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Abstract Many optimization models in engineering are formulated as bilevel

problems. Bilevel optimization problems are mathematical programs where a subset

of variables is constrained to be an optimal solution of another mathematical pro-

gram. Due to the lack of optimization software that can directly handle and solve

bilevel problems, most existing solution methods reformulate the bilevel problem as

a mathematical program with complementarity conditions (MPCC) by replacing the

lower-level problem with its necessary and sufficient optimality conditions. MPCCs

are single-level non-convex optimization problems that do not satisfy the standard

constraint qualifications and therefore, nonlinear solvers may fail to provide even

local optimal solutions. In this paper we propose a method that first solves itera-

tively a set of regularized MPCCs using an off-the-shelf nonlinear solver to find a

local optimal solution. Local optimal information is then used to reduce the com-

putational burden of solving the Fortuny-Amat reformulation of the MPCC to global

optimality using off-the-shelf mixed-integer solvers. This method is tested using a

wide range of randomly generated examples. The results show that our method

outperforms existing general-purpose methods in terms of computational burden

and global optimality.
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1 Introduction

Decentralized environments are characterized by multiple decisions makers with

divergent objectives that interact with each other in a hierarchical organization. In

the simplest case with only two decision makers, one player, called the leader,

makes her decisions first and then the other player, called the follower, determines

the optimal reaction to the leader’s decisions. This non-cooperative sequential game

is known as a Stackelberg game and was first investigated in Von Stackelberg

(1952). A Stackelberg game can be mathematically formulated as a bilevel problem

(BLP) as follows (Bard 1998; Dempe 2002):

min
x

Fðx; yÞ ð1aÞ

s:t: Giðx; yÞ� 0; 8i ð1bÞ

min
y

f ðx; yÞ ð1cÞ

s:t: gjðx; yÞ� 0; 8j ð1dÞ

where F(x, y) and f(x, y) are, respectively, the leader’s and follower’s objective

functions, and Giðx; yÞ and gjðx; yÞ are the leader’s and follower’s constraint func-

tions, respectively. Even if F(x, y), f(x, y), Giðx; yÞ and gjðx; yÞ are all linear func-

tions, solving bilevel problem (1) is a very challenging task because its feasible

region is non-convex in most cases. Furthermore, the BLP is proven to be NP-hard

(Jeroslow 1985; Bard 1991) and therefore the solution methods to solve BLP are

computationally intensive. A review of the different solution approaches to solve

the bilevel problem (1) can be found in Dempe (2003) and Colson et al.

(2005, 2007).

From a practical point of view, methods to solve linear bilevel problems can be

divided into two main categories. The first category includes those methods that

make use of dedicated solution algorithms to solve bilevel problems (Bialas and

Karwan 1984; Shi et al. 2005b; Calvete et al. 2008; Li and Fang 2012; Sinha et al.

2013; Jiang et al. 2013; Bard and Falk 1982; Bard and Moore 1990; Hansen et al.

1992; Shi et al. 2006). While these methods are usually efficient and ensure global

optimality, they involve substantial additional and ad-hoc coding work to be

implemented in commercially available off-the-shelf optimization software such as

CPLEX (The ILOG CPLEX 2015). The second category includes the methods that

can be implemented in or in combination with general purpose optimization

software without any further ado (Fortuny-Amat and McCarl 1981; Ruiz and Conejo

2009; Gabriel and Leuthold 2010; Siddiqui and Gabriel 2012; Scholtes 2001; Ralph

and Wright 2004; White and Anandalingam 1993; Hu and Ralph 2004; Lv et al.

2007; Fletcher and Leyffer 2002, 2004). Although these methods are sometimes

preferred due to their straightforward implementation, they may involve a high

computational burden or only guarantee local optimality. The method proposed in
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this paper belongs to this second group and is shown to outperform existing methods

within its category in terms of computational efficiency and global optimality.

An important property of a linear bilevel problem (LBLP) with a bounded

constraint region is that its solution set contains at least one extreme point of such a

constraint region (Bialas and Karwan 1984). Therefore, the first dedicated methods

to solve LBLP were based on vertex enumeration. For instance, the Kth best method

that computes global solutions of LBLP by enumerating the extreme points of the

polyhedral constraint region is introduced in Bialas and Karwan (1984) and Candler

and Townsley (1982). Shi et al. (2005b) propose an extended Kth best approach

when the upper-level constraint functions are of an arbitrary linear form. Although

quite robust, the Kth best method is computationally costly, especially for large-size

problems.

If the lower-level problem (1c)–(1d) is convex and satisfies some constraint

qualification, problem (1) can be reformulated as a one-level optimization problem

by replacing the lower-level problem with its KKT optimality conditions as follows

(Dempe and Zemkoho 2012; Dempe et al. 2015):

min
x;y;kj

Fðx; yÞ ð2aÞ

s:t: Giðx; yÞ� 0; 8i ð2bÞ

gjðx; yÞ� 0; 8j ð2cÞ

ryf ðx; yÞ �
X

j

kjrygjðx; yÞ ¼ 0 ð2dÞ

kj� 0; 8j ð2eÞ

kj � gjðx; yÞ ¼ 0; 8j ð2fÞ

where kj denotes the dual variable corresponding to each lower-level constraint

(1d). Although (2) is the most commonly used approach, there exist alternative

single-level reformulations of bilevel problems. Also under convexity assumptions,

a bilevel problem (BLP) can be replaced by its primal KKT reformulation that does

not need additional variables kj but requires determining the normal cone to the

follower’s feasible region for each value of x. Alternatively, problem (1) can be

recast as a nonsmooth and nonconvex single-level optimization problem using an

optimal value function of the lower-level problem. Further details about these two

approaches can be found in Dempe et al. (2015).

Problem (2) is a mathematical program with complementarity conditions

(MPCC) (Outrata 2000). As proven in Dempe and Dutta (2010), if ðx�; y�; k�j Þ is
a global optimal solution of problem (2), and the lower-level problem (1c)–(1d) is

convex and satisfies some constraint qualification, then ðx�; y�Þ is a global optimal

solution of the original bilevel problem (1). Besides, if the lower-level problem is

convex and Slater’s condition holds, the local optimal solutions of problem (2) are

also local optimal solutions of the bilevel problem (1) (Dempe and Dutta 2010).
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Note that these conditions are always satisfied for the linear bilevel problems

analyzed in this paper.

Note also that although constraint (2d) remains affine provided that f and gj are

linear or convex quadratic functions, problem (2) is non-convex due to the nonlinear

complementarity conditions (2f). Moreover, as shown in Scheel and Scholtes

(2000), problem (2) violates the Mangasarian-Fromovitz constraint qualification at

every feasible point of the problem, which makes both the formulation of (necessary

and sufficient) optimality conditions and the computation of global optimal

solutions difficult.

Taking the single-level optimization problem (2) as a starting point, we can also

find methods within the two categories previously discussed. For example, some

dedicated methods take advantage of the intrinsically combinatorial structure of

problem (2) to handle the complementarity constraints using ad-hoc branch-and-

bound algorithms as first proposed in Bard and Falk (1982) and further developed in

Bard and Moore (1990), Hansen et al. (1992), Shi et al. (2006). In these methods,

the root node solves the problem obtained by removing the complementarity

conditions (2f). If at a given node one complementarity constraint j0 is not satisfied,
two new nodes are added to the tree, one with the additional constraint kj0 ¼ 0 and

the other with the constraint gj0 ðx; yÞ ¼ 0. By repeating this process and solving the

linear problems obtained after each branching, all possible combinations that satisfy

the complementarity conditions are evaluated and therefore, obtaining the global

optimal solution is guaranteed.

Alternatively, Fortuny-Amat and McCarl (1981) propose a mixed-integer

reformulation of problem (2) that can be directly implemented using off-the-shelf

optimization software. This approach replaces the complementarity conditions (2f)

with the following set of disjunctive constraints:

kj� zjM; 8j ð3aÞ

gjðx; yÞ� ð1� zjÞM; 8j ð3bÞ

where zj is a binary variable and M a sufficiently large positive number. Note that

for the linear case, problem (2) is reformulated as a mixed-integer linear pro-

gramming problem that can be solved to optimality using conventional branch-and-

bound or branch-and-cut techniques available in most mixed-integer optimization

solvers. For this reason, this approach is the most commonly used to solve LBLP in

practical applications. Notwithstanding this, the equivalence between problem (2)

and its mixed-integer reformulation using (3) is only true provided that the value of

M is large enough so that constraints (3a) and (3b) are only binding for zj ¼ 0 and

zj ¼ 1, respectively. On the other hand, choosing a too large constant M may create

numerical instabilities due to scalability issues. Hence, finding suitable values of

M a priori is a delicate task. Although some ad-hoc methods have been proposed to

solve this issue for particular applications of bilevel programming (Ruiz and Conejo

2009; Gabriel and Leuthold 2010), tuning the large constants M for general LBLP

requires a nontrivial trial-and-error process. In fact, many authors (Motto et al.

2005; Hasan et al. 2008; Garces et al. 2009; Baringo and Conejo 2011; Wogrin
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et al. 2011; Pozo and Contreras 2011; Kazempour et al. 2011, 2012; Ruiz et al.

2012; Kazempour and Conejo 2012; Baringo and Conejo 2012, 2013; Jenabi 2013;

Wogrin et al. 2013; Pozo et al. 2013; Zugno et al. 2013; Pisciella et al. 2014;

Baringo and Conejo 2014; Lorenczik et al. 2014; Maurovich-Horvat et al. 2014;

Morales et al. 2014; Ruiz and Conejo 2014; Valinejad and Barforoushi 2015;

Moiseeva 2015) solve either MPEC or bilevel problems using the Fortuny-Amat

reformulation approach, but without explaining how the large constants M are

determined.

Another approach to solve (2) as a mixed-integer problem consists in

reformulating the complementarity conditions using Special Order Sets (SOS)

(Siddiqui and Gabriel 2012). Special Order Sets of type 1 (SOS1) are sets of

variables in which at most one member can be strictly positive. Therefore,

constraint (2f) can be equivalently expressed as:

sjð1Þ ¼ kj; 8j ð4aÞ

sjð2Þ ¼ gjðx; yÞ; 8j ð4bÞ

where the pair fsjð1Þ; sjð2Þg is defined as an SOS1 for each j. The main advantages

of this approach are that no large constant is required and that it can be also directly

solved using commercially available mixed-integer optimization solvers. On the

other hand, this method can also be computationally very expensive, especially for

large models, as shown in Sect. 5.

As previously mentioned, optimization problem (2) is not regular since it fails to

comply with the standard Mangasarian-Fromovitz constraint qualification and

therefore, off-the-shelf nonlinear solvers may even fail to find a local optimal

solution. For instance, if the nonlinear solver is based on a sequential quadratic

programming algorithm (SQP), the quadratic programming subproblems may be

degenerate because the original problem (2) has no strictly feasible points (Fletcher

and Leyffer 2004). To overcome this issue, a regularization approach to solve

mathematical programs with complementarity conditions (MPCC) was first

introduced in Scholtes (2001) and further investigated in Ralph and Wright

(2004). This method replaces each complementarity constraint (2f) by:

kj � gjðx; yÞ� t; 8j ð5Þ

where t is a small non-negative scalar. In doing so, problem (2) becomes a para-

metrized nonlinear optimization problem that typically satisfies constraint qualifi-

cations and is thus easier to solve. Alternatively, all inequalities in (5) can be

replaced by a single inequality as follows:

X

j

kj � gjðx; yÞ� t ð6Þ

Using (6) instead of (5) may improve the numerical behavior of nonlinear solvers

since the number of inequality constraints is reduced. In either case, Scholtes (2001)

provides the necessary conditions under which a local minimizer of the original

problem (2) is a limit point of a curve of stationary points of the parametrized
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nonlinear problem as t tends to 0. Although this regularization method significantly

reduces the computational burden of solving problem (2), using existing nonlinear

optimization techniques such as SQP only guarantees local optimal solutions of

problem (2), which are not necesarily local optimal solutions of the generic bilevel

problem (1) (Dempe and Dutta 2010). Another advantage of this method is that it

can also be directly implemented using off-the-shelf nonlinear optimization soft-

ware since it just consists of iteratively solving a set of nonlinear problems.

Some other works investigate the solution of linear bilevel problems using a

penalty function. For example, the procedure proposed in White and Anandalingam

(1993) disregards the complementarity conditions (2f) and adds a term to the upper-

level objective function that penalizes the duality gap of the lower-level

optimization problem. In the linear case, White and Anandalingam (1993)

demonstrate that the proposed procedure guarantees global optimality. Further

studies of penalty methods for solving LBLP can be found in Hu and Ralph (2004)

and Lv et al. (2007).

Finally, some heuristic methods have been suggested in the literature to solve

linear bilevel problems. For example, the procedure proposed in Hejazi et al. (2002)

applies genetic algorithms to solve the KKT reformulation of the LBLP. Similarly,

Calvete et al. (2008) present a solution algorithm that combines extreme point

enumeration techniques with genetic search methods. Li and Fang (2012) and Sinha

et al. (2013) introduce evolutionary algorithms to solve bilevel problems. The

approach proposed in Jiang et al. (2013) applies particle swarm optimization to a

smooth version of the KKT reformulation of the bilevel problem. Given the

complexity of these approaches and the amount of extra code required to be

implemented in standard optimization software, they fall into the category of

dedicated methods.

In summary, dedicated methods such as the Kth best method, ad-hoc branch-and-

cut algorithms, or heuristic approaches can be efficient to provide the global optimal

solutions of linear bilevel problems. However, they cannot be directly coded using

off-the-shelf optimization software. Among general purpose methods that can be

directly implemented using optimization solvers, the mixed-integer reformulations

(Fortuny-Amat or SOS1 approaches) determine global optimal solutions at the

expense of drastically increasing the computational burden. On the other hand,

regularization approaches to solve the KKT reformulation of the LBLP using off-

the-shelf nonlinear optimization software prove to be fast but cannot guarantee

neither global nor local optimality of the original bilevel problem (Dempe and Dutta

2010). In this paper we propose a new procedure that combines these two

approaches to efficiently solve linear bilevel programming problems and that can be

directly implemented using off-the-shelf optimization software. The contribution of

this paper is thus twofold:

• We provide a computationally efficient method to solve linear bilevel

programming problems using available optimization software. The proposed

method uses first a regularization approach to efficiently determine a local

optimal solution of the KKT reformulation of the LBLP using a nonlinear

optimization solver. Then, this local optimal solution is used to significantly
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reduce the computational burden of solving the mixed-integer linear reformu-

lation proposed in Fortuny-Amat and McCarl (1981) using a conventional

mixed-integer optimization solver as follows. First, by setting appropriate values

of the large constant M in (3) according to the order of magnitude of the primal

and dual variables. Second, by providing initial values to the binary variables

based on which term of the complementarity conditions is equal to 0 at the local

optimal solution.

• We test the performance of the proposed method through a set of comprehensive

computational studies based on a large family of randomly generated examples

of different sizes. The proposed method is compared in terms of computational

burden and global optimality against other general purpose methods to solve

LBLP. The obtained results show that the proposed approach is an efficient

generic algorithm to solve lineal bilevel problems in practice.

The remainder of this paper is organized as follows. Section 2 formally presents the

generic formulation of the linear bilevel problem under study together with some

important definitions and properties. Section 3 introduces the KKT reformulation of

the LBLP and explains in detail how both existing algorithms and the proposed

algorithm can be used to solve it. Section 4 elaborates on how the test examples are

randomly generated and sets the basis for comparing the results provided by the

different methods. The main computational results are presented and discussed in

Sect. 5. Finally, Sect. 6 concludes the paper.

2 Linear bilevel programming problem

Given the complexity of bilevel programming problems, in this paper we restrict

ourselves to the simplest case in which the functions F(x, y), f(x, y), Giðx; yÞ and
gjðx; yÞ are all linear. Hence, a linear bilevel problem (LBLP) is generally

formulated as follows (Bard 1998; Zhang et al. 2015):

min
x

Fðx; yÞ ¼ c1xþ d1y ð7aÞ

s:t: A1xþ B1y� b1 ð7bÞ

min
y

f ðx; yÞ ¼ c2xþ d2y ð7cÞ

s:t: A2xþ B2y� b2 ð7dÞ

where c1; c2; d1; d2; b1; b2;A1;B1;A2;B2 are vectors and matrices of appropriate

dimensions.

The induced region (IR) of the LBLP is the set of feasible points of the leader and

rational responses from the follower (Bard 1998). With this notation, the LBLP can

be equivalently recast as the following one-level optimization problem:
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min
x;y

Fðx; yÞ ð8aÞ

s:t: ðx; yÞ 2 IR ð8bÞ

If an explicit formulation of the IR as a polyhedron were possible and available,

the solution to (7) could be obtained by solving problem (8) as a one-level linear

programming problem using, for example, the simplex method. However, even for

simple instances of LBLP, the IR cannot be formulated as a polyhedron, which

makes (8) a very hard problem to solve (Jeroslow 1985; Bard 1991; Ben-Ayed and

Blair 1990). As proven in Bard (1998), if the follower’s rational reaction set is

bounded and the constraint region is non-empty and bounded, then an optimal

solution to the LBLP (8) exists. Therefore, unless otherwise specified, these

assumptions apply to all problems presented in this paper.

One issue worth discussing is the existence of upper-level constraints that include

both upper-level and lower-level variables. The validity of such joint upper-level

constraints is beyond the choice of the leader and can only be validated after the

follower’s optimal choice is determined (Dempe et al. 2015). Mathematically, joint

upper-level constraints can lead to disconnected or empty IR (Colson et al. 2005),

which further complicates the solution of the linear bilevel problem as illustrated in

Shi et al. (2005c). Extended approaches to apply existing solution algorithms to

LBLP with upper-level constraints of arbitrary form can be found in Shi et al.

(2005a, 2006), and Mersha and Dempe (2006). However, for the sake of simplicity,

this paper only considers LBLP with upper-level constraints that do not include

lower-level variables, i.e., B1 ¼ 0 in (7) unless otherwise stated.

Another important aspect of LBLP is the existence of multiple optimal solutions

to the lower-level problem. Under such circumstances, the leader’s choice has to be

determined without exactly knowing the reaction of the follower, who can choose

among a set of decisions that lead to the same value of her objective function. To

overcome this indeterminacy, there are two main possibilities, namely, the

optimistic and the pessimistic solution (Dempe 2002; Colson et al. 2005, 2007).

The leader can assume that the follower can be influenced to select the solution that

involves a higher leader’s objective function. This is known as the optimistic

solution of a LBLP. Conversely, the pessimistic solution considers that the leader

has no possibility to alter the behavior of the follower, who can choose the worst

solution with respect to the leader’s objective function. In this paper we focus on the

optimistic formulation since it is simpler, is the usual approach and has been more

deeply investigated in the technical literature (Dempe et al. 2007; Strekalovsky

et al. 2010a; Dempe and Franke 2014). For further details about the pessimistic

formulation of a linear bilevel problem, the interested reader is referred to Dempe

et al. (2014) and the references therein.
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3 Solution methods

The original linear bilevel problem (7a)–(7d) can be reformulated as the single-level

optimization problem (9a)–(9f) by replacing its lower-level optimization problem

with its KKT optimality conditions. Note that model (9a)–(9f) is a nonlinear

optimization problem because of the products k � x and k � y in equation (9f), where

k denotes a vector with the dual variables of the lower-level constraint (7d). All the

methods presented in this section aim at solving this single-level nonlinear

optimization model using different approaches. The following subsections provide

the detailed steps of the solution algorithms compared in this paper.

min
x;y;k

Fðx; yÞ ¼ c1xþ d1y ð9aÞ

s:t: A1xþ B1y� b1 ð9bÞ

d2 þ kB2 ¼ 0 ð9cÞ

b2 � A2x� B2y� 0 ð9dÞ

k� 0 ð9eÞ

k b2 � A2x� B2yð Þ ¼ 0 ð9fÞ

3.1 Branch-and-bound approach

This method solves the single-level reformulation of the LBLP (9) using a binary

tree. The method starts by solving the relaxed linear problem (9a)–(9e). If all

complementarity conditions are satisfied, then this is the optimal solution to (9).

Otherwise, the tree is branched in one of the violated complementarity constrains j0

so that two nodes are added to the tree. A linear optimization problem is defined for

each new node by adding the constraint kj0 ¼ 0 or A2xþ B2y� b2ð Þj0¼ 0 to the

problem corresponding to the predecessor node. This procedure continues until the

subproblems corresponding to all ending nodes are infeasible or have an objective

value larger than the current upper bound (Bard and Moore 1990).

Note that this approach only involves the solution of linear programming

problems and therefore, convergence to global optimality is guaranteed. For this

reason, and despite the fact that this approach belongs to the category of dedicated

solution methods, the solution provided by the branch-and-bound is used to check

the performance of the other general purpose methods investigated in this paper. On

the other hand, applying this algorithm to solve LBLP may easily become

computationally expensive, even for low size problems.
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3.2 Mixed-integer approach

Given the combinatorial nature of the complementarity constraints (9f), some

solution methods propose to reformulate problem (9) as a mixed-integer program-

ming problem and directly use off-the-shelf integer optimization software. The idea

of Fortuny-Amat is to rewrite these complementarity conditions using disjunctive

constraints that require the use of binary variables and large enough constants

(Fortuny-Amat and McCarl 1981). Problem (9) is thus reformulated as follows:

min
x;y;k;u

Fðx; yÞ ¼ c1xþ d1y ð10aÞ

s:t: A1xþ B1y� b1 ð10bÞ

d2 þ kB2 ¼ 0 ð10cÞ

b2 � A2x� B2y� 0 ð10dÞ

k� 0 ð10eÞ

b2 � A2x� B2y�ð1� uÞM1 ð10fÞ

k� uM2 ð10gÞ

u 2 f0; 1g ð10hÞ

where u is a vector of binary variables of appropriate size and M1;M2 are large

enough scalars. Note that formulation (10) is obtained from formulation (9) by

simply replacing the nonlinear constraint (9f) with constraints (10f), (10g) and

(10h). Problem (10) is a mixed-integer linear programming problem that can be

solved using conventional branch-and-bound algorithms such as the one used by

CPLEX (The ILOG CPLEX 2015).

Alternatively, SOS1 variables can be used to impose the complementarity

conditions by replacing equations (10f)–(10h) with (Siddiqui and Gabriel 2012):

sjð1Þ ¼ b2 � A2x� B2yð Þj; 8j ð11aÞ

sjð2Þ ¼ kj; 8j ð11bÞ

where the pair fsjð1Þ; sjð2Þg is declared as SOS1 for each j. Problem (11) can also

be solved using mixed-integer linear solution methods such as those in commer-

cially available optimization software.

If the values of M1;M2 are properly set, both (10) and (11) can be solved to

global optimality using existing mixed-integer optimization solvers. However,

similarly to the branch-and-bound approach, the computational burden of solving

these models dramatically increases with the size of the bilevel problem.
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3.3 Regularization approach

As shown in Scheel and Scholtes (2000), all feasible points of (9) are nonregular, which

implies that most existing nonlinear optimization solvers may fail even to find a local

optimal solution. If the regularization approach proposed in Scholtes (2001) and Ralph

and Wright (2004) is applied to problem (9), we obtain the following formulation:

min
x;y;k

Fðx; yÞ ¼ c1xþ d1y ð12aÞ

s:t: A1xþ B1y� b1 ð12bÞ

d2 þ kB2 ¼ 0 ð12cÞ

b2 � A2x� B2y� 0 ð12dÞ

k� 0 ð12eÞ

k b2 � A2x� B2yð Þ� t ð12fÞ

where t is a small non-negative scalar. Formulation (12) is derived fromformulation (9)by

replacing the nonlinear equality constraint (9f) with the nonlinear inequality constraint

(12f). Notice that both models are, therefore, equivalent for t tending to 0. This approach

consists in iteratively solving a set of nonlinear regular optimization problems. In each

iteration, the value of t is reduced. The local optimal solution in one iteration is used as the

initial starting point for the following iteration.While being relatively fast and presenting

strong theoretical and empirical convergence properties (Scholtes 2001), this regular-

ization approach is onlyguaranteed toprovide local optimal solutionsof theMPCC,which

are also local optimal solutions of the original LBLP (Dempe and Dutta 2010).

3.4 Penalty approach

Another method to solve the nonregular problem (9) consists in penalizing the

complementarity constraints in the objective function as follows (White and

Anandalingam 1993; Hu and Ralph 2004; Lv et al. 2007):

min
x;y;k

Fðx; yÞ ¼ c1xþ d1yþ
1

t

X

j

kj b2 � A2x� B2yð Þj ð13aÞ

s:t: A1xþ B1y� b1 ð13bÞ

d2 þ kB2 ¼ 0 ð13cÞ

b2 � A2x� B2y� 0 ð13dÞ

k� 0 ð13eÞ
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where t is also a non-negative scalar that is iteratively decreased to make the

complementarity conditions tend to 0. The initial value of t is set to a large value

and is reduced by a factor of q[ 1 in each iteration. As in the regularization

method, a nonlinear optimization problem has to be solved at each iteration.

3.5 Proposed approach

The purpose of the proposed solution method is to combine the mixed-integer and

the regularization approaches presented above in order to obtain a global optimal

solution while reducing the computational burden. The main issue with the

regularization approach is that, albeit fast, it only ensures local optimal solutions for

the MPCC reformulation. On the other hand, formulation (10) can be solved to

global optimality. However, finding appropriate values of the large constants

M1;M2 that allow solving (10) in a reasonable time is usually a difficult task. In fact,

very low or very high values of M1;M2 may lead to infeasible, suboptimal and

numerically unstable problems, respectively. The proposed approach uses the local

optimal solution for the MPCC reformulation provided by the regularization method

to soundly determine values of these large constants that allow us to find the optimal

global solution of (10) at a low computational cost.

The proposed approach relies on nonlinear optimization solvers whose perfor-

mance is significantly improved if a feasible initial point is provided. This initial

feasible point is calculated by sequentially solving two linear programming

problems. The first linear optimization problem is obtained by removing the

nonlinear complementarity condition from model (9) to obtain a pair (x, y) that

satisfies all upper- and lower-level constraints, but that is not optimal for the lower-

level problem. We then fix the values of x and solve the lower-level optimization

problem alone, which is also a linear programming problem, to find values of y that

are also optimal for the lower-level problem. Therefore, by sequentially solving

these two linear programming problems, we obtain a feasible point (x, y) that

satisfies all the constraints (9b)–(9f).

The proposed approach requires the use of the following parameters:

k Iteration counter.

t Small non-negative scalar representing the slackness of the complementarity

conditions.

q Non-negative scalar used to update the value t.

M Non-negative scaling parameter used to compute the large enough constants.

The steps of the proposed procedure are the following:

• Step 0 (Initialization) Select parameters t[ 0, q[ 1,M[ 1 and the number of

iterations K. Set k 0 and go to Step 1.

• Step 1 (Feasible point) Solve the linear programming problem (9a)–(9e) and

denote the obtained leader’s variables as x0. Solve the lower-level linear

programming problem (7c)–(7d) in which upper-level variables are fixed at x0.

Denote the optimal values of the primal and dual variables as y0 and k0,
respectively. Go to Step 2.
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• Step 2 (Iteration) Set k k þ 1. Solve problem (12) taking ðxk�1; yk�1; kk�1Þ as
an initial point. Denote its solution as ðxk; yk; kkÞ. If k\K, then t t=q and go

to Step 2. Otherwise, go to Step 3.

• Step 3 (Tuning) Set M1  Mmaxjf b2 � A2xk � B2ykð Þjg and

M2  Mmaxjf kkð Þjg. Go to Step 4.

• Step 4 (Warming) Set initial values of binary variables u as follows. If

b2 � A2xk � B2ykð Þj [ 0, then uj ¼ 0. If kj [ 0, then uj ¼ 1. Go to Step 5.

• Step 5 (Solution) Solve the mixed-integer linear problem (10) using the values of

M1;M2 determined in Step 3 and the initial values of the binary variables

computed in Step 4. Declare its solution ðx�; y�; k�Þ as the optimal solution.

The core of the proposed approach relies on Steps 3 and 4, in which the local

optimal solution provided by the regularization method is used to tune the large

constants M1 and M2 and to compute initial values for the binary variables u,

respectively. Let us explain first the reasoning behind Step 3. Note that the mixed-

integer approach (10) is only valid provided that constraints (10f) and (10g) are

binding if and only if u ¼ 1 or u ¼ 0, respectively. This is only true if the following

two conditions hold: M1 is larger than b2 � A2x� B2y for any feasible pair

(x, y) and M2 is larger than any feasible value of the dual variable k. Even though

the solution obtained in Step 2 using regularization is just locally optimal, we

assume that the maximum value of b2 � A2x� B2y over all lower level constraints

at the local optimal solution is a good proxy ofM1. Similarly, the maximum value of

the lower-level dual variable kj over all constraints at the local optimal solution is

also a good estimation of the large constant M2. If large constants M1 and M2 are

tuned based exclusively on the locally optimal solution computed in Step 2, two

issues may arise. In some cases, the globally optimal solution to the original linear

bilevel problem may be actually infeasible due to the bad adjustment of the large

constants M1 and M2. For other cases, the optimal solution (10) may not be globally

optimal for the original optimization problem due to the overly-constrained feasible

region. To avoid these two issues, these values are multiplied by the scaling

parameterM[ 1, which needs to be adjusted by trial and error bearing in mind the

following trade-off: the larger the value of M, the lower the risk that the global

optimal solution becomes infeasible or suboptimal, but the higher the computational

time required to solve the problem due to numerical instabilities. The intuition

behind Step 4 is the following. Note that the values of the variables u obtained in

Step 2 provide information about which term of each complementarity condition

(9f) is equal to 0 at the locally optimal solution. Assuming that the globally optimal

solution is not ‘‘too different’’ from the locally optimal solution obtained by the

regularization approach, the terms of the complementarity conditions equal to 0 are

expected to coincide for most of these constraints.

Providing initial values for the binary variables u and tuning the large constants

M1;M2 only seeks to improve the computational performance of the mixed-integer

solver without jeopardizing the optimality of the solution that the solver eventually

returns. How much the computational burden of solving (10) will be reduced by

taking advantage of the locally optimal information provided by (12) cannot be
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exactly established a priori with full guarantees. To provide some guidance on this

issue, however, we conduct and present an exhaustive numerical analysis in Sects.

5.1–5.3, in which a large set of linear bilevel problems of different size, sparsity and

scale are solved.

Finally, note that the proposed solution algorithm can be directly implemented

using off-the-shelf optimization software since it only involves solving:

• Two linear programming problems using a linear optimization solver to find a

point in the induced region.

• A family of regularized nonlinear optimization problems using a nonlinear

optimization solver to find a local optimal solution.

• A mixed-integer linear programming problem with appropriate large constants

and initial values of the binary variables using a mixed-integer optimization

solver to find the global optimal solution.

4 Test and comparison

In this section, we first describe how test bilevel problems are randomly generated

and then explain how the results provided by the different solution methods are

compared.

As previously discussed, the test examples considered in this paper do not

include any joint upper-level constraints and therefore, matrix B1 is empty. In order

to avoid unbounded test problems, it is also imposed that both the coefficients of the

upper-level and lower-level objective functions (c1; d1; c2; d2) and the variables

involved (x, y) must be non-negative. For the sake of generality, the test bilevel

problems include two sets of lower-level constraints: the first set of constraints

involves upper- and lower-level variables, while the second only comprises lower-

level variables. According to these assumptions, the vectors and matrices of bilevel

problem (7) are generated as follows:

c1 ¼ jN ð1; nÞj d1 ¼ jN ð1;mÞj A1 ¼
Nðp; nÞ
�I

� �
B1 ¼

0

0

� �
b1 ¼

Nðp; 1Þ
0

� �

c2 ¼ jN ð1; nÞj d2 ¼ jN ð1;mÞj A2 ¼
Nðq; nÞ

0

0

0
B@

1
CA B2 ¼

Nðq;mÞ
N ðr;mÞ
�I

0
B@

1
CA b2 ¼

Nðq; 1Þ
N ðr; 1Þ

0

0
B@

1
CA

where Nði; jÞ denotes an i� j matrix in which each element is randomly generated

according to a standard normal distribution with mean and variance equal to 0 and 1,

respectively. As follows from these definitions, n and m are the number of upper-

and lower-level variables, respectively. Furthermore, each random problem includes

p upper-level constraints, q lower-level joint constraints and r lower-level con-

straints not involving upper-level variables.

Given one random problem, let l be an index for the different solution approaches

presented in this paper. The optimal solution, objective function value and solver
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status provided by solution approach l are denoted as ðx�l ; y�l Þ, z�l and sl, respectively,
and are computed as follows:

• Step (1) The bilevel problem is solved using solution method l and the optimal

upper-level variables are denoted as x�l . If no solution is provided, set sl to 0 and

stop. Otherwise, go to Step (2).

• Step (2) The upper-level variables are fixed to x�l and the lower-level problem is

solved again using linear programming to obtain the lower-level optimal

variables y�l . If the lower-level is infeasible, set sl to 0 and stop. Otherwise, go to

Step (3).

• Step (3) Set sl to 1 and compute the value of the objective function z�l as

c1x
�
l þ d1y

�
l .

This procedure to compare the different methods is particularly relevant for those

formulations that include products of binary variables and large numbers. Note that

some mixed-integer solvers may round down this product and thus yield optimal

values for the binary variables different from 0 and 1 due to numerical instabilities.

If this happens, the objective function obtained by these methods may be lower than

the optimal one since complementarity conditions do not hold. However, if we fix

the upper-level variables and then solve the lower-level problem as described above,

this issue is avoided and the values of the upper-level objective function provided by

different solution methods can be fairly compared. For each random problem, the

true optimal solution ẑ is defined as:

ẑ ¼ minfz�l : sl ¼ 1g

In most examples, ẑ will be equal to the solution provided by the branch-and-bound

and SOS1 methods, since these approaches guarantee global optimality. If these

methods do not provide a solution due to time restrictions, then ẑ will be the

minimum objective function among the methods that deliver a solution. The opti-

mality gap for the solution given by method l is thus computed as:

gl ¼ 100� z�l � ẑ

ẑ

which is only defined for those methods with sl ¼ 1.

In this paper we compare the following methods to solve linear bilevel problems:

• Branch and bound method (B&B).

• Mixed-integer solution method with SOS1 variables (SOS1).

• Mixed-integer solution method in which disjunctive constraints are modeled as

proposed by Fortuny-Amat and McCarl (1981). The following 11 values for the

large constants are used: 5, 10, 20, 50, 100, 200, 500, 1000, 5000, 10000,

100000. Each variant of this method is thus referred to as FA-5, FA-10, FA-20,

etc.

• Regularization method proposed in Scholtes (2001) and Ralph and Wright

(2004) (REG). The number of iterations (K) is set to 20, the initial value of t to

104, and q is equal to 10.
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• Penalty approach proposed in White and Anandalingam (1993) (PEN). The

number of iterations (K) is set to 20, the initial value of t to 1, and q is equal to

1.2.

• The proposed solution method, which is referred to as REG-FA. The regularized

local optimization method is tuned as in REG. The following 3 values for the

parameterM are used: 2, 5, 10. Each variant of this method is thus referred to as

REG-FA-2, REG-FA-5 and REG-FA-10, respectively.

5 Computational results

This section compiles the main computational results of the methods presented in

Sect. 3 to solve linear bilevel problems. First, the results of 300 test problems of

different sizes are provided. Then, the impact of matrix sparsity on the performance

of the different methods is investigated. Finally, we also analyze how bad scaling

affects the obtained results.

All the results presented here have been obtained using CPLEX 12.6.0.1 and

CONOPT 3.16C optimization solvers under GAMS 24.3.3. The simulations have

been run in a cluster with 288 nodes. Each node consists of Two Intel Xeon

Processor E5649 (2.53 GHz, 6 cores) and 24 GB of memory. The maximum time for

each problem is set to 6 h. The code and data used for the simulations are available

at www.github.com/salvapineda/bilevel.

5.1 Impact of size

The solution methods presented in this paper are tested on 100 small randomly

generated problems, 100 medium randomly generated problems, and 100 large ran-

domly generated problems. The matrices of these problems are generated according

to the parameters provided in Table 1. Note that the number of upper- and lower-

level variables is the same in all cases. Furthermore, the number of each type of

constraint is equal to half the number of variables since a much higher or a much

lower number of constraints may lead to infeasible or trivial problems, respectively.

It is also worth mentioning that other works providing similar computational results

consider randomly generated test cases with a maximum size of 150 upper- and

lower-level variables (Strekalovsky et al. 2010a, b).

Table 2 provides the results for the 18 methods compared in this study for the

three problem sizes. For each problem size and solution approach four numerical

results are provided, namely:

Table 1 Parameters of

randomly generated problems
n m p q r

Small 50 50 25 25 25

Medium 100 100 50 50 50

Large 200 200 100 100 100
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• The number of randomly generated problems solved to global optimality, that is,

with zero optimality gap (gl ¼ 0). This is denoted as #opt.

• The number of randomly generated problems that are infeasible, that is, with

sl ¼ 0. This is denoted as #inf.

• The average computational time (in seconds) for those randomly generated

problems with valid solutions, that is, with sl ¼ 1.

• The average optimality gap (as a percentage) for those randomly generated

problems with valid solutions, that is, with sl ¼ 1.

Therefore, 100-#opt-#inf is the number of non-optimal valid solutions.

Let us first analyze the results provided by the SOS1 method. Note that for small

instances, this method achieves the optimal solution in 98 of the 100 cases in around

1 second, the remaining 2 cases being infeasible. For the medium instances, 90 are

solved to optimality while the average solution time is increased to 1.3 h. The

average gap of 0.27% is due to the fact that some problems were not solved to

Table 2 Results: impact of size

Small (n = 50) Medium (n = 100) Large (n = 200)

#opt #inf Time

(s)

Gap

(%)

#opt #inf Time

(s)

Gap

(%)

#opt #inf Time

(s)

Gap

(%)

B&B 92 2 2761 0.66 44 0 13,556 2.89 8 0 20,211 2.54

SOS1 98 2 1 0.00 90 0 4656 0.27 27 0 17,652 2.05

FA-5 11 24 12 7.65 8 7 5385 7.15 0 20 21,415 4.57

FA-10 72 4 3 0.91 68 3 2798 0.18 44 0 16,976 0.27

FA-20 95 4 3 0.01 92 1 3914 0.05 51 0 16,981 0.32

FA-50 98 2 5 0.00 94 2 5495 0.04 53 1 16,873 0.31

FA-100 97 2 9 0.00 93 0 6678 0.02 45 1 18453 0.60

FA-200 93 2 15 0.09 81 0 7716 0.19 37 0 18,634 0.68

FA-500 85 2 36 0.14 78 2 9229 0.15 43 0 19,251 0.38

FA-1000 79 2 55 0.29 66 1 10,847 0.33 28 0 19241 0.51

FA-5000 49 2 80 2.28 26 4 7578 3.54 2 0 15,517 3.63

FA-

10000

37 2 36 3.95 13 0 4361 7.71 2 0 6782 10.34

FA-

100000

27 2 0 6.44 11 0 0 10.19 2 0 1 9.86

REG 61 2 0 0.55 41 0 1 0.52 30 1 14 0.29

PEN 34 2 0 0.85 10 0 17 1.03 12 0 30 0.78

REG-

FA-2

94 2 2 0.02 96 0 660 0.01 82 2 10,657 0.07

REG-

FA-5

98 2 2 0.00 99 1 767 0.00 71 11 10,770 0.08

REG-

FA-10

98 2 5 0.00 99 0 2353 0.00 72 0 13,258 0.10
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optimality after 6 h. Finally, for the large instances, the SOS1 method only

achieved the optimal solution in 27 cases and the average solution time is 4.9 h. The

increase in the computational time required by this method with the size of the

problem is thus apparent. Like the SOS1 method, the branch-and-bound method

guarantees global optimality. Note, however, that the number of optimal solutions,

the average computational time and the average optimality gap are worse for the

branch-and-bound method for all problem sizes. Therefore, the SOS1 method is

considered in this analysis as a benchmark.

Regarding the Fortuny-Amat method, the following general observations are in

order. Both for very low and very large values of the large constant M, the number

of examples solved to optimality is very low although for different reasons. While

small values of M lead to a high number of infeasible problems, high values of

M create numerical instabilities in the solution algorithm. Note also that the value of

M that results in the largest number of test problems solved to optimality is equal to

50 for the three sets of examples, being the average time equal to 5 s, 90 min and

4.5 h for small, medium and large problems, respectively. Observe that for large

instances, the maximum number of optimal solutions achieved by the best Fortuny-

Amat method is only 53.

Despite being very fast, the regularization method only provides the global

optimal solution in a low number of cases, which decreases as the dimension of the

problems increases. Note that for large problems, in only 30 examples the local

optimal solution found by this method is also global optimal. Observe as well that

the results provided by the penalty method are even worse than those of the

regularization method in terms of global optimality, computational time and

optimality gap.

For the three problem sizes, the proposed approach provides very similar results

for the three values ofM in terms of number of optimal cases, computational time,

and optimality gap. This shows that selecting an appropriate value of M for the

proposed approach is substantially less critical than choosing a high enough value of

M for the Fortuny-Amat approach. Let us then focus on the results forM¼ 10, for

example. For small problems, REG-FA-10 also results in 98 instances solved to

optimality, but with an average time higher than that of the SOS1 method. Given the

low number of binary variables, optimization solvers such as CPLEX are quite

efficient in solving problems of this size and that implies that the pre-calculations of

the proposed method significantly increase the computational time in comparative

terms. On the other hand, for medium problems, REG-FA-10 is able to find the

optimal solution in 99 cases in an average time of 40 min, thus outperforming the

SOS1 method (90 optimal cases, 1.3 h) and the best Fortuny-Amat method (94

optimal cases, 1.5 h). These results demonstrate, therefore, the computational

efficiency of the solution method proposed in this paper. For large problems, REG-

FA-10 obtains 72 optimal cases in 3.6 h, versus the 27 optimal cases and 4.9 h of

the SOS1 method, and the 53 optimal cases and 4.6 h of the best Fortuny-Amat

method. Notice also that the average gap corresponding to the non-optimal cases is

equal to 0.10, 2.05 and 0.31% for REG-FA-10, SOS1 and FA-50, respectively.

It should be noted that the discussion above is based on comparing the proposed

approach with the Fortuny-Amat method providing the best results. However, the
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value of M that performs best is not known in advance and can only be determined

after a trial-and-error process similar to the extensive testing done in this paper,

which makes our method even more advantageous than what this analysis already

reveals.

5.2 Impact of sparsity

All the randomly generated matrices for the analysis of the previous subsection are

full matrices. In order to investigate the performance of the proposed solution

algorithm for more sparse bilevel problems, three additional sets of 100 randomly

generated problems are solved using the different methods in this section. For this

study, half of the elements of each vector and matrix are randomly set to 0. The rest

of the parameters to generate the random problems are equal to those provided in

Table 1. Table 3 contains the results corresponding to the bilevel problems with

50% sparsity.

As in Table 2, we can observe that although the SOS1 method outperforms the

B&B method for all problem sizes, this method provides a number of optimal cases

and an average computational time that drastically worsen as the problem dimension

increases. It is also shown that the results of the Fortuny-Amat method highly

depend on the value of M, being the best value around 50. Again, the results

provided by the proposed method are not very sensitive to the value of M and

hence, we focus on those of REG-FA-10 to make the following comparison

analysis. For small problems, the results of the proposed method are similar to those

of the SOS1 and the best Fortuny-Amat. For medium problems, the proposed

method achieves 97 optimal cases in 27 min, versus the 86 optimal cases in 72 min

of the SOS1 method and the 92 optimal cases in 71 min of the best Fortuny-Amat.

Finally, for large problems, our method provides 61 optimal cases in 3.5 h, versus

the 29 optimal cases in 4.5 h of the SOS1 approach and the 48 optimal cases and 5 h

of the best-tuned Fortuny-Amat method. Note also that our method attains the

lowest average gap (0.07–0.08%) for the non-optimal cases.

5.3 Impact of scaling

Real-life optimization problems often have parameters with different orders of

magnitude. For example, some parameters may have values around 103, while other

parameters may take on values around 1. Such problems are badly scaled and are

difficult to solve with optimization solvers. In order to investigate the impact of

bad scaling on the proposed solution method, the elements of matrices and vectors

c1; d1;A1;B1; b1; c2; d2;A2;B2; b2 are multiplied by 10z, where z follows a discrete

uniform distribution with values 0, 1, 2, 3 and probability 0.25 each. In doing so,

one fourth of the elements is multiplied by 1, one fourth by 10, one fourth by 100,

and one fourth by 1000. Table 4 contains the results of the randomly generated

badly-scaled examples for the three sizes considered.

The first observation is that, although B&B and SOS1 still perform reasonably

well for small and medium problems, none of the large problems are solved to
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optimality and the average gap is 57.79% and 57.06%, respectively. Note also that,

for values of M below 1000, the Fortuny-Amat approach was infeasible for all cases

of the three problem sizes. Moreover, for larger values of M, the number of optimal

cases is always below 10. The regulation and penalty methods also exhibit a very

small number of optimal cases. On the other hand, the proposed method forM¼ 5

achieves the lowest objective function in 91, 80 and 51 cases for small, medium and

large problems, respectively. Furthermore, the average solution time for these sizes

is 6 s, 1.5 and 6 h, in that order. This means that none of the random problems with

n ¼ 200 was finished before 6 h. For this reason, the results for large problems

should be interpreted with caution, since few methods are able to provide solutions

in most cases. Therefore, the average gap of 57.06% linked to the SOS1 method

should be understood as the gap between the best solution provided by this method

and the solution given by the proposed method after 6 h of running time. The results

in Table 4 clearly prove that the proposed solution approach is superior to the

existing ones for badly-scaled problems.

Table 3 Results: impact of sparsity

Small (n = 50) Medium (n = 100) Large (n = 200)

#opt #inf Time

(s)

Gap

(%)

#opt #inf Time

(s)

Gap

(%)

#opt #inf Time

(s)

Gap

(%)

B&B 81 3 5100 1.81 42 0 14,019 3.19 9 0 19,964 2.53

SOS1 97 3 2 0.00 86 0 4293 0.48 29 0 16,061 2.19

FA-5 13 24 21 7.14 7 12 4370 8.75 0 11 21,366 5.50

FA-10 67 11 5 1.12 67 5 2123 0.62 34 9 15,709 0.35

FA-20 90 6 8 0.01 88 3 3109 0.12 44 10 15,803 0.21

FA-50 97 3 31 0.00 92 2 4283 0.02 48 0 16,049 0.34

FA-100 97 3 40 0.00 87 6 4918 0.08 45 7 16,364 0.38

FA-200 94 3 94 0.12 81 6 5498 0.09 37 5 17,198 0.45

FA-500 89 3 119 0.24 72 6 6671 0.31 47 3 17,801 0.31

FA-1000 83 3 189 0.39 61 13 6641 0.33 26 13 17,672 0.42

FA-5000 54 3 121 2.26 30 11 6968 2.77 8 9 15,808 1.67

FA-

10000

34 3 134 4.04 15 3 5255 6.42 1 3 13,094 6.54

FA-

100000

20 3 0 8.91 10 0 0 10.58 1 0 16 9.77

REG 61 3 0 0.52 45 0 1 0.67 22 0 11 0.30

PEN 28 3 0 1.41 11 0 11 1.27 5 0 18 0.90

REG-

FA-2

91 3 2 0.08 95 2 453 0.00 76 11 10,409 0.07

REG-

FA-5

96 3 3 0.01 97 3 536 0.00 73 14 10,795 0.07

REG-

FA-10

97 3 3 0.00 97 1 1644 0.01 61 15 12,512 0.08
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6 Conclusions

Linear bilevel problems are non-convex and NP-hard and therefore, finding their

optimal solution is computationally costly. In this paper we focus on methods that

allow to directly solve LBLP using off-the-shelf optimization software. Among

these methods, mixed-integer reformulations provide global optimal solutions at the

expense of drastically increasing the computational time, which implies that they

can only be applied to small problems. On the other hand, regularization approaches

based on iteratively solving nonlinear optimization problems can efficiently solve

large bilevel problems, but only guarantee local optimality of the MPCC

reformulation.

In this paper we propose a new solution method that combines the advantages of

the two aforementioned approaches. First, the regularization approach is used to

efficiently find a local optimal point of the MPCC reformulation. Local optimal

information is then used in the mixed-integer reformulation of the problem to (1)

provide initial values for the binary variables and (2) tune the large-enough

constants. The results provided by this method have been compared with those

obtained by other general purpose methods when solving a set of 900 randomly

generated linear bilevel problems with different size, sparsity and scaling. These

results show that the proposed method substantially outperforms the others in terms

of number of cases solved to global optimality, average computational time and

average optimality gap. For the largest examples, the proposed method achieved the

optimal solution in 50% more cases than all the other methods, with an average time

30–95% lower, and an average optimality gap lower than 3.5% in all cases. Finally,

it is worth highlighting that the proposed method does not require the adjustment of

any large enough constant, and that setting the scaling parameterM to 5 or 10 is

good enough to solve a wide set of different problems.

As future research, it must be investigated how to adapt the proposed

methodology so that it can be applied to linear bilevel problems with upper-level

constraints that involve both upper- and lower-level variables. Likewise, how to

solve bilevel problems with an upper-level objective function that includes dual

variables of the lower-level problem requires further research. Moreover, the fact

that the coefficients of the upper- and lower-level objective functions are all positive

implies that the angle between the objective function vectors is statically small,

which, in turn, may reduce the computational burden of solving the LBLP.

Therefore, further investigation is required to analyze how the proposed method

performs for arbitrary objective function parameters. The results presented in this

paper could also be complemented by comparing the computational performance of

different commercial solvers, such as GUROBI. Finally, testing the performance of

the proposed solution approach in specific real applications is also left for future

research.
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