expected cost is to be optimized. See, for
example, Birge and Louveaux (2011) for a detailed overview of stochastic program-
ming. The linking constraints Eq. (11) are then called non-anticipativity constraints.
Without costs on the second-stage variables and without scenarios with probability
zero, these two concepts coincide since in stochastic programming infeasibility of a
scenario would be punished by an infinitely high cost.

In principle, a scenario-expanded problem can be formulated by adding all con-
straints that describe the relationship xω ∈ Fω explicitly to the model. Then the
operational decisions get another index for the scenario as they act on the second level
of the problem. This formulation could be solved with the algorithm from Sect. 2.3.
However, since the problem is challenging for even one scenario, there is no hope that
the resulting minlp can be solved for a non-trivial number of scenarios.

Without the constraints (11) the model would decompose as each scenario prob-
lem could be solved individually. A decomposition approach therefore seems most
promising for this model. Several decomposition approaches have been proposed.
Classical Generalized Benders Decomposition (Geoffrion 1972) requires convexity to
provide optimal solutions (Sahinidis and Grossmann 1991). A non-convex variant by
Li et al. (2011, 2014) was used to solve a stochastic pooling problem for gas network
planning under uncertainty (Li et al. 2016). In general, due to the lack of knowledge
of the structure in the set Fω, feasibility cuts that carry more information than just
forbidding one particular assignment of y are difficult to obtain.

We propose a decompositionwhere the constraints (11) are ensured by branching on
the y variables. An approach similar in spirit has been proposed by Carøe and Schultz
(1999). They use Lagrangian decomposition by dualizing the constraints (11) to get
dual bounds and use a branch-and-bound algorithm to ensure feasibility. Lagrangian
decomposition is known to provide good bounds in a large range of applications and
is a common technique in stochastic programming, but it is impractical here as the
subproblems need to be solved to optimality several times in order to compute good
bounds. In the present application, even the single-scenario subproblems can hardly
be solved to optimality, as we will see in Sect. 4. We therefore present a branch-and-
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bound algorithm in Sect. 3.1 which is tailored towardsminimizing the number of times
the subproblems are solved by avoiding changes in the objective as they would appear
in Lagrangian decomposition. The dual bounds for the bounding step are presented
in Sect. 3.2. We discuss heuristic methods to quickly find good feasible solutions in
Sect. 3.3. In Sect. 3.4 we develop conditions on when previously found solutions for
a subproblem can be reused and the corresponding subproblem does not need to be
solved again.

3.1 Scenario decomposition: a branch-and-bound approach

In the following we outline the algorithmic approach that consists of scenario decom-
position in combination with branching on y variables.

First,we solve the scenario subproblems (2.2) independently andpossibly in parallel
for all scenarios ω ∈ Ω . Due to the complexity of the problem, which is a non-
convex minlp even for one scenario, we aim to leverage our capabilities of solving
these problems and choose a setting where second-stage decisions are decided by a
black-box solver we do not interfere with. In this way we also directly benefit from
future improvements of solvers for non-convex minlp. The non-convex problems are
encapsulated, but we can still use the known structure of the solution space in the
design of the algorithm.

If one scenario subproblem is infeasible, the multi-scenario problem is infeasible.
If all subproblems are feasible, we denote the best solution found for scenario ω by
xω. A feasible solution to the multi-scenario problem can be computed by setting

y

e = max

ω∈Ω
xω
e ,

i.e., by constructing all extensions that are used in at least one scenario.
Next, we identify extensions that differ in the extent to which the extension should

be constructed, i.e., extensions e ∈ E for which

min
ω∈Ω

xω
e �= max

ω∈Ω
xω
e . (14)

Branching on the y variables is used to synchronize the investment decisions in the
different scenarios. To this end, an extension e for which (14) holds and a value τ

between minω∈Ω xω
e + 1 and maxω∈Ω xω

e is chosen and two subproblems, i.e., nodes
in the branch-and-bound tree, are created: one with the condition ye ≤ τ − 1 and
one with the condition ye ≥ τ . In the two nodes that emerge the variables y now
have non-default bounds, but otherwise the structure of (MultiScen) is unchanged. In
consequence, a branch-and-bound tree is built, where each node is identified by the
bound vectors y and y.

In the nodes, the subproblems have to be modified in order to reflect the bounds on
the y variables. Extensions ewhose lower bound ye is greater than zero are constructed
to this extent and the cost is charged as a fixed cost in the subproblems. In addition,
the extension might be used with a value larger than ye, in which case additional cost
is charged. The cost is thus computed as max

(
ce(ye), ce(xω

e )
)
, an expression which
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is easily linearized. Upper bounds ye are applied to xω
e to control the use of extension

e in scenario ω.
Themodified single-scenario problem for scenarioω and bounds y and y then reads

as:

min
∑

e∈E
max

(
ce(ye), ce(x

ω
e )

)
(SingleScenω)

s.t. xω ∈ Fω

xω ≤ y

Hence, the subproblem is again a single-scenario extension planning problem with an
adapted objective function and upper bounds on some variables, which prevents the
usage of certain extensions.

In most branch-and-bound algorithms a relaxation is used to guide the algorithm
and produce lower bounds. Tighter bounds on the problem remove solutions from the
relaxation and thus the objective function of the relaxation can only become worse by
tightening the bounds. In our case, the value of themulti-scenario problem (MultiScen)
also deteriorates as the bounds get tighter since the search space is restricted. Therefore,
nodes which are deeper in the tree, i.e., have tighter bounds, have a greater than or
equal optimal objective value than higher ones. A lower bound on the solution value of
the multi-scenario problem associated with a node of the branch-and-bound tree, i.e.,
to a pair of bounds (y, y), makes it possible to prune the node if this lower bound is
worse, i.e., larger, than the value of the best-known solution. In this case, no improving
solution can be found in the subtree associated with the node, and the node can be
pruned from the branch-and-bound tree. A lower bound on the solution value of a
minimization problem is also referred to as a dual bound while feasible solutions are
also known as primal solutions, and the value of the best-known feasible solution
as a primal bound. If the primal and dual bounds coincide, the problem is solved to
optimality since the dual bound ensures that no solution with a better objective value
can exist. The following two sections study dual bounds and primal solutions for our
problem.

3.2 Dual bounds

Lower bounds for the single-scenario problems can be instantly translated into lower
bounds for the multi-scenario problem. Intuitively, the cost to ensure simultaneous
feasibility of all the scenarios has to be greater than that for any single scenario. The
following short lemma formalizes the argument.

Lemma 1 Let the objective function be non-negative. Then any dual bound for prob-
lem (15a) for any scenario is also a dual bound for problem (MultiScen).

Proof Let c be a dual bound to (15a) for scenario ω, i.e., c ≤ c(xω) for xω ∈ Fω.
With constraint (11) and the fact that the objective function c(.) is increasing in every
direction, we have c ≤ c(xω) ≤ c(y) for any feasible y. Therefore, c is also a lower
bound for problem (MultiScen). ��
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It is clear that the constant value c(y) is a lower bound on the objective value for
(15a). As tighter bounds alter both the objective function and the solution space of the
subproblems, we need to ensure that the solution value of the subproblem might only
increase with tighter bounds (y, y). The following lemma however states that this is
the case.

Lemma 2 Let c∗ be the optimal value of (15a) for some scenarioω and for the bounds
(y, y). Consider a second pair of more restrictive bounds (ỹ, ỹ)with ỹ ≥ y and ỹ ≤ y
and its optimal value c̃∗ for (15a). Then c∗ ≤ c̃∗.

Proof We use induction over n = ‖ỹ − y‖ + ‖ỹ − y‖ where ‖.‖ is the �1-norm. For
n = 0, the problems and thus their optimal objective values coincide and our claim
holds. For the induction step n = 1, we distinguish between a tightened upper and
lower bound. If a lower bound is tightened, i.e., ỹe > ye for some e, then the search
space remains the same, but the objective function increases for ye = xω

e . In the case
where an upper bound is tightened, i.e., ỹe < ye, the search space is restricted and
the objective function remains unchanged. In both cases the objective function value
deteriorates. ��
This result will be used in later sections as it ensures the consistency of the dual bound
of the subproblem.

3.3 Primal solutions

We propose three ways to generate or to improve feasible solutions:
From the solutions of the subproblems First, by construction the union of all extensions
used in the different scenarios constitutes a primal solution for the multi-scenario
problem. Therefore, we construct a solution to (MultiScen) in every node by setting
y = maxω∈Ω xω

e where xω
e is taken as the best solution for scenario ω.

1-opt heuristic Second, we observed that checking if a small subset of extensions is
feasible is typically very fast. This observation is used by a 1-opt procedure that takes
a solution to (MultiScen), decreases by 1 a variable that has been chosen to take value
ye > 0, and checks all scenarios for feasibility. Of course, a priori it is not clear which
ye > 0 to choose. Several options have been explored. The most promising is to sort
the ye according to the possible saving ce(ye)−ce(ye −1) realizable by decreasing its
value by one and to consider extensions with small savings first. The rationale behind
this is that often these “small” extensions are used by scenarios which are rather
close to feasibility, and some more expensive extensions used in the more challenging
scenarios often also ensure the feasibility of these almost-feasible scenarios. Therefore,
it is likely that these extensions can be removed. Extensions with higher savings are
likely to render some scenario infeasible as their effect cannot be compensated for by
the other extensions in the solution.

In order to protect against outliers, a strict time limit is used when checking the
scenarios for feasibility. Note that during the 1-opt heuristic all extensions are fixed
and the problem is a feasibility problem (nomination validation). Therefore, no time
is spent proving optimality.
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Best-known heuristic Third, we solve an auxiliary problem to compute the best-known
multi-scenario solution taking into account all solutions to the subproblems that the
solver found during its solution process.

Optimal single-scenario solutions are very specialized in fixing the bottleneck of
the particular scenario. When facing uncertainty in the data, these solutions are not
likely to be feasible in the perturbed problems. The optimal solution to the problem
with uncertain data is thus often suboptimal for each individual scenario but is able
to balance the needs for the different scenarios (e.g., Wallace 2010). In this light, it
seems reasonable to consider all known solutions to scenarios in order to construct a
multi-scenario solution.

During the solution process of a branch-and-bound solver, all feasible solutions the
solver encounters are collected and stored in a solution pool. These include solutions
that are the best known at the time of finding them but also non-improving solutions
that might be used in improvement heuristics by the solver. During and in particular
after the optimization, the user can query all solutions in the pool. We collect the
solutions for some scenario ω in the set Sω ⊆ Fω. Using these solutions provides two
benefits. First, they might be suitable solutions to one of the single-scenario problems
that are solved in the remaining solution process. All solutions from Fω are therefore
added to the solver as starting solutions whenever a single scenario needs to be solved.
Second, we construct the “best known” solution for the multi-scenario solution by
solving an auxiliary milp. To this end, we use indicator variables zx for each x ∈ Sω

and each scenario ω. To ensure the scenario feasibility constraint (10) themilp selects
one solution for each scenario. Furthermore, we need to ensure that all extensions that
are used in the selected solutions are constructed. This leads to the following milp:

min c(y) (15a)

s.t.
∑

x∈Sω

zx = 1 for all ω ∈ Ω (15b)

x · zx ≤ y for all x ∈ Sω, ω ∈ Ω (15c)

zx ∈ {0, 1} for all x ∈ Sω, ω ∈ Ω (15d)

y ≤ y ≤ y (15e)

The program has the indicator variables y to decide about the construction of the
extensions and the same objective function as before. Constraint (15b) says that a
feasible solution has to be selected for every scenario ω. The term x · zx in (15c) is a
vector-scalar multiplicationwhose result is a (column-)vector, as is y. Constraint (15c)
says that the extensions used in a solution x have to be constructed if the solution is
selected, i.e., zx = 1. The solution to this program gives the best solution to the multi-
scenario problem taking into account all solutions that the solver has found so far for
the single scenarios.

Note that the program (15) is also a complete description of the multi-scenario
problem if Sω = Fω, i.e., if Sω is the set of all feasible solutions. Singh et al.
(2009) use this formulation and perform a Dantzig–Wolfe decomposition to solve the
continuous relaxation of (15). The pricing problem is then again a single-scenario
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problem with the dual variables in the objective function. In their application these
solutions are mostly integer feasible. In principle, heuristics or a branch-and-price
scheme are needed to generate integer feasible solutions with their approach.

3.4 Reusing solutions

During the proposed branch-and-bound procedure, the bounds y and y are tightened,
and adjusted single-scenario problems are repeatedly solved. Two instances of the
single-scenario problem for a scenario differ only in the objective function and the
upper bound on the extension variables, as discussed in Sect. 3.1. In some important
cases, not all scenario subproblems need to be solved again since we already know the
optimal solution. As an example, take the extreme case where a scenario is found to be
feasible without extensions. Clearly, the procedure should never touch this scenario
again.

In order to decidewhether a solution x ∈ Fω fromaprevious node can be reused,we
need to take into account the bounds (yx , yx ) under which the solution was computed
and the current bounds (y, y).

We start with the simple observation that if all the extensions in a solution are
already constructed, then the solution is optimal for the restricted problem:

Lemma 3 If x ∈ Fω and x ≤ y, then x is an optimal solution for (15a) for bounds
(y, y).

Proof Clearly x is feasible for (15a) for the bounds (y, y). As the objective function
is increasing, its cost equals c(y) which is a lower bound for the subproblem. ��
Observe that in this case it is irrelevant for which bounds x was computed and that it
is not required that it was an optimal solution when it was computed.

The previous lemma examined the situation where all extensions that are used
are already constructed. The next lemma treats the opposite situation, where we are
using more than have been constructed and no constructed extension is unused. In this
situation the solution has to be optimal for some bounds, and the new bounds need to
be stronger than the previous ones.

Lemma 4 Let x ∈ Fω be an optimal solution to (15a) given the bounds (yx , yx ). Let
(y, y) be tighter than (yx , yx ), i.e., y ≥ yx and y ≤ yx .

If y ≤ x and x ≤ y, then x is an optimal solution to (15a) for bounds (y, y).

Proof The crucial point is the optimality of x given the bounds (yx , yx ). Since x ≤ y,
the solution is still feasible for (y, y). Since y ≤ x the solution value of x remains
the same for (y, y) as it was for (yx , yx ). The value c(x) was a dual bound to (15a)
with respect to the bounds (yx , yx ). Due to Lemma 2, the dual bound can only have
increased by using tighter bounds. In total, x is a feasible solution whose objective
value matches the dual bound and is therefore optimal. ��
The previous lemmas dealt with extreme cases where the solution dominates the lower
bound or vice versa. The situation becomes tricky if a solution x neither dominates
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nor is dominated by the current lower bound vector y. In this case the solution does
not fully use extensions that are already constructed but uses extensions that are still
undecided. We have to make sure that these unused, but constructed extensions cannot
help to find a cheaper overall solution. Define for some solution x ∈ Fω the set I of
extensions where the lower bound has been increased compared to when the solution
was found

I = {e ∈ E ye > yxe }

and the set J of those extensions where the solution x uses more than what is already
constructed

J = {e ∈ E ye ≤ xe}.

The following lemma generalizes Lemma 4.

Lemma 5 Let x ∈ Fω be an optimal solution given the bounds (yx , yx ) and let (y, y)
be tighter than (yx , yx ), i.e., y ≥ yx and y ≤ yx .

If I ⊂ J and x ≤ y, then x is an optimal solution to (15a) for the bounds (y, y).

Proof In contrast to Lemma 4, there might be extensions e ∈ E that are decided to
be constructed to a larger extent than they are used in the solution (ye > xe). The
extensions for which the lower bound increased, however, the new lower bound is still
below the value of the solution (I ⊂ J ). Hence, the objective function value for x is
identical for both sets of bounds. Since the dual bounds can only increase by tightening
the bounds and since the solution is optimal for the bounds (yx , yx ), the solution is
still optimal given the bounds (y, y). ��
To illustrate the usefulness of the previous lemmas, we consider the situation after
branching for the first time.At the root,we assume all scenarios are solved to optimality
and a branching point τ is chosen for some extension e. In thefirst branch, the constraint
ye ≤ τ − 1 is added. Clearly, all scenarios ω with xω

e ≥ τ in the optimal solution x
need to be solved in this branch because their optimal solution has been cut off and
the dual bound for these scenarios might increase due to the additional constraint. For
those scenarios ω with xω

e ≤ τ , Lemma 4 holds and we know that optimal solutions
computed in the root remain optimal in this branch. In the second branch, the constraint
ye ≥ τ is added and the lower bound is tightened. All scenarios with xω

e < τ have
to be solved again, unless they fulfill the conditions of Lemma 3 which in this case
means that x = yx . Optimal solutions of those scenarios with xω

e ≥ τ again fulfill the
conditions of Lemma 4 and those scenarios do not have to be solved again.

3.5 Finite termination and global optimality

In principle, the branch-and-bound algorithm implicitly enumerates all possible
assignments to integer variables y (however, in practice many methods are known
that allow early fathoming of certain subtrees such that usually only a tiny fraction

123



314 J. Schweiger, F. Liers

of the assignments actually has to be enumerated). Each branching step reduces the
search space. Since branching is done on bounded integer variables, each path starting
at the root node of the branch-and-bound tree ends at a node where all the variables are
fixed, i.e., a leaf of the branch-and-bound tree. When branching on bounded integer
variables, the branch-and-bound tree is thus finite. The original problem is infeasible
if all leaf nodes are infeasible. Otherwise, the algorithm stops with an optimal solu-
tion. Branching on continuous variables is also possible in principle, but a tolerance
is needed to ensure that the branch-and-bound tree is finite.

Many algorithms have been developed in order tomake branch-and-bound effective
in practice. In particular, a good bounding procedure leading to tight bounds usually
prevents us from exploring many nodes of the tree. Good bounds are used for early
fathoming of subtrees, while still ensuring a global solution is found by the algorithm.
While solving the single-scenario subproblems to optimality provides the best dual
bound and ensures a small tree, it is not necessary for the correctness of the approach.
For the latter, it is sufficient to consider the leaf nodes of the tree. On leaf nodes, all y
variables are fixed and scenarios only need to decide whether the constructed network
extensions allow a feasible solution. It is thus strictly necessary to solve the single-
scenario problems on the leaf nodes. In the inner nodes of the tree, proven optimality
of the single-scenario problems is not required. If all the single-scenario problems can
be solved at the leaf nodes, this approach is thus guaranteed to prove infeasibility or
provide an optimal solution.

4 Computational experiments

To show that our approach can solve practical problems we conducted extensive
computational experiments on realistic gas network topologies. Our subproblem is
a non-convex minlp and topology optimization for even one scenario is a challenge;
even deciding the feasibility of a nomination is a difficult task; see for example Koch
et al. (2015) where the nomination validation problem is extensively studied and it is
shown that problems which are on the border between being feasible and infeasible
are particularly challenging. In this situation, the linear relaxation is often feasible and
it needs much spatial branching to prove infeasibility. The situation where a set of
extensions almost suffices to ensure the feasibility of a scenario and a large effort of
spatial branching has to be made to prove that this is not the case is expected to occur
frequently during our algorithm.

Nevertheless, we are able to provide optimal solutions for instances with up to
256 scenarios whose deterministic equivalent problems have almost 200,000 vari-
ables and over 225,000 constraints of which 80,000 are nonlinear. Furthermore, we
provide feasible solutions with a proven optimality gap of 16% for an instance whose
deterministic equivalent has more than 360,000 variables and 220,000 constraints of
which more than 68 000 are nonlinear.

4.1 Computational setup

The approach is implemented using theminlp solverSCIP (http://scip.zib.de, Achter-
berg 2009; Vigerske and Gleixner 2016) in the framework Lamatto++ (Geißler et al.
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Fig. 2 Visualization of the gaslib-582 network

2014), which is used for data handling. SCIP provides the core of the branch-and-
bound algorithm and is a plugin-based system. Several additional plugins implement
the algorithms and models presented in this paper. A constraint handler plugin ensures
the abstract constraint (10). ASCIP relaxator plugin triggers the solution of the single-
scenario problems, returns dual bounds to SCIP and identifies branching candidates.
Methods to solve the single-scenario problems were developed in the project ForNe,
see Fügenschuh et al. (2011) and Koch et al. (2015) for detailed descriptions of the
models and algorithms. The heuristics from Sect. 3.3 are implemented as heuristic plu-
gins. SCIP is also used to solve the milp (15). SCIP is used in a development version
(shortly before the 3.1 release) and callsCplex version 12.5.1 to solve LP-relaxations.
SCIP is a sequential framework, such that all components are called sequentially,
including the various heuristics.

We use Best First Search as node selection strategy, where essentially the
node with the lowest bound is processed next. This strategy aims at improving the dual
bound as fast as possible and yields small search trees (Achterberg 2009), which is
exactly what we need as the dual bound of our nodes are very expensive to compute.
As branching rule we use the Most Fractional rule which branches an a variable
ye whose fractional part ye� − �ye� is maximal.

Tests were run on a cluster of servers equipped with Intel Xeon E5-2670 v2 CPUs
running at 2.50GHz and 64GB RAM.
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Fig. 3 Visualization of the gaslib-40 network

4.2 Test sets and instances

To test our approach, we used the networks of the publicly available gaslib (Gaslib
2013; Pfetsch et al. 2014). The gaslib contains three networks of different sizes. The
biggest one, gaslib-582, is a distorted version of real data from the German gas
network operator Open Grid Europe GmbH and comes with a large number of nomi-
nations. The network has 582 nodes and 609 arcs from which 269 are short pipes for
which pressure drop is neglected. The smaller ones gaslib-40 and gaslib-135
are abstractions of the first and contain 135 and 40 nodes and 160 and 45 arcs, respec-
tively. They are givenmainly for testing purposes and comewith one reference scenario
(Figs. 2, 3).

The generation of meaningful scenarios and extension candidates is a difficult task.
The scenarios should be infeasible in the original network and have different bottle-
necks that can be fixed by a large number of different extensions from the candidate set
in order to yield interesting instances for a robust planning approach. It is important
to select nominations from which we know that they can be fixed by extensions in the
candidate set. Nominations for which the single-scenario problem is infeasible, i.e.,
no feasible set of extensions exists, directly render the multi-scenario problem also
infeasible. Nominations where no feasible solution for the single-scenario problem
can be found will block our approach. Both situations are not in the interest to study
the behavior of our approach.

For gaslib-582we used the associated nominations and scaled them to simulate
growing demandwhich renders increasing infeasibilitieswith the original network. For
gaslib-40 we were able to generate scenarios and extensions that yield promising
instances. For gaslib-135, however, the same algorithm as for gaslib-40 did
not produce instanceswhereSCIP could find feasible solutions for the single scenarios
within the time limit for subproblems. We therefore skip this network and use only the
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largest gaslib-582 and the smallest gaslib-40 networks for our computational
study. In the following we describe the instances on the two networks in more detail.

gaslib-582:As a first step, a list of possible network extensions has to be created.
The generation of meaningful extension candidates is an art by itself. Considering
that every possible network extension adds binary decisions and in the case of pipes
also nonlinearities to the problem, adding too many candidates renders the selection
of an optimal subset for a single scenario impossible. Too few extensions on the other
hand might not allow a feasible solution for all scenarios and are too inflexible for
challenging multi-scenario instances.

For the generation of network extensions we relied on techniques developed in
the ForNe project. For the gaslib-582 network, we used two methods to create
extensions. For the first method, we select one scenario and do a simple flow bound
propagation. If the flowon some arc is fixed by this procedure, the pressure difference is
known and thus the nonlinearity describing the physics of this pipe disappear. Loops
of these pipes are expected to be computationally cheap as also in the presence of
loops, the nonlinearity can be eliminated easily. We therefore add loops on all pipes
with fixed flow value to the extension candidates. The second method proposes new
pipes by evaluating the reduction in the transport momentum caused by adding a
pipe. The transport momentum for a scenario is computed by disregarding the gas
physics and considering only a linear flow problem. The objective is to minimize the
sum over all pipes of the product of the length of the pipe with the flow through it.
It is a measure how efficiently flow can be routed through the network. New pipes
whose end points are far enough apart and whose addition to the network results in
the largest reductions of the transport momentum are selected as extension candidates.
Meaningful geographic coordinates (or a meaningful distance matrix) are essential for
the computation of the transport momentum and we therefore consider this approach
especially useful for the realistic gaslib-582 network.

The gaslib-582 test set comes with 4227 nominations. To ensure we have
a sufficiently large number of infeasible scenarios, we scaled all input and output
flows of the nominations by a factor of 1.2. Then, we performed a single-scenario
topology optimization to filter out those instances that are still feasiblewithout network
extension and those that don’t find a solution within the time limit of 600 for sub-
problems. The result are 107 scenarios that exhibit a positive objective value after
600s.

It is worthwhile noting that this procedure is non-deterministic because of the time
limit used. The path taken to solve the problem is deterministic, but if the solution is
found very close to the time limit, a random disturbance might cause a slowdown and
the solution might not be found within the time limit in the next run. It therefore can
(and actually does) happen that in a multi-scenario run some scenario does not find a
solution in the root node. A limit based on the number of simplex iterations or number
of branch-and-bound nodes would eliminate this problem, but is not practical in our
application.

In the next step, the 107 scenarios have been grouped together to construct multi-
scenario instances. The aimwas to construct a set of instances and to make sure that all
scenarios participate in the mix. The procedure was to first shuffle the list of scenarios.
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Then, assuming that k is the desired number of scenarios in an instance, the first k
scenarios in the list are selected and removed from the list. This is repeated until the
length of the list of unused scenarios is smaller than k. Then the list of all scenarios is
shuffled again and the procedure is repeated. We composed 50 instances of 4, 8, and
16 scenarios each, 25 instances with 32 scenarios and 10 instances with 64 scenarios.
Finally, we added one instance with all 107 scenarios.

For the gaslib-582 test set, the subproblems are solved in parallel with up to 16
threads whenever possible. We used a time limit of 600s for the subproblems which
is reduced to 60 in the 1-opt heuristic. The total time limit was set to 12h.

gaslib-40: In contrast to thegaslib-582 networkwhich contains 4227 realistic
nominations, thegaslib-40network only has one nomination. This scenario is quite
artificial as it evenly distributes the flow amount over all 3 entries and 29 exits. The
motivation to work with this network, however, is not primarily the practical relevance
of the instances but to challenge our approach using a network where the subproblems
are easier to solve than on the more realistic gaslib-582.

We created 2000 nominations using the following algorithm. First, we sampled
the number of entries/exits that should have inflow/outflow uniformly between 1 and
the number of entries/exits. Then, we randomly picked that number of entries/exits.
The total flow from the reference scenario is scaled with a uniformly sampled factor
between 0.75 and 2. The resulting scaled total flow is then uniformly distributed among
the selected entries and exits, respectively.

For this network, only loops are considered as possible extensions. As before, all
pipes where the flow after flow bound propagation of the reference scenario is fixed
can be looped. In addition all pipes that are longer than 20km are in the candidate set.

From the 2000 nominations, a large number is feasible in the original network or
still infeasible even with the proposed loops and thus ignored. Furthermore, we select
only nominations for which the single-scenario problem is solved to optimality within
a time limit of 600s. We note that many different loops are used in these solutions
such that challenging multi-scenario instances can be expected. The resulting 425
nominations are then grouped into 50 instances of 4, 8, and 16 scenarios each, 25
instances with 32 scenarios and 10 instances with 64, 128, and 256 scenarios each.

For gaslib-40 the parallel solution of single-scenario problems caused buffer
overflow errors in theCppAD package for algorithmic differentiation usedwithSCIP.
As these errors are out of our control, these instances are solved purely sequentially
which avoids this error.

We used the same time limits of 600s for the subproblems, 60 s for subproblems
within the 1-opt heuristic. For the overall algorithm we first used 12h for all numbers
of scenarios on the gaslib-582. As this time limit is found to be short for 64 and
more scenarios, we ran the instances with 64, 128, and 256 scenarios also with a time
limit of 48h.

4.3 Results

Table 1 summarizes the performance of our approach. The table is divided into
three parts; the first part for results on the gaslib-582 test set and then two parts for
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Table 1 Summary of computational results

Scenarios Instances Solution status MsaS Union Nodes Gap (%)
Opt LTL Subopt Opt All

gaslib-582 (Time limit 12h)

4 50 28 20 2 20 14 3.6 16.4 42.8

8 50 21 26 3 9 7 6.3 24.4 41.9

16 50 8 34 8 0 0 7.2 36.9 27.3

32 25 1 16 8 0 0 7.0 47.2 17.4

64 10 0 6 4 0 0 – 56.5 23.2

107 1 0 1 0 0 0 – 48.0 16.4

gaslib-40 (Time limit 12h)

4 50 49 0 1 12 22 13.7 14.2 44.3

8 50 43 0 7 7 9 24.8 29.7 12.3

16 50 33 0 17 1 2 35.7 38.5 26.4

32 25 11 1 13 0 0 27.4 33.2 24.6

64 10 3 0 7 0 0 23.7 25.4 28.5

128 10 1 0 9 0 0 67.0 16.1 64.1

256 10 0 0 10 0 0 – 4.5 98.6

gaslib-40 (Time limit 48h)

64 10 8 0 2 0 0 56.8 64.1 25.7

128 10 2 2 6 0 0 80.0 60.7 26.5

256 10 1 0 9 0 0 27.0 21.2 49.3

results on the gaslib-40 test set with time limit 12 and 48h. The rows are grouped
by the number of scenarios considered in each instance. The first two columns then
report the number of scenarios and instances in the respective group. The next group
of columns partitions the instances w.r.t. the final solution status. The first column in
this group gives the number of instances solved to optimality within the time limit.
The next column relates to the situation where the branch-and-bound algorithm comes
to the point when all y variables are fixed and the subproblems only have to decide
feasibility given the fixed extensions. In this case, the remainder of the global time limit
might be used for the feasibility problem as otherwise the algorithm can’t proceed.
The column LTL states how many instances did not finish to optimality because the
remaining time was used in the subproblems and the algorithm was stuck. The last
column (Subopt) in this block gives the instances that were not stuck, but also not
solved to optimality. The next two columns analyze the structure of the best solution
found by our approach and compare it with the best solutions known for each scenario.
For gaslib-40 the optimal solutions to the single scenario runs are known. For
gaslib-582 the best solution after solving the scenario for 12h is used as the best
known solution for the scenarios. The column MsaS states the number of instances
where the best solution to the multi-scenario problem constructs the same extensions
as the best known solution to one of the scenarios. In this case one scenario dominates
the others as the extensions needed by the scenario suffice to ensure feasibility of all
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other scenario problems as well. The column Union in contrast brings light into the
opposite case where the solution of the multi-scenario problem contains the union of
the extensions constructed in the single scenarios. An instance appears in both columns
MsaS and Union if all scenarios select the same extensions. The last two groups of
columns show the average number of nodes, split by the instances that were solved
to optimality and all instances, and the average gap of those instances that were not
solved to optimality. The gap is taken from SCIP where for primal bound p and dual
bound d it is computed by

∣
∣
∣
∣

p − d

min(|p|, |d|)
∣
∣
∣
∣

and set to 0 if p = d and to ∞ if min(|p|, |d|) = 0.
While our approach is able to solve 28 out of 50 instances, or 56% of the instances,

with 4 scenarios on the realisticgaslib-582, this percentage decreaseswith increas-
ing number of scenarios. At the same time the number of instanceswhere the algorithm
gets stuck because one of the subproblems can’t properly decide feasibility is con-
stantly high. At the maximum more than 11 of the 12h are spent trying to decide
the feasibility of one scenario. On this test set there is also a remarkable difference
between the number of nodes of those instances that could be solved to optimality,
where the average number is at most 7.2 nodes for 16 scenarios, to those instances that
hit the time limit, where the number goes up to 56.5 for 64 instances. This shows that
the instances that could be solved don’t need much branching and that our heuristics
do a good job in finding the optimal solution. The high numbers of nodes over all
instances are because at many nodes some scenarios don’t find a feasible solution, but
also don’t prove infeasibility or even provide good bounds. In this case, our branching
mechanism branches on some unfixed variable. In general, the number of nodes is
quite low compared to what we are used to from branch-and-bound milp or minlp
solvers. This shows that the solutions of the single scenarios provide good indications
for the structure of multi-scenario solution, even though their solution is rather time
consuming. Also good solutions are found very early in the tree. The primal bound
makes pruning and propagation very effective, especially as solutions can typically
use only very few extensions because otherwise the cost is higher than the dual bound.

Although being large, the average gap values reported on the gaslib-582 are
quite satisfactory. One has to keep in mind that these instances are very challenging
so that large gaps need to be expected. Note that the gap is computed as the average of
only those instances that are not solved to optimality and again we have to see them
in the light of the difficulty of the problem. Particularly, an average gap of 23.2% on
the instances with 64 scenarios and 16.4% gap on the instance with all 107 scenarios
shows that the solutions are of high quality. Overall, the ability to provide bounds on
the solution quality and, if possible, a certificate for optimality is an advantage of our
approach.

High numbers in the MsaS and Union columns indicate that the structure of the
optimal solution is such that a manual approach might find a good or even the optimal
solution. In this case, either one scenario dominates the solution or the solution consists
of the union of all the constructed extensions in the single scenarios; a situation that
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is easily recognized in a manual fashion and which renders a more sophisticated
approach unnecessary. On both test sets, many optimal solutions to the instances with
4 and 8 scenarios have such a structure. In the instanceswith 4 scenarios 30 instances on
gaslib-582 and 27gaslib-40 are either dominated by one scenario or themulti-
scenario solution is the union of the extensions in the best single-scenario solutions.
We note that both can also happen simultaneously. The number goes down to 15 and 11
for gaslib-582 and gaslib-40, respectively, when 8 scenarios are considered
and completely disappear for higher number of scenarios except for 3 instances with
16 scenarios on the gaslib-40 network. This shows that for a few scenarios only a
manual planning approach based on solving the single-scenarios could provide good
or even optimal solutions. For larger numbers of scenarios the manual approaches
are unlikely to find good solutions as there the synchronization between the scenarios
becomes more important. Of course manual planning approaches also lack quality
guarantees in terms of gap to the best possible solution which our approach provides.

On the smaller gaslib-40, all but one instances with 4 scenarios can be solved
to optimality. Then the percentage of instances solved to optimality decreases, but
still 3 out of 10 instances with 64 scenarios are solved within the time limit. Still one
instance with 128 scenarios is solved, but we observe a strong decrease in the number
of nodes processed which indicates that the time limit is very short for these large
numbers of scenarios. Note that on gaslib-40 on average 24 nodes are used in
the instances that are solved to optimality, but with 128 and 256 only 16.1 and 4.5
nodes are processed on average, respectively. The large average gaps in these groups
of instances then also do not surprise. When increasing the time limit from 12 to 48h
many more nodes are processed and 8 out of 10 instances with 64 scenarios, 2 with
128 and 1 instance with 256 scenarios are solved to optimality within the increased
time limit. Also the average gap is reduced considerably giving with 25.7%, 26.5%,
and 49.3% for 64, 128, and 256 scenarios, respectively, very reasonable results. On
this test set, as intended the subproblems can be solved much more reliably and the
algorithm is stuck only on one instance where feasibility of the subproblem can’t be
decided in more than 10h.

Table 2 analyses the components of the algorithm that produce primal solutions.
The structure of the table is similar to Table 1 and the numbers refer to the same
experiments as in Table 1. The column Sols states the average number of solutions that
have been found in the instances of the respective group. Then three blocks analyze the
heuristic components of the algorithm. In each block,we report the number of instances
where the component found at least one solution and where it found the best solution
(columns Succ andBest, respectively), the average number of solutions found (column
Sols), and the average time spent per instance in the respective heuristic (column Time
[s]). The first block with header Subprob belongs to the solution that is derived by
constructing all extensions that are used in the best solutions of the scenarios, i.e., by
setting y = maxω∈Ω xω

e . This approachfinds solutions for all instances (in one instance
which is not marked as success, all scenarios use exactly the same extensions and thus
the heuristic is not called as the relaxation already found the optimal solution). The
second block 1opt belongs to the highly effective 1opt heuristic. Even though it can be
time-consuming, it finds plenty of solutions which often constitute big improvements.
It is also able to find the best known solutions for a large number of instances. The
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Table 3 Size of the deterministic equivalent formulations

Scenarios Variables Constraints
Total Binary Total Linear SignPower Indicator

gaslib-582

4 13740 624 12336 8296 2568 1472

8 27480 1248 24672 16592 5136 2944

16 54960 2496 49344 33184 10272 5888

32 109920 4992 98688 66368 20544 11776

64 219840 9984 197376 132736 41088 23552

107 367545 16692 329988 221918 68694 39376

gaslib-40

4 3044 168 3524 1948 1256 320

8 6088 336 7048 3896 2512 640

16 12176 672 14096 7792 5024 1280

32 24352 1344 28192 15584 10048 2560

64 48704 2688 56384 31168 20096 5120

128 97408 5376 112768 62336 40192 10240

256 194816 10752 225536 124672 80384 20480

last block Best Known corresponds to the approach where the best known solution
is computed by the auxiliary milp (15). This approach is also successful on a broad
range of instances and in particular on the most difficult instances with larger numbers
of scenarios where it often finds the best solution. The short running times show that
themilp is solved without problems. Overall, we conclude that all proposed heuristics
contritute to the success of the algorithm.

As an alternative solution approach, one could also use the deterministic equivalent
formulation solve it with an available state-of-the-art solver for mixed-integer nonlin-
ear optimization tasks. Table 3 summarizes the size of this formulation for the resulting
multi-scenario instances. The table is split into two parts, each for one network topol-
ogy. Each line contains the number of variables and constraints for the deterministic
equivalent for the number of scenarios that is given in the first column. We report the
total number of variables and the number of binary variables. For the constraints, we
report the total number of constraints and break them down into the three relevant
classes for our problem which are linear constraints, SignPower constraints, i.e., con-
straints of type (2), and indicator constraintswhich are used tomodel implications such
as (4)–(8). It is to be expected that solving the deterministic equivalent formulation
directly fails for a non-trivial number of scenarios.

Indeed, we performed this experiment on gaslib-40 using SCIP version 3.1
and Cplex version 12.5.1 on the same hardware as before. We set a time limit of 12h
and a memory limit of 57.6GB to leave 10% of memory for the operating system.
On the smallest instance with 4 scenarios still 13 out of the 50 instances could be
solved to optimality. The remainder of 37 instances timed out and on 22 instances no
feasible solution was found. As expected when increasing the number of scenarios,
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the performance deteriorates. For 8 scenarios, one instances is solved to optimality
and the remainder ended without feasible solution. Beyond that SCIP was not able
to find a feasible solution for any instance. In contrast, our approach determines fea-
sible solutions separately for each scenario which is usually easier than for the full
deterministic equivalent.

In robust and stochastic programming, decomposition methods are known to scale
better with increasing number of scenarios and there is a point, where the scenario-
expanded model even does not even fit into the memory of one machine. Our
decomposition approach solves only the single-scenario problems and their solution
within one node of our branch-and-bound tree is parallelized and could furthermore
be parallelized rather easily beyond one machine.

5 Conclusion

We presented a method for gas network planning with multiple demand scenarios.
The computational experiments show that our approach can provide good solutions
with reasonable quality guarantees on realistic network topologies. A large range of
instances is solved to proven optimality. We showed that our approach clearly out-
performs solving the corresponding deterministic equivalent formulations by standard
methods.

Even though developed in the context of gas network planning, the limited assump-
tions on the underlying problem structure suggest the generalization to other capacity
planning problems in the future. Recall that we only assume that the extensions form
a hierarchy where higher levels, i.e., more expensive extensions, have all the func-
tionality of all lower levels and the availability of a black box solver for the adjusted
single-scenario problems (15a). Singh et al. (2009), for example, use the same frame-
work and Dantzig–Wolfe decomposition on model (15) to approach a rather generic
capacity expansion problem. A comparison to Lagrangian decomposition based meth-
ods in the spirit of Dual Decomposition by Carøe and Schultz (1999) would also be
of interest.

While it is an advantage of our approach that it assumes no particular structure
in the subproblems, the algorithm can be enhanced by using more information about
the solution space of the subproblems. For gas networks without active devices in
the original network and with only loops as extensions candidates, Humpola (2014)
describes inequalities that enforce that a certain amount of loops has to be constructed
in order to make a scenario feasible. Using inequalities of this type that are found
during the solution of the subproblems to propagate bounds on the y variables or to
steer the search could be promising ways to improve the algorithm in this special
application and is subject to future research.
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