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Abstract Uncertainty affects industrial systems in many ways. It may describe the

amount of system variability. It may influence the way we make decisions. This

paper provides a novel framework that maps the effects of uncertainty to existing

mathematical methods. In addition, new techniques to assess, adjust and abate

parametric uncertainty are presented. Due to the computational burden associated

with solving uncertain models of large-scale industrial processes, some simplifi-

cation techniques may be required, including scenarios with the different parameter

realizations. Issues regarding scenario generation, comparison, assessment, man-

agement and practical implementation are also discussed.

Keywords Decision-making � Optimization � Uncertainty � Sensitivity analysis �
Mixed-integer linear programming (MILP) � Complementarity constraints �
Nonlinear programming (NLP)
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nh Number of equality constraints

p Probability

R(.) Regret function

S Set of all scenarios

x Decision variable

y Slack variable

Greek letters
k Lagrange multipliers for inequality constraints

l Lagrange multipliers for equality constraints

h Parameters

Subscripts/superscripts
1 First-stage decisions

2 Second-stage decisions

d Deterministic

eq Equality constraint

in Inequality constraint

LB Lower bound

N Nominal value

s Scenario

u Uncertain

UB Upper bound

1 Introduction

Uncertainty is an important aspect of every decision-making process and has been

extensively studied in optimization literature. Therefore, it is surprising that a large

disconnect still remains between state-of-the-art advancements and practical

applications uncertainty management technology in industrial systems.

Excellent reviews on the topic of optimization under uncertainty have been

published by Sahinidis (2004) and Li and Ierapetritou (2008). As noted by Sahinidis

(2004), one of the opportunities for this topic is the ‘‘need for systematic

comparisons between the different modeling philosophies’’. In addition, Li and

Ierapetritou (2008) mention the need for ‘‘extended work in the direction of more

effective and general method for dealing with the uncertainties in process industry’’.

This paper provides a context for methodologies currently applied to optimiza-

tion problems under uncertainty so that new users have a better understanding of the

field as a whole. Therefore, we propose categories for the different types of

decisions that are commonly made in the process industries from a user’s

perspective. This contrasts with the usual approach in the literature of mapping

optimization methods to practical applications. For each of the proposed categories,

we indicate appropriate optimization methods and additional references.
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Uncertainty affects industrial processes in different ways. Given the existence of

uncertainty in model parameters, the user may choose to take one or more of the

following steps:

1. Make decisions with the best available estimate of uncertain parameters

(Acquisition, deterministic optimization)

2. Determine how uncertainty affects decisions (Assessment)

3. Make decisions that account for uncertainty (Adjustment)

4. Reduce parametric uncertainty in order to lessen its effect on decisions

(Abatement)

Uncertainty may be introduced in a decision-making system either through

modeled relationships between its variables (also called ‘‘structural uncertainty’’) or

through uncertainty in model parameters, such as material pricing and availability

information, product yield information. This paper focuses on ‘‘parametric

uncertainty’’, i.e., uncertainties in model parameters.

To being with, it is very important to highlight the difference between exogenous

and endogenous sources of uncertainty. The former originates from the environ-

ment, such as arrival times of raw materials. In optimization problems, it may

manifest itself as uncertainty in objective function, right-hand side and/or left-hand

side model coefficients. Endogenous sources of uncertainty, on the other hand, arise

from the nature of decision-making processes, such as when decisions are required

before information about all parameters becomes fully available. This situation is

very common in dynamic decision-making systems, resulting in two or more

different sets of decision variables. In Operations Research literature, these sets are

usually referred to here-and-now (HAN) and wait-and-see (WAS) variables.

Decisions represented by HAN variables have to be made before the values of all

parameters are available. This is the case in planning and scheduling problems,

where ‘‘immediate’’ decisions (e.g., the first day for a scheduling problem, or the

first month for a planning problem) are made before all customer demands and raw

material supply amounts are known for the full decision-making horizon (e.g., a

week or a semester, respectively).

Conversely, WAS decisions can be made after information about the parameter

values becomes available. This is the case of backcasting problems, where

‘‘perfect’’ decisions for the plan or schedule are calculated after all of the actual

parameter outcomes in the system are known. For this reason, backcasting is often

used as a benchmark for the decisions that have been actually implemented in the

system.

The following sections in this paper address the different steps the user may take

when dealing with an uncertain system. Section 2 guides the user through different

Uncertainty Assessment goals and techniques. The assessment may concern the

feasibility of the uncertain system (i.e., whether the decision will still be feasible for

any parameter realization) or the objective function value (i.e., evaluating what the

decision would have been had the uncertain parameter outcomes been known at the

time of decision-making).
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Section 3 presents Uncertainty Adjustment methods, which adjust decisions in

order to reduce the impact of uncertainty. Similarly to assessment techniques, the

adjustment of decisions can also be made aiming at maintaining system feasibility

or at mitigating the effects of objective function value.

In Sect. 4 some Uncertainty Abatement methods are discussed. These techniques

reduce parameter uncertainty before it affects the decision-making system.

It is important to note that many of the methods described in Sects. 2, 3, and 4 are

computationally intensive. To this purpose, Sect. 5 presents solution simplification

approaches, both continuous and discrete. In addition, since scenario-based methods

are often used in industry, a more detailed discussion regarding their generation,

comparison, assessment and management is also included in this section. An outline

of this paper’s structure can be seen in Fig. 1.

To illustrate the management of uncertain systems, a crude oil blending example

from Kelly and Mann (2003) will be used throughout this paper (Fig. 2).

In Fig. 2, different types of crude oil arrive by pipeline and are sent to two

holding tanks, T1 for light crude oils and T2 for heavy crude oils. The material is

allowed to settle for a minimum of 9 h before being blended into the material that

can be processed by the refinery through the transfer line. The crude oil blends are

stored for a minimum of 3 h in charging tanks T3 and T4. The blended crude oils

must satisfy quality specifications, such as specific gravity and sulphur. This

Fig. 1 Outline of uncertainty-related topics
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example will be used to give a practical context to several techniques described in

the remaining sections of this paper.

2 Assessment: determining the impact of uncertainty

The first step to managing uncertainty in a system should be to assess its impact on

the decisions. If uncertainty does not affect decisions in a significant way, no further

action is required.

The next subsections describe methods that can be used to assess the impact of

uncertainty on the overall feasibility of the optimization problem and on its

objective function value.

2.1 Impact on feasibility

In some systems, it is important to know whether the HAN decisions that are made

will still be feasible for all possible future parameter realizations. In planning and

scheduling problems, guaranteeing overall feasibility implies that the plan or

schedule will still be implementable for any parameter outcome.

In addition to information regarding feasibility of the current decision, the user

may also wish to know the allowable ranges of parameter variation that will not

modify this decision. In this context, a decision-making problem is not considered to

be very sensitive if parameter ranges are very wide.

2.1.1 Impact of exogenous uncertainty on constraint feasibility

In order to determine the impact of uncertainty on feasibility, the following question

must be addressed: ‘‘Given the range of parameter variation, is the optimal decision

x* still feasible (valid)?’’. In the context of the example in Fig. 2, the decision-

maker might be interested in assessing the feasibility of a certain schedule given a

range of possible incoming crude oil properties (e.g., sulphur).

The problem posed above may be solved by applying the feasibility test

(Halemane and Grossmann 1983; Swaney and Grossmann 1985a, b; Grossmann and

Floudas 1987), expressed as follows:

Fig. 2 Crude oil blending example
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Problem (1):

v x�ð Þ ¼ Maximize
h

/

Subject to

hLB � h� hUB

/ ¼ Minimize
yin

X

in

yin

Subject to

gin yin; hð Þ ¼ Ain hð Þ � x� � bin hð Þ � yin � 0

gLB;in yinð Þ ¼ yin � 0

In Problem (1), the goal is to maximize the minimum sum of slack variables y over

all parameter values given a fixed set of decision variables x*. Equality constraints can

be included by using two slack variables for each equality constraint. If u B 0 at the

solution of Problem (1), the decision x* is feasible for any outcome of parameters h.
Problem (1) is a bilevel optimization problem. One of the methods used to solve

this problem is to replace the inner optimization problem u with its Karush–Kuhn–

Tucker (KKT) optimality conditions, yielding the following reformulated problem

(Grossmann and Floudas 1987):

Problem (2):

v x�ð Þ ¼ Maximize
h

/

Subject to

hLB � h� hUB

gin yin; hð Þ ¼ Ain hð Þ � x� � bin hð Þ � yin � 0

gLB;in yinð Þ ¼ yin � 0

1þ kin � kLB;in ¼ 0

gin yin; hð Þ � kin ¼ 0

gLB;in yinð Þ � kLB;in ¼ 0

This reformulation results in a non-convex nonlinear programming problem due to

the existence of complementarity constraints (constraints of the form g�k = 0).

Consequently, if solving Problem (2) with a standard nonlinear solver, the solution

may lie at a local optimum value. Alternatively, the complementarity constraints can

be reformulated asMILP, allowing Problem (2) to be solved to provable optimality. In

the following equations,M is a large positive number (Grossmann and Floudas 1987):
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gin yin; hð Þ�M � 1� dinð Þ

kin �M � din

gLB;in yinð Þ�M � 1� dLB;in
� �

kLB;in �M � dLB;in

The feasibility test allows a continuous distribution of parameters to be

considered albeit with potentially high computational costs associated with solving

either a non-convex NLP or a MILP. For the sake of concision, in the remainder of

this paper only the NLP formulation of complementarity constraints will be shown,

even though the MILP reformulation always holds for these types of constraints.

Instead of reformulating Problem (1) using KKT conditions, a scenario-based

approach can be used. It is important to note that the problem size when using

scenario-based methods increases greatly with the number of uncertain parameters

and can also become intractable. A more detailed discussion on the use of scenario-

based approaches is presented in Sect. 5.

When using scenarios, several linear programs need to be solved using the

following reformulation: Problem (3):

v x�ð Þ ¼ Maximize
hs

u

Subject to

/ ¼ Minimize
yin

X

in

yin

Subject to

gin yin; hsð Þ ¼ Ain hsð Þ � x� � bin hsð Þ � yin � 0

gLB;in yinð Þ ¼ yin � 0

Sub-problem u is solved as many times as there are scenarios. In this case,

parallel processing is a good option to reduce overall computation times, since the

sub-problems can be processed independently. If any scenario s yields u[ 0 (i.e., a

non-zero penalty value), this indicates that the parameter values hs will not allow the

optimal decisions x* to be feasibly implemented in the system.

2.1.2 Impact of decisions on parameter ranges/‘‘Robustness’’ of decisions

The previous section focused on evaluating the effect of an uncertainty range on the

current decisions x*. In other circumstances, the user may want to obtain the range

of parameter outcomes that will not cause the decision x* to be infeasible. This

concept is related to the ‘‘type I sensitivity’’ defined by Koltai and Terlaky (2000)

which corresponds to the parameter outcomes for which the optimal basis remains

the same. The difference between the two interpretations is that, in the former, the
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user is mainly interested in maintaining feasibility of the problem, whereas in the

latter, optimality is also addressed.

In the crude oil blending example (Fig. 2), the decision-maker would be

interested in determining the largest possible sulphur variations in incoming crude

oils that would not alter his/her original schedule (either in terms of feasibility and/

or optimality).

The flexibility index was developed for obtaining parameter ranges that

guarantee the feasibility of the optimization problem given a fixed decision x*

(Halemane and Grossmann 1983; Swaney and Grossmann 1985a, b; Grossmann and

Floudas 1987). The flexibility index f can be calculated as follows:

Problem (4):

F ¼ Maximize
f

f

Subject to

Maximize
h

/

Subject to

hN � f � Dh� h� hN þ f � Dh

/� 0

/ ¼ Minimize
yin

X

in

yin

Subject to

gin yin; hð Þ ¼ Ain hð Þ � x� � bin hð Þ � yin � 0

gLB;in yinð Þ ¼ yin � 0

In Problem (4), the flexibility index f is maximized subject to the feasibility of the

underlying optimization problem (implied by the constraint / B 0).

Problem (4) is a three-level optimization problem. Therefore, solution methods

are based either on enumerative searches (i.e., for each index f being tested,

enumerate all possible scenarios hs), or on active set approaches (Varvarezos et al.

1995), both of which are computationally very intensive.

2.2 Impact on objective function

In industry, the impact of parametric variability on the objective function is often

translated into economics (e.g., maximize profit and/or performance, minimize cost,

etc.). In this paper, we classify the impact on the objective function into two main

categories: effect of endogenous uncertainty (cases in which the user only has

access to imperfect information, Sect. 2.2.1) and of exogenous uncertainty with

perfect information (Sect. 2.2.2).
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2.2.1 Cost of endogenous uncertainty (imperfect information)

The values of uncertain parameters may not be known at the time of decision-

making, which is typical of endogenous uncertainty sources. In planning and

scheduling this situation occurs, for instance, when calculating plans or schedules

using supply and demand orders that are not firm, i.e., whose timing and/or amounts

are not known exactly. In Fig. 2, this could correspond to calculating the crude oil

blending schedule for the entire week with uncertain pipeline delivery times.

Two measures of the effect of lack of information about parameter values are the

Maximum Regret and the Expected Value of Perfect Information (EVPI). They are

applicable to situations where there are HAN decisions x1 in addition to the WAS

decisions x2; i.e., there are at least a few decisions that have to be made before all

parameter outcomes are known. Problem (5) below illustrates the two-stage

recourse model (Ierapetritou et al. 1996):

Problem (5):

Maximize
x1;x2

cT1 � x1 þ Eh cT2 ðhÞ � x2
� �

Subject to

A1 � x1 � b1

B1 � x1 þ B2ðhÞ � x2 � b2ðhÞ� 0

x1; x2 � 0

Here, variables x1 correspond to the HAN (first-stage) decisions, whereas

variables x2 correspond to the WAS (second-stage) decisions, which depend on the

HAN decisions x1. The WAS model that corresponds to the best possible set of

decisions given parameter outcomes h is:

Problem (6):

F1 hð Þ¼ Maximize
x1;x2

cT1 � x1 þ cT2 ðhÞ � x2
� �

Subject to

A1 � x1 � b1

B1 � x1 þ B2ðhÞ � x2 � b2ðhÞ� 0

x1; x2 � 0

The HAN model, which corresponds to the best possible set of WAS decisions x2
given a set of fixed HAN decisions (x1

*) and parameter outcomes h, is:
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Problem (7):

F2 x�1; h
� �

¼ Maximize
x2

cT1 � x�1 þ cT2 ðhÞ � x2
� �

Subject to

B1 � x�1 þ B2ðhÞ � x2 � b2ðhÞ� 0

x2 � 0

The regret function (R) corresponds to the ‘‘missed opportunity’’ of not having

made the best decision possible given the (WAS) parameter outcomes h. If all HAN
decisions becameWASdecisions, users wouldmake the best possible decisions, since

they would have perfect knowledge of parameter values before deciding. Regret with

respect to a HAN decision x1
* and a parameter outcome h is calculated as follows:

R x�1; h
� �

¼ F1 hð Þ � F2 x�1; h
� �

A practical example of the use of Regret functions in planning and scheduling is

‘‘back-casting’’. At the end of the decision-making horizon, the backcast consists of

calculating the decision based on all parameter values that were made available at

the end of the decision-making horizon, and then comparing this ‘‘perfect’’ decision

to the one that was implemented in the system. In other words, the backcast is a

measure of regret for the decisions that have been made.

Given all possible parameter outcomes h, the Maximum Regret (MaxR)

corresponds to the regret based on the worst possible parameter outcomes in the

system given a certain set of HAN decisions x1
*. Maximum Regret can thus be

expressed as:

MaxR x�1
� �

¼ Maximize over all hð Þ F1 hð Þ � F2 x�1; h
� �� �

� Max over allhsð Þ F1 hsð Þ � F2 x�1; hs
� �� �

(given a set of scenarios from the parameter space)

The expected value of perfect information (EVPI) is a less conservative measure

of opportunity loss than Maximum Regret since the former considers parameter

probability distribution. Therefore, parameter outcomes that have a small proba-

bility of occurring will have a small contribution to the overall EVPI. EVPI can be

expressed as:

EVPI x�1
� �

¼ Eh F1 hð Þ � F2 x�1; h
� �� �

�
X

s2S
ps � F1 hsð Þ � F2 x�1; hs

� �� �

2.2.2 Cost of exogenous uncertainty with perfect information

In some cases, the user may wish to assess how much the uncertainty that exists in

the system will impact decisions, even if those are made after parameter outcomes

are known. This is different from EVPI and Maximum Regret since in this case the

dynamic, temporal aspect of decision-making (HAN versus WAS) is not
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considered: all decisions are assumed to be WAS. An additional difference is that in

this case it is exogenous sources of uncertainty being considered as opposed to

endogenous ones.

In Fig. 2, this assessment would indicate the difference between the optimal

schedule for a delivery of crude oils with the ‘‘best possible’’ qualities and the

optimal schedule for a delivery with the ‘‘worst possible’’ qualities. This topic has

been addressed by Chinneck and Ramadan (2000), Zyngier (2006) and Zyngier and

Marlin (2006). In these studies, the objective function difference between the best-

case parameter realizations (‘‘best-case scenario’’) and worst-case parameter

realizations (‘‘worst-case scenario’’) is calculated and expressed as an objective

function range (OFR). While Chinneck and Ramadan (2000) applied enumerative

methods to solve this problem, Zyngier (2006) and Zyngier and Marlin (2006) used

a single-stage optimization problem. The nominal optimization problem is

illustrated below.

Problem (8):

Minimize
x;y

c hð ÞT � xþ w �
X

in

yþin þ
X

eq

yþeq þ y�eq

� 	 !( )

Subject to

gin yin; hð Þ ¼ Ain hð Þ � x� bin hð Þ � yþin � 0

geq yeq; h
� �

¼ Aeq hð Þ � x� beq hð Þ � yþeq þ y�eq ¼ 0

yþin; y
þ
eq; y

�
eq; x� 0

The best-case scenario (BC) stated in Problem (9) determines the best possible

parameter realization in the system. This problem is very similar to the nominal

Problem (8), except that the parameters are assumed to lie within upper and lower

bounds. However, Problem (9) is nonlinear due to the bilinear terms A(h)x in the

constraints and c(h)Tx in the objective function.

Problem (9):

BC ¼ Minimize
x;y;h

c hð ÞT � xþ w �
X

in

yþin þ
X

eq

yþeq þ y�eq

� 	 !( )

Subject to

hLB � h� hUB

gin yin; hð Þ ¼ Ain hð Þ � x� bin hð Þ � yþin � 0

geq yeq; h
� �

¼ Aeq hð Þ � x� beq hð Þ � yþeq þ y�eq ¼ 0
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yþin; y
þ
eq; y

�
eq; x� 0

The formulation in Problem (10) is used for determining the worst possible

parameter realizations in the system, also known as worst-case scenario (WC).

Differently from the feasibility test, the worst-case problem is not based on a fixed

solution x* from the original optimization problem.

Problem (10):

WC ¼ Maximize
h

c hð ÞT � xþ w �
X

in

yþin þ
X

eq

yþeq þ y�eq

� 	 !( )

Subject to

hLB � h� hUB

Minimize
x;y

c hð ÞT � xþ w �
X

in

yþin þ
X

eq

yþeq þ y�eq

� 	 !( )

Subject to

gin yin; hð Þ ¼ Ain hð Þ � x� bin hð Þ � yþin � 0

geq yeq; h
� �

¼ Aeq hð Þ � x� beq hð Þ � yþeq þ y�eq ¼ 0

yþin; y
þ
eq; y

�
eq; x� 0

If the objective function of the original problem only contains penalty variables y

(i.e., decision variables x are fixed), the worst-case problem WC is equivalent to the

feasibility problem. The objective function range (OFR) is calculated as:

OFR ¼ BC�WCð Þ

An OFR[ 0 is not caused by lack of information about parameter realizations, thus

differing from the Maximum Regret problem: OFR is a measure of the effect of

parameter variability in a system given wait-and-see variables only. In other words,

both BC and WC problems assume that (best- and worst-case) parameter realiza-

tions are perfectly known when decisions x have to be made. Therefore, OFR is

useful for assessing (or vetting) the effect of the variability of exogenous variables

(for instance, raw material properties or timing of demand orders) on the system in

question.

3 Adjustment: reducing the impact of endogenous uncertainty

Section 2 addressed Assessment methods, in which the effect of uncertainty was

evaluated in order to determine its impact on feasibility and on objective function

value. Adjustment methods, on the other hand, focus on making decisions that
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account for endogenous uncertainty. Similar to Assessment methods, Adjustment

methods may be based on guaranteeing feasibility of the solution, or on minimizing

the impact of uncertainty on the objective function.

Naturally, the immunization of the problem to uncertainty comes at a price: there

is usually a compromise between the objective function value of a problem and the

robustness of the decision with respect to uncertainty. This can be illustrated

through the example in Fig. 2. The blended crude oils must satisfy maximum

sulphur specifications. If decision-makers are unsure of the sulphur content of

incoming crude oils, they will most likely impose a processing ‘‘safety margin’’

such that blend specifications are met. If product is not within specifications, it may

be either discarded or submitted to expensive re-processing operations. On the other

hand, imposing a ‘‘safety margin’’ (also known as giveaway) reduces process profit

margins.

Decision adjustment based on the impact of uncertainty on feasibility may be

calculated by reformulating the original formulation as a Stochastic Programming

(SP) problem. SP is defined as an optimization problem in which one or more of the

data elements is represented by a random variable (Sen and Higle 1999). There are

two different methods in SP that are relevant to this paper: Recourse Programming

and the use of Probabilistic constraints. Recourse Programming (Sect. 3.1)

incorporates the dynamic aspect of parameter outcomes since there is differentiation

between HAN and WAS decisions. On the other hand, Probabilistic constraints

(Sect. 3.2) are based on backing off from constraints to ensure that they will be

satisfied to a certain probability level. Another adjustment alternative is to accept a

certain level of infeasibility in the constraints, as is the case in the Feasibility

Tolerance approach (Sect. 3.3).

The adjustment of decisions based on the effect of uncertainty on the objective

function, on the other hand, can be addressed by calculating the decision which will

be the least sensitive to the parameter outcomes. The two approaches outlined in

Sect. 3.4 are the minimization of EVPI and the minimization of the Maximum

Regret.

3.1 Impact on feasibility: recourse programming

Recourse Programming considers that not all parameter outcomes are known at the

time of decision-making, and therefore variables are separated into HAN and WAS

decisions. In the following sub-sections, different types of recourse problems are

outlined.

3.1.1 Simple recourse

The simple recourse problem (also known as WAS analysis or scenario optimiza-

tion) is a special case of Recourse Programming, used in scenario analyses or what-

if analyses. In this type of problem, all scenarios are solved simultaneously such that

‘‘reasonable’’ decisions can be made (Sen and Higle 1999; Dembo 1991), which

may be infeasible for one or more scenarios.
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In simple recourse, infeasibilities in second-stage decisions are penalized in

objective function, weighted by the probability of occurrence of each individual

scenario. Consider the following optimization problem:

Problem (11):

Maximize
x

cTx
� �

Subject to

Ad � x ¼ bd

Au � x ¼ bu

x� 0

The corresponding single recourse reformulation of Problem (11) is stated

as:Problem (12):

Maximize
x

cTx�
X

u

wu

X

s

ps � yþu;s þ y�u;s

� 	( )

Subject to

Ad � x ¼ bd

Au;s � x ¼ bu;s þ yþu;s � y�u;s

x; yþu;s; y
�
u;s � 0

where wu is the penalty weight for violating constraint u and ps is the probability of

occurrence of scenario s. Whenever constraints associated with second-stage deci-

sions are not satisfied, there are associated non-zero penalty variables (yu,s).

Scenario optimization can be implemented in a very simple fashion to obtain

‘‘reasonable’’ decisions x by solving (s ? 1) optimization problems of the same size

of the original Problem (11) (Dembo 1991). However, as previously noted, this

formulation allows for infeasible solutions for some of the scenarios, which may not

be an appropriate alternative for applications where feasibility is required.

3.1.2 General (or random) recourse

In two-stage or random recourse problems, the first-stage variables must allow for

feasible second-stage WAS decisions. In this case, no penalty terms are included for

infeasibility of constraints that involve WAS decisions x2. As a result of solving

general recourse problems, the user obtains a set of s feasible solutions for each of

the second-stage variables that depend on (future) parameter realizations (x2s). In

general, only the first-stage decision variables x1 are reported and implemented after

solving a general recourse problem. A general recourse problem can be seen below:
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Problem (13):

Maximize
x1;x2s

cT1 � x1 þ
X

s

ps � cT2 ðhsÞ � x2s

Subject to

Ad � x1 � bd

A1s � x1 þ A2ðhsÞ � x2s � bðhsÞ� 0

x1; x2s � 0

When the second-stage matrix [A1 A2] is the same for all scenarios, the problem

is said to have Fixed Recourse. It is interesting to note that simple recourse

problems are a special type of general recourse problems with fixed recourse in

which the second set of inequality constraints are equality constraints, the fixed

second-stage matrix is equal to [I–I] and b is a vector of zeros. These problems can

also be interpreted as a general recourse problem with no WAS decisions.

If all second-stage problems are feasible for any choice of first-stage variables,

i.e., if the first-stage variables are unconstrained, the problem is said to have

Complete Recourse. If all second-stage problems are feasible given any of the first-

stage variables that satisfy the first-stage constraints, the problem is said to have

Relatively Complete Recourse (Sen and Higle 1999).

3.2 Impact on feasibility: probabilistic constraints

In the case where all decisions must be made before parameter values are known

(i.e., all variables are HAN decisions), one of two solution strategies is usually

adopted: (1) to increase the likelihood of making feasible decisions, or (2) to require

the solution to lie within pre-established constraint violation bounds. Such strategies

are also referred to as ‘‘Robust Optimization’’ problems in the literature. The former

is based on probabilistic constraints, which results in distancing (‘‘backing off’’)

from system bounds, whereas the latter corresponds to the feasibility tolerance

approach, which allows small constraint violations (see Sect. 3.3).

Probabilistic (or chance) constraints (CharnesandCooper1963) restrict theprobabilityof

constraint violation to a user-specified level. In other words, the use of probabilistic

constraints determines the decision x* which will satisfy the constraints at least a certain

percentage of the time (e.g., 95 %) by incorporating information about the uncertain

parameter distribution.Anoptimizationproblemwith chance constraints canbe seenbelow:

Problem (14):

Maximize
x

cTx
� �

Subject to

P A � x� b� 0ð Þ� p
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x� 0

When the probability distributions across constraints are independent from each

other (i.e., when they are not correlated), Problem (14) can be reformulated as:

Problem (15):

Maximize
x

cTx
� �

Subject to

P ai � x� bi � 0ð Þ� p

x� 0

From Ben-Tal and Nemirovski (1998), Problem (15) can be reformulated into the

equivalent second-order conic programming problem: Problem (16):

Maximize
x

cTx
� �

Subject to

ai;nom � x� bi;nom � c V
1=2
i

x

�1


 �����

����
2

� 0

x� 0

In Problem (16), the subscript nom refers to the nominal parameter values.

Additionally, c ¼ zp=2 ¼ U�1 1� p=2ð Þ, where U(.) is the univariate normal

distribution function with zero mean and unit variance. For a constraint that must

be satisfied 95 % of the time, zp/2 = 1.96. Assuming uncorrelated parameters in

each constraint i,

Vi ¼

r2ai;1
r2ai;2

� � �
r2bi

2

664

3

775;

where r(.)
2 = variance of (.)

3.3 Impact on feasibility: feasibility tolerance

In some instances of Robust Optimization, the user may want to assign a feasibility

tolerance to the optimization constraints, i.e., constraints are allowed to be

‘‘slightly’’ infeasible. This is the basic principle of the Reliability (or Feasibility

Tolerance) Approach first outlined in Ben-Tal and Nemirovski (2000). These

authors developed a method to obtain adjusted solutions to linear programming

problems. This approach was later extended to mixed-integer linear programming
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(MILP) problems by Lin et al. (2004). In the problems below, only the formulation

for LP problems is shown. Consider the following LP:

Problem (17):

Maximize
x

cT � x

Subject to

A � x� b

xLB � x� xUB

Here, uncertainty is assumed to be in any inequality constraint coefficient (ai,n
and/or bi). For the case of bounded uncertainty, the uncertain parameters lie within

the following intervals:

ai;n � ai;n;nom


 

� e � ai;n;nom



 

 and therefore ai;n


 

� ai;n;nom



 

þ e � ai;n;nom


 



bi � bi;nom


 

� e � bi;nom



 

 and therefore bij j � bi;nom


 

þ e � bi;nom



 



where e[ 0 is a user-defined ‘‘uncertainty level’’. Taking the largest deviation of

parameter realizations from the nominal values and substituting them into the

original problem, the (e, d)-interval robust counterpart of the original problem is

obtained. In this robust problem, d is called an ‘‘infeasibility tolerance’’:

Problem (18):

Maximize
x;u

cT � x

Subject to

A � x� b

X

n

ai;n;nom � xn þ e �
X

n

ai;n;nom


 

 � un � bi � e � bi;nom



 

þ d �max 1; bi;nom


 

� �

�un � xn � un

xLB � x� xUB

Note that the robust counterpart of an LP problem (Problem (18)) is still a linear

problem. Similarly, the robust counterpart of a MILP problem is also a MILP. In

addition to bounded uncertainty region descriptions, ellipsoidal descriptions may

also be used by replacing the bounded uncertainty constraints with the ones below:

ai;n ¼ 1þ e � ni;n
� �

� ai;n;nom

bi ¼ 1þ e � nið Þ � bi;nom
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In these equations, ni,n and ni are random variables distributed symmetrically in

the interval [-1,1]. Given that the probability of violation of the i-th constraint is at

most j (also known as the constraint’s ‘‘reliability level’’), the (e, d, j)-robust
counterpart can be described as:

Problem (19):

Maximize
x;u;z

cT � x

Subject to

A � x� b

X

n

ai;n;nom � xn þ e �
X

n

ai;n;nom


 

 � un þ X �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

n

a2i;n;nom � z2i;n þ b2i;nom

r" #
� bi

þ d �max 1; bi;nom


 

� �

�un � xn � zi;n � un

xLB � x� xUB

where X is a positive parameter with j = exp{-X2/2}. For example, for a 5 %

reliability level, X would be roughly equal to 2.45. The general symmetric

description of uncertainty in Problem (19) is less conservative than adopting simple

bounds for the uncertain parameters. However, the user is faced with an increased

computational burden since the original LP problem now becomes a nonlinear

problem.

3.4 Impact on objective function: minimax regret/min EVPI

In Sects. 3.1, 3.2 and 3.3, decision adjustments were based on feasibility criteria.

Another possible criterion for adjusting decisions is the impact of uncertainty on

objective function value. Similar to the uncertainty assessment methods described in

Sect. 2.2, the adjustment methods based on the objective function value assist in

making decisions that minimize the impact of parameter uncertainty on the

objective function.

These approaches may also be based on worst-case parameter realizations

(Maximum Regret approach) or on expected parameter realizations (EVPI

approach). The Minimax Regret (MinMaxR) problem finds decisions x1 that

minimize the Maximum Regret (Averbakh 2000), and can be described as follows.

Problem (20):

MinMaxR ¼ Minimize
x

MaxR xð Þ½ �

Subject to
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MaxR xð Þ ¼ Maximize
h

F1 hð Þ � F2 x; hð Þ½ �

Subject to

hLB � h� hUB

As a bilevel problem, Problem (20) can be solved by replacing the MaxR(x)

subproblem with its optimality conditions. However, this results in a nonlinear

programming problem (or a MINLP), since complementarity constraints arise from

the bounds on parameter values. Instead of parameter bounds, Problem (20) may be

reformulated using scenarios in the MaxR(x) subproblem, resulting in the following

problem:

Problem (21):

MinMaxR ¼ Minimize
x

MaxR xð Þ½ �

Subject to

MaxR xð Þ ¼ Maximize
hs

F1ðhsÞ � F2ðx; hsÞ½ �

The following methodology can be used to solve scenario-based formulations of

the minimization of Max Regret in Problem (21) or EVPI:

(1) Solve F1(hs) for every scenario s [ S, and obtain a set of xs
*.

(2) For each scenario s [ S, solve F2(xs
*, hs0) for every s0 [ S, where s0 = s (since

regret is zero when s0 = s).

(3) Find MaxR(xs
*) = Max (over all hs0) F2(xs

*, hs0) for all xs
*. Alternatively, we

can calculate the EVPI for each x�s
� �

¼
P

s02S ps0 � F1 hsð Þ � F2 x�s ; hs0
� �� �

,

where s0 = s.

(4) Find xs
* which yields the smallest MaxR(xs

*). Alternatively, we could find xs
*

which yields the smallest EVPI.

(5) The solution xs
* from step 4 is the HAN decision that minimizes the MaxR (or

EVPI) given scenarios s [ S.

The above methodology requires the solution of sþ s� s� 1ð Þð Þ ¼ s2 optimiza-

tion problems which have the same structural characteristics (LP, MILP, etc.) as the

original problem.

4 Abatement: reducing the cost of exogenous uncertainty

As previously mentioned, there is value in assessing the impact of uncertainty and in

adjusting decisions based on its existence. In some cases, it is possible to

significantly reduce exogenous uncertainty in model parameters.

In some processes, parameters may be physically measurable (such as octane in

gasoline) and extra instrumentation can be installed in order to obtain accurate
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information about their true values. Instrumentation equipment, installation and

maintenance, however, can be very expensive. Furthermore, model parameters may

not be physically measurable in some systems.

An alternative to physically measuring model parameters is to develop a more

accurate first-principles model. In planning and scheduling applications, for

instance, more accurate forecasting models could be used in order to better

determine the future supply and demand profiles in the system, An excellent

reference to forecasting models is the book by Box et al. (1994). However, when

detailed first-principles models are not readily available, they may be very

expensive to develop and even then might not yield the required accuracy.

A useful ‘‘model enhancement’’ technique widely used in Process Control is the

incorporation of feedback to the system in order to continuously improve model

representation (Kelly and Zyngier 2008a). In this case, the feedback parameter

obtained by comparing measured variables to their model predictions accounts for

some model inaccuracies, given that this value is incorporated in the following

decision cycle.

Finally, model parameters can be re-estimated based on available process

measurements. Since typical data variation in the system may be limited, significant

improvement in estimated parameter accuracy is usually obtained from designing

plant experiments. Traditional factorial design of experiments usually requires

significant process perturbations which disturb plant operations. In order to

overcome this issue, techniques for optimal design of experiments have been

developed that reduce the number of plant experiments while still enabling the

reduction of parameter uncertainty to desired levels (Draper and Smith 1998;

Zyngier and Marlin 2006). Since this paper focuses on the categorization of

optimization problems with uncertain parameters, a more in-depth analysis of

design of experiments and forecasting methods is suggested as further exercise to

the reader.

5 Solution simplification approaches

The solution of many of the optimization problems presented in this paper may

prove to be computationally challenging, given that they sometimes result in large-

scale nonlinear programs or mixed-integer nonlinear programs. Therefore, strategies

have been devised to enable the solution of industrial-sized problems in reasonable

time. Two main types of solution simplification strategies are commonly adopted:

one which maintains a continuous description of the parameter space, and another,

in which (discrete) samples of the parameter space are used. Sometimes a

combination of simplification methods may be possible.

5.1 Continuous approaches

A very common approach to improve the management of computational complexity

is to simplify the original deterministic model by limiting its spatial scope. Instead

of considering an entire plant in a single large model, the original model may
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instead be broken down into smaller sub-models, which are then solved separately.

While this technique does indeed reduce the computational effort involved in the

solution of each sub-problem, it adds the complexity of coordinating the different

sub-models. A detailed discussion on several aspects of decentralized systems in

industry, as well as a strategy for obtaining a globally feasible solution across all

sub-models, can be found in Kelly and Zyngier (2008b).

Another simplification strategy is to limit the complexity of correlations between

variables in the system. In Fig. 2, for instance, fixed blend recipes could be used to

avoid nonlinear crude oil blending equations. Nonlinear relationships such as

blending correlations may also sometimes be replaced by linear counterparts (e.g.,

by using blending indices). Some common simplification strategies are separable

programming and piecewise linear representations of nonlinear functions (Williams

2013). These techniques simplify the solution of the problems at the cost of a less

accurate representation of the system. This issue may be more of less relevant

depending on the nonlinear characteristics of the process, the operating region, and

the specific use of the model (e.g., long-term planning models versus process

simulation models).

Finally, the robust optimization methods described in Sect. 3.2 often rely on

ellipsoidal parameter uncertainty regions, which are reformulated into quadratic

constraints. Ben-Tal and Nemirovski (2001) proposed a polyhedral approximation

of the ellipsoidal parameter region which maintains the problem’s original structural

characteristics at the cost of an increased number of linear constraints. The number

of additional linear constraints depends on the number of approximation points on

the ellipse. Several additional approximation methods for linear and mixed-integer

linear programs under uncertainty were also presented by Li et al. (2011).

5.2 Discrete approaches

Another approach for limiting complexity when solving optimization problems

under uncertainty is to sample the parameter uncertainty region and solve several

deterministic optimization problems, one for each sample. These parameter samples

are also known as scenarios (or ‘‘cases’’).

For single-stage decision-making problems, such as simple recourse or scenario

optimization (Dembo 1991), there is a root-scenario (corresponding to the original

deterministic problem) and several leaf-scenarios, each corresponding to a

modification to the root-scenario. In this case, any one of the (root or leaf)

scenarios can be solved independently, i.e., no knowledge about the adjacent

scenarios is required. In Scenario optimization, all (root and leaf) scenarios are

solved at once in a single optimization problem. Dembo (1991) describes how this

‘‘aggregated’’ optimization problem can be broken up into smaller optimization

problems which would have to be solved once for each scenario, plus one time to

combine all previous solutions.

For multi-stage decision-making problems such as two- or multi-stage recourse

problems not every parameter realization is known at the root-node. The subsequent

leaf-nodes represent the different parameter outcomes. In this case, a branch-
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scenario comprises the combination of the root-node with as many leaf-nodes as

there are stages in the decision tree.

Solving deterministic optimization problems is much simpler than its uncertain

counterpart. In addition, the overall parameter distribution is fairly well-represented

given a certain number of samples. However, the number of scenarios may be

intractable, especially as the number uncertain parameters increases. Taking again

the example in Fig. 2, uncertainty could easily be present in the specific gravity and

sulphur specifications for five different types of crudes (10 uncertain parameters). If

only two values for each uncertain parameter were considered, there would be a

total of 210 = 1024 possible parameter value combinations, each corresponding to a

different scenario. If three different values for each parameter were considered, the

total number of scenarios would increase to 59,049! Adding to this issue, scheduling

problems are dynamic in nature, so additional scenarios may be necessary for

temporal uncertainties, such as the time of raw material delivery, processing times,

etc.

In order to reduce the number of scenarios, it is common industrial practice for

domain experts to create a set of scenarios to be analyzed. This reduced set is then

considered to be a representative sampling of the parameter distribution. In other

situations, scenarios can be automatically generated with very little or no user input.

An automatic scenario generation approach is Monte Carlo sampling, in which

parameters are randomly selected from a distribution.

In the context of planning and scheduling, another alternative to the somewhat

blind sampling techniques such as Monte Carlo is to automatically generate

outcome-orders. In this case, a set of parameter outcome instances (scenarios) can

be automatically generated given, for example, a certain set of exogenous market-

orders in the root scenario: if market-orders only exist for product A, there is no

need to generate scenarios for different parameter outcomes related to product B.

This concept is an extension of obtained-orders (Kelly and Zyngier 2012).

When working on a multi-scenario framework, a systematic tool can be quite

useful for comparing different scenarios. The comparison may simply be for the

purposes of analysis by the user, or it may be used in order to simplify the solution

of certain types of problems.

Scenario comparison is particularly useful in multi-stage recourse programming

approaches, which are computationally very demanding. Rockafellar and Wets

(1991) developed a method to search for (and subsequently fix) commonalities

across different scenarios in order to ease the computational burden of a multi-stage

recourse programming problem. This concept is related to the proximate optimality

principle (POP) (Glover and Laguna 1997), which is applied to MILP problems.

If several scenarios are created for a system, there is the need for storing those

scenarios in a database. Whenever there is an actual parameter outcome in the

system (e.g., at every planning or scheduling cycle), this scenario can be included in

the database, and the probability of occurrence of that particular scenario can be

automatically updated. In fact, a heuristic can be created based on a forgetting factor

that can be used to update the probability of occurrence of ‘‘unlikely’’ scenarios: if

the probability of a scenario is below a certain value, this scenario may be

eliminated from the database.
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6 Conclusions

This paper focused on reducing the well-known gap between state-of-the-art

technology in academia and industrial best practices in the vast field of optimization

under uncertainty. Most reviews in the literature have approached the topic by

mapping existing optimization methods to applications. In this sense, the

categorization presented here is of great value to industrial practitioners, since it

is more natural and convenient when determining what kind of optimization

methods and techniques to use bearing in mind the type of decision being made. In

addition to contributing with a novel categorization, this paper included recent

advances for different types of decision-making problems. Finally, solution

simplification techniques including issues related to scenario generation and

management were presented.
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