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Abstract The focus of this paper is to detail the quantity and quality modeling

aspects of production flowsheets found in all process industries. Production flow-

sheets are typically at a higher-level than process flowsheets given that in many

cases more direct business or economic related decisions are being made such as

maximizing profit and performance for the overall plant and/or for several inte-

grated plants together with shared resources. These decisions are usually planning

and scheduling related, often referred to as production control, which require a

larger spatial and temporal scope compared to more myopic process flowsheets

which detail the steady or unsteady-state material, energy and momentum balances

of a particular process unit-operation over a relatively short time horizon. This

implies that simpler but still representative mathematical models of the individual

processes are necessary in order to solve the multi time-period nonlinear system

using nonlinear optimizers such as successive linear programming and sequential

quadratic programming. In this paper we describe six types of unit-operation models

which can be used as fundamental building blocks or objects to formulate large

production flowsheets. In addition, we articulate the differences between continuous

and batch processes while also discussing several other important implementation

issues regarding the use of these unit-operation models within a decision-making

system. It is useful to also note that the quantity and quality modeling system

described in this paper complements the quantity and logic modeling used to

describe production and inventory systems outlined in Zyngier and Kelly
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(Optimization and logistics challenges in the enterprise, Springer, New York 61–95,

2009).
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1 Introduction

In typical process industries such as oil and gas processing, petroleum refining,

petrochemicals, bulk and specialty chemicals, food and beverage, pharmaceuticals,

polymers and plastics, value-add is achieved through the batch and continuous unit-

operations of blending, reacting (transforming) and separating. There are also other

types of hybrid processes found in the process industries such as metals smelting

and casting, pulp and paper and meat processing where there are batch and

dimensional (geometry or shape) unit-operations with usually pipe-less transfers of

materials. On the other hand in discrete industries (apparel, appliances, automotive,

electronics, instruments, furniture, etc.), value is added through activities, tasks or

phases such as machining, assembling and trimming. An important differentiator

between the two industries is the breakdown of production into three key

dimensions: quantity, logic and quality (QLQ). The discrete industries, in spite of

having the dimension of quality, deal mainly with the aspects of quantity and logic

when managing their production. In this case, quantity relates to the amount or

number of items whereas logic represents the operating rules or manufacturing

procedural details. Quality in the context of this paper refers to the components

(compositions or concentrations), properties and conditions of the material or stock

being processed by the different types of unit-operations. Quality is also defined as

the amount of variability in the performance of the company and in the traits,

attributes or characteristics of the company’s products (Bodington 1995) where it is

this definition that ties the aspects of quality across both the discrete and process

industries.

With respect to the tractability of the models, considering all three types of QLQ

variables and constraints simultaneously becomes both discrete and nonlinear due to

the binary and integer nature of the logic variables and the multilinear terms of

quantity times quality. In order to avoid solving a mixed-integer nonlinear problem,

which is still challenging for industrial-sized problems, these models can be

decomposed or separated into two simpler sub-models, namely a logistics (quantity

and logic) and a quality (quantity and quality) optimization. The logistics model

solves for quantity and logic variables subject to quantity and logic balances and

constraints (Kelly and Mann 2003; Kelly 2004a, 2006 and Zyngier and Kelly 2009).

Quality optimization solves for quantity and quality variables subject to quantity

and quality balances and constraints (Kelly 2004a, c) usually after the logic

variables have been fixed at the values obtained from the solution of the logistics

optimization. Fortunately solving for logistics first then quality is actually somewhat

intuitive and natural given that if the quantity and logic details are not feasible (or

consistent) then the quantity and quality details will also not be feasible. Hence, this
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provides some level of intelligent problem solving structure by allowing for a staged

or progressive workflow when making production or manufacturing decisions.

The purpose of this article is to describe how the complexities of the quality

optimization problem can be formulated using several standard and straightforward

process unit-operation models, which when created and connected into to a larger

material flow path, forms a production flowsheet, network or superstructure of the

overall system being optimized or solved. This type of production flowsheeting is

overviewed in Kelly (2004b) and can also handle the nuances of having several

modes of operation attached to the same physical unit or equipment. It is important

to state explicitly that the process models described here are not necessarily the

same type of process models found in commercial process simulators or optimizers.

Our basic notion is that many types of process industry production flowsheets can be

modeled adequately and accurately using several rudimentary constructs which

mainly involve simplified formulations of mass-transfer and reaction-kinetic like

operations (Hines and Maddox 1985; Taylor and Krishna 1993; Henley and Seader

1981; Levenspiel 1998, Smith et al. 2000) but modeled in a relatively simple

fashion. Although energy-transfer and momentum-transfer as well as hydraulic

operations are also associated with rigorous mass-transfer and reaction-kinetic

operations, and are crucial to all process industry unit-operations, they can be easily

abstracted at the level of production modeling for the purposes of planning,

scheduling and even control off-line and on-line decision-making. In exceptional

cases however, usually due to process bottlenecks or impingements, fundamental or

first-principle laws of conservation models (Pantelides and Renfro 2011) can be

included instead of the simplified model(s) where specifically required at the

expensive of including more detailed physical properties. Therefore, from a

production flowsheeting point of view, including a larger amount of macroscopic

production unit-operation models versus microscopic process models is more

desirable provided the accuracy and tractability are acceptable which can be

enhanced by the inclusion of measurement feedback (parameter estimation and data

reconciliation).

As previously mentioned with regard to processing, production can be

categorized into the following types of operations: blending, reacting, separating,

storing and transferring. The first three can be either continuous or batch (or

dimensional) in nature and are given our primary attention. Generally in the process

industries, materials are processed in the gas, liquid or solid phase and combinations

thereof. Furthermore, we can divide blending and separating operations into either

‘‘chemical’’ or ‘‘mechanical’’ blending and separating which refers to gas and liquid

versus solids processing respectively. Reacting processes mainly involve gas and

liquid phase chemical reactions and are rarely found in solids processing except for

the existence of a solid catalyst concerning the former where there is really no

reacting equivalent in the discrete industries.

The sections to follow discuss the quantity and quality modeling of both

continuous and batch processes with six basic types of unit-operation models

described: blenders, splitters, separators, reactors, fractionators and black-boxes.

Each of these models possesses a key or significant modeling aspect relating to how

flows in and out of the unit-operation are processed and they are called: recipes,
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ratios, recoveries, reactions, renderings and relationships respectively. We also

address other pertinent topics such as solving, integrating and updating the models,

thus completing our discussion.

2 Continuous versus batch operations/steady versus unsteady-state

Batch processing is very similar to continuous processing in the sense of its

blending, reacting and separating phenomena except that in a batch process at least

one of the feed and/or product materials entering and exiting the process is

accumulated over time inside the unit for the duration of its processing. For

instance, a batch distillation operation consists of an initial quantity of feed material

being batched into a piece of equipment and during its operation, one or more

product materials can be continuously or semi-continuously drawn out (Henley and

Seader 1981; Phismister and Seider 2001). In a continuous process none of the feeds

or products remains inside the unit such that the mass of material charged equals the

mass of material discharged for any time interval, window or period during its

operation i.e., there is a negligible rate of accumulation. A batch process is usually

characterized by its quantity-size or batch-size whereas a continuous process is

described by its quantity-size per time or charge-rate. Batch processes have

inventory or holdup whereas continuous processes have zero inventory or holdup.

In continuous processes, multiple processing stages appear in the spatial

dimension of the process, whereas for batch processes, time can be considered a

processing stage in the temporal dimension. Stated more formally, batch processes

involve ‘‘inter-temporal transfer’’ of quantity and quality whereas continuous

processes do not. Both continuous and batch processes involve ‘‘inter-spatial

transfer’’ of quantity and quality which simply means there is material or matter

exchanged from one or more feed or inlet streams to one or more product or outlet

streams within the same equipment as well as exchanges between different pieces of

equipment within the production flowsheet. In chemical engineering design of

continuous mass-transfer processes (Henley and Seader 1981; Hines and Maddox

1985; Towler and Sinnott 2008) each processing stage usually has the feeds and

products at some equilibrium or steady-state. From this, the number of equilibrium

stages is determined and the actual number of stages is decided assuming some level

of non-ideality. From the perspective of a continuous process, such as a super-

fractionator separating a mixture of propane and propylene, the number of stages

represents the trays or amount of packing found inside the vessel, which also

determines the spatial height of the tower (Strigle 1987). In contrast, a batch process

does not necessarily have physical stages per se: the physical size of the batch

processing unit is determined by the time needed to achieve the required quantity

and quality specifications in the product or outlet streams. Thus, each time

increment during the unit-operation of the batch process represents a functional

stage similar to a physical stage found in continuous processes and is usually

referred to as a phase in batch control and operations.

Continuous processes are sometimes denoted as: static, steady, stationary or

perpetual whereas batch processes are often called: dynamic, unsteady, non-
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stationary or intermittent. This implies that continuous processes can achieve a

sustained steady-state operation and batch processes are always in a non-steady-

state operation. Albeit true, all types of processes that have the ability to hold or

maintain material during their operations can exhibit some level of unsteady

behavior. Conversely, even the ability of a unit to hold material over time does not

necessarily imply unsteady behavior. Therefore, a distinction is also needed

between steady-state and unsteady-state behavior or functionality given that a

continuous process can be unsteady and a batch process can be steady so the

terminology used above is actually interchangeable. What this really means from

the point of view of our production unit-operation modeling is that there are two

types of temporal models, whether continuous or batch processes (i.e., steady and

unsteady-state) are being considered. The modeling presented here is steady-state

modeling only which can be applied to both continuous and batch processes. The

difference between continuous and batch processing for steady-state modeling,

especially around a unit-operation material balance, is simply that for a batch

process the material balance is made across a set of time-periods representing the

digitized or discretized batch, cycle or processing-time of the operation whereas for

a continuous process it is around a single time-period. Unsteady-state modeling for

continuous and batch processes, which is not the focus of this paper, must also

contend with the situation of explicitly handling the dynamics and integration of

both quantity and quality accumulation or holdup. A proven approach to deal with

unsteady-state modeling is to include an internal recycle stream within the unit-

operation for each material that has significant holdup (HYSYS 2002) which allows

the dynamic nature of the time-varying quantity and quality variables to be

discretized and solved using either Euler’s method or more sophisticated orthogonal

or spline collocation methods (Renfro et al. 1987).

For the sake of brevity, all of the unit-operation models presented below are for

steady-state continuous processes, but as mentioned, they can be straightforwardly

extended to batch process steady-state modeling by formulating a material balance

over a range or set of time-periods as opposed to a single time-period.

3 Blending operations with recipes

As mentioned, all process industry production processes involve three fundamental

processing steps of blending, reacting or transforming and separating. This section

describes the well-known operation of blending with any number of blended feeds

(inputs, inlets) and only one blended product (output, outlet). Although it is possible

to model blending operations with multiple products on the same blender unit, this

can be easily handled using multiple blenders in parallel. Figure 1 shows the

anatomy of a continuous blending operation.

In Fig. 1, three streams feed a blender blending together to form one product

stream. In this figure, xift refers to the in-flow variables at each time-period with

i = {1,2,3} and yipt refers to the individual stream property variables where p may

also be a set or list of properties for multi-property blenders. The out-flow and out-

property are labeled xft and ypt respectively. The overall or total flow and flow-
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property balances in open-equation or implicit-form can be seen in the following

equations:

x1ft þ x2ft þ x3ft � xft ¼ 0; 8 t ¼ 1. . .NT ð1Þ

x1ft � y1pt þ x2ft � y2pt þ x3ft � y3pt � xft � ypt ¼ 0; 8 t ¼ 1. . .NT ð2Þ

where NT corresponds to the number of time-periods. The blend recipes ri denote

the fraction, intensity or transfer coefficient of a feed stream i flow with respect to or

divided by the product stream flow as below:

xift � ri � xft ¼ 0; 8 i ¼ 1. . .3 and t ¼ 1. . .NT ð3Þ

In Eq. (3) the flow per time-period of feed stream xift is specified as a linear function

of the product stream flow if ri is a constant. Recipes can also be modeled as

nonlinear functions of other variables where Eq. (3) would then become nonlinear.

This type of blender modeling is known as ‘‘recipe-blending’’ when an explicit

recipe constant or variable is supplied. The other type of blend operation is called

‘‘specification-blending’’ which uses the recipe to only provide lower and upper

bounds or inequalities on the in-flows with respect to the product out-flow. Then to

specify or determine the required amount of blending, lower and upper bound

specifications on the product stream property are used to drive the stream in-flow

amounts. The blending model presented here can be trivially extended to perform

specification-blending by including finite bounds on ypt and replacing Eq. (3) with

two lower and upper bound inequalities. In addition, this type of blending model is

the same as that used in what are known as ‘‘pooling problems’’ found in the

operations research and mathematical programming literature (Lodwick 1992;

Greenberg 1995) and is also widely studied in the chemical engineering literature

concerning global optimization (Tawarmalani and Sahinidis 2002; Misener and

Floudas 2009). When non-ideal blend laws are required then the classic nonlinear

blending of gasoline octanes by Healy et al. (1959), Morris (1975) and Rusin et al.

(1981) can be employed even for non-octane properties such as distillation

temperatures and vapor pressure. With these methods however, extra variables and

constraints are necessary to model the synergistic and antagonistic blending effects

with respect to special properties such as the amounts of saturates, olefins and

Fig. 1 A multi-inlet, one outlet and mono-property blender
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aromatics as well as contaminates such as sulfur or enhancers such as lead and is

beyond the scope of this paper.

4 Splitting operations with ratios

Splitting operations are essentially the dual of simple blending as shown in Fig. 2

for a mono-property where we have one in-flow and multiple out-flows. Modeling

splitting operations is also very well-known and can be found in for example

Quesada and Grossmann (1995).

In Fig. 2 one stream feeds a splitter splitting into three product streams. In this

figure, xjft refers to the out-flow variables at each time-period with j = {1,2,3} and

yjpt refers to the individual stream property variables where p may also be a set or

list of properties analogous to multi-property blenders. The in-flow and in-property

are labeled xft and ypt respectively. The total flow balance is identical to the blender

operation where all of the out-properties are simply set equal to the in-property as:

x1ft þ x2ft þ x3ft � xft ¼ 0; 8 t ¼ 1. . .NT ð4Þ

yjpt � ypt ¼ 0; 8 j ¼ 1. . .3 and t ¼ 1. . .NT ð5Þ

The split ratios rj denote the fraction of a product stream j flow with respect to or

divided by the feed stream flow as below:

xjft � rj � xft ¼ 0; 8 j ¼ 1. . .3 and t ¼ 1. . .NT ð6Þ

where the same modeling rules apply for split ratios as blend recipes including the

notion of ‘‘ratio-splitting’’ and ‘‘specification-splitting’’.

5 Separating operations with recoveries

Separating operations are again well-known in the chemical engineering literature

given that they are ubiquitous in almost all process industries. The modeling of

these types of operations can be taken from the process design and synthesis

Fig. 2 A one inlet, multi-outlet and mono-property splitter
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modeling found in Floudas (1995) or Towler and Sinnott (2008). Usually a separator

is defined to have one feed stream and two or more product streams with two or

more components and are primarily designed to be simplifications of more rigorous

vapor–liquid separation processes such as equilibrium flash, distillation, fraction-

ation and evaporation although they can also be used to model solid–solid

separations of fines and lumps in mining and minerals processing (i.e., crushing

beneficiation).

Figure 3 describes a one in-flow and three out-flow separator with two

components. The overall flow balance is the same as both the blender and splitter

i.e.,

x1ft þ x2ft þ x3ft � xft ¼ 0; 8 t ¼ 1. . .NT ð7Þ

And, similar to the blender for properties, there are individual bilinear flow-com-

ponent balances for each component as:

x1ft � y1c1t þ x2ft � y2c1t þ x3ft � y3c1t � xft � yc1t ¼ 0; 8 t ¼ 1. . .NT ð8aÞ

x1ft � y1c2t þ x2ft � y2c2t þ x3ft � y3c2t � xft � yc2t ¼ 0; 8 t ¼ 1. . .NT ð8bÞ

In addition, for each outlet stream we also require that the sum of the components in

each stream must equal unity as follows which provides the necessary stream

component normalization:

yjc1t þ yjc2t � 1 ¼ 0; 8 j ¼ 1. . .3 and t ¼ 1. . .NT ð9Þ

Unfortunately these equations alone are not enough to complete the modeling of

these basic separation processes given that the distribution or allocation of how

much of a particular component in the feed is transferred or propagated to the

products has not been defined. First-principles models of rigorous separation

processes would include equilibrium, mass transfer, transport phenomena, energy,

etc. effects which are beyond the scope of this paper so instead it is common

practice to employ what are known as component recoveries. These recoveries are

similar to the blender recipes and splitter ratios but are also component dependent

and are not just stream dependent. Recoveries can also be constant or determined

from a nonlinear formula or function of other variables and may be specified with

lower and upper bounds when component recovery ranges are required. For

Fig. 3 A one inlet, multi-outlet and multi-component separator
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instance, the recovery of the second component from the feed into the middle

product is written below where rj,c is the recovery on the jth outlet stream for

component c:

rj¼2;c¼2 � xft � yc2t � x2ft � y2c2t ¼ 0; 8 t ¼ 1::NT ð10Þ

Each component on each outlet stream would have a component recovery supplied

where a common and straightforward convention of light and heavy key compo-

nents would force certain recoveries to zero or one depending on the component’s

relative volatility compared to the key components.

6 Reacting operations with reactions

Reacting operations are somewhat unique to the process industries given that

completely new species, compounds or materials are created by chemical reactions.

Obviously mass is neither created nor destroyed however from the point of view of

one species, say a reactant, reagent or a feed stream component, it may not appear in

the product stream composition if it is completely consumed by the reaction(s).

Details on the many different types of reaction structures that are encountered by

chemical engineers when designing reactors can be found in Levenspiel (1998) and

Worstell (2001). Concurrent (parallel), consecutive (serial) and competitive types of

reaction systems with their Arrhenius rates-of-reaction as functions of frequency-

factor, catalyst activity, temperature, pressure and reactant and intermediate

concentrations must be properly understood before a chemical reactor can be

designed and specified. However, from the perspective of planning, scheduling and

control much less detailed knowledge of the reaction kinetics can be afforded.

Hence, we essentially model what are known as stoichiometric or conversion

reactors where the reaction kinetics may be unknown (or unimportant) but the

stoichiometry and extent-of- reactions are known (Towler and Sinnott, 2008) and

these types of reactor models are useful in practice (Slaback, 2004).

Consider the following two combustion reactions when burning methane gas

(CH4) in the presence of air, a mixture of oxygen (O2) and nitrogen (N2), producing

carbon dioxide (CO2), carbon monoxide (CO) and water vapor (H2O):

CH4 þ 2O2 þ 0N2 ! CO2 þ 2H2Oþ 0N2 ð11aÞ

CH4 þ
3

2
O2 þ 0N2 ! COþ 2H2Oþ 0N2 ð11bÞ

Figure 4 shows the (stoichiometric/conversion) multi-component reactor with the

six components prefixed with y1c and y2c for inlet stream 1 and outlet stream 2

respectively. The stoichiometry states the molar requirements for each of the

reactions based on an extent-of-reaction variable. The extent-of-reaction is similar

to a flow through the unit-operation and there is one extent-of-reaction or reaction

flow for each reaction. Although the stoichiometric coefficients are usually specified
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as molar, other bases such as mass or volume may be used provided the coefficients

and the extent-of-reaction are both basis and dimensionally consistent.

The first set of equations are component balances for each reactant and product

species which states that each component or species must conserve at the molecular

or atomic level as follows:

x1ft � y1ckt � x2ft � y2ckt þ
X2

g¼1

xg;t � rg;c¼k ¼ 0; 8 k ¼ 1::6 and t ¼ 1::NT

ð12Þ

where g is the chemical reaction index, k is the component index, xg,t is the extent-

of-reaction and rg,c is the component’s stoichiometric coefficient involved in each

reaction. The last term of course in Eq. (12) represents the amount of component

that is consumed and produced by all reactions where rg,c is negative for con-

sumption and positive for production. There may or may not be an overall quantity

balance i.e., simply flow in x1ft equals flow out x2ft given that the law of conser-

vation may not be obeyed depending on the basis chosen. The second set of

equations to complete the reactor operation is to ensure that the component fractions

or compositions within the outlet stream are normalized identical to the separator

operation i.e.,

X6

k¼1

y2ckt � 1 ¼ 0; 8 t ¼ 1::NT ð13Þ

7 Fractionating operations with renderings

Fractionating operations are again somewhat unique to the process industries given

that they involve what are known in petroleum refining as ‘‘cuts’’ to essentially

discretize a true-boiling-point’’ curve (TBP) (Gary and Handwerk, 1994) of a wide

boiling-point range crude-oil mixture into smaller boiling-point mixtures of usually

unknown hydrocarbon species that boil-off at certain temperatures and pressures as

defined by an ASTM or API test method. There is also the well-known term

‘‘pseudo-component’’ (Eckert and Vanek, 2009) used in process simulators and

optimizers to represent the temperature distribution of complex hydrocarbon

Fig. 4 A one inlet, one outlet, multi-component and multi-reaction reactor
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mixtures in rigorous distillation, separation and fractionation processes involving

detailed enthalpy balances and vapor–liquid equilibrium where cuts are similar to

this except that their corresponding critical properties are not required. The

fractionating operations considered here are referred to as basic fractionation given

that we do not assume that a cut’s temperature boiling-point range can be varied as

part of the simulation or optimization. Advanced fractionation techniques can be

found in Alattas et al. (2011) for example where the cut-point temperature can be

manipulated and can be a better approach than using what is commonly known as

‘‘swing-cuts’’ to distinguish situations where the fraction or flow of one or more cuts

that make-up two adjacent streams can be varied proportionately. In addition, a

fractionator is more complex than either the splitter or separator given the existence

of cuts or internal sub or meta-components but all three are divergent flow path unit-

operations.

Figure 5 highlights a basic fractionator with one inlet stream, three outlet

streams, a total of four components and five cuts distributed on each outlet stream

accordingly. The fundamental idea of modeling a fractionating operation is to

characterize each component into an arbitrary distribution or allotment of one or

more cuts where this is usually referred to collectively as the component’s assay-

data. Then, we need to allocate or render each individual cut to an outlet stream

irrespective of the component genealogy. That is, cut to outlet stream rendering is

component independent i.e., we assume that there is no affect of the source

component on the how the cut is distributed to a product. For the instance depicted

in Fig. 5, the two components c1 and c2 in the one feed stream are distributed or cut

into five cuts denoted as the overall cut set {h1,h2,h3,h4,h5} where the first stream

has the cut subset {h1,h2}, the second stream has {h2,h3} and the third stream has

{h3,h4,h5}. Notice that outlet stream 2 has an overlapping cut with outlet stream 1

(h2) and outlet stream 3 has an overlapping cut with outlet stream 2 (h3). This is

known as ‘‘non-sharp’’ separation whereby any outlet stream can have any number

of cuts assigned irrespective of the other outlet streams but usually these should be

contiguous or consecutive given the nature of the boiling-point range and the there

should be some conservation or continuum between how much any cut can be

allocated or yielded to any stream. The two other components c3 and c4 on the three

outlet streams are new components generated or created by the inlet components to

the fractionator and can be used downstream in other cascaded or in-series

Fig. 5 A one inlet, multi-outlet, multi-component and multi-cut fractionator
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fractionators if required i.e., allows for the modeling of an atmospheric tower

connected downstream to one or more vacuum towers in a petroleum refinery.

These new components could also be new properties generated that have specific

amounts from each inlet component and from each cut, which depending on the

renderings or cut-stream fractions, are pooled together on each outlet stream to form

the total component or property stream value (Kelly, 2004a and Neiro and Pinto,

2004).

The above discussion provides a textual overview of the fractionator and

henceforth we detail its mathematical description. The set of bilinear equations to

formulate how the flow on each outlet stream is a function of the inlet flow, inlet

composition and the renderings of each cut per component per outlet stream, where

like the reactor, it is not required that the in-flow equals the sum of the out-flows:

xjft � xft �
X2

k¼1

yckt �
X5

h¼1

rj;k;h

 !
¼ 0; 8 j ¼ 1::3 and t ¼ 1::NT ð14Þ

where rj,k,h is the rendering for each outlet stream, each inlet composition and each

cut respectively. The set of equations to model the composition of each new outlet

component c3 and c4 on the three outlet streams is given by the bilinear component

flow balance equation below:

yjckkt � xjft � xft �
X2

k¼1

yckt �
X5

h¼1

rj;k;h � wck;h;kk

 !
¼ 0; 8j ¼ 1::3; kk ¼ 3; 4 and t

¼ 1::NT

ð15Þ

where wck,h,kk is the new component kk composition amount for each inlet com-

ponent and cut respectively. Similarly, if properties on the outlet streams are

required then we would have a different parameter wpk,h,b where b is the property in

question.

8 Black-box operations with relationships

Modeling of arbitrary processes as ad hoc, bespoke, user-defined or custom input–

output objects is well-known in the process system engineering domain where the

previously described unit-operations may be considered as grey-box or white-box

models. Especially in the process simulation and optimization fields, writing

FORTRAN or other computer programming language implementations of mathe-

matical models representing the details of the unit-operation is common-place

where in simulation they are procedural (i.e., includes both closed or explicit-form

modeling with embedded solving heuristics) and in optimization they are

declarative (i.e., includes open or implicit-form modeling with external solving

performed separately). We take a somewhat different but complementary approach

to coding a custom model and that is to specify a formula or relationship of how one

inlet or outlet stream variable is related to one or more other inlet and outlet stream
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variables as well as operating or process conditions on the unit-operation. The

formula’s infix or human-readable expression can then be easily lexed and parsed

into either prefix or postfix byte-code (operator code and operand value), also

known as reverse Polish notation (RPN), which can be evaluated at solve time as

well as to provide analytical first-order derivatives numerically (Ponton, 1982).

Figure 6 shows a black-box unit-operation with three inlet streams and two outlet

streams each with variable yields, one property and three process conditions denoted

as z1t, z2t and z3t respectively. Conditions can either be independent variables or

they can be dependent on other variables in the system if needed by specifying other

relationships. Yields are fundamentally identical to recipes, ratios, recoveries,

reaction stoichiometry and renderings, except that when modeling a unit-operation

that is both convergent and divergent, we require a characteristic charge-size if it is

a continuous-unit or a batch-size if it is a batch-unit we declare as xt. The set of

equations relating a stream flow to its yield and its unit-operation’s size is as

follows:

xnft � ynt � xt ¼ 0; 8 n ¼ 1. . .5 and t ¼ 1. . .NT ð16Þ

Each yield may be an arbitrary nonlinear function or formula of the conditions (or

any other variable) such as:

ynt � rynðz1t; z2t; z3tÞ ¼ 0; 8 n ¼ 1. . .5 and t ¼ 1. . .NT ð17Þ

and likewise, a stream property may also be any general relationship of the con-

ditions such as:

ynpt � rynpðz1t; z2t; z3tÞ ¼ 0; 8 n ¼ 1. . .5 and t ¼ 1. . .NT ð18Þ

where ryn() and rynp() are the relationships relating the operating conditions to the

stream yields and properties respectively for stream n.

Black-box operations may also be used to implement more detailed process sub-

models which include physical properties relating to thermodynamics, fluid

mechanics, reaction kinetics, equilibrium, etc. using the concept of a coefficient.

Coefficients may represent enthalpies, entropies, fugacities, catalyst activities, heat

Fig. 6 A multi-inlet, multi-outlet, multi-yield, mono-property and multi-condition black-box
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transfer coefficients, etc. and can be called out to a third-party physical properties

package at each iteration of the nonlinear solving process. In addition, coefficients

may also be fitted to actual, field or experimental data using parameter estimation

and/or data reconciliation techniques on a periodic basis to calibrate the

relationships.

9 Linear and nonlinear solving

As presented are moderately straightforward unit-operation building-block models

to represent the complexity of a wide range of production systems found in the

process industries. Modeling the system is however only a piece of the puzzle given

that unless we can solve the nonlinear system of equations we cannot improve on

the system’s decision-making capability. Fortunately over the years there has been

much improvement both in computer hardware and software as well as both

company-based and now community-based linear (LP) and nonlinear programming

(NLP) codes such as CLP, CONOPT, CPLEX, GLPK, GUROBI, IPOPT, LINDO,

LPSOLVE, KNITRO, MOSEK, NOVA, SCIP, SOPLEX and XPRESS, just to name

a few, as well as several algebraic modeling languages (AML) such as AIMMS,

AMPL, GAMS, GMPL, MOSEL, MPL and ZIMPL which aid in the development

and deployment of the model variables and constraints. Coding the problems in

FORTRAN and C are still valid options to implement models even though

providing first-order and potentially second-order partial derivatives is much more

difficult than using an AML. However, with the interesting and surprisingly

effective ‘‘complex-step method’’ (Squire and Trapp 1998), numerical derivatives of

analytical quality can be computed quickly using the complex numerical algebra

found in both FORTRAN and C. These derivative estimates are more accurate than

finite-difference methods because the round-off errors due to the subtraction term of

f(x ? h) - f(x) (where h is the perturbation size and f(x) is the function estimate at

x) is eliminated. Some nonlinear optimizers which use finite-difference methods use

elaborate schemes to dynamically adjust h specific to a particular f(x) and x in order

to achieve some level of accuracy for the derivative but with the complex-step

method perturbation sizes of 10-20 to 10-50 are not uncommon for all functions.

Functions that do not have FORTRAN or C complex numerical algebra equivalents

can be overloaded or modified easily using the techniques found in (Martins et al.

2003).

Another very powerful innovation is to pre-solve or pre-process the linear portion

of the nonlinear system of constraints by relatively straightforward primal and dual

reductions (Andersen and Andersen 1995). Both AIMMS and AMPL for example

provide pre-solving techniques which are applied before the LP or NLP solvers are

called to not only reduce the size of the problems by partially solving them but also

to help detect and identify infeasibilities in both the model and the data. Although

pre-solving has been identified by Chinneck (2008) to be somewhat useful with

respect to infeasibility diagnostics, it is the authors’ experiences that by only pre-

solving the linear part of the nonlinear problem a large number of inconsistencies or

defects can be located quickly, thus significantly increasing the ability to
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troubleshoot and debug large production flowsheets. Unfortunately most nonlinear

programming software such as IPOPT do not recognize internally which constraints

are linear or nonlinear and hence the time to diagnose issues in the optimization

problem when even linear infeasibilities are present is obscured with the overall

nonlinearities of the system, not to mention that the benefit of a reduced size

problem cannot be gained. Although IPOPT is integrated with AMPL which can

perform at the start a pre-solve before IPOPT is run but not during its iterations,

there are other advantages to recognizing linear and nonlinear constraints such as in

its restoration phase to handle infeasibilities i.e., infeasibilities due to the

nonlinearities of the truncated linear Taylor series expansion. If a constraint is

linear then no artificial or penalty variables need to be applied to restore feasibility

during the solving and this is a well-known observation in SLP codes (Zhang et al.

1985).

This then leads us to how to solve these types of (linear and) nonlinear systems

i.e., whether to use SLP or SQP. Again, our experiences solving many instances of

these types of large-scale nonlinear models formulated using the unit-operations

discussed previously is to conclude that SLP is superior especially when a

commercial LP code is used as the sub-problem optimization which also

implements pre-solving and scaling at every major iteration of the SLP. Dedicated

planning systems for petroleum refining and petrochemical processing such as

GRTMPS, MIMI, PIMS and RPMS also employ SLP (sometimes referred to as

‘‘distributed recursion’’) as their solver of choice which further supports our

observation. One possible explanation for this, above and beyond the pre-solving

and high-quality and stable linear algebra employed in commercial LP codes, is the

indefiniteness of the Hessian of the Lagrange function (Renfro 2010). In production-

type nonlinear models we have much fewer terms of the type ‘‘variable times itself’’

(i.e., squared and square-root terms and/or other irrational and transcendental

functions) leading to very few diagonal elements in the Hessian compared to its

nonlinear process model counterparts. Our models have more terms of the type

‘‘variable times other variables’’ such as a flow times a property, but few instances

of flow times itself as one would find, for instance, in a hydraulic expression relating

flow to head or pressure-drop. As such, an indefinite Hessian by itself or inherently

leads to more vertex solutions of the nonlinear system (i.e., solutions without

superbasic variables or degrees-of-freedom at the solution) where we believe and

observe that SLP methods are better suited.

10 Logistics and quality optimization integration

The previous sections outlined production-type models relating to quantity and

quality variables and constraints where these models are often sufficient to describe

planning problems. On the other hand, for production scheduling problems, in spite

of being necessary, these relationships only are not sufficient. In addition to

decisions regarding quantities and qualities, scheduling problems must be able to

deal with discrete decisions such as assignment and sequencing i.e., which specific

unit to select and when to start an operation before or after another. In mathematical
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terms these decisions can be modeled through the use of logic or binary variables. A

comprehensive description of these logic variables and associated modeling

constraints can be found in Kelly and Zyngier (2007) and Zyngier and Kelly

(2009). The combination of quantity, quality and logic variables in a single model

results in a mixed-integer nonlinear programming (MINLP) model which is non-

convex due to at the very least summed plus and minus bilinear terms associated

with quantity times quality variables as described previously. While significant

advances have been recently made in MINLP solution efficiency, a robust

commercial software tool is still not available for industrial-sized problems. Hence,

alternative and heuristic methods have been proposed in order to solve large-scale

MINLP problems.

While some optimization approaches have been suggested such as Lagrangean

decomposition (Karuppiah and Grossmann 2008), they require excessive compu-

tation for even small production scheduling problems. An alternative but heuristic

approach is to successively solve the logistics (quantity and logic) MILP sub-

problem first, fix the logic variables at their solution values and then solve the

quality (quantity and quality) NLP sub-problem second (Kelly and Mann 2003 and

Kelly 2006). After this solution is found the quality variables can be fixed and/or

updated yields (recipes, ratios, recoveries, etc.) can be computed and the logistics

problem re-solved. This procedure can be repeated until acceptable convergence is

achieved or it is locally or globally infeasible.

This methodology resembles the well-studied approach suggested in Benders

decomposition (Geoffrion 1972) where ‘‘complicating’’ variables (in this case,

binary) are fixed such that a simpler problem may be solved which are later freed

again for the new iteration. A similar method has also been applied for a different

purpose, namely that of integrating decentralized decision-making systems through

a hierarchical decomposition heuristic (HDH, Kelly and Zyngier 2008c). In the

context of the integration between logistics and quality problems, the coordinator

(logistics MILP sub-problem) would send what we call ‘‘logic pole-offers’’ to the

cooperator (quality NLP sub-problem), which in turn would send back logic pole-

offsets to the coordinator. This procedure would continue until convergence,

hopefully providing at least a feasible MINLP solution.

As a final point, the integration between logistics and quality sub-problems in

large-scale production scheduling problems suggested above have been imple-

mented in a commercial product called Industrial Algorithms’ IMPL modeling

platform (Industrial Modeling and Programming Language) using a single iteration

of the procedure. Even though it is well recognized that this procedure may generate

merely feasible solutions, these are both logistics and quality consistent and is

therefore significantly better than other alternative commercial solutions usually

employing manual trial and error simulation. It is important to highlight that

hopefully sometime in the near future, the pragmatic decomposition of the MINLP

into two simpler sub-problems (logistics and quality) will not be required given that

MINLP solver technology is evolving. Yet, from an intelligent problem solving

perspective, dissecting a large problem into smaller sub-problems (divide-and-

conquer) can be a very effective way of detecting, identifying and eliminating

defects in the model and data supplied.
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11 Feedback and model updating

Modeling and solving alone are still not sufficient to capture the full benefit or value

of enhanced decision-making using advanced model-based techniques. A contin-

uous improvement cycle is always necessary to provide feedback from which, what

we call the plan-perform-perfect loop (Kelly 2005), can be implemented and

institutionalized to incrementally capture more and more of the value of the

application that otherwise would not be realized. It is very well-known in the

advanced process control field that even simple bias-updating (difference between

the plant or measured and the predicted or model values) is necessary to achieve

zero steady-state offset (difference between the target or setpoint and the controlled

variable) of any feedback model-based regulatory controller. However as Forbes

and Marlin (1994) have shown, even with bias-updating this may not be sufficient to

achieve the economic performance that is expected where both the model structure

and/or model parameters may be inadequately specified. Although we will never

know the true model structure and parameters of any system, it behooves us to strive

for that ideal.

To that end, the ability to use measured plant data from the available

instrumentation system can significantly improve our model fidelity especially

through off-line or on-line parameter estimation and data reconciliation. For

example, by using actual and even closed-loop data from an active surge-drum level

control system in a petroleum refinery, it was possible to re-fit using ordinary least-

squares a simple transfer function model of the integrating process with delay to re-

tune the proportional plus integral (PI) controller tuning parameters to upgrade its

controller performance (Kelly 1998a). Another similar case study applied to a

reactor and a tank in a small production-chain example from Kelly and Zyngier

(2008a) showed that without parameter-feedback i.e., updating the reactor product

yield parameter from past plant data, a non-zero steady-state offset between the

target inventory and the tank level resulted. But, with parameter-feedback, zero

steady-offset was achieved and this of course confirms the well-known observation

in the control domain when applied even to simple planning and scheduling

decision-making systems. This small example also points out the common

misconception in post planning analysis that a detectable difference between the

plan and the actual values does not unequivocally imply an execution or

measurement problem. Rather that without parameter-feedback, it is impossible to

discern the difference between a model inadequacy and an implementation issue.

The feedback and update model we use and propose is to first configure the

production flowsheet model using the unit-operation constructs presented above

with as many time-periods created as there are actual plant data sets. Then in a

training or calibrating (past, present) mode, for each variable that is measured,

configure another equality constraint of the form below:

xMt � g � xt � at ¼ 0 ð19Þ

where xt
M is the measured or actual variable value, xt is the model variable, g is the

gain which is set initially to unity and at is the adjustment that is minimized in a
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simultaneous data reconciliation and regression optimization problem (Kelly 1998b)

usually with a 2-norm objective function however a 1-norm is also possible i.e.,

minimize the absolute values of at. After the data reconciliation and regression

where it is also possible to fit other model parameters and after the observability,

redundancy and variability estimates have been verified for uniqueness and preci-

sion (Kelly and Zyngier 2008b), it is possible for each measurement to run a simple

least-squares regression to determine g from above (assuming we have several data

sets). The residuals of the least-squares then become the bias estimates or additive

uncertainty for each of the data sets and the gain g is our multiplicative uncertainty

estimate where Eq. (19) represents an affine uncertainty or parity model. Then when

we use the production flowsheet model in a controlling or testing (future) mode we

still include Eq. (19) but now xt
M is an optimization variable with g again fixed and

the at variables replaced by the fixed bt bias parameter estimates which may either

be forecasts of the expected bias of the model over future time or simply fixed to the

last value or some aggregated estimate from the least-squares regression. It is

important to note that everywhere xt appears in the model and it has an associated

measured variable xt
M, xt is substituted out for or replaced by xt

M. This is to ensure

that the gain and bias updated measured variable is used in all of the future decision-

making so that parameter-feedback is included where possible.

The notion of employing nonlinear dynamic data reconciliation and regression

techniques, including Kalman filtering, in on-line environments is also known as

moving-horizon estimation (MHE, Robertson et al. 1996) and is an active area in the

advanced process control literature. We suggest applying the same concepts to

advanced planning and scheduling decision-making whether in off-line or on-line

settings except that we have slightly extended the usual bias-updating uncertainty

model as shown with the use of the extra gain parameter.

12 Illustrative example

To help demonstrate the model building-blocks we present an illustrative example

interconnected with a blender, reactor incorporating two reactions (R1 and R2) and

two separators as well as three pools or storage unit-operations (Zyngier and Kelly

2009) as shown in Fig. 7. The diamond shapes or objects are points where materials

Fig. 7 An interconnected example with a blender, reactor (two reactions) and two separators
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or resources can be supplied (A and B) and demanded (C). The rectangles with

cross-hairs are continuous processes and the triangles represent the pools. The

circles without cross-hairs are known as inlet ports and the circles with cross-hairs

are outlet ports.

Every unit-operation and inlet and outlet port has three components assigned or

attached for components A, B and C. All flows have a lower bound of 0 and an

upper bound of 1000 and the holdup or inventory lower and upper bounds for pools

APool and BPool are 0 and 0 whereas for the CPool its holdup can vary from 0 to

100. We set the blender recipes for A to vary from 0.3 to 0.4 and for B it varies from

0.6 to 0.7. The reactor has two reactions that can occur in parallel as shown in Fig. 7

where R1 requires more component B than A as specified by its reaction

stoichiometry. The first separator recovers all of A on its side outlet port and all of B

and C on its bottom outlet port. The flow of A recovered from the first separator

flows to its pool and then from there it is sent directly back to the inlet port of A on

the blender. All of the components B and C are sent to the inlet port on the second

separator where all of B is recovered on its side outlet port and all of C is recovered

on its bottom outlet port. Similar to A, B is sent back to its inlet port on the blender

and some C is sent back to the inlet port on the reactor with a lower bound on the

reactor’s inlet port composition of C of 0.001 or 0.1 % to serve as an auto-catalytic

component (i.e., where the reaction’s product itself is used as a catalyst). Arbitrary

costs of A and B are 0.1 and 0.2 respectively and the price of C is 1.0 which means

that B is twice as costly as A. A single time-period into the future is used for this

steady-state model where all opening inventories in the pools are specified as 0.

Solving using either SLP or SQP types of nonlinear solvers results in the same

objective function value of 279.72 albeit with varying numbers of iteration where

due to the nature of the problem with plus and minus bilinear terms in one or more

constraints, it is non-convex which can yield more than one local objective function

value.

The solution only applies reaction R2 with an extent-of-reaction of 399.6 since it

requires less component B (component B is twice as expensive as A) where R1’s

extent-of-reaction is 0. This is somewhat unrealistic in that technically both

reactions should occur concurrently or simultaneously. However given that there are

no reaction kinetics nor lower bounds on the extents, the optimizer is free to choose

or cherry-pick a solution within the system of constraints defined. The amounts of

both components A and B consumed/supplied externally are 399.6 respectively

which is consistent with the stoichiometry of R2 and the amount of component C

produced/demanded is of course 399.6 with no remaining holdup or inventory in the

CPool at the end of the time-period. The objective function can then be back

calculated as (1.0–0.1–0.2) * 399.6 = 0.7 * 399.6 = 279.72. Due to the recipe

restrictions for the blender where inlet port B requires more flow than inlet port A,

the recycle flow from the BPool to the blender is 199.8 and the recycle flow from the

CPool to the reactor inlet port is 1.0 given the auto-catalytic requirement for at least

0.1 % of C. Ultimately, this results in the reactor’s charge-size being the throughput

bottleneck, active constraint or limiting step of the system i.e., 399.6 of A,

399.6 ? 199.8 of B and 1.0 of C equaling the upper bound of 1000 on the reactor
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flow and is most likely the global optimum. All of the formulation and optimization

details of this problem were performed by the IMPL modeling platform.

13 Conclusions

The rationale for detailing the formulation of quantity and quality variables and

constraints, which exist inside all process industry production flowsheets, is to

expose how to sufficiently model these types of unit-operations as key production

building blocks using moderately complex formulations. Blending operations with

recipes, splitting operations with ratios, separators with component recoveries,

reactors with chemical reactions, fractionators with cut renderings and black-boxes

with condition relationships can all be used to successfully construct large

production flowsheets which are fit-for-purpose and hopefully useful. Other issues

pertaining to the solving, integration and updating of these diverse models were also

highlighted. Finally, this study mostly concentrated on the modeling of production

flowsheets however there are many other aspects of the problem especially the issue

of global optimization found in recent textbooks by Grossmann (1996) and

Tawarmalani and Sahinidis (2002). Global optimization is relevant here due to the

fact the models presented are non-convex and will usually exhibit local optima.

Another important aspect not discussed is the compression and calibration of first-

principles or rigorous models into smaller models known as meta or hybrid models

(Palmer and Realff 2002). Meta and hybrid modeling technology can potentially be

used to more compactly represent process models embedded inside industrial-size

production flowsheets.
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