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Abstract The use of Evolutionary Algorithms (EAs) to solve optimization prob-

lems has been increasing. One of the most used techniques is Particle Swarm

Optimization (PSO), which is considered robust, efficient and competitive in

comparison with other bio-inspired algorithms. EAs were originally designed to

solve unconstrained optimization problems. However, the most significant prob-

lems, particularly those from real world optimization, present constraints. It is not

trivial to define a strategy to handle constraints and, in general, penalty functions

containing parameters to be set by the user and it may affect the search consider-

ably. This paper consists of a combination of the Craziness based Particle Swarm

Optimization (CRPSO) with an adaptive penalty technique, called Adaptive Penalty

Method (APM), to solve constrained optimization problems. A CRPSO is adopted

here in order to avoid premature convergence using a new velocity expression and

an operator called ‘‘craziness velocity’’. APM and its variants were applied in other

EAs, originally in a Genetic Algorithm, which demonstrated its robustness. APM

deals with inequality and equality constraints, and it is free of parameters to be

defined by the user. In order to assess the applicability and performance of the

algorithm, several structural engineering optimization problems traditionally found

in the literature are used in the computational experiments.
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1 Introduction

For years engineering fields have been developing tools to reach optimum

performance designs, savings and costs. This brings significant benefits, such as the

reduced use of raw material, manufacturing cost, transport, storage, and others. All

these aspects should be considered in the optimization problems.

Constrained optimization can be defined as the study of problems that aims to

minimize (or maximize) a function searching for the values of variables from a set of

options (continuous, discrete or mixed) which satisfy the set of constraints of the

problem. Increasingly, optimization has been used in a number of problems in

engineering, chemistry, physics, mathematics, economics, and other areas of science.

EAs, widespread in the literature, are search algorithms which can be directly

applied to unconstrained problems, searching for a set of variables that minimizes

(or maximizes) one or more objective functions. Inspired by the natural processes of

the real world, computational models are developed based on the concept of

collective intelligence. In the nineties, studies led to the creation of a new area in

computational intelligence, the swarm intelligence.

In this context, an algorithm that has been successfully applied is Particle Swarm

Optimization (PSO) (Eberhart and Kennedy 1995), which is based on the simulation

of the social behavior of some species of birds and fish, to solve complex problems.

PSO has two main advantages: fast convergence and few parameters to be tuned,

which make this technique particularly easy to implement. However, the perfor-

mance of the algorithm when applied to a given problem depends on its parameters,

as in many others EAs (Dobslaw 2010). In this paper a modified PSO called

Craziness based Particle Swarm Optimization (CRPSO) proposed by Kar et al.

(2012) is adopted in order to avoid premature convergence using a new velocity

expression and an operator called ‘‘craziness velocity’’.

The application of EAs to constrained problems cannot be made directly. To

solve this problem, the more traditional strategy used is to incorporate a penalty

function into the objective function transforming a constrained problem into an

unconstrained one. Notice, that other types of constraint handling techniques can be

found in the literature. For instance, Monson and Seppi (2005) solves optimization

problems with linear constraints using a PSO by transforming the search space into

an unconstrained one.

In general, the main challenge when building penalty strategies is to create

functions with less dependence on parameters set by the user, which can affect the

search for the optimal solutions. For example, many works in the literature discuss

techniques to handle constraints, such as Barbosa (1999), Hinterding and

Michalewicz (1998), Kampen et al. (1996), Koziel and Michalewicz (1998), Koziel

and Michalewicz (1999), Orvosh and Davis (1994) and Runarsson and Yao (2000)

propose penalty strategies with parameters chosen by the user. Choosing the right

parameters may require an exhaustive process of trial and error. On the other hand,
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parameter-free techniques have become more attractive to provide robustness when

applied to problems of various degrees of complexity.

One of these parameterless techniques is APM (Adaptive Penalty Method),

which was proposed by Barbosa and Lemonge (2002) to handle constrained

optimization problems conceived for a generational Genetic Algorithm (GA). This

strategy has shown to be efficient and robust (Gallet et al. 2005; Rocha and

Fernandes 2009; Silva et al. 2011; Venter and Haftka 2010). APM does not

require the knowledge of the explicit form of the constraints as a function of the

design variables and was developed based on information obtained from the

population, such as the average of objective function and the level of violation of

each constraint. The idea is to observe how each constraint is being violated (or

not) by the candidate solutions in the population and then to set a higher penalty

coefficient for those constraints which seem to be more difficult to satisfy. In

addition to the original method, Barbosa and Lemonge (2008) introduced four new

variants.

Several works applying PSO to constrained optimization problems can be found

in the literature. Liu and Hui (2012) proposed a new method with a PSO to solve the

well-known 24 benchmark constrained optimization problems (Liang et al. 2006).

Those authors developed a method called Numerical Gradient (NG) to find the

feasible region. Numerical results are presented and compared with the results from

the existing PSO variants dealing with constraint optimization problems.

PSO algorithm for solving constrained optimization problems was introduced by

Elsayed et al. (2013). The algorithm uses two new mechanisms to guarantee that

PSO will perform consistently well for all problems and will not be trapped in local

optima. The first one to maintain a better balance between intensification and

diversification and the second one to escape from local solutions. The performance

of the proposed algorithm is analyzed by solving the CEC2010 (Tang et al. 2010)

constrained optimization problems and shows consistent performance, and is

superior to other state-of-the-art algorithms.

Applications of PSO in FACTS (Flexible Alternating Current Transmission

System) optimization problem have been explained and analyzed by Jordehi

et al. (2013). They used a basic PSO variant, parameter selection, multi-

objective handling, constraint handling, and discrete variable handling. Some

hints and proposals for future research in that area were provided in that paper.

Mazhoud et al. (2013) presented a specific constraint-handling mechanism to

solve engineering problems using an adapted particle swarm optimization

algorithm. The resulting objective problem is solved using a simple lexico-

graphic method. The new algorithm is called CVI-PSO (Constraint Violation

with Interval arithmetic PSO) and the authors provide numerous experimental

results based on a well-known benchmark and comparisons with previously

reported results.

Innocente et al. (2015) developed a robust particle swarm algorithm coupled with

a novel adaptive constraint-handling technique to search for the global optimum of

management of petroleum fields aiming to increase the oil production during a

given concession period of exploration. A hybrid PSO and GA, named as a PSO-

GA, for solving the constrained optimization problems was present by Garg (2016).
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The constraints are handled with the help of the parameter-free penalty function.

The results of constrained optimization problems are superior to those reported with

the typical approaches exist in the literature.

This paper aims to explore the capability of APM and some of its variants

coupled to CRPSO, for the first time, as an optimization method to find solutions of

constrained structural optimization problems. It is important to note that new

variants, not analyzed in previous studies, are proposed in this paper.

In the next section, the general optimization problem is described. Section 3

presents a particle swarm algorithm. A brief discussion of techniques to handle

constrained optimization problems is presented in Sect. 4. Numerical experiments,

with several test problems from the literature, are presented in Sect. 5. Finally, in

Sect. 6, the conclusions and proposed future works are presented.

2 The structural optimization problem

Typically, a structural optimization problem can be formulated in many ways. For

structures made of bars (trusses, frames, etc), the constrained dimensional

optimization problem consists of finding the set of areas a ¼ fA1;A2; :::;Ang
which minimizes the weight WðaÞ of the truss structure.

WðaÞ ¼
Xn

i¼1

qAiLi ð1Þ

subject to the normalized displacement constraints and the normalized stress

constraints

uj;k

�u
� 1� 0; 1� j�m; 1� k� nl ð2Þ

rl;k
�r

� 1� 0; 1� l� n; 1� k� nl ð3Þ

where q is the specific mass of the material, Ai and Li are the cross-sectional area

and the length of the i-th member of the structure, uj and rl are, respectively, the
nodal displacement of the j-th degree of freedom and the stress of the l-th member, n

is the total number of members, m is the number of degree of freedom of the

structure and nl is the number of load cases to which the structure is submitted. The

allowable displacements and stresses are defined as �u and �r, respectively. Addi-
tional constraints such as the minimum natural vibration frequency or buckling

stress limits can also be included.

Usually, equality constraints are transformed into inequality constraints as

follows

jhðxÞj � �� 0 ð4Þ

where h is a equality constraint and � is a tolerance.
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3 Particle swarm optimization

Particle Swarm Optimization (PSO) was originally introduced by Eberhart and

Kennedy (1995). The algorithm was inspired by the social behavior of animals such

as fish schooling, insects swarming and birds flocking.

PSO is a population-based algorithm with fewer parameters to be set and is easier

to implement than other EA’s. PSO also shows a faster convergence rate than other

EAs for solving some optimization problems (Kennedy et al. 2001). Each particle of

the swarm represents a potential solution of the optimization problem. The particles

fly through the search space and their positions are updated based on the best

positions of individual particles in each iteration. The objective function is

evaluated for each particle and the fitness value of particles is obtained in order to

determine which position in the search space is the best.

In each iteration, the swarm is updated using the following equations:

v
ðiÞ
j ðt þ 1Þ ¼ v

ðiÞ
j ðtÞ þ c1 � r1ðxðiÞpbest � x

ðiÞ
j Þ þ c2 � r2ðxgbest � x

ðiÞ
j Þ ð5Þ

x
ðiÞ
j ðt þ 1Þ ¼ x

ðiÞ
j ðtÞ þ v

ðiÞ
j ðt þ 1Þ ð6Þ

where v
ðiÞ
j and x

ðiÞ
j represent the current velocity and the current position of the j-th

design variable of the i-th particle, respectively. x
ðiÞ
pbest is the best previous position of

the i-th particle (called pbest) and xgbest is the best global position among all the

particle in the swarm (called gbest); c1 and c2 are coefficients that control the

influence of cognitive and social information, respectively, and r1 and r2 are two

uniform random sequences generated between 0 and 1.

The basic PSO algorithm can be briefly described using the following steps:

1. Initialize a random particle swarm (position) and velocity distributed within the

search space.

2. Initialize xpbest and xgbest.

3. Calculate the objective function value of each particle of the swarm.

4. Update the position and velocity of each particle in the iteration jþ 1 using

Eqs. (5) and (6).

5. Update xpbest and xgbest.

6. Repeat the steps 3 to 5 until a stop condition is satisfied.

A change in the conventional PSO algorithm, called CRPSO and proposed by Kar

et al. (2012), is used in this study and aims to improve PSO behavior in order to

avoid premature convergence. It introduces an entirely new velocity expression vi
associated with many random numbers and an operator called ‘‘craziness velocity’’.

The operator has a predefined probability of craziness.

In this case the velocity can be expressed as follows (Kar et al. 2012):
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v
ðiÞ
j ðt þ 1Þ ¼ r2 � signðr3Þ � vðiÞj ðtÞ þ ð1� r2Þc1 � r1ðxðiÞpbest � x

ðiÞ
j Þ þ ð1� r2Þ � c2 �

ð1� r1Þðxgbest � x
ðiÞ
j Þ þ Pðr4Þ � sign2ðr4Þ � vcrazinessj

ð7Þ

where r1, r2, r3 and r4 are the random parameters uniformly taken from the interval

[0,1), signðr3Þ is a function defined as

signðr3Þ ¼
�1; r3 � 0:05
1; r3 [ 0:05

�
ð8Þ

vcrazinessj , the craziness velocity, is a user define parameter from the interval [vmin,

vmax] and Pðr4Þ and sign2ðr4Þ are defined, respectively, as

Pðr4Þ ¼
1; r4 �Pcr

0; r4 [Pcr

�
ð9Þ

sign2ðr4Þ ¼
�1; r4 � 0:5
1; r4\0:5

�
ð10Þ

and Pcr is a predefined probability of craziness. Although the parameter Pcr is

fixed, Pðr4Þ is defined every time the velocity is calculated.

4 Handling constraints

The constrained optimization problems are exhaustively studied in the literature.

The usual approach when using evolutionary algorithms is to define strategies to

handle constraints by adopting penalty functions Barbosa et al. 2015. The main idea

is to transform a constrained optimization problem into an unconstrained one by

adding a penalty function.

Penalty techniques can be classified as multiplicative or additive. In the

multiplicative case, a positive penalty factor is introduced in order to amplify the

value of the objective function of an infeasible individual in a minimization

problem. In the additive case, a penalty function is added to the objective function in

order to define the fitness value of an infeasible individual. They can be further

divided into interior and exterior techniques (Barbosa et al. 2015). The idea in both

cases is to amplify the value of the fitness function of an infeasible individual.

Penalty methods can be also classified as static, dynamic and adaptive. Static

penalty depends on the definition of an external factor to be added to or multiplied

by the objective function. Dynamic penalty methods, in general, have penalty

coefficients directly related to the number of generations, and the adaptive penalty

considers the level of violation of the population by constraints during the

evolutionary process. This paper does not attempt to cover the current literature on

constraint handling and the reader is referred to survey papers or book chapters of

e.g. Barbosa et al. (2015), Coello (2002), Mezura-Montes and Coello (2011),

Michalewicz (1995) and Michalewicz and Schoenauer (1996).
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An adaptive penalty method (APM) was originally introduced by Barbosa and

Lemonge (2002) for application in constrained optimization problems. That method

does not require any type of user defined penalty parameter and uses information

from the population, such as the average of the objective function and the level of

violation of each constraint during the evolution. The fitness function is written as

f ðxÞ ¼ fðxÞ ¼ fðxÞ; if x is feasible fðxÞ þ
Pm

j¼1 kjvjðxÞ; otherwise :
��

ð11Þ

where

�f ðxÞ ¼ f ðxÞ; if f ðxÞ[ f ðxÞh i
f ðxÞh i; if f ðxÞ� f ðxÞh i

�
ð12Þ

and f ðxÞh i is the average of the objective function values in the current population.

The penalty parameter kj is defined at each generation by

kj ¼ j f ðxÞh ij
djðxÞ
� �

Pm
l¼1½ dlðxÞh i�2

ð13Þ

where djðxÞ
� �

is the violation of the jth constraint averaged over the current

population.

Barbosa and Lemonge (2008) presented 4 variants for APM, written as

• Variant 1: the method (1) computes the constraint violation vj in the current

population, (2) updates all penalty coefficients kj and (3) keeps them fixed for a

number of generations.

• Variant 2: the method (1) accumulates the constraint violations for t generations,

(2) updates the penalty coefficients kj and (3) keeps the penalty coefficients kj
fixed for t generations.

• Variant 3: no penalty coefficient kj is allowed to have its value reduced along the

evolutionary process, so knewj \kcurrentj then knewj ¼ kcurrentj ;

• Variant 4: the method is defined as knewj ¼ hknewj þ ð1� hÞkcurrentj , where

h 2 ½0; 1�.

New variants for APM have been proposed and the main variations occur in the

calculation of �f and the calculation of the penalty coefficient kj. A combination of

these two variations with some characteristics of the variants proposed by Barbosa

and Lemonge (2008) generated three new variants and they are outlined as follows

• Variant 5: �f ðxÞ is modified as follows

�f ðxÞ ¼ f ðxÞ; if f ðxÞ[ f ðxÞb c
f ðxÞb c; otherwise.

�
ð14Þ

where f ðxÞb c is the value of the objective function of the worst feasible

individual. The average of the objective function is used when no feasible

individual exist.

APM to solve constrained structural optimization problems... 699

123



• Variant 6: djðxÞ
� �

, which originally represented the average of the violations of

all individuals at each constraint, is defined here as the sum of the violation of all

individuals which violate the j-th constraint divided by the number of

individuals which violate this constraint.

• Variant 7: djðxÞ
� �

, which originally represented the average of the violations of

all individuals at each constraint, is defined here as the sum of the violation of all

individuals which violate the j-th constraint divided by the number of

individuals which violate this constraint. And f ðxÞh i, which represented the

average of the objective function, now denoted by hf ðxÞh ii, is the sum of the

objective function of all individuals of the current population divided by the

number the infeasible individuals, given by Eq. (15).

kj ¼ j hf ðxÞh iij
djðxÞ
� �

Pm
l¼1½ dlðxÞh i�2

ð15Þ

5 Numerical experiments

In this section, two set of numerical experiments are performed. The parameters of

CRPSO are: c1, c2, v
craziness
j and Pcr.

The choice of these parameters was based on the reference Kar et al. (2012). The

values for c1 and c2 were defined as 2.05 and vcrazinessj and Pcr in the reference are

0.0001 and 0.3, respectively. Based on these values, firstly some test were made

leading to vcrazinessj ¼ 0:001 and Pcr ¼ 0:5.

5.1 First set of numerical experiments

In order to assess the performance of the proposed algorithm, firstly, nine examples

taken from the optimization literature are used. The examples are: Pressure Vessel

(Mezura-Montes et al. 2003), Welded Beam (Mezura-Montes et al. 2003), Tension/

Compression Spring (Mezura-Montes et al. 2003), 3 of 24 test problems known as

G-Suite (Liang et al. 2006): G04 (P4), G06 (P2) and G09 (P3), and 3 problems

taken from Parsopoulos and Vrahatis (2002): Problem 1 (P1), Problem 5 (P5) and

Problem 6 (P6).

In all experiments the swarm size is 20 and the maximum generations is 10000.

The results presented in Hu et al. (2003) and Parsopoulos and Vrahatis (2002) are

compared to those obtained here in the preliminary experiments. Hu et al. (2003)

proposed a modified PSO for engineering optimization problems with constraints.

Parsopoulos and Vrahatis (2002) also presented a PSO algorithm in coping with

constrained optimization problems.

Table 1 presents the results for the three first experiments. It can be observed that

‘‘This study’’ achieved similar or higher results when compared to the reference.

Table 2 presents the results for the Problems 1 to 7. The results for these
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experiments are competitive when compared with those obtained from the literature.

It is important to note that the sums of constraint violations are zero in all the results

found in Table 2 for ‘‘This study’’.

A last example (P7) in this first set of experiments is G11 (Liang et al. 2006):

min f ðxÞ ¼ x21 þ ðx2 � 1Þ2

subject to hðxÞ ¼ x2 � x21 ¼ 0

where �1� x1 � 1 and �1� x2 � 1. The optimum solution is f ðx�Þ ¼ 0:7499.
A total of 60 particles and a budged of 300000 objective function evaluations

were used. The results of 30 independent runs are shown in the last row of Table 2.

The results presented in Wang and Cai (2009) are used in the comparisons. The

equality constraints were transformed to inequality constraints (Eq. 4) using a

tolerance equal to 10�4.

Finally, the fitness values of the best solutions achieved in a given independent

run are plotted in Figs. 1, 2, and 3. These figures illustrate the convergence

observed, respectively, in the problems Tension/Compression Spring, Problem 1

and Problem 6 when using CRPSO. Figure 1a shown that the best solution found

when 10,000 iterations are allowed is 0.012715; this fitness value is slightly smaller

(0.07%) than that obtained at iteration 100, 0.012724 (Fig. 1b). Thus, one can see

that CRPSO is able to produce good solutions with few objective function

evaluations.

Table 1 Comparison of the results of the minimization of the weight of a pressure vessel, welded beam

and tension/compression spring

Pressure vessel Welded beam Tension/compression spring

This study Hu et al.

(2003)

This study Hu et al.

(2003)

This study Hu et al. (2003)

Ts 0.8125 0.8125 x1 0.182873 0.20573 d 0.050072 0.051466369

Th 0.4375 0.4375 x2 3.805085 3.47049 D 0.319052 0.351383949

R 42.09844 42.09845 x3 9.584571 9.03662 N 13.895301 11.60865920

L 176.6366 176.6366 x4 0.182880 0.20573 g1 �0.000036 �0.003336613

g1 0.0 0.0 g1 �2.668937 0.0 g2 �0.000024 �1.0970128e-4

g2 �0.035881 �0.35881 g2 �0.207360 0.0 g3 �3.972002 �4.0263180998

g3 �0.327176 �0.032551 g3 �0.000006 �5.55111e-

17

g4 �0.753919 �0.7312393333

g4 �63.36340 �63.363329 g4 �1.452013 �3.342983

g5 �0.236367 �0.080729

g6 �3.495020 �0.235540

g7 �0.057874 �9.09494e-

13

W 6059.714564 6059.1311296 1.642056 1.72485084 0.012715 0.0126661409
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Figures 2 and 3 indicate the same behavior with respect to Problems 1 and 6. In

Fig. 2a, the best solution found for the Problem 1 at iteration 10000 is 1.3941, which

is the same value obtained at iteration 100 (as observed in Fig. 2b). When analyzing

the results achieved in Problem 6 (Fig. 3), the best solution found at iteration 10000

and 100 were �213:000.

Table 2 Comparison of the results of the minimization of the weight of problems 1 to 7

Problem Method Average (sum viol.) SD Best (sum viol.)

1 This study 1.3957 (0.0) 0.00514 1.3941 (0.0)

PSO-Bo (Parsopoulos and Vrahatis

2002)

1.3934 (0.00002) 0.0 1.3934 (0.00002)

2 This study �6577.6340 (0.0) 139.3399 �6676.1622 (0.0)

PSO-Bo (Parsopoulos and Vrahatis

2002)

�6961.7740

(0.000013)

0.14 �6961.8370

(0.000019)

3 This study 741.8643 (0.0) 229.7471 694.3282 (0.0)

PSO-Bo (Parsopoulos and Vrahatis

2002)

680.6830(0.000015) 0.041 680.6360 (0.0)

4 This study �30588.8122 (0.0) 199.5556 �30653.8756 (0.0)

PSO-Bo (Parsopoulos and Vrahatis

2002)

�31493.1900

(1.331)

131.67 �31544.4590

(1.311)

5 This study �31026.1347 (0.0) 1.37 �31026:4258ð0:0Þ
PSO-Bo (Parsopoulos and Vrahatis

2002)

�31525.4920

(0.968)

23.392 �31545.0540

(0.999)

6 This study �213.0 (0.0) 0.0 �213.0 (0.0)

PSO-Bo (Parsopoulos and Vrahatis

2002)

�213.0 (0.0) 0.0 �213.0 (0.0)

7 This study 0.7522 (0.0) 0.0397 0.7499 (0.0)

Wang and Cai (2009) 0.7499 (0.0) 0.0000 0.7499 (0.0)

Sum viol. means sums of violated constraints
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Fig. 1 Convergence for the tension/compression spring. a Using 10000 generations (best ¼ 0.012715)
and b using 100 generations (best = 0.012724)
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These results encourage the use of CRPSO in a second set of numerical

experiments presenting more complexity in terms of the number of constraints and

in this case they are implicit.

5.2 Second set of numerical experiments

Several engineering problems, commonly analyzed in the literature, were addressed

here. The problems correspond to 5 sizing structural optimization of plane and

spatial trusses: 10-, 25-, 52-, 60- and 72-bar trusses, displayed in Figs. 4, 5, 6, 7 and

8. All these truss structures are analyzed by the Finite Element Method (FEM)

during the evolutionary process.

The standard mono-objective sizing structural optimization problem, in the

second set of numerical experiments, reads: find the set of cross-sectional areas of

the bars x ¼ fA1;A2; . . .;ANg which minimizes the weight W of the structure
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Fig. 2 Convergence for the Problem 1. a using 10,000 generations (best ¼ 1.3941) and b using 100
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W ¼
XN

i¼1

qiAili; ð16Þ

where qi is the density of the material, li is the length of the i-th bar of the truss and

N is the number of bar. The problem is usually subject to inequality constraints

gpðxÞ� 0; p ¼ 1; 2; . . .; �p.
Table 3 presents some details of each test problem. In this table, ndv and type

mean the number and type of design variable (c—continuous or d - discrete),

respectively, nc is the number of constraints and nfe means the number of function

evaluations. Test Problem 1 has the discrete case and TP2 has the continuous case.

In this table there are references where it is possible to obtain the complete data for

each structural optimization problem.
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In all experiments the swarm size is 50. It should be understood that continuous

design variables are considered as the nearest integer of the corresponding variable

of the vector solution (particle), as used for Vargas et al. (2015). It points to either

an index of a table of discrete values or an integer. In all analyses feasible solutions

were found in the 35 independents runs. A preliminary analysis involving all the

APM variants, given in Sect. 4, is proposed in Sect. 5.4 in order to find those that

obtained the best performance in all experiments. Subsequently, only the best ones

are used in the comparisons.

5.3 Performance analysis of experiments

The experiments are compared using the performance profiles proposed by Dolan

and Moré (2002). Performance profiles are proposed as an analytical resource for

the visualization and interpretation of the results of numerical experiments in order

to define which algorithm provides a better performance considering a given set of

problems.

Consider the set P of test problems pj, with j ¼ 1; 2; . . .; np, a set of algorithm ai
with i ¼ 1; 2; . . .; na and tp;a [ 0 a performance metric (for example, computational

time, average, etc.). The performance ratio is defined as:
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rp;a ¼
tp;a

min tp;a : a 2 A
� �

:
ð17Þ

Thus, the performance profile of the algorithm is defined as:

qaðsÞ ¼
1

np
p 2 P : rp;a � s

� ��� �� ð18Þ

where qaðsÞ is the probability that the performance ratio rp;a of algorithm a 2 A is

within a factor s[ ¼ 1 of the best possible ratio. If the set P is representative of

problems yet to be addressed, then algorithms with larger paðsÞ are to be preferred.

The performance profiles have a number of useful properties (Barbosa et al. 2010;

Dolan and Moré 2002). Other analyses using performance profiles in algorithm

performance comparison can be found in Barbosa et al. (2010) and Bernardino et al.

(2011).

5.4 Analysis of APM variants

Performance profiles, introduced in the previous section, are used as a tool for a

more detailed and conclusive analysis of the large volume of results.
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Figure 9a, in which s 2 ½1; 1:00009�, shows the performance profiles curves,

where APM presented the highest value of qað1Þ, which means that the method had

the best performance considering all problems. Figure 9b shows the performance

profiles where the Variant 7 had the lowest value of s, such that qaðsÞ ¼ 1, and,

therefore, this is considered the most robust variant. Table 4 shows the areas under

the curves of the normalized performance profiles, where Variant 7, Variant 5, APM

and Variant 3 had the highest area values and they are considered the methods with

the best global performance. Therefore, these methods will be used in a later

comparison of results.
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Table 3 Second set of numerical experiments

Problem Reference ndv type nc nfe

TP1 10-bar truss Gellatly and Berke (1971) 10 d 18 90,000

TP2 10-bar truss Gellatly and Berke (1971) 10 c 18 280,000

TP3 25-bar truss Rajeev and Krishnamoorthy (1992) 8 d 43 20,000

TP4 52-bar truss Wu and Chow (1995) 12 d 52 17,500

TP5 60-bar truss Patnaik et al. (1996) 25 c 198 12,000

TP6 72-bar truss Venkayya (1971) 16 c 240 35,000
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It is worth remembering that not all curves come in qaðsÞ ¼ 1. This is because for

this comparison a suite composed of 35 test problems was used: 24 test functions

known as G-Suite (Liang et al. 2006), 5 mechanical engineering problems: Tension/

Compression Spring, Speed Reducer, Welded Beam, Pressure vessel (Mezura-

Montes et al. 2003) and Cantilever beam (Erbatur and Hasançebi 2000) and 6

structural engineering problems set out in this paper in the beginning of Sect. 5.

Thus, as shown in Fig. 9, feasible results for all analyzed problems were not

obtained.

5.5 Results

In all experiments, 35 independent runs were performed and only the feasible

solutions were considered. The results are presented in Tables 5, 6, 7, 8, 9, 10, 11,

12, 13 and 14 and the best ones are displayed in boldface. The tables present the

method, the best solutions, the values of median, average and the std (standard

deviation) and, finally, the worst solutions.

Table 5 presents the results for the 10-bar truss (discrete and continuous case) and

the 25-bar truss. For the 10-bar truss (discrete case), the four methods analyzed

achieved the same final weight of 5509.7173 lbs. However, APM has the best value

of the median 5528.0869 lbs and Variant 5 has the best average value and the lowest

value for the standard deviation, 5624.9286 lbs and 1.3148e þ 03, respectively. For

the continuous case, Variant 5 has the best value for the final weight of 5060.9067
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Fig. 9 Performance profiles of the variants used

Table 4 Normalized areas under the curves of the performance profiles in Fig. 9 for each variant

Variant 7 5 APM 3 6 1 2 4

Area 1 0. 9668 0. 9664 0. 9663 0.9333 0.9118 0.8536 0.8313
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lbs and the best value for median, average, standard deviation and worst are found

by Variant 7.

For the 25-bar truss, the four methods had the same weight of 484.8541 kg and

the same median value of 485.0487 lbs. The best average and the lowest standard

deviation was found by Variant 5, which stands out above the other methods for this

problem.

The results for the 52-, 60- and 72-bar trusses are presented in Table 6. For the

52-bar truss all methods reached the same final weight of 1902.6058 kg. APM

presented the best median 1904.1270 kg and Variant 7 presented the best average,

Table 5 Results for the 10-bar truss (discrete and continuous case) and the 25-bar truss

Method Best Median Average std Worst

TP1 APM 5509.7173 5528.0869 5628.8689 1.4468e?03 6593.1205

Variant 3 5509.7173 5540.4065 5700.1346 1.9561e?03 6654.2616

Variant 5 5509.7173 5532.1210 5624.9286 1.3148e?03 6540.4413

Variant 7 5509.7173 5626.0477 5665.151541 1.5179e? 03 6540.4413

TP2 APM 5060.9524 5076.9778 5076.1883 2.7776e?02 5314.8520

Variant 3 5060.9156 5076.8255 5077.9349 2.9670e?02 5191.0171

Variant 5 5060.9067 5073.3360 5073.2535 2.2178e?02 5191.4245

Variant 7 5060.9795 5063.8619 5071.2579 1.8799e?02 5190.9494

TP3 APM 484.8541 485.0487 485.97338 1.3601e?01 496.2520

Variant 3 484.8541 485.0487 485.5626 7.2751e?00 490.9124

Variant 5 484.8541 485.0487 485.4513 6.2653e?00 490.1923

Variant 7 484.8541 485.0487 487.22217 4.1581e?01 526.8441

Table 6 Results for the 52-, 60- and 72-bar trusses

Method Best Median Average SD Worst

TP4 APM 1902.6058 1904.1270 1939.4710 5.2820e?02 2234.5831

Variant 3 1902.6058 1910.9423 1971.9014 6.7235e?02 2340.1034

Variant 5 1902.6058 1907.9052 1997.9600 1.4390e?03 2922.7265

Variant 7 1902.6058 1907.9356 1933.2624 3.7283e?02 2159.2544

TP5 APM 312.2398 330.5434 337.5656 1.8345e?02 466.6698

Variant 3 311.9716 319.6148 330.9008 1.2286e?02 390.5690

Variant 5 313.4126 323.4483 332.0948 1.2413e?02 409.9210

Variant 7 312.5879 334.0380 344.6552 1.8445e?02 439.2875

TP6 APM 379.65373 379.74019 383.87949 1.0493e?02 475.87770

Variant 3 379.65592 379.72484 381.10749 4.7899e?01 428.31708

Variant 5 379.65388 379.72401 383.86117 1.0496e?02 475.91189

Variant 7 379.65356 379.72416 394.40452 2.3324e?02 545.23741
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the smallest standard deviation and the lowest worst value, and, thus, was the

method that stood out among the methods analyzed for this problem.

For the 60-bar, the method which obtained the best performance was Variant 3,

with a final weight of 311.9716 lbs and median of 319.6148 lbs. Finally, for the

72-bar truss, Variant 7 obtained the best final weight, 379.6535 lbs. However, the

other methods also presented similar values. Variant 5 presented the best median

value and Variant 3 is the variant with the best average and the smallest standard

deviation.

5.6 Analysis of the results

The best and average values obtained by the variants are used here as performance

metrics. The choice among these values depends on what the designer wants. The

first analysis using the value of the best, Fig. 10a, in the range s 2 ½1; 1:00005�,
shows the performance profile graphic, where Variant 7 presented the highest value

of qað1Þ and, therefore, had the best performance in a larger number of problems. In

Fig. 10b, all variants had the lowest value of s, such that qaðsÞ ¼ 1. However,

Variant 3 was the method which presented the highest robustness. The areas under

the performance profile curves are shown in Table 7. Variant 3, followed by Variant

7, obtained the highest values, 1 and 0.92846, respectively. Thus, Variant 3 should

be considered the method with the best global performance using the best value.

The performance profiles using the average values show interesting behavior

among the variants analyzed. It can be observed that Variant 7 is the variant with

better performance in the majority of problems (Fig. 11a), but it is not considered

robust. On the other hand, APM and Variant 3 do not present the best performance

in the majority of problems but presented the best performance in general (more

robustness) (Fig. 11b).
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In summary, Variant 3 is the variant that performed better when the best value of

the objective function is considered, followed by Variant 7. Using the average value

as the performance metric, the original APM found the best result among the

variants analyzed, followed by Variant 3. Thus, considering the best value as

performance metric commonly used among designers, Variant 3 is the variant with

the best global performance among the set of methods analysed.

Tables 9, 10, 11, 12, 13 and 14 show the final design variables, the objective

function (W) and the number of function evaluations (nfe) for the Test Problems 1–6

using Variant 3 compared with results found in the literature. The stop criteria

adopted here is the maximum number of objective function evaluations (indicated

by nfe). The values presented in Tables 9, 10, 11, 12, 13 and 14 indicate that Variant

3 obtained results competitive with those found in the literature. One can notice that

the results obtained by the proposed technique are: (1) better than the result

presented in Lemonge et al. (2015) and equal to those from the other references,

when using the same number of function evaluations and when TP3 (Table 11) is

solved; (2) equal to that presented in Sadollah et al. (2012) and better than those

Table 7 Normalized areas under the performance profiles curves using the best value

Method Variant 3 Variant 7 APM Variant 5

Area 1 0.92846 0.86026 0.83354

Table 8 Normalized areas under the performance profiles curves using the average value

Method APM Variant 3 Variant 5 Variant 7

Area 1 0.99292 0.94760 0.75057
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obtained by the other references, when TP4 (Table 12) is considered; (3) better than

those presented by the references used in the comparisons, when solving TP6

(Table 14); and (4) worse, but competitive, than the results found in the literature,

when TP1, TP2, and TP5 are considered.

Figure 12 plots the fitness value of the best solution found in every iteration for

the 72-bar truss. In Fig. 12a, one can seen that the best solution found at iteration

Table 9 Final design variables and objective function (weight—W) found for the 10-bar truss - discrete

case (TP1)

Variables This

study

SSGA (Lemonge

et al. 2015)

DE (Ho-Huu

et al. 2016)

aeDE (Ho-Huu

et al. 2016)

MBA (Sadollah

et al. 2012)

1 33.500 33.500 33.500 33.500 30.000

2 1.620 1.620 1.620 1.620 1.620

3 22.000 22.900 22.900 22.900 22.900

4 16.900 14.200 14.200 14.200 16.900

5 1.620 1.620 1.620 1.620 1.620

6 1.620 1.620 1.620 1.620 1.620

7 7.970 7.970 7.970 7.970 7.970

8 22.000 22.900 22.900 22.900 22.900

9 22.000 22.000 22.000 22.000 22.900

10 1.620 1.620 1.620 1.620 1.620

W 5509.717 5490.738 5490.738 5490.738 5507.750

nfe 20000 40000 6440 2380 3600

Table 10 Final design variables and objective function (weight—W) found for the 10-bar truss—

continuous case (TP2)

Variables This

study

SSGA (Lemonge

et al. 2015)

TCELL (Aragón

et al. 2010)

WEO (Kaveh and

Bakhshpoori 2016)

IMCSS (Kaveh

et al. 2015)

1 30.53823 30.46297 31.23829 30.57550 30.02580

2 0.10000 0.10000 0.31662 0.10000 0.10000

3 23.06187 23.28281 23.61073 23.33680 23.62770

4 15.26055 15.20222 14.50669 15.14970 15.97340

5 0.10000 0.10000 0.31623 0.10000 0.10000

6 0.54001 0.54515 0.31623 0.52760 0.51670

7 7.46597 7.44674 8.13509 7.44580 7.45670

8 21.02079 21.02321 21.61828 20.98920 21.43740

9 21.60389 21.55451 21.22159 21.52360 20.74430

10 0.10000 0.10000 0.31634 0.10000 0.10000

W 5060.915 5060.875 5142.30 5060.990 5064.600

nfe 280000 80000 280000 19540 8475
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700 is 379.655920. When 70 iterations are considered, the value obtained is

387.312588 (Fig. 12b).

New comparisons were provided in this paper. Plots were generated using the

values of normalized constraints, obtained from the solutions displayed in Tables 9,

10, 11, 12, 13 and 14. The constraints in the analyzed structural optimization

problems presented in this paper are given by the Eq. (2) (uj;k=�u� 1� 0, node

displacements) and Eq. (3) (rl;k=�r� 1� 0, normal stress). It can be expected, a

Table 11 Final design variables and objective function (weight—W) found for the 25-bar truss (TP3)

Variables This

study

SSGA (Lemonge

et al. 2015)

DE (Ho-Huu

et al. 2016)

aeDE (Ho-Huu

et al. 2016)

MBA (Sadollah

et al. 2012)

1 0.100 0.100 0.100 0.100 0.100

2 0.300 0.500 0.300 0.300 0.300

3 3.400 3.400 3.400 3.400 3.400

4 0.100 0.100 0.100 0.100 0.100

5 2.100 2.600 2.100 2.100 2.100

6 1.000 0.900 1.000 1.000 1.000

7 0.500 0.400 0.500 0.500 0.500

8 3.400 3.400 3.400 3.400 3.400

W 484.854 486.497 484.854 484.854 484.854

nfe 20000 20000 3500 1440 2150

Table 12 Final design variables and objective function (weight—W) found for the 52-bar truss (TP4)

Variables This

study

SSGA (Lemonge

et al. 2015)

DE (Ho-Huu

et al. 2016)

aeDE (Ho-Huu

et al. 2016)

MBA (Sadollah

et al. 2012)

1 4658.055 4658.055 4658.055 4658.055 4658.055

2 1161.288 1161.288 1161.288 1161.288 1161.288

3 494.193 285.161 494.193 494.193 494.193

4 3303.219 3303.219 3303.219 3303.219 3303.219

5 940.000 940.000 940.000 940.000 940.000

6 494.193 645.160 363.225 641.289 494.193

7 2238.705 2238.705 2238.705 2238.705 2238.705

8 1008.385 1008.385 1008.385 1008.385 1008.385

9 494.193 641.289 641.289 363.225 494.193

10 1283.868 1283.868 1283.868 1283.868 1283.868

11 1161.288 1161.288 1161.288 1161.288 1161.288

12 494.193 506.451 494.193 494.193 494.193

W 1902.605 1907.383 1903.366 1903.366 1902.605

nfe 17500 20000 13240 3720 5450
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value equal to ‘‘0’’ for active constraints. The desirable solutions are those where the

constraints are active, i.e., equal to ‘‘0’’ or very close to it. The plots of Figs. 13 14,

15, 16, 17 and 18 show these constraints for each compared solution (Tables 9, 10,

11, 12, 13, 14).

From these curves, it is possible to observe those constraints that are active or

close to it and the inactive ones. Besides, the curves show the similarities of the

solutions used for comparisons.

In these figures there are vertical lines dividing the x axes in two parts: the left

part (including the point at the vertical line) corresponds to the displacement

constraints, and the right one to the stresses constraints.

Table 13 Final design variables and objective function (weight—W) found for the 60-bar truss (TP5)

Variables This

study

SSGA

(Lemonge

et al. 2015)

APM (Barbosa

and Lemonge

2003)

CPM (Barbosa

and Lemonge

2003)

CP (Farshi and

Alinia-Ziazi

2010)

IGATA

(Li et al.

2014)

1 1.171786 1.230719 1.120234 1.190615 2.027300 1.218000

2 2.120145 2.186131 2.021994 2.277126 0.500000 2.161900

3 0.500000 0.500000 0.508797 0.605571 1.778100 0.000000

4 1.710471 1.811974 1.727272 1.573313 1.777500 1.769100

5 1.695954 1.402465 1.520527 1.375366 0.579300 1.738100

6 0.543523 0.550943 0.526393 0.508797 1.830500 0.000000

7 2.038263 1.931011 1.903225 1.934017 1.794700 1.975000

8 1.895264 2.259442 2.127566 2.052785 0.983000 2.079100

9 1.051748 1.057859 0.988269 1.239002 1.903100 2.053900

10 1.726629 1.926914 2.052785 1.819648 1.949700 1.786000

11 1.739545 1.663640 2.052785 1.639296 0.500000 1.769200

12 0.503238 0.500000 0.724340 0.526393 2.013500 0.000000

13 2.195972 2.502185 1.960410 2.197947 1.244100 2.161800

14 1.271449 1.247582 1.230205 1.234604 1.015600 1.248400

15 1.041964 1.043955 0.997067 1.049853 0.689600 1.082100

16 0.567591 0.542620 0.605571 0.759530 0.723300 0.696900

17 0.695008 0.500083 0.728739 0.614369 1.057800 0.714900

18 1.214659 1.065114 1.093841 1.120234 1.122600 0.996900

19 1.148367 1.120449 1.115835 1.115835 1.151200 1.157900

20 1.156885 1.149740 1.168621 1.155425 1.066400 1.141300

21 1.186998 1.072212 1.067448 1.186217 1.046700 1.023000

22 1.082519 1.124664 1.063049 1.071847 0.703900 1.195500

23 0.584492 0.666752 0.587976 0.790322 1.028000 0.697000

24 1.079818 1.121616 1.067448 1.265395 1.258800 1.082200

25 1.304250 1.556643 1.269794 1.269794 1.147500 1.248400

W 311.971 317.047 311.875 315.479 308.590 309.843

nfe 12000 60000 800000 80000 45 2500

714 É. C. R. Carvalho et al.

123



Furthermore, the curves presented in the plots inform the active constraints and

the natures of them, displacements (left part) or normal stresses (right part). For

example, observing the plots of Figs. 13 and 14, it is easy to note that two

displacement constraints (2 and 4) and one stress constraint (13) are active (very

close to ‘‘0’’). From Fig. 15, two constraints (2 and 4) with respect to the

Table 14 Final design variables and objective function (weight—W) found for the 72-bar truss (TP6)

Variables This

study

SSGA (Lemonge

et al. 2015)

MBA (Sadollah

et al. 2012)

GAOS (Erbatur and

Hasançebi 2000)

BGAwEIS

(Talaslioglu

2009)

1 0.155878 0.153477 0.196000 0.155000 0.156000

2 0.565341 0.567966 0.563000 0.535000 0.555000

3 0.403595 0.389219 0.442000 0.480000 0.370000

4 0.567440 0.521187 0.602000 0.520000 0.510000

5 0.512861 0.548322 0.442000 0.460000 0.620000

6 0.507786 0.527722 0.442000 0.530000 0.530000

7 0.100000 0.100000 0.111000 0.120000 0.100000

8 0.100268 0.142985 0.111000 0.165000 0.100000

9 1.247423 1.502253 1.266000 1.155000 1.250000

10 0.508832 0.532541 0.563000 0.585000 0.523000

11 0.100061 0.100000 0.111000 0.100000 0.101000

12 0.100000 0.100000 0.111000 0.100000 0.105000

13 1.887894 1.714703 1.800000 1.755000 1.860000

14 0.516307 0.473252 0.602000 0.505000 0.513000

15 0.100000 0.100000 0.111000 0.105000 0.100000

16 0.100280 0.100000 0.111000 0.155000 0.100000

W 379.655 382.018 390.730 385.76 380.730
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Fig. 12 Convergence for the 72-bar truss. a Using 700 generations (best = 379.655920) and b using 70
generations (best = 387.312588)

APM to solve constrained structural optimization problems... 715

123



displacements are active. From Fig. 16, there are five active or almost active

constraints, and so on, when observing the other curves. Also, for each solution, it

was calculated the sum of the absolute values of the constraints (SC) and, as

expected, comparing the solutions, the solution that has the highest value for this

sum will be the best among them. These plots are presented in Figs. 13, 14, 15, 16,

17 and 18.
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Fig. 13 Constraints for TP1—10-bar truss (discrete case). In this figure, and in Figs. 14, 15, 16, 17 and
18 the vertical lines (where it exists), divides the x axes in two parts: the left part (including the point at
the vertical line) corresponds to the displacement constraints, and the right one to the stresses constraints
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Fig. 14 Constraints for TP2—10-bar truss (continuous case)
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It is very important to observe that the results presented in references Farshi and

Alinia-Ziazi (2010) and Li et al. (2014), although slightly better than those,

rigorously feasible, presented in this study and in the references Barbosa and

Lemonge (2003) and Lemonge et al. (2015), are infeasible as shown in the curves

displayed in Fig. 17. There are several constraints in these solutions greater than

zero. Also, it is important to remark the difficulties to handle constraints either using
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Fig. 15 Constraints for TP3—25-bar truss
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Fig. 16 Constraints for TP4—52-bar truss
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a deterministic method such as in the reference Farshi and Alinia-Ziazi (2010) or an

evolutionary algorithm such as in the reference Li et al. (2014).

A new metric is proposed in this paper where several solutions can be compared

using the SC. It provides a way to verify a ‘‘distance’’ between the final design

variables, the cross-sectional areas of the bars in the engineering optimization

problems analyzed in this paper. One can observe from these curves that the

solutions are quite similar since the curves are practically the same. Using this new
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Fig. 17 Constraints for TP5—60-bar truss
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Fig. 18 Constraints for TP6—72-bar truss
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metric, SC indicates how close are the solutions. Tables 15 and 16 show the values

of SC for each test problem showing that the solutions are quite similar.

6 Concluding remarks and future work

This paper discusses a particle swarm algorithm (PSO) to solve constrained

structural optimization problems. An adaptive penalty method (APM) and several

variants of it are used. The PSO used in this work presents a change from the

conventional algorithm. An operator called ‘‘craziness velocity’’ is adopted and the

new algorithm is denoted CRPSO.

Firstly, seven APM variants are proposed and analyzed in order to discover

which ones present the best performance. Subsequently, the three best variants and

the original APM are used in the second analysis. It is important to note that the new

variants proposed in this paper have not been analyzed in previous works.

Table 15 Sum of the absolute values of the constraints (SC) for TP1, TP2 and TP3

TP1 TP2 TP3

CRPSO 11.687819 CRPSO 10.892855 CRPSO 24.824018

SSGA (Lemonge

et al. 2015)

11.642283 SSGA (Lemonge et al.

2015)

10.894458 SSGA (Lemonge

et al. 2015)

24.910422

aeDE (Ho-Huu

et al. 2016)

11.642283 IMCSS (Kaveh et al.

2015)

10.921155 aeDE (Ho-Huu

et al. 2016)

24.824018

DE (Ho-Huu

et al. 2016)

11.642283 WEO (Kaveh and

Bakhshpoori 2016)

10.897381 DE (Ho-Huu

et al. 2016)

24.824018

MBA (Sadollah

et al. 2012)

11.689038 TCELL (Aragón et al.

2010)

11.367268 MBA (Sadollah

et al. 2012)

24.824018

Table 16 Sum of the absolute values of the constraints (SC) for TP4, TP5 and TP6

TP4 TP5 TP6

CRPSO 23.864739 CRPSO 121.165158 CRPSO 196.601211

SSGA

(Lemonge

et al. 2015)

23.922283 SSGA (Lemonge

et al. 2015)

122.566531 SSGA (Lemonge

et al. 2015)

197.119539

aeDE (Ho-Huu

et al. 2016)

23.793616 APM (Barbosa and

Lemonge 2003)

121.016799 MBA (Sadollah

et al. 2012)

198.525051

DE (Ho-Huu

et al. 2016)

23.838532 CPM (Barbosa and

Lemonge 2003)

123.279729 GAOS (Erbatur and

Hasançebi 2000)

196.639829

MBA (Sadollah

et al. 2012)

23.864739 CP (Farshi and

Alinia-Ziazi

2010)

139.130030 BGAwEIS

(Talaslioglu 2009)

197.453209

IGATA (Li et al.

2014)

128.784990
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Considering that this paper has the major focus on the engineering optimization

problems, the main interest of a designer is to find the best solution sometimes

neglecting other metrics. In this way, from the results presented in Table 7, the

Variant 3 achieved the best performance and its use is recommended.

Take note that the best variant found in Lemonge et al. (2015) was not the same

as obtained in this study. However, the robustness of these two variants is very

similar, presenting very competitive results. A further important point is that the

proposed algorithm performs better when the problems have continuous variables

(Test Problems 5 and 6) and the algorithm proposed in Lemonge et al. (2015)

performed better when the variables are discrete (Test Problem 1).

For future work the development of a multi-objective PSO to solve structural

optimization problems in which, for example, the maximum displacement of the

nodes is a further objective to be minimized in searching for the minimum weight of

the structure, is intended, as is testing the new suite of functions available in the

literature (Liang et al. 2013), and checking the performance of the variants

highlighted in this paper. Finally, it is intended to apply APM to structural

optimization problems considering frequency constraints and optimum solutions

considering the best member groupings via cardinality constraints (Barbosa et al.

2008).

Acknowledgements The authors thank CNPq (305175/2013-0 and 305099/2014-0) FAPEMIG (Grants

TEC PPM 528/11, TEC PPM 388/14 and APQ 00103-12) and CAPES for their support.

References

Aragón VS, Esquivel SC, Coello CAC (2010) A modified version of a t-cell algorithm for constrained

optimization problems. Int J Numer Methods Eng 84(3):351–378

Barbosa HJ, Lemonge AC (2003) A new adaptive penalty scheme for genetic algorithms. Inf Sci

156(3):215–251

Barbosa HJC (1999) A coevolutionary genetic algorithm for constrained optimization. In: Proceedings of

the congress on evolutionary computation (CEC), vol 3. IEEE, p 1611

Barbosa HJC, Lemonge ACC (2002) An adaptive penalty scheme in genetic algorithms for constrained

optimiazation problems. In: GECCO 2002: proceedings of the genetic and evolutionary computation

conference. Morgan Kaufmann Publishers, New York, pp 287–294

Barbosa HJC, Lemonge ACC (2008) An adaptive penalty method for genetic algorithms in constrained

optimization problems. Front Evol Robot 34:596

Barbosa HJC, Lemonge ACC, Borges CCH (2008) A genetic algorithm encoding for cardinality

constraints and automatic variable linking in structural optimization. Eng Struct 30(12):3708–3723

Barbosa HJC, Bernardino HS, Barreto AMS (2010) Using performance profiles to analyze the results of

the 2006 CEC constrained optimization competition. In: Proceedings of the IEEE congress on

evolutionary computation (CEC). IEEE, pp 1–8

Barbosa HJC, Lemonge ACC, Bernardino HS (2015) A critical review of adaptive penalty techniques in

evolutionary computation. In: Evolutionary constrained optimization. Springer, pp 1–27

Bernardino HS, Barbosa HJC, Fonseca LG (2011) Surrogate-assisted clonal selection algorithms for

expensive optimization problems. Evol Intell 4(2):81–97

Coello CAC (2002) Theoretical and numerical constraint-handling techniques used with evolutionary

algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng

191(11–12):1245–1287

Dobslaw F (2010) A parameter-tuning framework for metaheuristics based on design of experiments and

artificial neural networks. Int J Comput Electr Autom Control Inf Eng 4(4):75–78
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