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Abstract Many aspects of reservoir management can be expected to benefit from

the application of computational optimization procedures. The focus of this review

paper is on well control optimization, which entails the determination of well set-

tings, such as flow rates or bottom hole pressures, that maximize a particular

objective function. As is the case with most reservoir-related optimizations, this

problem is in general computationally demanding since function evaluations require

reservoir simulation runs. Here we describe reduced-order modeling procedures,

which act to accelerate these simulation runs, and discuss their use within the

context of well control optimization. The techniques considered apply proper

orthogonal decomposition (POD), which enables the representation of reservoir

states (e.g., pressure and saturation in every grid block) in terms of a highly reduced

set of variables. Two basic approaches are described—the direct application of

POD-based reduction at each Newton iteration, and a trajectory piecewise lin-

earization (POD-TPWL) procedure that applies POD to a linearized representation

of the governing equations. Both procedures require one or more pre-processing

‘training’ simulation runs using the original full-order model. The use of both

gradient-based optimization methods (including adjoint procedures) and direct

search approaches with reduced-order models is described. Several concepts rele-

vant to the general topic, including adjoint formulations and controllability, are also

reviewed. Numerical results are presented for both approaches. In particular, the
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POD-TPWL procedure is applied to a computationally demanding bi-objective

optimization problem, where it is shown to provide reasonable accuracy and a high

degree of speedup.

Keywords Production optimization � Reduced-order models � Reservoir
simulation � Controllability � Proper orthogonal decomposition � Trajectory
piecewise linearization

1 Introduction

A wide variety of reservoir management issues can be addressed through the

application of formal optimization procedures. In planning new wells, key questions

include the determination of the optimum well location, well type (injector or

producer; vertical, horizontal or multilateral) and drilling schedule, given opera-

tional and economic constraints. For existing wells, significant benefit can be

achieved through optimization of well settings (well controls) such as bottom hole

pressures (BHPs) or flow rates, as a function of time. By optimizing these settings,

oil production can be increased and the time at which injected fluids appear at

production wells (referred to as breakthrough time) can be delayed. The use of

optimization for different aspects of reservoir characterization and management is

discussed in, e.g., Echeverrı́a Ciaurri et al. (2011b), Jansen (2011), Oliver and Chen

(2011) and Velez-Langs (2005).

In this work, our focus will be on the well control problem. This is a form of

model-based optimization, also referred to as flooding optimization, recovery

optimization, sweep optimization, life-cycle optimization, or production optimiza-

tion. We note that the latter name may be confusing because it is traditionally used

for short-term optimization of well rates (without large simulation models, and on a

time scale of days to months), rather than for optimization over the entire life of the

field (simulation-based, and on a time scale of years to decades as considered in this

paper). The determination of optimal well settings generally requires that the

forward flow simulation problem be run many times (depending on the underlying

optimization algorithm and the size of the search space, tens to thousands of

simulations may be needed). If the forward flow simulation is itself computationally

demanding, which will be the case when the model contains a large number of grid

blocks and/or complicated physics, the computational demands for the optimization

can be excessive. This has motivated the development of reduced-order models, or

more generally surrogate models. Ideally, surrogate models should run much faster

than the full-order representation while providing a sufficiently accurate approx-

imation of the model outputs required for the optimization.

Our goal in this paper is to provide a review and synthesis of approaches for

model-order reduction that are applicable within the context of well control

optimization. The approaches considered involve the application of proper

orthogonal decomposition (POD) to solutions, or ‘snapshots,’ generated during

one or more ‘training’ simulations. This enables subsequent solutions of the forward

model, which are required during optimization, to be represented as linear
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combinations of a relatively small number of basis functions. These basis functions

are simply the columns of the POD basis matrix, and the unknowns are the

coefficients multiplying each basis function. Depending on the specific way in

which POD is used with the simulation equations, a range of speedups (and model

accuracies) can be achieved. POD-based reduced-order models have been used in a

wide variety of application areas, and the general method is known under various

names such as the Karhunen–Loève decomposition or the method of empirical

orthogonal functions. The use of POD for various applications involving subsurface

flow simulation is described in, e.g., Astrid et al. (2011), Cardoso et al. (2009),

Gharbi et al. (1997), Gildin et al. (2006), Heijn et al. (2004), Kaleta et al. (2011),

Krogstad (2011), Markovinović and Jansen (2006), van Doren et al. (2006) and

Vermeulen et al. (2004).

One reduced-order modeling procedure, referred to as POD-based trajectory

piecewise linearization or POD-TPWL (Rewienski and White 2003), entails the

combined use of the POD representation with linearization around saved states.

These saved states are solutions of the full-order model generated during one or

more training runs. The linearization also requires that the Jacobian matrices

associated with the converged solutions be saved. The linearized representation is

projected into a low-dimensional subspace using POD, which enables subsequent

solutions to be computed very efficiently. POD-TPWL has been applied for

reservoir simulation in Cardoso and Durlofsky (2010a, b), He et al. (2011), He and

Durlofsky (2014, 2015).

The general problem of well control optimization has been addressed using both

gradient-based and derivative-free procedures, and we will now discuss some of the

relevant literature. The most efficient gradient-based approaches apply adjoint

techniques to provide gradients of the cost function with respect to the control

parameters. These methods are effective and very efficient but, because they are

invasive with respect to the flow simulator, can only be applied when full access to

the simulator exists. Adjoint-based approaches were first applied for well control

optimization by Ramirez (1987). More recently, these techniques have been

incorporated by, e.g., Brouwer and Jansen (2004), Sarma et al. (2008, 2006), van

Essen et al. (2011), Kourounis et al. (2014). For further references, see the review

paper Jansen (2011). Prior to their use for production optimization, adjoint-based

techniques were applied for history matching; for a detailed review, see Oliver et al.

(2008). Other techniques originally developed for history matching were also later

applied to the well optimization problem. Examples include streamline-based

optimization of well rates, as described in Alhuthali et al. (2007) and Thiele and

Batycky (2006), or the use of ensemble methods (EnOpt), in which an approximate

gradient is computed without adjoints (Su and Oliver 2010). Another way to obtain

approximate gradient information is through the use of simultaneous perturbation

stochastic approximation (SPSA); see Spall (1998) for details on this method, and

Wang et al. (2009) for a comparison of SPSA, EnOpt and adjoint-based approaches

in well control optimization.

Derivative-free methods have also been studied for this problem. The techniques

considered can be classified as stochastic global search methods and local
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deterministic approaches. The stochastic search algorithms applied to this problem

include genetic algorithms (Goldberg 1989) and particle swarm optimization

(Kennedy and Eberhart 1995). These algorithms are noninvasive and parallelize

readily, though they are population-based and thus require a large number of

function evaluations (reservoir simulation runs in this context). Applications for

well control optimization appear in Almeida et al. (2007), Matott et al. (2006),

Echeverrı́a Ciaurri et al. (2011a), Isebor and Durlofsky (2014) (note that, in Matott

et al. 2006; Isebor and Durlofsky 2014, well location was also optimized). Direct-

search methods that have been applied for well control optimization include

generalized pattern search (Audet and Dennis Jr 2002; Kolda et al. 2003; Conn

et al. 2009), mesh adaptive direct search (Audet and Dennis Jr 2006; Conn et al.

2009) and Hooke-Jeeves direct search, Hooke and Jeeves (1961). Optimization

results using derivative-free methods, for a variety of well control optimization

problems including some with general (nonlinear) constraints, are presented in

Echeverrı́a Ciaurri et al. (2011a, b).

The use of reduced-order models for well control optimization has been

considered in a few previous studies. The first such effort within the context of

reservoir simulation appears to be that of van Doren et al. (2006), where reduced-

order models were incorporated into an adjoint-based optimization. Occasional

retraining (i.e., regeneration of the POD basis) was applied in this work. The

speedups achieved relative to using full-order models in the optimization were

relatively modest, though this work did demonstrate the viability of using ROMs for

this application.

The POD-TPWL procedure has also been used for well control optimization

(Cardoso and Durlofsky 2010a, b; He et al. 2011; He and Durlofsky 2014). This

approach has been coupled with both gradient-based and derivative-free (general-

ized pattern search) optimization techniques. In Cardoso and Durlofsky (2010a, b)

the gradients were computed using numerical differentiation, which is viable with

POD-TPWL because forward simulations are very inexpensive. The method has

also been applied to perform bi-objective optimization (Cardoso and Durlofsky

2010a).

This paper proceeds as follows. In Sect. 2, we present the optimization problem

and provide brief overviews of optimization procedures that are well suited for use

with reduced-order modeling. Section 3 presents the basic POD procedure and

discusses the general concept of controllability. The POD-based and TPWL

reduced-order modeling (ROM) procedures, and their use in the context of well

control optimization, are described in Section 4. Optimization results for an example

problem appear in Sect. 5. Concluding remarks are provided in Sect. 6.

2 Optimization problem and algorithms

In this section we introduce the basic optimization problem and then briefly describe

two optimization procedures that have been used with reduced-order models – the

adjoint (gradient-based) approach and the use of the derivative-free generalized
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pattern search. We begin by discussing the underlying reservoir simulation

equations.

2.1 Reservoir simulation

All optimization methods are used in combination with a reservoir simulator, which

computes the time evolution of the reservoir state using some form of time and

spatial discretization of the underlying partial differential equations (Aziz and

Settari 1979). In an abstract form the simulator can be represented as

gnþ1ðxnþ1; xn; unþ1Þ ¼ 0; n ¼ 0; . . .;N � 1; ð1Þ

where subscripts refer to discrete instants n of time, with N the total number of time

steps. Furthermore g : Rk ! Rk is a vector-valued nonlinear function, x 2 K � Rk

is a vector of reservoir state variables (pressures, saturations or component con-

centrations), and u 2 M � Rm is a vector of control variables in the wells. In

practice u could represent any combination of well flow rates, bottom hole pressures

(BHPs), or tubing head pressures (THPs). The sets K and M are subsets of the set of

real numbers because their elements are constrained to stay within physical limits;

e.g., pressures are always positive and saturations have values between zero and

one. Starting from given initial conditions x0, the implicit recursive Eq. (1) is

typically solved using a time stepping algorithm with Newton iteration to reduce the

residual at each time step to a preset tolerance.

In the following we will frequently use an even more compact notation to

represent the simulator as

gðx; uÞ ¼ 0; ð2Þ

where g, x and u (without subscripts) can be interpreted as ‘concatenated vectors’

g ¼ ½gT1 ; gT2 ; . . .; gTN �
T ; g : Rp ! Rp; ð3Þ

x ¼ ½xT1 ; xT2 ; . . .; xTN �
T ; x 2 P � Rp; ð4Þ

u ¼ ½uT1 ; uT2 ; :::; uTN �
T ; u 2 Q � Rq: ð5Þ

In these expressions p ¼ k � N and q�m� N, where the inequality holds if the

number of control time steps is smaller than the number of simulation time steps N.

2.2 Well control optimization problem

The production optimization problem can be expressed as

min
u2Q

J u; xðuÞð Þ subject to c u; xðuÞð Þ� 0; ð6Þ

where J 2 R is the objective function we seek to minimize and c : Rpþq ! Rr

represents the nonlinear constraints. Linear input constraints and bounds on the

input are included in the set Q � Rq. In the remainder of this paper we will tacitly
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assume that physical limitations or other constraints on u and x are present and

simply write u 2 Rq etc. Nonlinear state constraints appear if we specify, e.g.,

maximum water-oil ratio or minimum oil rate. Typical objective functions could be

the negative of cumulative oil produced or the negative of net present value (NPV).

The latter is computed as:

JNPV u; xðuÞð Þ ¼ �
XNt

i¼1

ro � qo;i xðuÞð Þ � cwp � qwp;i xðuÞð Þ � cwi � qwi;i uð Þ
ð1þ bÞi

; ð7Þ

where Nt is the total production time (in years), ro is oil price, cwp and cwi are the

water production and injection costs, b is the yearly discount rate, and qo;i, qwp;i and

qwi;i are the oil and water production rates and the water injection rate, respectively,

for year i. Here it is assumed that we can directly control the water injection rates,

which are therefore a direct function of u, whereas the oil and water production rates
are functions of the states x (more specifically, of the well-block pressures and

saturations) and are therefore an indirect function of u. Prices and costs are in units

of $/STB (‘STB’ refers to stock tank barrel; 1 STB = 0.1590 m3) and flow rates are

in units of STB/year. For a given u, the flow rate quantities, as well as the degree of

constraint violation (if any), are computed by performing a reservoir simulation.

Both gradient-based and derivative-free algorithms will be described. Within the

context of derivative-free approaches, the POD-based reduced-order models devel-

oped here are best suited for use with local deterministic (rather than global stochastic)

search techniques. This is because theseROMs can be expected to retain accuracy only

for pressure and saturation states that lie within some neighborhood of the training

simulation.Well control optimization is an iterative process because the reservoir flow

equations are too complex to solve for the optimal control vector û in one step. Using

local search methods, the vector of controls ukþ1 at iteration k þ 1 differs relatively

slightly from uk at the previous iteration (assuming algorithm parameters are specified

appropriately), which suggests that the states associated with iterations k and k þ 1

will also resemble one another. Thus, the POD-based ROM can be expected to

maintain accuracy for some number of iterations. With a global stochastic search

method, by contrast, ukþ1 and uk can differ substantially (i.e., they may correspond to

entirely different regions of the search space), so we cannot expect the POD

representation to necessarily maintain accuracy.

2.3 Adjoint-based optimization

Within the wide class of optimization methods applicable to large-scale problems,

the most efficient approaches use the gradient of the objective function with respect

to the controls:

rJ ¼ dJ

du

� �T

: ð8Þ

Because the objective function is typically a complicated function of u, through its

dependence on u via x, computation of the derivative dJ=du is not straightforward.

Setting aside for now the nonlinear constraints c, the relationship between x and u is
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governed by the system equations given in Eq. (2). The derivative can therefore be

computed formally through implicit differentiation (Bryson and Ho 1975):

dJ

du
¼ oJ

ou
þ oJ

ox

ox

ou
¼ oJ

ou
� oJ

ox

og

ox

� ��1
og

ou
: ð9Þ

Introducing the auxiliary variable

kT ¼ oJ

ox

og

ox

� ��1

; ð10Þ

Eq. (9) can be rewritten as

dJ

du
¼ oJ

ou
� kT

og

ou
: ð11Þ

Here k 2 Rp is a ‘concatenated vector’ of so called co-state variables or Lagrange

multipliers, and og=ox 2 Rp�p is a ‘concatenated Jacobian matrix’ with a special

sparse structure. A detailed analysis shows that after expansion of the ‘concatenated

quantities,’ the co-state vectors kn can be computed from a linear implicit recursive

relationship solved backward in time (see Kraaijevanger et al. 2007). Computation

of the derivative dJ=du with the adjoint method therefore requires a forward non-

linear simulation to compute the state variables x, and a backward linear simulation

to compute the co-state variables k, after which the derivative follows from

Eq. (11). This is computationally a very efficient procedure in comparison with a

finite difference approach, which would require one forward base simulation plus q

forward perturbed simulations to compute dJ=du. We note that the backward

computation may require an adapted version of the pre-conditoning scheme used for

the forward computation (see Han et al. 2013). Moreover, it is generally necessary

to compute the forward simulations with tight nonlinear solver tolerances in order to

obtain accurate adjoint gradients.

The adjoint method can also be derived by considering a constrained

optimization problem

min
u

�J u; x; kð Þ ¼ min
u

J u; xð Þ þ kTg u; xð Þ
� �

; ð12Þ

where the Lagrange multiplier vector k serves to adjoin the ‘system constraints’ g to

the objective function J. For an optimal control û, the first derivatives of the aug-

mented objective function �J with respect to u; x and k must vanish. For a near-

optimal control u we again find Eq. (11). Nonlinear equality constraints can be

incorporated in a similar manner. Nonlinear inequality constraints are generally

much more difficult to implement and various approaches have been explored. We

refer to Jansen (2011), Kourounis et al. (2014), Sarma et al. (2008) for further

discussion.

After computation of the gradient, various gradient-based algorithms are

available to search for the next improved control vector u; see e.g., Nocedal and

Wright (2006). In the simplest case, a steepest descent is used to take a step along

the gradient direction, either with a fixed step size, or with a line search algorithm.
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More advanced methods search along a conjugate direction, obtained with the aid of

an approximation to the Hessian matrix d2J=du2. Among such ‘quasi-Newton’

methods the limited-memory Broyden-Fletcher-Goldfarb-Shannon (LBFGS)

method is particularly suited for very large problems; see Oliver et al. (2008).

Other approaches involve interior point or trust region methods.

2.4 Optimization using generalized pattern search

Generalized pattern search (GPS) algorithms are described in detail in Audet and

Dennis Jr (2002), Kolda et al. (2003), Conn et al. (2009). Their use for well control

optimization is discussed in Echeverrı́a Ciaurri et al. (2011a, b), and their use with

reduced-order models is presented in He et al. (2011). The algorithm used in He

et al. (2011) applies ‘polling’ within the search space. Designating the vector of

controls at iteration k as uk, during iteration k þ 1 the algorithm evaluates 2q new

solutions, where q is the dimension of the search space. The set of controls for each

new (trial) solution is prescribed by perturbing one component of uk by a specified

amount D. Because both positive and negative perturbations are applied, and

because all search directions are considered, 2q new solutions must be computed. Of

these 2q new solutions, the set of controls u that minimizes J is taken as ukþ1. The

algorithm proceeds in this way until no improvement in J is achieved, at which point

the stencil size D is reduced (different stencil sizes and stencil-size reductions can

be used for different variables). The algorithm terminates once a minimum stencil

size is reached, or when a maximum number of iterations has been performed.

There are several variants of this GPS approach that have been shown to be

effective. Within the context of production optimization, mesh adaptive direct

search (MADS), in which the stencil is selected randomly from an asymptotically

dense set of directions, has been applied. MADS is expected to have some

advantages in cases with noisy objective functions. In existing implementations of

GPS and MADS for production optimization, general (nonlinear) constraint

satisfaction has been accomplished using both penalty functions and filters

(Echeverrı́a Ciaurri et al. 2011a; Isebor and Durlofsky 2014). Filter-based methods

share some similarities with bi-objective optimization, as the optimization seeks to

minimize both the objective function and the constraint violation. Both the standard

GPS and MADS procedures parallelize very naturally since the O(q) function

evaluations required at each iteration can be performed on different processors.

3 Controllability of reservoir flow

This section describes some system-theoretical aspects of subsurface flow control as

an introduction to ROM. Although this material is not essential to our description of

reduced-order modeling procedures, it does provide insight into the often remarkable

level of reduction that can be achieved using ROMs. The optimization of oil recovery

through manipulating well controls is strongly related to the capacity to influence

subsurface flow behavior. In particular, the control of fluid front positions in the
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reservoir and phase arrival times at the wells is strongly related to our ability to control

streamlines (Alhuthali et al. 2007; Jansen 2011). Streamlines are governed by the

spatial derivatives of the pressure field, and the controllability of streamlines is

therefore closely related to the controllability of pressures in the reservoir. In the

theoretical case of a homogeneous reservoir, the controllability of a fluid front at some

distance from a well is very limited (Fyrozjaee and Yortsos 2006; Jansen et al. 2009;

Ramakrishnan 2007). However, in the case of strong heterogeneities there is often a

significant scope to influence streamlines, and hence front positions, because high-

permeable regions can act in some sense as ‘extensions’ to the wells (Jansen 2011).

3.1 Linear systems theory

The concept of controllability originates from linear systems theory (Kailath 1980).

A discrete dynamic system is fully controllable if it is possible to bring it from any

state to any other state in a finite time by manipulating the controls. Although the

reservoir flow equations are typically nonlinear, useful insight can be obtained by

first considering a simplified case in which the implicit nonlinear Eq. (1) is replaced

by an explicit linear expression:

xnþ1 ¼ Axn þ Bun; n ¼ 0; . . .;N � 1; ð13Þ

where A 2 Rk�k and B 2 Rk�m are called the system matrix and the input matrix

respectively. Such a simplified description gives a reasonable description of slightly

compressible single-phase flow if x is taken to represent the reservoir pressure. The

input vector u consists of prescribed flow rates or bottom hole pressures in the wells.

It can be shown that such a system is fully controllable if the controllability

Gramian

P 2 Rk�k
,

Xk�1

i¼0

AiBBT AT
� �i¼ CCT ð14Þ

has full rank (Kailath 1980). This is equivalent to the requirement that the con-

trollability matrix

C 2 Rk�k
, B AB A2B . . . Ak�1B
� �

ð15Þ

has full rank.Note that the superscripts ofA are exponents. A physical interpretation of

Eqs. (14) and (15) can be obtained by rewriting Eq. (13) as a recursive sequence:

x1 ¼ Ax0 þ Bu0;

x2 ¼ A2x0 þ ABu0 þ Bu1;

x3 ¼ A3x0 þ A2Bu0 þ ABu1 þ Bu2;

..

.

xk ¼ Akx0 þ Ak�1Bu0 þ . . .þ ABuk�2 þ Buk�1:

ð16Þ

Starting from an initial condition x0 ¼ 0, and a unit impulse input at time zero, i.e.,

u0 ¼ 1; u1 ¼ u2 ¼ . . . ¼ uk�1 ¼ 0, it follows that
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�xk ¼ Ak�1B; ð17Þ

where the accent indicates that the response results from an impulse input. Eq. (14)

can therefore be rewritten as

P ¼
Xk

i¼1

�xi �xið ÞT¼ �x1 �x2 . . . �xk½ �

�xT1
�xT2

..

.

�xTk

2

666664

3

777775
¼ CCT : ð18Þ

It is thus evident that the controllability matrix C ¼ �x1 �x2 . . . �xk½ � can be

interpreted as an impulse reponse, i.e., a series of subsequent state vectors resulting

from a unit impulse input at time zero.

3.2 Spatial covariance

Another interpretation is obtained by considering the definition of (an estimator of)

the spatial covariance between elements of the state vector x:

Covðx; xÞ 2 Rk�k
,

1

s� 1
~x1 ~x2 . . . ~xs½ �

~xT1
~xT2

..

.

~xTs

2
666664

3
777775
; ð19Þ

where s is the sample size, i.e., the number of state vector ‘snapshots’ in time used

to estimate the covariance, and ~x indicates a centered snapshot (estimated mean

subtracted):

~xi ¼ xi �
1

s

Xs

j¼1

xj: ð20Þ

Comparison of Eqs. (18) and (19) shows that the controllability Gramian P can be

interpreted as a generalized spatial covariance matrix.

3.3 Quantitative controllability

Rank deficiency of either C or P implies that not all states can be influenced by

manipulating the inputs. A rank test of C or P therefore gives a qualitative (yes/no)

answer to the question if a reservoir system is fully controllable. However, this

definition of controllability does not put any restrictions on the magnitude of the

inputs, i.e., it assumes that it is possible to exert positive or negative pressures or

flow rates of arbitrary magnitude in the wells, a condition that is clearly unrealistic.

A more meaningful, quantitative, measure of controllability is obtained by

performing an eigenvalue decomposition of P, or a singular value decomposition
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(SVD) of C, which allows for determination of the controllable subspace Zandvliet

et al. (2008). Choosing the SVD of C we obtain

NRWT ¼ C; ð21Þ

where the columns ofN 2 Rk�k, i.e., the left singular vectors, represent an ordered set

of linear combinations of the states x (i.e., for single-phase flow, linear combinations

of the grid block pressures). These linear combinations can be interpreted as spatial

pressure patterns that are decreasingly controllable. The corresponding singular val-

ues lie on the main diagonal of R 2 Rk�l, where l represents the number of nonzero

singular values (those singular values with a magnitude above machine precision).

The span of the first l left singular vectors is just the controllable subspace (i.e. all

possible controllable linear combinations of states). In reservoir simulationmodels we

have typically l � k, with k equal to the number of grid blocks and l on the order of

twice the number of wells (Zandvliet et al. 2008). Not surprisingly the most

controllable states (grid-block pressures) are those close to the wells and in high-

permeability areas.We note that the concept of controllability is a system property and

not a model property, and that, although we have presented these ideas in a spatially

discretized setting, the same conclusions can be reached by considering a continuous

representation. A similar analysis for the spatial derivatives of the pressure field for

single-phase flow leads to analogous conclusions: the controllable subspace is ofmuch

smaller dimension than the state space, and the most controllable pressure gradients

are those in the vicinity of the wells (Jansen et al. 2009). These results are only locally

valid in the state space, meaning they refer to controllability of the states close to a

reference state (also referred to as a ‘reference trajectory’ in the state space).

3.4 Empirical controllability Gramian

A similar restriction to local controllability around a reference trajectory is

unavoidable in the nonlinear analysis of two-phase flow. In that case the results for

controllability of the pressure field (although slowly time-varying) are similar to

those for single-phase flow, whereas the controllability of saturations is, logically,

restricted to regions close to the fluid fronts (van Doren et al. 2013). Among several

approximate techniques to analyze the controllability of nonlinear systems, there is

one which is closely related to ROM. This concerns the use of an ‘empirical

controllability Gramian’ constructed from a large number of system state

‘snapshots’ along a number of reference trajectories, each for a slightly different

input (control vector) (Lall et al. 2002). In a simplified form this can be expressed as

Pemp ¼
Xt

j¼1

Xs

i¼1

xji x
j
i

� �T¼
Xt

j¼1

x1 x2 . . . xs½ �j

xT1
xT2

..

.

xTs

2
66664

3
77775

j

; ð22Þ
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where s is the number of snapshots and t is the number of different control vectors.

For an application to reservoir simulation, see van Doren et al. (2013). In contrast to

Eq. (18), the controls uj; j ¼ 1; . . .; t here are typically not unit impulses, and the

‘snapshot matrices’ ½ x1 x2 . . . xs �j are therefore not unit impulse responses.

However, as in the linear case, it is possible to compute a (locally) controllable

subspace by taking an SVD of the snapshot matrix to determine the l singular

vectors corresponding to the l nonzero singular values. As will be discussed in the

next section, this is the same procedure that is followed to compute reduced-order

models with the aid of POD. Indeed, the fact that we have in general l � k means

that the controllable subspace is of much lower order than the state space. This is

precisely the reason why there is such a large scope for model-order reduction in

reservoir flow modeling and optimization. Note that because the empirical Gram-

mians are computed on the basis of an s� k snapshot matrix (and not on the basis of

a k � k system matrix as is the case for ordinary Grammians), their computation is

feasible, even for large models.

4 Optimization using ROM

In this section we describe the use of POD in reservoir simulation and gradient-

based optimization. We also introduce the POD-based trajectory piecewise

linearization (TPWL) procedure, which has been used with both gradient-based

and direct search (derivative-free) optimizers.

4.1 Basic POD-based ROM

Consider a sequence of s state vector snapshots collected in a matrix

X 2 Rk�s
,½ x1 x2 . . . xs �: ð23Þ

Here we assume that the snapshots have been generated by numerically solving the

system of nonlinear equations defined in (1). The number of snapshots s is at most

the number of simulation steps N, and nearly always s � k, so X is a tall, thin

matrix. Moreover, because the state vector typically contains elements of a com-

pletely different physical nature (e.g., pressures and saturations) and with large

differences in magnitude, it is customary to work with separate snapshot matrices

for the different parts of the state vector. For example, in the case of two-phase (oil-

water) flow it is customary to generate separate Nc � s matrices, designated Xp and

Xs, for the pressures and the saturations, where Nc is the number of grid blocks in

the reservoir model (Cardoso et al. 2009; van Doren et al. 2006). In the following

we will tacitly assume the use of separate snapshots, write Nc instead of k, and drop

the subscripts p and s.

As discussed above, XXT 2 RNc�Nc may be interpreted as a generalized spatial

covariance between the elements of the state vector. Because the rank of a tall

matrix can never be larger than the number of columns, it is clear that XXT is a
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(very) low-rank approximation of the generalized covariance. This effect can be

quantified by performing an SVD of X:

X ¼ NRWT ; ð24Þ

in which case we typically find a number j of nonzero singular values that is never

larger than s, and always much smaller than Nc. The corresponding singular vectors

constitute the first j columns of the Nc � Nc matrix N and can therefore be repre-

sented as an Nc � j matrix U. A further reduction is often obtained by only

maintaining the first l columns of U, where l\j, based on an ‘energy’ criterion in

which the total amount of energy present in the snapshots is defined as

Et ¼
Pj

i¼1 r
2
i , where ri are the singular values. The number of columns to be kept is

then computed as the largest number l 2 f1; . . .; jg that satisfies

E ¼
Pl

i¼1 r
2
i

Et

� a; ð25Þ

where a denotes the fraction of energy that should be maintained. Typical values of

a are between 0.95 and 1.

Apparently the information in the large covariance matrix XXT is limited and can

be represented with a small number of singular values and singular vectors. As

discussed in Sect. 3.4 this is equivalent to the statement that the local controllability is

very limited. ROM aims at using this physical effect to reduce the number of state

variables in the mathematical description of the reservoir. The basic idea is to express

the full state vector xn as a linear combination of a small number of basis functions:

xn ¼ Uzn þ en; ð26Þ

where zn is a time-varying vector of coefficients, en is a time-varying error term, and

the columns of U are the time-independent basis functions. Because U results from

an SVD it is an orthogonal matrix. Therefore the error en is zero for any value of x
that is in the span of U, which is only the case if x forms part of a full rank snapshot

matrix X. For the more general case of a vector x that is not in the span of the

snapshot matrix the error will not be zero and we have

xn 	 Uzn: ð27Þ

We refer to Antoulas (2005) for a detailed discussion of the error in ROM in

general, and to Cardoso et al. (2009) for strategies to optimize the snapshot

selection to minimize the error in a reservoir simulation setting. Under the

assumption that the error is small enough to be neglected, we can now rewrite the

explicit linear equation 13 as

Uznþ1 ¼ AUzn þ Bun: ð28Þ

Because U is orthogonal, it follows that

znþ1 ¼ UTAUzn þUTBun: ð29Þ

This premultiplication by UT is known as a Galerkin projection.
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Eq. 29 is a low-order dynamic equation in terms of the short (l� 1) vector z with

an l� l system matrix �A,UTAU and an l� m input matrix �B,UTB. Unfortu-

nately, �A and �B are full matrices, whereas A and B are typically very sparse.

However, for linear subsurface flow systems the order reduction is usually

significant, say from Oð105Þ to Oð102Þ. Moreover, the reduced-size matrix �A needs

to be constructed only once, as a preprocessing step. As a result, evaluation of the

(full) low-order system can be orders of magnitude faster than evaluation of the

(sparse) high-order system. A similar increase in speed is obtained in case of a linear

implicit formulation, which involves solving a system of equations at every time

step. POD is therefore a very effective model-order reduction technique for linear

flow problems (Vermeulen et al. 2004).

To apply a similar model-order reduction approach to the nonlinear equation (1),

we need to consider that reservoir simulation involves solving a linear system of

equations at every Newton iteration k. This procedure can be represented as

Jknþ1r
kþ1
nþ1 ¼ gknþ1; ð30Þ

xkþ1
nþ1 ¼ xknþ1 þ rkþ1

nþ1; ð31Þ

where rkþ1
nþ1 is the update vector and Jknþ1 ¼ ogknþ1=ox

k
nþ1 is the Jacobian matrix. A

reduced-order version of Eq. 30 can now be constructed:

UTJknþ1Urkþ1
nþ1 ¼ UTgknþ1: ð32Þ

As in the linear case, the reduced Jacobian �J,UTJU is now a reduced-size but full

matrix, whereas J is sparse. Moreover, in contrast to the linear case, it is now

necessary to assemble the full-order Jacobian matrix J at every Newton iteration and
then to perform the multiplications required in Eq. 32. As a result, the computa-

tional gains from using POD for nonlinear systems are much smaller than those for

linear cases. Specifically, typical speedup factors reported for subsurface flow

applications (relative to solutions of the full-order equations obtained with opti-

mized solvers) are between 3 and 10 (Cardoso et al. 2009; Heijn et al. 2004;

Markovinović and Jansen 2006).

We note that with current linear solvers and preconditioners, the total time spent

solving the linear system for large scale models typically does not exceed 90 %, in

which case the theoretical limit of speedup with POD would be about 10 times.

Over the past years, attempts have been made to improve the performance of POD

for nonlinear systems, in particular with the aid of discrete empirical interpolation

(DEIM), a technique that aims to approximate the nonlinear function at a limited

number of points in space. For applications to reservoir flow, see Ghasemi et al.

(2015), Sampaio Pinto et al. (2015). Moreover, it has been argued that higher-

quality basis functions (better capturing spatial continuity) are obtained by

performing the SVD using a higher-order tensor formalism rather than the snapshot

matrix as described above. In that case the state snapshots are not stored as vectors

and combined in a matrix, but are instead stored as matrices (2D or 3D, depending
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on the simulation performed) and combined in 3D or 4D tensors. For a reservoir

application, see Insuasty et al. (2015).

4.2 Example of POD-based ROM

As an example of the use of POD, consider the two-dimensional reservoir model

depicted in Fig. 1. The model contains 10,201 cells and 61 wells: 36 injectors and

25 producers arranged in a regular five-spot pattern. The constant porosity / is 0.3,

and the isotropic permeability field represents a channel structure with values

between 7 and 1700 mD. The rock, oil and water compressibilities are

cr ¼ co ¼ cw ¼ 7� 10�5psi�1, and the oil and water viscosities are lo ¼ 0:5 cp

and lw ¼ 1:0 cp, respectively. Relative permeabilities are represented using a

Corey model with exponents no ¼ nw ¼ 3, end points k0ro ¼ 0:9 and k0rw ¼ 0:6, and
residual saturations Sor ¼ Swc ¼ 0:2. The mid-field injectors operate at fixed rates of

109 bpd, and the injectors at the edges and corners operate at half and quarter values

of the full rates, respectively. The producers are operated at fixed bottom hole

pressures that are 145 psi below the initial reservoir pressure. No further well

constraints are imposed. We used an in-house Matlab simulator with a fully-implicit

time integration with Newton iterations and an automatic time-stepping scheme.

Simulation of the model for a period of 22.8 years, corresponding to the injection of

one moveable pore volume of water, results in water breakthrough in all producers.

For the purpose of constructing the basis matrix U, we used two sets of 290

unevenly spaced snapshots of the simulated pressure and saturation fields. We

applied the highest snapshot density just after start-up of the wells to capture the

transient behaviour of the pressures. Some representative examples of the saturation

snapshots are shown in Fig. 2. After constructing the snapshot matrices Xp and Xs,

performing SVDs (without subtraction of the means), and using a cut-off value

a ¼ 0:9999, we obtained the two matrices Up and Us, containing 120 and 121

columns respectively. The rapid drop of the singular values of the snapshot matrices

is evident in Fig. 3. Figure 4 depicts the first two basis functions for pressure and

saturation. Unlike predefined basis functions, as used in, e.g., a Fourier expansion,

Fig. 1 Permeability field (left) and constant porosity field with wells (right); blue dots indicate injectors
and red dots indicate producers. (Color figure online)
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the data-driven basis functions of the POD method display spatial features

representing the dominant dynamics.

Repetition of the forward simulation with the aid of POD, using the same input as

was used to generate the snapshots, resulted in solutions with accurate pressure and

saturation fields; see Fig. 5. The gain in computational speed was considerable for

this example: the reduced-order run required only 5 % of the time needed for the

full-order run (33 % including the pre-processing of the basis functions). We note

that the linear solver used in the full-order solution is not highly specialized for the

reservoir flow equations and was not optimized, so the speedups due to POD are

somewhat greater than would be achieved using a state-of-the-art simulator.

Moreover, we did optimize the basis functions (by varying the number of snapshots,

the snapshot spacing, and the values of a), which took several trial runs. Repetition

of the simulation with well specifications that are different from those used to

generate the snapshots will lead to larger errors. A priori determination of these

errors is in general not feasible, but clearly the errors will grow with increasing

deviation of the inputs, and therefore of the corresponding states, from their

reference trajectories. See, e.g., Cardoso et al. (2009), Heijn et al. (2004) for POD-

based simulation results where the controls differ significantly from those used in

the training runs.

4.3 Use of POD-based ROM in optimization

As noted above, in most cases it is not possible to quantify a priori the error between

the solutions of a POD-based reduced-order model and the corresponding full-order

model. Moreover, reducing the error to acceptable levels may require significant

Fig. 2 Oil saturation snapshots at four moments in time
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tuning which increases the pre-processing time, thus reducing the computational

benefits. This suggests the use of POD to create approximate solutions for situations

where the availability of such a low-order approximation can help to subsequently

obtain a detailed high-order solution in a significantly reduced computational time.

One way to accomplish this is to use POD solutions as an initial guess or as a

preprocessor in the iterative solution of linear systems of equations (Astrid et al.

2011; Markovinović and Jansen 2006). Another possible use of these solutions is in

well control optimization, in which the same model is simulated many times for a

Fig. 3 Singular values versus
number of columns in U for
pressure (left) and saturation
(right)

Fig. 4 First two basis functions for pressure (top) and saturation (bottom)
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large number of slightly different inputs in order to iteratively compute the optimal

well control. In that case it is attractive to first perform a full-order simulation and to

use this to construct a POD-based reduced-order model, then iterate to the optimal

control using reduced-order simulations, and finally perform a full-order simulation

to verify the results. If necessary these steps may be repeated, leading to a nested

sequence of full-order and low-order simulations. This procedure is illustrated in the

flow chart in Fig. 6.

Van Doren et al. (2006) applied this approach to adjoint-based optimization of

water flooding. To compute the adjoint solutions they applied a similar projection to

the ‘backward’ adjoint equations as to the ‘forward’ simulation equations. This

Fig. 5 Relative differences in pressure (left) and absolute differences in saturation (right)

Fig. 6 Flow chart for reduced-order water flooding optimization (after van Doren et al. 2006)
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provided reduced-order state vectors z and reduced-order Lagrange multiplier

vectors l. As discussed above, the nonlinear nature of the two-phase flow equations

requires that we perform the matrix multiplication UTJU every Newton iteration

during the forward simulation. Moreover, it was necessary to frequently recompute

the U matrix during the outer iterations of the optimization process. As a result the

reduction in computing time was quite modest and never exceeded 35 % of the time

needed for optimization using only the full-order model.

A different way to use POD in gradient-based well control optimization was

suggested by Kaleta et al. (2011). In this approach an approximate adjoint is obtained

by using the transpose of the reduced-order Jacobian matrix. This alleviates the

programming of an adjoint code, although it still requires that Jacobian matrices from

the forward solution be available to the user.Moreover, it requires a significant number

of forward simulations with slightly perturbed well control settings as a preprocessing

step. The method was not fully tested, but numerical results from a related approach

involving gradient-based optimization for history matching indicated a limited

numerical efficiency; i.e., a speedup of about a factor of 2 compared to a full-order

numerical perturbation approach (Kaleta et al. 2011).

4.4 POD-TPWL procedure

The POD-TPWL procedure is in general more approximate than the POD-based

ROM described above, but it can provide more substantial speedups. The POD-

TPWL method is described in detail in Cardoso and Durlofsky (2010a), He et al.

(2011), He and Durlofsky (2014, 2015); our more concise discussion here follows

the development in He and Durlofsky (2010). The basic idea is to represent new

solutions as linearizations around previously simulated solutions, and to project this

linearized representation into a low-order subspace. We begin by expressing the

discretized flow equations (1) as:

gnþ1ðxnþ1; xn; unþ1Þ ¼ anþ1ðxnþ1; xnÞ þ fnþ1ðxnþ1Þ þ qnþ1ðxnþ1; unþ1Þ ¼ 0; ð33Þ

where a, f and q are the discretized accumulation, flux and injection/production

terms, respectively.

Like the ROM described in Sect. 4.1, the POD-TPWL method requires one or

more full-order training simulations in which particular sequences of controls

(BHPs in this case) for each well are specified. From these training simulations, the

states and Jacobian matrices (for the converged states) are saved at each time step.

Then, for subsequent simulations, the solution is expressed as a linear expansion

around a saved state. Thus we write:

gðxnþ1; xn; unþ1Þ 	 gðxiþ1; xi; uiþ1Þ þ
og

ox

� �

iþ1

ðxnþ1 � xiþ1Þ

þ og

ox

� �

i

ðxn � xiÞ þ
og

ou

� �

iþ1

ðunþ1 � uiþ1Þ;
ð34Þ
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where unþ1 is the new set of controls (which are specified), xnþ1 is the new state we

wish to determine, xn is the (known) previous state, xi and xiþ1 designate two

sequential saved states (generated during the training runs), and uiþ1 are the controls

used in the training run. Note that, in our description here, subscripts i and iþ 1

always designate saved information. The detailed matrices ðog=oxÞi, ðog=oxÞiþ1 and

ðog=ouÞiþ1 are saved, along with the states, upon convergence at each time step of

the training runs.

Combining Eqs. (33) and (34), and recalling that the Jacobian matrix is given by

Jiþ1 ¼ ogiþ1=oxiþ1, enables us to represent new solutions (xnþ1) as (see Cardoso

and Durlofsky 2010a for details):

Jiþ1ðxnþ1 � xiþ1Þ ¼ � oaiþ1

oxi
ðxn � xiÞ þ

oqiþ1

ouiþ1

ðunþ1 � uiþ1Þ
� 	

: ð35Þ

Because Eq. (35) is linear, its solution does not require iteration. This equation is,

however, still in the original high-dimensional (full-order) space.

We thus introduce the POD representation, which maps from the high-

dimensional space to a low-dimensional subspace; i.e., we apply x 	 Uz, where
U is computed as described in Sect. 4.1. The U matrix is of dimensions 2Nc � l,

where Nc is the number of grid blocks in the full-order (high-fidelity) model and

l ¼ lp þ ls is the total number of basis vectors, with lp and ls the number of basis

vectors associated with pressure and saturation states respectively. Significant

reduction is achieved because l � Nc. A major contribution to the speedup seen

with POD-TPWL results from the application of POD and left-projection to

linearized equations rather than to nonlinear equations. Thus, it is possible to

precompute the reduced-order system matrices, whereas for the nonlinear case these

matrices must be recomputed at every Newton iteration.

Representing x in Eq. (35) as x 	 Uz, and then performing a Galerkin projection

(premultiplying both sides of the equation by UT ) gives, after some manipulation,

znþ1 ¼ ziþ1 � Jriþ1

� ��1 oaiþ1

oxi

� �r

ðzn � ziÞ þ
oqiþ1

ouiþ1

� �r

ðunþ1 � uiþ1Þ
� 	

; ð36Þ

where the superscript r indicates reduced and

Jriþ1 ¼ UTJiþ1U;
oaiþ1

oxi

� �r

¼ UT oaiþ1

oxi

� �
U;

oqiþ1

ouiþ1

� �r

¼ UT oqiþ1

ouiþ1

� �
: ð37Þ

The vectors and matrices appearing in Eq. (36) are of dimensions l and l� l

respectively, so this equation can be solved very efficiently. Evaluation of Eq. (36)

requires particular (reduced) saved states zi and ziþ1 around which the expansion is

performed. See Cardoso and Durlofsky (2010a) and He and Durlofsky (2014) for

the specific treatments used for this determination.

The POD-TPWL model given by Eq. (36) was shown to provide accurate results

for a variety of examples in Cardoso and Durlofsky (2010a), and this is the approach

used in Sect. 5 below. It was observed, however, that the model can encounter

numerical stability problems for some cases, such as those in which the densities of
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the oil and water phases differ significantly. This motivated the development of

procedures to stabilize the POD-TPWL representation. One such stabilization

approach entails the selection of an optimized basis (i.e., the determination of a

particular lp, ls combination) such that the stability properties of the resulting model

are improved (He et al. 2011). This is accomplished by minimizing the spectral

radius of an appropriately defined amplification matrix, as described in He et al.

(2011) and He and Durlofsky (2015). This method cannot guarantee numerical

stability, but it does provide stable POD-TPWL models in some cases. An

alternative approach, which appears to perform more reliably than the basis

optimization procedure, is to apply a Petrov–Galerkin projection instead of a

Galerkin projection procedure. In this case, rather than premultiplying the linearized

equation by UT , we premultiply by ðJiþ1UÞT . The definitions of the reduced

matrices in Eq. (37) change accordingly. See He and Durlofsky (2014, 2015) for

details and for examples demonstrating the enhanced stability, for both oil-water

and oil-gas compositional POD-TPWL models, achieved through use of this

Petrov–Galerkin approach.

In the example below involving optimization with POD-TPWL, the full-order

runs needed to generate the saved states, Jacobian matrices and U matrix are

performed using Stanford’s General Purpose Research Simulator, GPRS (Cao 2002;

Jiang 2007). The simulator has been modified to output the arrays required by POD-

TPWL.

4.5 Use of POD-TPWL in optimization

In the example presented in Sect. 5 below, we use two POD-TPWL training runs

and prescribe the well controls for these runs using a heuristic procedure. No

retraining is applied during the course of the optimization. This approach will be

seen to perform well for the case considered, but more sophisticated treatments have

been found to be advantageous in other cases. We now describe two such

approaches.

POD-TPWL was used within the context of a generalized pattern search (GPS)

procedure by He et al. (2011). The approach used in that work is depicted in Fig. 7.

A training simulation with well BHPs defined by the initial guess is first performed.

The states and Jacobian matrices are saved and the POD-TPWL model is

constructed as described in Sect. 4.4. Then the GPS optimization is started, and the

POD-TPWL representation is used for function evaluations. After a specified

number of function evaluations are performed, GPS is paused and a training

simulation is run at the current best point (the specified number of function

evaluations can vary during the course of the optimization). POD-TPWL is then

retrained at this point and GPS is resumed.

It is occasionally observed that, upon retraining, the objective function of the

current point, evaluated using the full-order model, is suboptimal relative to that of

the previous full-order solution. This inconsistency can occur when the POD-TPWL

solution loses accuracy because it is too far from the most recent training case.

When this problem is detected, the search is restarted from the previous retraining
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point and the number of function evaluations until the next retraining is reduced.

The size of the GPS mesh may also be reduced. We note that it should be possible to

incorporate more sophisticated criteria, possibly based on mass balance errors in the

POD-TPWL model (which are straightforward to compute), for retraining. Such

procedures will be considered in future work.

Another approach, which entails a two-stage training and optimization procedure,

was applied by Cardoso and Durlofsky (2010b). In that work, a gradient-based

technique, with gradients computed by numerical finite difference (using POD-

TPWL for function evaluations), was applied for the optimization. The first stage of

the procedure entails two initial (heuristic) training runs and construction of the

POD-TPWL model, followed by the full POD-TPWL-based optimization. After the

convergence of this (first-stage) optimization, an additional full-order training run,

using the final controls from the first-stage optimization, is simulated. A new U
matrix, based on the results from all three training runs, is then constructed. Using

this new U matrix along with the additional saved states, a second-stage POD-

TPWL-based optimization is performed. This procedure (full-order simulation using

controls from the previous optimization stage, followed by POD-TPWL model

construction, followed by POD-TPWL-based optimization) can be repeated if

necessary.

5 Optimization example using POD-TPWL

Because of the substantial speedups achievable using the POD-TPWL procedure,

the method is well suited for use in computationally demanding optimization

problems. Here we consider a bi-objective optimization, where we seek to maximize

cumulative oil produced and minimize cumulative water injected. These objectives

are in conflict, since additional water injection generally leads to increased oil

production.

Fig. 7 Flowchart for use of
POD-TPWL with generalized
pattern search (from He et al.
2011)

126 J. D. Jansen, L. J. Durlofsky

123



This example is from Cardoso and Durlofsky (2010a), and that paper should be

consulted for further details. To construct the Pareto front, we perform a large

number of single-objective optimizations, with the objective function modified in

each optimization run. Specifically, we maximize the net present value of the

process using a sequence of oil prices (from $10/stb to $150/stb), in increments of

$2/stb. Water injection and production costs are $10/stb in all cases. By varying the

ratio of the oil price to water costs, we vary the relative weightings of the two

objectives, which enables us to generate the convex portion of the Pareto front.

The problem set up is as follows. The reservoir model is a modified portion of a

channelized system presented in Christie and Blunt (2001). The model, shown in

Fig. 8, contains 24,000 grid blocks. There are four production wells and two

injection wells. Permeability is a diagonal tensor, with kx ¼ ky in all blocks. Vertical

permeability is prescribed as kz ¼ 0:3kx in the channels and kz ¼ 10�3kx elsewhere.

The mean kx is 418 mD and the mean porosity is 0.203. Oil and water densities and

viscosities are qo ¼ 45 lb/ft3, qw ¼ 60 lb/ft3, lo ¼ 3:0 cp, and lw ¼ 0:5 cp,

respectively. The system is incompressible.

The simulation time frame is 3000 days. We optimize only the BHPs of the four

production wells; injectors are prescribed to operate continuously at 10,000 psi. The

producer BHP bounds are 1000 and 4000 psia. These BHPs are updated every 250

days during the optimization, and the maximum change allowed from one control

step to the next is 250 psia. There are thus a total of 48 control variables (12 for each

production well). The optimizations are performed using ‘‘fmincon’’ in Matlab. We

compute the required gradients using numerical finite differences, which is feasible

when POD-TPWL is applied. Two training runs are used to generate the POD-

TPWL model. In one training run constant BHPs are applied, while in the second

training run a random sequence of BHPs are used (see Cardoso and Durlofsky 2010a

for the detailed well specifications). The POD-TPWL basis U is constructed with

‘p ¼ 250 and ‘s ¼ 150.

Fig. 8 Reservoir model (24,000 grid blocks) with four production wells and two injection wells used for
bi-objective optimization. Permeability in x-direction (in mD) is shown (from Cardoso and Durlofsky
2010a)
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Figure 9 displays a plot of cumulative oil produced versus cumulative water

injected for the optimized solutions. This curve represents the Pareto front for the

bi-objective optimization. Results using three different approaches are displayed in

this figure. The 9’s indicate optimizations performed using the POD-TPWL model

(71 such points were generated, meaning 71 single-objective optimization runs were

performed). The solid circles represent high-fidelity (GPRS) results computed for

some of the points on the Pareto front using the well settings determined from the

POD-TPWL optimizations. The fact that the 9’s and solid circles nearly coincide

indicates the accuracy of key quantities in the POD-TPWL model relative to those

computed by GPRS. For three cases we also performed the full optimization using

the high-fidelity model (these results are indicated by triangles). The correspon-

dence of these results to the other two sets of points further demonstrates the

applicability of POD-TPWL-based optimization for this problem.

The 71 optimizations performed using POD-TPWL required a total of nearly

14,000 runs. The runtime speedup using POD-TPWL (relative to GPRS) for this

case was about a factor of 500. Including overhead, POD-TPWL required less than

4 h for these computations. We estimate that the use of the high-fidelity GPRS

model for this case would have required about 69 days of computation. Thus the

benefit of POD-TPWL for this example is very substantial. Note, however, that the

use of an adjoint procedure (rather than numerical finite difference) for computing

gradients would result in many fewer simulations. Thus, the computational

requirements using the high-fidelity GPRS model could be greatly reduced in this

case, though they would still exceed that required by POD-TPWL.

6 Concluding remarks

In this paper we described several concepts and methods relevant to the use of

reduced-order models within the context of production optimization. The reduced-

order modeling techniques considered applied proper orthogonal decomposition

(POD) to provide a low-order representation of the state vector. In one set of

approaches, the POD-based reduction is applied at each Newton iteration at every

time step. Although this leads to a much smaller linear system of equations than in

the full-order system, speedups using this technique are limited because the

Fig. 9 Pareto front showing
tradeoff between optimized
cumulative oil produced and
cumulative water injected (from
Cardoso and Durlofsky 2010a)
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construction of the reduced Jacobian matrix is itself time consuming. Another

approach, trajectory piecewise linearization, combines a linearized representation

with POD. This leads to a more approximate reduced-order model, but speedups are

in general much more substantial than those achieved using POD alone.

Reduced-order models are well suited for use with local optimization techniques

since the states encountered during the optimization, at least at early iterations, can

be expected to resemble those generated during the pre-processing training runs.

Strategies for using POD-based reduced-order models within the context of an

adjoint procedure were described, as were approaches for using POD-TPWL models

with direct search (GPS) and gradient-based (numerical finite difference) methods.

Numerical results for a computationally challenging bi-objective optimization

problem demonstrate the potential advantages offered by these approaches.

There are a number of issues that must be addressed before these or other related

reduced-order modeling procedures can be used reliably for practical optimization

problems. Areas deserving of further investigation include the extension and testing

of reduced-order modeling techniques for large realistic problems, the development

of procedures to determine the range of validity of a particular reduced-order model

(such techniques, within the context of an optimization procedure, will indicate

when retraining is necessary), and the development of approaches for further

accelerating POD-based techniques that do not apply linearization. Topics along

these lines will be addressed in future work.
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