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Abstract Due to strict regulatory rules in combination with complex nonlinear

physics, major gas network operators in Germany and Europe face hard planning

problems that call for optimization. In part 1 of this paper we have developed a

suitable model hierarchy for that purpose. Here we consider the more practical

aspects of modeling. We validate individual model components against a trusted

simulation tool, give a structural overview of the model hierarchy, and use its large

variety of approximations to devise robust and efficient solution techniques. An

extensive computational study demonstrates the suitability of our models and

techniques for previously unsolvable problems in gas network planning.
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1 Introduction

In part one of this paper (Schmidt et al. 2014) we have presented detailed models for

stationary optimization in gas transport networks, consisting of physical compo-

nents that are mostly associated with network wide gas dynamics, and of technical

components that are usually associated with specific types of network elements. We

have also developed smoothing techniques for nonsmooth components in order to

apply optimization algorithms that use first and second order derivatives, and we

have presented simplifications and approximations of highly complex components

to reduce the computational effort when a lower accuracy is acceptable. This leads

to a complicated variety of possible combinations of the component models. In this

paper we will first provide a structural overview of the possible combinations in

Sect. 2. The components will then be checked for correctness and accuracy in

Sect. 3 by comparing computational results with the results of a commercial gas

network simulation software. In Sect. 4 we consider general optimization

techniques for computing practically useful and reliable results efficiently. This

includes penalty relaxations to obtain additional information when no feasible

solutions can be found, and using the variety of simplified and approximated models

to construct sequences of warm-started NLPs for tackling highly detailed and

nonsmooth problems that cannot be solved without these techniques. Results will be

presented in Sect. 5 for a set of hard problem instances on a real-world network, and

for a large set of publicly available instances on an artificial but realistic network. In

combination, the model validation and computational results demonstrate that our

NLP models are indeed applicable and useful in practice. An extensive literature

review has already been given in part one (cf. Schmidt et al. 2014); a broader review

can be found in Koch et al. (2015).

In the following subsection we introduce a fundamental application problem that

will be referred to throughout the paper.

1.1 Validation of nominations (NoVa)

The validation of nominations is one of the key problems in the day-to-day work of

gas network planners. In a nutshell, the NoVa problem is this:

Given a transport network and a nomination of all entry and exit load flows,

determine whether there is a technically and physically feasible operation of

the network that satisfies this nomination.

The details are as follows. Consider a set of booking contracts with entry and exit

customers. The booked capacities define maximal load flows that the customers may

nominate for actual transport. Now, a nomination is defined as a complete set of

balanced entry and exit load flows together with specific restrictions on gas

pressures and with prescribed values for all quality parameters of the supplied gas,

like calorific value, etc. The problem of validating such a nomination is to decide

whether it is technically and physically feasible, i.e., whether all load flows can be

realized. Throughout the paper we only consider the continuous feasibility problem
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that is obtained after fixing all discrete decisions. For more information on the NoVa

problem and on our overall solution approach see, e.g., Koch et al. (2015), Pfetsch

et al. (2015).

2 NLP model variants

In part one of this paper (cf. Schmidt et al. 2014), we have presented component

models for the required element types of gas networks and for basic physical

phenomena that are relevant to the entire network. The component models often

consist of several sub-models describing different physical phenomena or technical

processes that we refer to as model aspects, and many of these aspects admit a

choice among several modeling variants that we refer to as model concretizations.

This leads to a large variety of possible NLP models, each of which is determined

by choosing a complete set of concretizations for all model aspects.

In this section we provide a structural description of the sets of component

models, aspects and concretizations, to obtain an overview and better understanding

of the complete set of NLP models and their interrelations. This is complicated by

the fact that the selection of concretizations for certain global aspects determines the

sets of choices of other aspects, whereas the remaining selections are mostly

independent of each other, even for different network elements of the same type. To

capture these interdependencies formally, we will arrange aspects and concretiza-

tions in a directed (meta-)graph so that every possible NLP model will ultimately

correspond to a forest in the meta-graph: a set of trees that satisfy certain properties.

These properties will now be determined.

To this end, let us first give an overview of the component models and some

illustrative examples of model aspects and concretizations. The basic physical

phenomena include: gas compressibility, the equation of state for real gas, the heat

capacity of gas, the interdependence of changes in gas pressure and temperature

(Joule–Thomson effect), and mixing of different gas compositions. The required

element types include: nodes (entries, exits, junctions), passive arcs (pipes, resistors,

short cuts), and active arcs (compressor groups, control valve stations, valves).

Typical model aspects are the pressure drop along a pipe, the fuel consumption of a

compressor, or the equation of state. For instance, the aspect ‘‘equation of state’’ has

two concretizations, ‘‘thermodynamical standard equation’’ and ‘‘Redlich–Kwong’’.

The former depends on another model aspect, ‘‘compressibility’’, which in turn has

two concretizations, ‘‘AGA’’ and ‘‘Papay’’; see Fig. 1. Here we consider only the

concretizations that we use in our NLP models, with details given in part one;

further variants can be added as needed.

There are two global aspects whose concretizations determine sets of choices of

other aspects: gas temperature and gas composition, the latter being represented by

seven gas quality parameters. In a coarse model we may fix the values of gas

temperature and gas quality parameters globally, but if we decide to take into account

changes at some network elements, then we must compute changes throughout the

network. This is the case since both temperature and composition are globally coupled:

fixing certain values at some network elements and computing changes at other
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elements would inevitably lead to model inconsistencies. Taking the changes into

account is known as temperature tracking and gas quality tracking, respectively.

Practitioners tend to use it only when necessary as it complicates the models and

computations considerably. Note finally that the seven gas quality parameters (molar

mass m, calorific value Hc, pseudocritical pressure and temperature pc; Tc; and the

coefficients of isobaric molar heat capacity A, B, C) consist of four independent

subsets that can be selected for tracking individually, namely m, Hc, ðpc; TcÞ; and
(A, B, C). Tracking has to be enabled if at least one subset is selected, but only the

selected subsets appear in the required mixing equations. The two global aspects thus

have 25 concretizations arising as combinations of ‘‘fixed’’ or ‘‘tracking’’ for the

temperature and the four parameter groups.

Next, we start describing the above-mentioned meta-graph to formalize relations

between model aspects and concretizations. As before, let the directed graph

G ¼ ðV;AÞmodel the gas network with node setV and arc setA. We denote model

aspect nodes of the meta-graph by a 2 A and concretization nodes by c 2 C; their
unionA [ C defines the node set of themeta-graph. An arc a ¼ ac from a to c exists iff
c is a concretization of the model aspect a. These arcs in the setA� C are called ‘‘can-
be-modeled-by’’-arcs. For instance, there is an arc from the model aspect node a ¼
‘‘equation of state’’ to the concretization node c ¼ ‘‘Redlich–Kwong’’. In addition, the

meta-graph also contains arcs from the set C � A. These occur for concretizations that

depend on other model aspects. For instance, the concretization ‘‘thermodynamical

standard equation’’ depends on the sub-aspect ‘‘compressibility’’ (with concretiza-

tions ‘‘AGA’’ and ‘‘Papay’’). We refer to these arcs in the set C � A as ‘‘contains-

aspect’’-arcs. In contrast, there are no arcs in C � C or inA�A since concretizations

do not need to be concretized further and there is no need to consider aspects

containing sub-aspects. (For instance, considering the specific change in adiabatic

enthalpy Had as an aspect with sub-aspects ‘‘compressibility’’ and ‘‘isentropic

Fig. 1 Model aspect graph of resistors. The nodes in shaded blocks exist only in non-isothermal models
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exponent’’ would be physically reasonable but would unnecessarily complicate the

meta-graph, cf. Fig. 2). Thus, every aspect has at least one concretization and every

concretization belongs to some aspect, implying that aspect nodes always have

nonzero out-degree and concretization nodes always have nonzero in-degree. We

define fundamental model aspects as aspects with in-degree zero, and terminal

concretizations as concretizationswith out-degree zero. Those form the respective sets
�A :¼fa 2 A : jd�a j ¼ 0g and �C :¼fc 2 C : jdþc j ¼ 0g.
In contrast to the two global model aspects, gas temperature and gas composition,

we call all other model aspects local. The selection of concretizations of local

aspects does not influence the sets of choices of other local aspects (except for sub-

aspects of the concretizations, of course), and the selections are independent for all

individual network elements. For instance, we may choose to concretize the

compressibility factor model with the AGA formula at pipes in regional (low-

pressure) sub-networks but choose to model the compressibility factor with the

Fig. 2 Model aspect graph of compressors. The nodes in the shaded block exist only in non-isothermal
models
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Papay formula on large (high-pressure) transport pipelines. Similar considerations

may apply to the choice between ‘‘approximation’’ or ‘‘discretization’’ of the

governing ODEs for pipes. We thus speak of global and local selections of

concretizations.

To select a specific NLP model variant, we first have to fix the global selections

and subsequently the local selections for all nodes and arcs of the network graph.

Let us denote the global selections by rg 2 Rg where Rg is the (finite) set of global

choices. Then, for every network element ‘ 2 V [A, the global selections rg
determine a local model aspect graph M‘ðrgÞ describing all possible aspects,

concretizations, and sub-aspects of ‘; see, e.g., Figs. 1 and 2 for the local model

aspect graphs of resistors and compressors. Fixing the local selections for ‘ means

that, for every fundamental aspect node �a in M‘ðrgÞ, we select a tree T‘;�a rooted in

�a such that every aspect node a in T‘;�a has out-degree one (select one

concretization of a) whereas every concretization node c in T‘;�a has the same out-

degree as in M‘ðrgÞ (cover every sub-aspect of c). Obtaining trees here requires

that identical aspects reached from several concretizations are separate nodes in

M‘ðrgÞ, such as ‘‘compressibility’’ in Figs. 1 and 2. Thus M‘ðrgÞ is actually a

forest, and every tree T‘;�a is a subtree of the tree rooted in �a. On the other hand, we

always select identical concretizations for every instance of a ‘‘multiple’’ aspect,

and we do not see any good reason to do otherwise. (Therefore we depict every such

aspect as a single node with a visual indication of its multiplicity.) Now, the unionS
�a T‘;�a is a forest in M‘ðrgÞ representing a specific local model selection. We

denote those local selections by r‘ 2 R‘ðrgÞ where R‘ðrgÞ is the set of choices

(local forests) at element ‘ determined by rg. Given network elements ‘1; ‘2 of the

same type, the local model aspect graphs M‘1ðrgÞ, M‘2ðrgÞ are clearly identical

whereas the local selections r‘1 ; r‘2 may differ. A formal definition of the complete

set of possible selections (or NLP model variants) thus reads

R :¼
[

rg2Rg

frgg �
Y

‘2V[A
R‘ðrgÞ

" #

:

The elements of R will be denoted by r ¼ ðrg;rV[AÞ with rV[A ¼ ðr‘Þ‘2V[A; each

corresponds to a forest in the meta-graph constructed as a union of local forests. The

respective subsets of global concretizations and of local concretizations at element

‘ 2 V [A selected by rg and r‘ will be denoted by Cg; C‘.
With a selection r 2 R at hand, we can now formulate the corresponding NLP

model variant of the complete network. To this end, let �Eg; �I g and �E‘; �I ‘ denote

complete index sets of equality and inequality constraints that may appear in

concretizations of the global aspects and of the aspects of element ‘ 2 V [A,

respectively. Likewise, let �Vg; �V‘ denote the respective index sets of variables that

appear in these concretizations. Here we require that corresponding constraint index

sets of different elements ‘1; ‘2 2 V [A are mutually disjoint, even if ‘1; ‘2 are

elements of the same type,

�E‘1 \ �E‘2 ¼ ;; �I ‘1 \ �I ‘2 ¼ ;:
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In addition, we require that every local variable index is associated with a unique

network element ‘. This is possible since variables of arc ‘ 2 A can only appear in

the constraints of arc ‘ and of its head and tail nodes whereas variables of node

‘ 2 V can only appear in the constraints of node ‘ and of its incident arcs. Thus, we

obtain the following complete sets of constraints and variables that may appear in

the NLP model:

�E ¼ �Eg [
[

‘2V[A

�E‘; �I ¼ �Ig [
[

‘2V[A

�I ‘; �V ¼ �Vg [
[

‘2V[A

�V‘:

Now, every model selection r determines certain global and local index subsets

corresponding to the constraints and variables of the concretizations Cg; C‘,

Erg � �Eg; Er‘ � �E‘; Irg � �Ig; Ir‘ � �I ‘; Vrg � �Vg; Vr‘ � �V‘:

The unions of these sets yield the complete index subsets associated with r 2 R,

Er ¼ Erg [
[

‘2V[A
Er‘ ; Ir ¼ Irg [

[

‘2V[A
Ir‘ ; Vr ¼ Vrg [

[

‘2V[A
Vr‘ :

The selected NLP variant finally reads

min
xr

f ðxrÞ s.t. cErðxrÞ ¼ 0; cIrðxrÞ� 0; ð1Þ

where

xr :¼ ðxiÞi2Vr
; cEr :¼ ðciÞi2Er

; cIr :¼ ðciÞi2Ir
:

The objective function f, although not part of the model variant, is restricted by its

set of variables: it can be any smooth function that depends only on xr.

We remark that some of the NLP model variants contain additional continuous

choices that we will not formalize here. Those appear in concretizations that involve

smoothing techniques or discretizations of differential equations, with smoothing

parameters or grid parameters that vary in continuous sets. Examples of such

concretizations include ‘‘Darcy–Weisbach smoothed’’ for resistors (see Fig. 1), or

the concretization ‘‘discretization’’ of the model aspect ‘‘Momentum equation’’ for

pipes (see Fig. 21 in Appendix 2).

Figures 1 and 2 and 17, 18, 19, 20, and 21 in Appendix 2 show the local model

aspect graphs for resistors, compressors, nodes, control valves, and pipes. As

already mentioned, the given sets of concretizations correspond to the model

variants developed in part one of this paper (cf. Schmidt et al. 2014); further

variants are conceivable and may be added as needed.

Let us finally remark that the occurrence of model aspects with several

concretizations is not restricted to the case of gas network optimization. Our

experience shows that other problems from engineering and physics share similar

properties. The framework formalized in this section can thus be used in other fields

of applied optimization as well.
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3 Model validation

For a proper validation of the model components developed in the first part of this

paper (cf. Schmidt et al. 2014), one would ideally set up inverse problems to

perform parameter estimations based on measurements from a real gas network.

Although possible in principle, this is prohibitively expensive in practice. Instead,

we validate our model components against a commercial simulation software by a

systematic comparison. This is a natural approach since our industrial partners rely

on the same simulation software to check the results of the optimization methods.

For a stationary simulation, one generally has to prescribe a suitable set of

quantities so that the resulting system of nonlinear differential and algebraic

equations has a unique solution. In our case this includes discrete and continuous

control settings of active network elements, flows at all but one entry and exit nodes

in every connected component of the network, and in addition the pressure at one

node in every hydraulically connected area. The simulation problem is typically

solved by a Newton framework using numerical integrators. In practical planning

applications, the solution is then manually checked against inequality constraints

like pressure limits at nodes or the velocity limit on pipes.

Modern simulation methods can compute solutions with high accuracy. For

increased computational speed, some simulation tools offer model simplifications,

such as replacing heat dynamics by a constant temperature (see Záworka 1993) or

deactivating the tracking of gas quality parameters like molar mass or calorific value.

To analyze the physical and technical accuracy of our NLP model components,

we now carry out a consistency test against the commercial gas network simulation

software SIMONE v5.73 (2004).1 The relevant components are pipes, resistors,

control valves, and compressors: entries, exits, junctions, valves, and short cuts have

trivial models and are therefore excluded. For the comparison, each of the four

element types is tested with several technical and physical settings, and possibly

with several model variants. The variant offering the highest common level of detail

between the NLP model and SIMONE is always included in the test set. In specific,

we use a non-isothermal model of gas physics with gas mixing at nodes, discretized

ODEs for the gas flow in pipes, and maximally detailed models of compressors and

drives; see Sect. 3 in Schmidt et al. (2014) for the details of the NLP model.

When generating the test sets, we aim at choosing realistic parameters of network

elements. Ideally, we would like to use the elements of a real-world network for the

comparison, but due to limitations of the SIMONE API (2009), some parameters can

only be entered manually via the graphical user interface, which is impractical for

our large number of tests. The test set of every network element type is therefore

designed as follows. For every technical parameter (except pipe inclination, which

cannot be set with the SIMONE API) we take four quantiles from the distribution of

values of a real-world gas network: the 10, 35, 65, and 90 % quantiles. The gas

network considered is the northern high-calorific network of our industry partner

Open Grid Europe (OGE)2 (see Sect. 5 for more details of this network). All other

1
SIMONE software. http://www.liwacom.de.

2 https://www.open-grid-europe.com.
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parameters of our test sets like pressure or flow values are suitably chosen from

typical ranges based on our experience. The Cartesian product of the resulting sets

of parameters then defines the test set. Excluding the lower and upper 10 % of

parameter values helps to avoid unrealistic parameter combinations that would

otherwise distort the analysis. We also exclude those cases from the analysis where

SIMONE or the NLP solver do not converge or where SIMONE yields a solution that

violates the velocity limit on a pipe. The remaining successful cases will be referred

to as valid tests.

As measures of deviation for a physical or technical quantity x (such as pressure

or temperature) we will consider the absolute and relative deviations of x itself,

dabsðxÞ ¼ jxNLP � xSimj; drelðxÞ ¼
jxNLP � xSimj

jxSimj
;

and, if applicable, the relative deviation of the change of x along a network arc,

drelðDxÞ; Dx ¼ xin � xout:

Here, xSim and xNLP denote the respective solution values of SIMONE and the NLP

model. To obtain a meaningful comparison, the component parameters are always

identical in the NLP and in SIMONE, similarly the transport situations (typically

defined by Q0, pin, Tin), and the model variants are selected to agree as well as

possible. To avoid that exceptional cases dominate the comparison, we will discuss

arithmetic mean deviations rather than maximum deviations.

3.1 Pipes

For the validation of pipes we select four model variants: the combinations of two

pressure loss models (quadratic approximation and ODE discretization) with two

models of the compressibility factor (AGA formula and Papay’s formula). For each of

these four variants, 12,288 test cases are obtained as combinations of the parameters

given in Table 1. The geodesic height of the inflow node is fixed at 0 m, so that 8192

physically possible test cases remain (with jhoutj\L). The valid tests are used to

calculate average deviations of x 2 fpout; Toutg. Here drelðDxÞ is only computed if the

change Dx is at least 1% of the inflow value, to avoid numerical noise dominating in

cases where the change is insignificant and hence the denominator Dx becomes very

small, which could bias the comparison substantially. Table 2 shows the resulting

deviations. As expected, the deviations between the discretized ODE model and

SIMONE are smaller than in case of the quadratic approximation. Note that SIMONE

always applies an implicit integration over time for the Euler equations of gas;

dynamics; cf. Králik et al. (1988) and Záworka (1993). In the stationary case, the PDE

solution approaches the solution of the spatial ODE asymptotically, and SIMONE

simply uses a large time interval to obtain a highly accurate solution. Nevertheless, the

absolute deviation of pressure with the quadratic approximation is only about 0.1 bar,

which appears to be sufficiently small for practical purposes in mid- to long-term

planning tasks. Figure 3 shows logarithmically scaled histograms of the absolute

deviations of outflow pressure and temperature for the model using the discretized
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ODE and Papay’s formula. For the outflow pressure the leftmost bin contains 2574 of

2659 samples (97 %) and for outflow temperature the leftmost bin contains 2330 of

2659 samples (88 %).

Let us now discuss a specific test instance in more detail. Figure 4 shows some

exemplary pressure profiles (outflow pressure vs. flow) of SIMONE and two NLP

model variants, each combined with Papay’s formula. As one would expect, the

outflow pressure deviations between the models grow with increasing pressure loss.

In fact, almost arbitrarily large deviations can be generated if the pipe parameters

Table 1 Parameters for test cases of pipes

Quantity Symbol Tested values Unit

Length L 0.01, 0.1, 0.9, 46.0 km

Diameter D 150, 310, 405, 1185 mm

Roughness k 0.006, 0.02, 0.1, 0.5 mm

Geodesic height of head hout -500, 0, 500 m

Inflow pressure pin 3.9, 15.3, 53.8, 74.4 bar

Inflow temperature Tin 288.15, 298.15, 308.15, 318.15 K

Normal volumetric flow Q0 50, 250, 500, 750 1000 Nm3/h

Table 2 Deviations of outflow pressure (pout, bar) and outflow temperature (Tout, K) of pipes

Model variant Valid tests Symbol dabsðxÞ drelðxÞ drelðDxÞ

Approximation, AGA 2419 pout 0.1090 0.0086 0.0581

Approximation, Papay 2651 pout 0.1010 0.0094 0.0591

ODE, AGA 2658 pout 0.0462 0.0031 0.0323

ODE, Papay 2659 pout 0.0504 0.0033 0.0325

Approximation, AGA 2419 Tout 1.1000 0.0038 0.1610

Approximation, Papay 2651 Tout 1.0000 0.0035 0.1500

ODE, AGA 2658 Tout 0.2160 0.0007 0.0457

ODE, Papay 2659 Tout 0.1480 0.0005 0.0287
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Fig. 3 Logarithmic histograms of outflow pressure and temperature for the model variants ‘‘ODE
discretization’’ and ‘‘Papay’s formula’’
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and boundary values are chosen such that huge pressure losses result: for instance, a

gap of about 38.5 bar between SIMONE and the quadratic approximation is obtained

for the example in Table 3. In this (totally unrealistic) case, the pipe is rather long

and its inner wall is extremely rough.

Turning to the outflow temperatures in Fig. 5, we observe that all three profiles

are roughly comparable but visibly different. An interesting aspect is the difference

between the NLP models based on approximation and ODE discretization. As can

be seen in Fig. 5, the approximation model does not catch the convex curvature at

small flows. Nevertheless, the average absolute deviation of 1 K (cf. Table 2) lies

within the range of data accuracy: environmental forecasts, soil temperatures, and

heat transfer coefficients of pipe walls are inherently inaccurate, and data

imprecision is likely to introduce larger errors than 1 K.

Figure 5 also shows a strange behavior of SIMONE for flow values close to zero:

there is a sharp peak in the outflow temperature profile that cannot actually represent

physical behavior. Therefore we tested the example of Fig. 5 again with the more

recent software release SIMONE v5.83. This version appears to fix the problem at

Table 3 Extremal pipe example

Parameters

Length L = 46 km

Diameter D = 850 mm

Roughness k = 1 mm

Slope s = 0.01

Normal volumetric flow Q0 = 1944 9 103 Nm3/h

Inflow pressure pin = 199.1 bar

Results (outflow pressure pout)

poutðSIMONEÞ = 4 bar

poutðNLP;ODEdiscr:Þ = 30.6 bar

poutðNLP; quadr: approx:Þ = 42.5 bar

0 2000 4000 6000
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40
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70

Normal volumetric flow

O
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t
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5000 5400 5800
30
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34
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Fig. 4 Outflow pressure profile of an exemplary pipe (L = 46 km, D = 1185 mm, k = 0.006 mm, s =
0.01, pin = 74.44 bar, Tin = 318.15 K and Tsoil = 284.15 K) computed using Papay’s formula in

SIMONE v5.73 ( ), NLP with ODE discretization (- - -), and NLP with a quadratic approximation

(���). Figure on the right is a zoom of the dashed frame in the left figure
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small flows, see Fig. 6 (right). However, both versions exhibit a discontinuity of the

outflow pressure at zero flow, see Fig. 6 (left).

Moreover, comparing both versions at large flows in the example of Fig. 6 yields

deviations up to 1.5 bar for outflow pressure and up to 0.93 K for outflow temperature.

These deviations are larger than most of the deviations between the NLP model and

SIMONE v5.73. Thus, regarding temperature, the NLPmodel appears to match SIMONE

as well as the two versions of SIMONE match each other.

Finally, although the quadratic pressure loss approximation is a substantial

simplification of the PDE model solved by SIMONE, its results appear to be sufficiently

accurate for practical use in mid- to long-term planning tasks: the deviations discussed

above aremostly smaller than data inaccuracies caused by uncertainty ofmeasurements

and unknown network data. In any case, if higher physical accuracy is required, the

approximation model can easily be replaced by the ODE model.

3.2 Control valves and resistors

In order to obtain unique solutions for control valves and resistors, the values of

inflow pressure, inflow temperature, and flow are fixed, and in case of control valves

also the pressure reduction. For the compressibility factor we consider again both

the AGA formula and Papay’s formula. The temperature change in control valves

and resistors is calculated by the same model, cf. Eq. (100) of Schmidt et al. (2014),

hence similar behavior is to be expected in the comparisons. The definition of the

test set is given in Tables 4 and 5 and the results can be seen in Tables 6 and 7.
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Fig. 5 Outflow temperature profile for the pipe of Fig. 4
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In one respect they are similar to the case of pipes: Papay’s formula yields very

small deviations for the outflow temperature whereas the AGA formula yields

deviations up to 8 times as large. However, the absolute deviations are always

reasonably small at less than 1 K.

For control valves and for resistors with a linear pressure loss model, the outflow

pressure depends linearly on the preset values by Eq. (99) of Schmidt et al. (2014)

and Eq. (12) of Schmidt et al. (2014). Thus the NLP model and SIMONE should

Table 4 Parameters for test cases of control valves

Quantity Symbol Tested values Unit

Pressure decrease Dp 0, 5, 10 bar

Inflow pressure pin 20, 40, 60 bar

Inflow temperature Tin 283.15, 300.15, 318.15 K

Normal volumetric flow Q0 500, 1000 1000 Nm3/h

Table 5 Parameters for test cases of resistors

Quantity Symbol Tested values Unit

Inflow pressure pin 20, 40, 60 bar

Inflow temperature Tin 283.15, 300.15, 318.15 K

Normal volumetric flow Q0 500, 1000 1000 Nm3/h

Pressure drop n 2, 4, 6, 8, 10 bar

Drag factor f 5, 20, 50, 70, 90 1

Diameter D 300, 525, 775, 1000 mm

Resistors with a linear pressure loss model are described by the pressure drop n and those with a nonlinear
(Darcy–Weisbach type) pressure loss model are described by the drag factor f and the diameter D

Table 6 Outflow temperature (Tout) deviations of control valves

Model variant Valid tests dabsðxÞ drelðxÞ drelðDxÞ

AGA 54 0.7390 0.0025 0.3380

Papay 54 0.0938 0.0003 0.0409

Table 7 Outflow pressure (pout)

and temperature (Tout)

deviations of resistors: linear

pressure loss model (above) and

Darcy–Weisbach type model

(below)

Model variant Valid tests Quantity dabsðxÞ drelðxÞ drelðDxÞ

AGA 90 Tout 0.8850 0.0030 0.3370

Papay 90 Tout 0.0983 0.0003 0.0357

AGA 317 pout 0.0060 0.0006 0.0013

Papay 318 pout 0.0083 0.0008 0.0018

AGA 317 Tout 0.6830 0.0024 0.3410

Papay 318 Tout 0.2280 0.0008 0.0740
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agree almost within machine precision, but actually the outflow pressures show an

average absolute deviation of about 5 9 10-5 bar. Since the NLP results can be

shown to be correct, the deviation possibly indicates an output precision of the

SIMONE API of about 1 9 10-4. The precision of internal computations is not

known for SIMONE.

For resistors with aDarcy–Weisbach type pressure lossmodel, the outflow pressure

is determined by the nonlinear eq. (13) of Schmidt et al. (2014). Although all values in

this equation are given (except for the outflow pressure), we observe again small but

measurable deviations between the NLP and SIMONE. The mean absolute deviation is

0.006 bar with the AGA formula and 0.008 bar with Papay’s formula.

3.3 Compressors

For the examination of turbo and piston compressors, we fix the values of inflow

pressure, inflow temperature, outflow pressure, and flow (see Table 8 for the specific

values). The test set is constructed from 18 combinations of physical models of the

compressibility factor, the isentropic exponent, and the temperature rise equations,

yielding 1458 test cases both for turbo and piston compressors. We compare

computed values of the specific change in adiabatic enthalpy Had (kJ kg
�1), required

compressor power P (MW), and compressor outflow temperature Tout (K). Table 9

shows the results for turbo and piston compressors. Since Had and P do not have

Table 8 Parameters for test cases of piston and turbo compressors

Quantity Symbol Tested values Unit

Pressure increase Dp 10, 15, 20 bar

Inflow pressure pin 45, 50, 55 bar

Inflow temperature Tin 283.15, 300.15, 318.15 K

Normal volumetric flow Q0 (piston compr.) 300, 400, 500 1000 Nm3/h

Normal volumetric flow Q0 (turbo compr.) 400, 500, 600 1000 Nm3/h

Table 9 Results of the

comparison of turbo

compressors (above) and piston

compressors (below) concerning

specific change in adiabatic

enthalpy (Had), power (P), and

outflow temperature (Tout)

Compr. factor Valid tests Quantity dabsðxÞ drelðxÞ drelðDxÞ

AGA 444 Had 0.0729 0.0019 –

Papay 435 Had 0.0388 0.0010 –

AGA 444 P 0.0058 0.0009 –

Papay 435 P 0.0105 0.0016 –

AGA 444 Tout 0.6810 0.0021 0.0199

Papay 435 Tout 0.6200 0.0019 0.0188

AGA 513 Had 0.0721 0.0021 –

Papay 513 Had 0.0437 0.0012 –

AGA 513 P 0.0044 0.0014 –

Papay 513 P 0.0053 0.0017 –

AGA 513 Tout 0.6600 0.0021 0.0263

Papay 513 Tout 0.6060 0.0019 0.0243
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inflow and outflow values, drelðDxÞ does not exist for these quantities. The results of
the NLP model and SIMONE agree very well for the compressors: the relative

deviations drelðxÞ are no larger than 0.2 %, and even the relative deviations drelðDxÞ
with respect to the temperature change are just about 2 %. A possible reason for the

remaining small temperature difference may lie in the model of the isentropic

exponent or in differences of the adiabatic efficiency. These two quantities cannot

be accessed with the SIMONE API and are therefore not compared.

3.4 Conclusion

Of course, one cannot expect that computational results of any simulation software

and of the NLP model agree with high precision. Differences in numerical

algorithms, discretizations, and implementations make deviations almost inevitable.

In addition, it is likely that there are differences in data handling and in the precision

of data input and output. Obviously, these aspects may add to the deviations caused

by the numerical schemes.

As we have seen, it is difficult to validate our highly accurate NLP model against

a closed-source simulation package like SIMONE because the code of the latter

cannot be inspected. This is the reason why in certain cases we can only observe but

not analyze differences in the computational results. For instance, we have no clue

why the outflow temperatures of several network element types show unexpectedly

large deviations if we use the AGA formula for the compressibility factor, whereas

deviations are very small with Papay’s formula. A possible reason might be that the

correction term for the heat capacity (see Eq. (38) of Schmidt et al. 2014) is handled

in different ways. As stated in part 1 of this paper, that term evaluates to zero with

the AGA formula, so the value is exact in our NLP model. However, it is possible

that SIMONE evaluates the integral numerically rather than simply dropping it.

Differences like those may cause many of the unexplained deviations, but we have

no way to tell.

In summary, the observed differences between the NLP model and SIMONE are

surprisingly small. Thus, we view the comparison presented above as a successful

validation of our model components for the intended use in optimization-based mid-

term to long-term planning in gas networks.

4 Optimization techniques

This section addresses two types of techniques that are important when solving the

problem of validation of nominations in practice: penalty-based relaxations in

several standard and problem-specific variants and sequences of simplified NLPs

that are used to obtain a good initial estimate for the NLP of interest.

As it is the case for the framework of model aspect graphs in Sect. 2, the

techniques presented in this section are not restricted to the field of gas network

optimization but can also be applied to other problems from engineering or physics.
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4.1 Penalty formulations

Penalty formulations provide an essential tool for the modeler as well as for the

practitioner who uses optimization software to solve real-world problems. For the

modeler it is often difficult to find model errors or inconsistencies, particularly if he

or she is not also a practitioner or an expert in the area of application. More

importantly, the modeler (or practitioner) is often troubled with erroneous,

incomplete, or inconsistent data. These data problems may lead to infeasible

instantiations of the optimization model and are typically hard to detect.

Sophisticated penalty formulations relax certain constraints of the optimization

model, thus giving a chance to detect the area of the transport network in which a

model or data problem may be located. For the practitioner, penalty formulations

are also very useful in situations where he or she is not only interested in optimal

solutions but also in other feasible solutions.

Furthermore, penalty formulations are often instrumental in speeding up the

solution process by finding an (almost) feasible solution first. It is usually easier and

faster to solve the original problem with such a near-feasible solution as initial

estimate than solving it from scratch (cf. Sect. 4.2).

In what follows, we present some penalty-based relaxation schemes that are

used in gas transport applications. The presented relaxation schemes will be used in

Sect. 4.2, and numerical results are finally given in Sect. 5.

4.1.1 Relaxation schemes for gas network optimization models

Suppose that a specific instantiation of interest of the model hierarchy presented in

Sect. 3 of Schmidt et al. (2014) is given in standard NLP form,

min
x

f ðxÞ s.t. cEðxÞ ¼ 0; cI ðxÞ� 0: ð2Þ

Here and in what follows, E and I are the respective index sets of equality and

inequality constraints. With slack variables s ¼ ðsþE ; s�E ; sþI Þ, the associated standard

‘1 penalty model is then defined as

min
x;s

jjsjj1 s.t. cEðxÞ þ sþE � s�E ¼ 0; cI ðxÞ þ sþI � 0; s� 0: ð3Þ

Likewise, the standard ‘1 penalty model reads

min
x;s

jjsjj1 s.t. cEðxÞ þ sþE � s�E ¼ 0; cI ðxÞ þ sþI � 0; s� 0: ð4Þ

Both models are full relaxations of (2) and hence feasible by construction. The

‘1 penalty model (3) is actually smooth since jjsjj1 is just the sum of the components

of s, while the ‘1 penalty model is easily converted to an equivalent smooth for-

mulation by adding an extra variable z for jjsjj1 and inequality constraints z� si � 0

for all components of s.

Minimizing the ‘1 norm has the well-known property that it tends to generate

sparse solutions, i.e., solutions with only a few nonzero entries in s (see Elad (2010),
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Wotao and Zhang (2008), and the references therein). This property is very useful in

detecting and analyzing potential reasons of infeasibility.

Minimizing the ‘1 norm is useful if one is interested in determining the smallest

possible upper bound on the constraint violations. In contrast to (3), solutions of (4)

tend to have the property that many components of s do not vanish but often have

significantly smaller values than the nonzero components of solutions to the

corresponding ‘1 penalty model.

These two basic relaxation types are now used to develop problem-specific

relaxation schemes. In practice, one often does not wish to relax all constraints but

only certain classes. For instance, such a class may contain all pressure loss

modeling equations on pipes or all constraints modeling the borders of characteristic

diagrams of compressors. For handling selected classes of constraints, we introduce

the index setR � E [ I indicating which constraints are to be relaxed. The required

slack variables are s ¼ ðsþE\R; s�E\R; sþI\RÞ. With this notation, the partly relaxed

‘1 penalty model is given by

min
x;s

jjsjj1 s.t. cEnRðxÞ ¼ 0; cE\RðxÞ þ sþE\R � s�E\R ¼ 0;

cInRðxÞ� 0; cI\RðxÞ þ sþI\R � 0; s� 0:
ð5Þ

The corresponding partly relaxed ‘1 norm penalty model reads

min
x;s

jjsjj1 s.t. cEnRðxÞ ¼ 0; cE\RðxÞ þ sþE\R � s�E\R ¼ 0;

cInRðxÞ� 0; cI\RðxÞ þ sþI\R � 0; s� 0:
ð6Þ

Note that these two relaxations are not necessarily feasible, except of course with

the choice R ¼ E [ I where they become identical to the standard penalty models.

The partly relaxed penalty models (5) and (6) are of special interest in practice,

because a suitable choice of the index set R may allow to detect reasons of

infeasibility. Of course, from the mathematical viewpoint, there is no such thing as a

‘‘reason’’ of infeasibility: infeasibility is simply caused by a set of incompatible

constraints, and in general there may be a variety of possibilities to achieve

feasibility by relaxing different subsets of those constraints. In practice, however,

different constraints often have different relevance (depending on the specific

situation). Then, if the violation of a lower-priority constraint makes the problem

otherwise feasible, that lower-priority constraint may be interpreted as ‘‘the reason’’

of infeasibility, and a sufficiently small violation will be tolerated.

Suppose that a practitioner is confronted with an infeasible instance. If, say, a

relaxation of compressor group constraints leads to feasibility, the reason might be

that a lower pressure bound in a downstream part of the network is too tight.

Another reason might be that the operating ranges of certain active compressor units

are not sufficiently large for generating an outflow pressure that satisfies the

pressure bounds in the downstream network. The opposite situation (too tight upper

pressure bounds) may be detected by relaxing control valve constraints that limit the

pressure decrease from below. Here, the ‘‘reason’’ depends on the interpretation of

the situation by the practitioner, who may decide that the pressure bounds or the
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borders of the characteristic diagrams of the compressors are more important,

respectively. Another relaxation that is often used in practice is to relax the supplied

and discharged amounts of flow at entry and exit nodes. Given a solution to this

relaxed model with non-vanishing slack variables, the practitioner obtains the

information of how much the contracts with one or more entry or exit customers

have to be modified in order to achieve a feasible flow situation.

Going further, it may be useful for practitioners to partition the index set R into

several mutually disjoint constraint classes Rk, k 2 K,

R ¼
[

k2K
Rk � E [ I ;

and allow a specific maximum constraint violation �sk for each constraint class under

consideration. Letting sk ¼ ðsþE\Rk
; s�E\Rk

; sþI\Rk
Þ and s ¼ ðskÞk2K, this leads to the

modified ‘1 feasibility problem

Find ðx; sÞ s.t. cEnRðxÞ ¼ 0; cE\RðxÞ þ sþE\R � s�E\R ¼ 0;

cInRðxÞ� 0; cI\RðxÞ þ sþI\R � 0;

s� 0; �sk � jjskjj1 � 0 for k 2 K:

ð7Þ

This refined relaxation plays an important role in the presence of soft constraints

(see Joormann et al. 2015 for a detailed discussion). For instance, the gas flow can

excite vibrations of the pipes, which in turn may generate undesired noise in pop-

ulated areas and, in serious cases, may even destroy the pipes. As there is no

suitable quantitative model for these phenomena, a simple speed limit for the gas

flow often serves as a crude practical measure to prevent vibrations. In this situation,

the network operator may formulate the goal that the speed bound should be sat-

isfied (v� vþ), although he will accept small violations if necessary. So he can

define the gas velocity constraints to be one of the sets Rk and can specify an

additional quantity �sk that softens the former bound to v� vþ þ �sk. Soft constraints
like these often play an important role in real-world problems and can be covered by

penalty reformulations like (7).

4.2 Sequential NLP solving

As one might imagine, industrial users would always like to use the most accurate

available model. Unfortunately but naturally, the most detailed and accurate model

variants presented in Sect. 3 of Schmidt et al. (2014) are the most nonlinear and

nonconvex ones. In addition, some of them are nonsmooth, i.e., the standard C2
assumption is violated unless one incorporates numerically challenging smoothing

techniques. All these facts illustrate that it is an ambitious task to solve these models

from scratch. Since it is impractical for industrial users of optimization methods to

adapt the model or to tune the parameters of the solver for individual problem

instances, there is a general need for numerically robust solution techniques.

The model hierarchy presented in Sect. 3 of Schmidt et al. (2014) suggests a

natural way to achieve this goal. The large variety of NLP model variants allows us
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to set up sequences of NLPs that can be solved successively. The key aspect is to

arrange each sequence in a way such that successive NLPs differ only slightly in

terms of model size and in increase of nonlinearity and non-convexity, thus

allowing for warm starts.

4.2.1 NLP sequences

We consider finite sequences ðNLPkÞ, k 2 N , that are chosen from the family of

NLPs given in (1). Recall that A is the set of all model aspects where aspect a 2 A
has concretizations ca 2 Ca. With this notation, we require that a sequence of NLPs

has increasing accuracy order, defined by

NLPk �NLPkþ1 :() cka � ckþ1
a for all a 2 A; k; k þ 1 2 N :

Here, the notation ‘‘cka � ckþ1
a ’’ means that the concretization cka of model aspect a

used in NLPk is no more accurate than the concretization ckþ1
a used in NLPkþ1. The

notion of ‘‘more accurate’’ is not always defined in a strict mathematical sense (the

Papay formula is considered more accurate than the AGA formula, for instance), but

in any case we require that all variables of a model variant are also present in a

‘‘more accurate’’ variant. Thus, the numbers of NLP variables in a sequence satisfy

nk � nkþ1.

4.2.2 Increasing robustness and convergence acceleration

When solving an NLP sequence we make use of three key ideas that improve the

solution process by making it more robust and by accelerating convergence of the

individual NLPs:

1. In most of the sequences used in practice, at least the first NLP is a penalty

formulation of the target NLP that we actually want to solve; thus solving the

first NLP is analogous to phase 1 of the simplex method. The benefit of this

approach is twofold. First, solving a penalty model is much easier than solving

the original model in many cases, according to our experience. Second, if a

given instance is infeasible, the penalty formulation allows for a better analysis

of possible reasons (cf. Sect. 4.1). In view of this, similar techniques have also

been used in optimization for water networks; cf. Burgschweiger and Steinbach

(2009).

2. Nonsmooth model aspects appear primarily in the model of gas parameter

mixing, because flow directions in the network are initially unknown (cf. Eq. (9)

of Schmidt et al. 2014). When solving an NLP of the sequence that incorporates

mixing of gas parameters, we fix the flow directions on all network arcs based

on the solution of the previous NLP, as follows. Let qka 2 q�a ; q
þ
a

� �
denote the

bounded flow variable of arc a in NLPk and let ðqkaÞ
�
denote its optimal value in

NLPk. The flow direction for NLPkþ1 is then fixed by setting properly restricted

bounds,
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qkþ1
a 2

R� 0 \ q�a ; q
þ
a

� �
; ðqkaÞ

� [ 0;

R� 0 \ q�a ; q
þ
a

� �
; ðqkaÞ

�\0;

f0g; ðqkaÞ
� ¼ 0:

8
><

>:
ð8Þ

Similar ideas can be used for other nonsmooth aspects, like (de-)activating gas

coolers (see Eq. (68) of Schmidt et al. 2014) and preheaters (see Eq. (103) of

Schmidt et al. 2014). It would be reasonable to consider the optimal values of

the dual variables of NLPk in order to relax the third case in (8), yielding

restricted bounds R� 0 \ q�a ; q
þ
a

� �
or R� 0 \ q�a ; q

þ
a

� �
instead of fixing the flow

to zero. We have not done this in the current study because of the technical

effort for accessing the dual variables from many NLP codes with different

interfaces that we used, and because some solvers do not even provide dual

variables.

3. We initialize the variables of NLPkþ1, xkþ1 2 Rnkþ1 , based on the optimal

solution of NLPk, ðxkÞ� 2 Rnk . This is done as follows. After some re-ordering

we can write xkþ1 ¼ ðxk; ~xkþ1Þ with ~xkþ1 2 R~n, ~n ¼ nkþ1 � nk. The key idea is

to fix the xk part at ðxkÞ� and to determine ~xkþ1 by simple techniques so that

ððxkÞ�; ~xkþ1Þ satisfies the constraints of NLPkþ1 as well as possible. For instance,

consider a constraint cðxk; ~xkþ1
i Þ ¼ 0 that can be solved explicitly for the ‘‘new’’

variable ~xkþ1
i in terms of the ‘‘old’’ variables,

0 ¼ cðxk; ~xkþ1
i Þ () ~xkþ1

i ¼ ~cðxkÞ¼: ~x�i :

In this case we initialize ~xkþ1
i with ~x�i . This technique is successively applied to

new variables that depend on xk and already initialized components ~xkþ1
i . In

other situations, we simply initialize the new variables with suitable constants.

4.2.3 Stopping criterion

In the finite sequences considered thus far, NLPjN j is the most accurate model that

we attempt to solve. It is also possible to extend the presented technique to infinite

sequences of NLPs. For instance, one may wish to increase the physical accuracy of

the model of gas dynamics in pipes by discretizing the ODEs on successively finer

grids, which calls for a stopping criterion. Various criteria are possible, and a

natural requirement is that they should be based on changes in variables that exist in

every member NLPk of the sequence. Meaningful quantities of this type are pressures

at nodes and mass flows on arcs of the network. With the vectors

pkV:¼ðpki Þi2V; qkA:¼ðqkaÞa2A;

and tolerances ep; eq [ 0, a suitable stopping criterion is given by

jjpkV � pk�1
V jj1\ep and jjqkA � qk�1

A jj1\eq: ð9Þ
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4.2.4 Specific NLP sequences

In this section we give three examples of sequences that are useful in gas network

optimization. The first sequence mainly addresses the nonsmoothness of the gas

quality parameter mixing model given in Sect. 3.3 of Schmidt et al. (2014). The

second one deals with highly detailed isothermal modeling of gas dynamics in pipes

and the last one can be used in order to incorporate heat dynamics in the problem.

Computational results of the sequential NLP approach are presented in Sect. 5. For

all sequences, we assume that all discrete decisions are given.

An NLP sequence for gas parameter tracking. The finite sequence for gas quality

parameter tracking is informally defined as follows:

NLP1 Simple mass conservation model at nodes without gas parameter mixing (see

Eq. (7) of Schmidt et al. 2014), isothermal quadratic approximation of gas

dynamics in pipes (see Eq. (55) of Schmidt et al. 2014), full isothermal

compressor group model with machine models as described in Sects. 3.4.10

and 3.4.15 of Schmidt et al. (2014), isothermal control valve model (see

Eq. (99) of Schmidt et al. 2014), standard resistor, short cut, and valve

models, arbitrary penalty formulation (see Sect. 4.1). Globally constant gas

density under normal conditions.

NLP2 Like NLP1 but with an extended node model incorporating mixing of molar

masses (see Eq. (9) of Schmidt et al. 2014).

NLP3 Like NLP2 but with an extended node model incorporating mixing of calorific

values.

NLP4 Like NLP3 but with an extended node model incorporating mixing of

pseudocritical pressures and temperatures.

NLP5 Like NLP4 but with gas density under normal conditions depending on the

quality parameters.

To obtain smooth formulations of the mixing models it is necessary to fix the flow

directions on all network arcs, as already discussed in the previous section.

An NLP sequence for highly detailed isothermal gas dynamics modeling. In this

sequence the main focus is on highly detailed modeling of isothermal gas dynamics

in pipes. The sequence is given as follows:

NLP1 Identical to NLP1 in the sequence above.

NLP2 Like NLP1 but with the momentum equation discretized on initial

grids D0
a for all pipes a 2 Api; cf. Sect. 3.4.7 of Schmidt et al. (2014).

NLPk; k[ 2 Like NLPk�1 but with the momentum equation discretized on refined

grids Dk�2
a 	 Dk�3

a for all pipes a 2 Api.

The canonical stopping criterion for this infinite sequence is (9). To reduce the

numerical effort during iterative grid refinement (k[ 2), one might also employ an

adaptive discretization scheme. Here adaptive means that the discretization on pipe

a ¼ ij 2 Api is only refined in NLPk if
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�
�
1

[ ep or jqka � qk�1
a j[ eq: ð10Þ

Of course, it is also possible to use pipe-specific tolerances, i.e., to replace ep and eq
in (10) by ep;a and eq;a.

An NLP sequence for temperature dynamics modeling. Here we incorporate all

temperature dynamics constraints in the model. The sequence is defined as follows:

NLP1 Identical to NLP1 in the sequences above.

NLP2 Like NLP1 but with an extended node model incorporating the mixing of the

coefficients A, B, C of the molar heat capacity of ideal gas.

NLP3 Like NLP2 but with non-isothermal models of all elements of the network

(including heat capacity models).

Notice that none of the three sequences above has a cost minimization objective:

all of them solve ‘1 penalty-based relaxation models in which we relax the flow

balance constraint of all entry and exit nodes. However, all sequences can readily be

extended or modified to incorporate a cost minimization objective.

5 Computational results

In order to show the practical relevance of our NLP models and solution techniques

on large-scale real-world networks, we now present an extensive computational

study for the problem of validation of nominations (NoVa). A complete NoVa

model contains discrete aspects of controllable elements as well as detailed models

of gas dynamics and technical devices of the network. This combination leads to

hard mixed-integer nonlinear optimization (or feasibility) models that are

intractable for state-of-the-art general-purpose MINLP solvers on real-world

network sizes. In the research project ForNe we have developed custom solution

approaches for NoVa. The main idea is to split up the solution process into two

stages. The first stage solves a model containing all discrete aspects and simplified

variants of the underlying gas physics and technical network elements. Afterwards,

the resulting discrete controls are fixed throughout the network in order to obtain a

purely continuous and highly detailed NLP model that ‘‘validates’’ the fixed

decisions. In this stage, penalty formulations as described in Sect. 4.1 are used to

prove (e-)feasibility of the underlying MINLP, or to obtain information on possible

reasons of infeasibility otherwise. Here we use the sequential NLP (SNLP) approach

for solving NLP models with a high level of physical and technical accuracy.

This section deals with that second stage of the NoVa solution approach and

presents detailed numerical results for it. We will indeed see that the NoVa problem

is solvable even with high detail and accuracy, and that the SNLP approach is a key

tool for increasing robustness. Additional information concerning the outcomes of

the ForNe project and extensive computational studies of the overall approach are

given in Fügenschuh et al. (2014), Martin et al. (2011), Pfetsch et al. (2015) and in

the book Koch et al. (2015).
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The remainder of this section is organized as follows. In Sect. 5.1 we present the

computational setup including the description of used modeling languages, solvers,

and other software and hardware issues. Sect. 5.2 then describes both the real-world

network and the publicly available academic network that we used in our

computational experiments. The following Sects. 5.3 and 5.4 present and discuss

the respective numerical results on the real-world and the academic test set. Finally,

Sect. 5.5 concludes with a discussion of the results.

For brevity, we only present the numerical results for the NLP sequences

‘‘parameter tracking’’ and ‘‘temperature dynamics’’ here. The SNLP approach has

also been run successfully on the ‘‘ODE Discretization’’ sequence for highly

detailed isothermal gas dynamics modeling (Sect. 4.2.4), with results that are

qualitatively comparable to the results of both other sequences.

5.1 Computational setup

All models and algorithms are implemented using the framework LaMaTTO??

(2015) for modeling and solving mixed-integer nonlinear optimization problems on

networks. The computational study of the NLP validation stage presented in this

paper is run on a desktop PC with a six-core AMD Opteron Processor 2435 with

2600 MHz and 64 GB RAM. The operating system is Debian 7.5 and the C?? code

LaMaTTO?? is compiled using GCC 4.7.2. All models are implemented in GAMS

24.1.33, cf. Rosenthal (2008).

The computational results presented below are obtained using the NLP solver

CONOPT 3.15L, because it performs best on the given problem class and on the

networks considered in the ForNe project. The solvers we have tested include Ipopt

by Wächter and Biegler (2006), CONOPT and CONOPT4 (1996), KNITRO (2006),

SNOPT (2002), and MINOS (1993). Note that the comparison of these solvers is not a

topic of this paper.

5.2 Test instances

We evaluate and test our models on two different test sets based on country-sized

transport networks. The first test set, called HN, contains 30 difficult expert instances

that arise at OGE. The corresponding network is the northern high-calorific gas

network of OGE. The second test set, called GasLib-582, is publicly available (cf.

Humpola et al. 2015) and is approximately of the same size as the HN network.

These two test sets appear under the same names in other publications as well.

Table 10 gives the numbers of elements of the two networks. In order to limit the

computational effort to a reasonable amount, we randomly chose 500 out of the

4227 GasLib-582 nominations that are freely available at http://gaslib.zib.de. The first

stage solvers of our NoVa approach obtained feasible solutions for 394 of the 500

random nominations. We perform the NLP validation on these 394 instances; see

Table 13 in Appendix 3 for the complete list.

3 General Algebraic Modeling System (GAMS). http://www.gams.com/.

High detail stationary optimization models for gas networks... 459

123

http://gaslib.zib.de
http://www.gams.com/


The results on the HN test set will demonstrate the practicability of our NLP

models on hard instances that arise in the day-to-day work at German gas network

planning departments whereas the GasLib-582 test set provides publicly available

instances on which other researchers can test and compare their algorithms.

5.3 The HN test set

Here we present the computational results for the SNLP sequences ‘‘parameter

tracking’’ and ‘‘temperature dynamics’’ (see Sect. 4.2) applied to the expert

instances on the HN test set, and compare them with the direct approach, i.e., the

attempt to solve the final NLP of each sequence (the target NLP) from scratch.

SNLP results are determined by the target NLP (exit state, accuracy) or by the entire

sequence (iteration count, computing time).

5.3.1 Parameter tracking problem

Recall that we expect that solving a sequence of NLPs while successively adding

new gas parameters to the model leads to better convergence than the direct

approach. This is indeed the case, as can be seen in Table 11: the exit states show

that the direct approach solves only one third of all instances to local optimality

whereas the SNLP approach solves every instance.

Since the NoVa problem is a feasibility problem, our objective is to minimize the

constraint violation (using the relaxed NLP in Sect. 4.1). Figure 7 presents empirical

distribution functions of the respective objective values for the SNLP sequence and

the direct approach, giving for every constraint violation the percentage of instances

not exceeding that value. The plot clearly shows that the direct approach is much

less successful: it yields substantially larger constraint violations and in fact many

‘‘false infeasibles’’. Moreover, only for 2 out of the 30 instances, it computes a zero

constraint violation where the SNLP approach fails to do so.

Table 10 Elements of the HN

network and the GasLib-582

network

Element type HN GasLib-582

Number Number

Vertex 747 582

Entry 30 31

Exit 139 129

Junction 578 422

Arc 786 609

Pipe 505 278

Compressor group 8 5

Control valve 27 23

Valve 50 26

Resistor 37 8

Short cut 159 269
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Figure 8 shows the empirical distribution functions for total iteration counts and

computing times (i.e., accumulated over all NLPs in case of the SNLP sequence).

Despite the fact that the SNLP approach solves five NLPs rather than just one, both

approaches require roughly the same effort. While the SNLP approach needs a

slightly larger number of iterations than the direct approach, it does not possess as

extreme outliers as the latter. In summary, it can be clearly stated that the SNLP

approach is much more effective than the direct approach in producing feasible

solutions while the computational cost is comparable.

The above observations are confirmed by Fig. 9, which displays the distributions

of iteration counts and computing times of individual NLPs in the sequence over the

HN test set. Except for a few outliers, all iteration counts are below 100, which is

approximately 1/5 of the average iteration count of the direct approach. Outliers

above 100 are only present in the first, third, and fifth NLP of the sequence. Possible

explanations are as follows. The first model does not contain any mixing aspects,

and the outliers thus may arise from ‘‘correcting’’ the continuous part of the solution

given by the first stage of the NoVa solution approach. The third NLP adds the

calorific value as a new gas quality parameter to the model. Since the HN test set

includes heat power bounds at the entries and exits (in addition to the mass flow

bounds), activating the tracking of the calorific value plays a crucial role for the

feasibility of the problem. Finally, the fifth and last NLP adds the gas density under

normal conditions as a variable to the model. Since this quantity occurs in many

Table 11 Exit states of direct

approach and of SNLP sequence

(HN test set, both sequence

types)

Exit state ‘‘param. tracking’’ ‘‘temp. dynamics’’

Direct SNLP Direct SNLP

Locally optimal 10 30 8 30

Locally infeasible 19 0 6 0

Intermediate nonoptimal 1 0 1 0

Intermediate infeasible – – 15 0

0 50 100 150

0%

25%

50%

75%

100%

Constraint violation

SNLP approach
Direct approach

Fig. 7 Constraint violations of
direct approach and of SNLP
sequence (HN test set,
‘‘parameter tracking’’)
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constraints—especially in all flow conversion constraints—the worst-case difficulty

of the model increases, which might be the reason for outliers in SNLP iteration 5.

Turning to the computing times, we see that the majority are below 4 s, and we

observe a similar qualitative behavior as for the iteration counts.

Let us now consider some model statistics of the NLPs of the SNLP sequence. In

all NLPs the number of variables is only slightly larger than the number of

constraints: after fixing the discrete decisions only a few degrees of freedom remain,

resulting from continuous control variables of active network elements. Both the

numbers of variables and constraints strictly increase within the SNLP sequence,

lying between 5000 and 15,000. The number of non-constant entries and the total

number of entries in the constraints Jacobian also strictly increase, lying between

10,000 and 20,000 and between 20,000 and 40,000, respectively. The fraction of

non-zero entries in the Jacobian is approximately 0.025 %.
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50%

75%

100%

00 1000 2000 3000 4000 5000 6000 200 400 600
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25%

50%

75%

100%

Iteration count Solution time (s)

SNLP approach
Direct approach

SNLP approach
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Fig. 8 Iteration counts and computing times (s) of direct approach and of SNLP sequence (HN test set,
‘‘parameter tracking’’)
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Fig. 9 Iteration counts (left) and computing times (s, right) of NLPs of the SNLP sequence (HN test set,
‘‘parameter tracking’’)
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5.3.2 Temperature dynamics problem

The results for ‘‘temperature dynamics’’ are similar to the results for ‘‘parameter

tracking’’. Again, the direct approach solves only an unsatisfactory share of

instances to local optimality (26.67 %) whereas the SNLP approach solves all

instances (see Table 11). Moreover, the SNLP approach reduces the constraint

violation much stronger than the direct approach, as Fig. 10 clearly shows. Only two

instances are solved with a smaller constraint violation by the direct approach than

by the SNLP approach. Furthermore, the SNLP approach is substantially more

efficient. Figure 11 compares iteration counts and computing times using empirical

distribution functions. On average, the SNLP approach is faster and does not possess

as strong outliers as the direct approach does.

Iteration counts of the individual NLPs of the SNLP sequence are displayed in

Fig. 12. In particular, the first NLP (isothermal model) appears to be the problem

with the hardest instances of the sequence, as in ‘‘parameter tracking’’: the number

of outliers of NLP 1 clearly exceeds the numbers of outliers of NLPs 2 and 3.

5.4 The GasLib-582 test set: parameter tracking and temperature dynamics

Next we describe the results for the SNLP sequences ‘‘parameter tracking’’ and

‘‘temperature dynamics’’ on the random subset of all GasLib-582 instances given in

Table 13 of Appendix 3.

The characteristics of the computational results for ‘‘parameter tracking’’ and

‘‘temperature dynamics’’ differ significantly from the corresponding results on the

HN test set. While it is very hard to compute feasible solutions with the direct

approach on the latter (cf. Sect. 5.3), this is not the case for the GasLib-582 test set.

Table 12 shows the associated exit states for all sequences. The percentage of

instances solved to local optimality by the direct approach is 96.4 % for ‘‘parameter

tracking’’ and 95.7 % for ‘‘temperature dynamics’’. By way of comparison, the

SNLP approach solves 98.2 % and 98.5 % to local optimality, respectively. This

shows that the SNLP approach is again more robust, but this time only by a small

0 50 100 150

0%

25%

50%

75%

100%

Constraint violation

SNLP approach
Direct approach

Fig. 10 Constraint violations of
direct approach and of SNLP
sequence (HN test set,
‘‘temperature dynamics’’)
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margin. In contrast to the HN test set there are now also a few instances (7 for

‘‘parameter tracking’’ and 6 for ‘‘temperature dynamics’’) on which the SNLP

approach fails completely because one NLP of the corresponding sequence cannot

0%

25%

50%

75%

100%

00 1000 2000 3000 4000 5000 50 100 150

0%

25%

50%

75%

100%

SNLP approach
Direct approach

SNLP approach
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Iteration count Solution time (s)

Fig. 11 Iteration counts and computing times (s) of direct approach and of SNLP sequence (HN test set,
‘‘temperature dynamics’’)
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Fig. 12 Iteration counts (left) and computing times (s, right) of NLPs of the SNLP sequence (HN test set,
‘‘temperature dynamics’’)

Table 12 Exit states of direct

approach and of SNLP sequence

(GasLib-582 test set, both

sequence types)

Exit state ‘‘param. tracking’’ ‘‘temp. dynamics’’

Direct SNLP Direct SNLP

Locally optimal 380 387 377 388

Broken sequence – 7 – 6

Locally infeasible 14 0 15 0

Intermediate nonopt. 0 0 2 0
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be solved at all (see the row ‘‘broken sequence’’ in Table 12). All other results of

these two problems look very similar to the corresponding results on the HN test set.

We only discuss the results for ‘‘parameter tracking’’—all figures for ‘‘temperature

dynamics’’ are given in Appendix 1. As Figs. 13 and 14 show, both approaches

behave quite similar in terms of constraint violations, iteration counts, and

computing times. The advantage of the SNLP approach is that it does not possess

extreme outliers. However, these outliers of the direct approach are not as extreme

as for the HN test set. The qualitative behavior of individual iteration counts and

numbers of variables, constraints, etc., of the SNLP approach is similar to the

behavior on the HN test set and therefore not further discussed here.
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Fig. 13 Constraint violations of
direct approach and of SNLP
sequence (GasLib-582 test set,
‘‘param. tracking’’)
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Fig. 14 Iteration counts and computing times of direct approach and SNLP sequence (GasLib-582 test
set, ‘‘parameter tracking’’)

High detail stationary optimization models for gas networks... 465

123



5.5 Discussion

In this section we have presented an extensive computational study of our NLP

models on two different test sets involving the solution of about 4500 NLPs. The

NLP models under consideration are hard to solve due to their high degree of

nonlinearity and non-convexity and because they possess only a small number of

free variables.

It turns out that the expert instances of the HN test set are much harder than the

instances of the GasLib-582 test set. The problems of both tested sequences

(‘‘parameter tracking’’ and ‘‘temperature dynamics’’) are hardly solvable from

scratch, whereas the SNLP approach proves robust and entirely practical: it solves

all instances of the HN test set successfully, while iteration counts and solution times

are comparable to the direct approach when the latter is successful.

6 Summary

In part 1 of this paper we describe detailed models for stationary optimization in gas

transport networks. This paper provides an analysis of their structural interplay and

possible combinations of these models and shows that their level of detail and

accuracy is comparable with today’s commercial gas network simulation software.

The former aspect is realized by the analysis of so-called model aspect graphs

whereas the latter aspect is illustrated by a comparison with a state-of-the-art

simulation software on single network elements. Finally, we present tailored

optimization techniques and show that—using these techniques—it is possible to

solve the resulting NLPs on real-world networks. In particular, by using NLP

sequences we are able to include model aspects that are usually omitted or

substantially simplified to obtain tractable problems or to reduce the solution effort:

the mixing of different gas species and the heat dynamics. This demonstrates that

optimization models and solvers can provide a valuable tool for gas network

planners that adds new capabilities to existing simulation tools.
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Appendix 1: Computational results for temperature dynamics
on the GasLib-582 test set

See Figs. 15 and 16.

Appendix 2: Model aspect graphs

See Figs. 17, 18, 19, 20, and 21.
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Appendix 3: GasLib-582 instances

See Table 13.

Table 13 ID’s of GasLib-582 instances used in the computational study of Sect. 5.4. The set of instances

can also be downloaded at www.ifam.uni-hannover.de/mcs

Nomination_freezing_\ID[

35 51 119 121 164 238 362 402 692 714 728 792 831 1023

1093 1106 1135 1191 1233 1263 1416 1505 1568 1588 1599 1775 1889 2005

2055 2110 2145 2206 2236 2293 2351 2378 2466 2491 2567 2629 2724 2969

3044 3078 3126 3225 3383 3465 3496 3500 3592 3673 3853 3910 4028 4182

Nomination_cold_\ID[

20 72 276 298 435 486 527 586 595 611 641 681 712 716

796 823 890 893 1033 1056 1132 1156 1309 1311 1327 1363 1380 1432

1439 1461 1466 1468 1543 1689 1703 1748 1765 1792 1828 1851 1910 1951

1971 2038 2067 2077 2124 2147 2182 2189 2192 2195 2311 2316 2406 2425

2438 2478 2486 2510 2516 2551 2556 2627 2686 2763 2791 2799 2857 2891

2898 3064 3086 3136 3155 3202 3387 3395 3397 3407 3528 3539 3543 3566

3620 3624 3707 3769 3800 3824 3878 3987 4038 4105 4129 4146 4176 4200

Nomination_cool_\ID[

3 23 89 97 122 141 148 161 201 222 235 277 412 416

456 526 543 565 578 585 628 662 699 724 790 815 821 845

875 879 958 995 1030 1234 1294 1324 1373 1391 1393 1397 1398 1452

1453 1500 1501 1586 1607 1628 1666 1676 1680 1733 1766 1770 1772 1854

1895 1896 1929 1954 2028 2045 2059 2083 2109 2171 2208 2238 2254 2270

2275 2335 2386 2453 2529 2535 2544 2592 2608 2654 2671 2740 2764 2828

2859 2895 2901 2966 3035 3040 3100 3103 3113 3172 3209 3254 3321 3354

3374 3400 3409 3420 3421 3458 3522 3595 3656 3681 3770 3771 3779 3791

3830 3885 3908 3909 3929 3947 3986 4031 4043 4067 4071 4084 4115 4120

4173 4187 4192

Nomination_mild_\ID[

2 18 39 47 92 173 241 246 305 521 630 686 711 749

928 952 1011 1016 1187 1203 1281 1307 1344 1386 1422 1459 1472 1481

1559 1646 1743 1840 1853 1961 1964 2044 2157 2495 2531 2539 2636 2897

2950 3124 3151 3182 3197 3230 3419 3480 3524 3552 3661 3701 3734 3766

3848 3890 4170

Nomination_warm_\ID[

120 136 244 306 441 540 684 786 844 880 916 1062 1080 1215

1521 1523 1556 1656 1747 1803 1812 1975 2060 2140 2221 2259 2276 2314

2356 2399 2584 2646 2648 2689 2718 2824 2988 3048 3050 3164 3235 3331

3341 3501 3718 3742 3749 3784 3956 3962 4160 4168
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