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Abstract In this paper we propose a new way to compute a rough approximation

solution, to be later used as a warm starting point in a more refined optimization

process, for a challenging global optimization problem related to earth imaging in

geophysics. The warm start consists of a velocity model that approximately solves a

full-waveform inverse problem at low frequency. Our motivation arises from the

availability of massively parallel computing platforms and the natural paralleliza-

tion of evolution strategies as global optimization methods for continuous variables.

Our first contribution consists of developing a new and efficient parametrization of

the velocity models to significantly reduce the dimension of the original opti-

mization space. Our second contribution is to adapt a class of evolution strategies to
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the specificity of the physical problem at hands where the objective function

evaluation is known to be the most expensive computational part. A third contri-

bution is the development of a parallel evolution strategy solver, taking advantage

of a recently proposed modification of these class of evolutionary methods that

ensures convergence and promotes better performance under moderate budgets. The

numerical results presented demonstrate the effectiveness of the algorithm on a

realistic 3D full-waveform inverse problem in geophysics. The developed numerical

approach allows us to successfully solve an acoustic full-waveform inversion

problem at low frequencies on a reasonable number of cores of a distributed

memory computer.

Keywords Evolution strategy � Global convergence � Earth imaging �
Inverse problem � High performance computing (HPC) � Search space reduction �
Full-waveform inversion

1 Introduction

Vibrations generated by earthquakes, explosions or similar phenomena and

propagated within the Earth or along its surface can yield information about the

Earth and its subsurface structure. Such a knowledge, called Earth imaging, is of

major interest for economy, environment, and science. Geologists have developed

several methods for Earth imaging using seismic wave information. Acoustic full-

waveform inversion (FWI) is one of such procedures and it attempts to derive high-

resolution quantitative models of the subsurface using the full information of

acoustic waves (Virieux and Operto 2009). Following (Tarantola 2005), a

description of the problem can be given as follows. During the propagation, waves

interfere with the environment and the total wavefield is recorded through a certain

number of receivers (called hydrophones or geophones). Since the waves are

affected by the physical properties of the subsurface, they are carrying information

about the environment that can be retrieved by an inversion process. The

Fig. 1 Acoustic waves
propagated by a source are
reflected by a reflective layer (in
white) and are detected by the
geophones. The reflective layer
represents a salt dome in this
example
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propagation waves are generated by sources situated in the domain of consideration

(see Fig. 1 for a simple illustration).

For many years acoustic full-waveform inversion has been almost exclusively

employed by academic researchers. Only recently it has been adopted by

practitioners in industry. Nevertheless, its computational cost is still large compared

to other existing methods in seismic exploration. The attractiveness of the approach

is the promise of deriving high-fidelity Earth models for seismic imaging. Since our

ability to both understand and manage complex nonlinear inversions has improved

and since the available computing power has grown at the same time, full-waveform

inversion has become more and more practical.

It is known that the acoustic full-waveform inversion, formulated as a nonlinear

optimization least-squares minimization problem, can be efficiently solved if the

starting propagation velocity model is accurate enough [in the sense of explaining

the data at a low frequency and still being a smooth version of the true velocity

model, see Brossier (2009), Virieux and Operto (2009)]. Otherwise the inversion

procedure suffers from stalled convergence to spurious local minima due to the

oscillatory nature of the data (Mulder and Plessix 2008). Thus, a crucial step related

to full-waveform inversion in seismic imaging consists of finding a good starting

model (or point, in an optimization context) without the need of sophisticated a

priori knowledge on the velocity model. In industry, first- arrival travel-time

tomography (Nolet 1987) is the most popular method to generate an accurate initial

propagation velocity model. More recent methods such as stereo tomography

(Lambaré 2008) and inversion in the Laplace domain (Shin and Cha 2008) are being

investigated in academia. It must be also mentioned here that the use of multiscale

strategies can mitigate the nonlinearity and reduce the dependence on the starting

velocity model for FWI (Pratt and Worthington 1990; Sirgue and Pratt 2004).

In this paper we propose a novel approach to find an initial smooth velocity

model for the full-waveform inversion problem without any a priori physical

knowledge. We are motivated by the recent availability of massively parallel

computing platforms [see Rauber and Rünger (2013)]. First we introduce a new

parametrization of the problem to reduce the number of parameters needed to

describe a velocity model and therefore the objective function of our optimization

problem. Then, we show how to adapt an evolution strategy (ES) to take advantage

of such a model or space reduction. ES’s are a class of evolutionary algorithms

designed for searching the global minimum of a function in a continuous space. We

are motivated by the modifications in ES’s recently proposed in (Diouane et al.

2015) to ensure some form of rigorous convergence and a better computational

performance under moderate budgets of function evaluations. Thirdly, based on one

of the modified ES’s given in (Diouane et al. 2015), we propose a highly parallel ES

adapted to the full-waveform inversion setting. By combining model reduction and

ES’s in a parallel environment, we aim at solving realistic instances of the problem.

In fact the numerical results obtained along this direction will show the

appropriateness and promise of our approach.

We note that global optimization heuristics have already been already employed

to solve related inverse problems. A first attempt to invert the ocean bottom

properties (Collins and Kuperman 1992) has been made through simulated
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annealing. Later Gerstoft (1994) has applied genetic algorithms to invert seismoa-

coustic data. Training a neural network to compute a reliable estimate of a one-

dimensional velocity model has been also proposed in (Röth 1994). In all these

applications, the heuristics were either applied to problems where the objective

function was cheap to evaluate or where a very simple parametrization of the

velocity model was used.

The paper is organized as follows. We start by describing in Sect. 2 the large-

scale Earth imaging optimization problem of interest to us. In Sect. 3, we detail our

proposed methodology to reduce the number of unknowns, while representing the

full search space as faithfully as possible. In Sect. 4 we describe a parallel ES

adapted to the specificity of the given application. Numerical results for a realistic

large-scale public domain inversion problem are then presented and discussed in

Sect. 5. Finally, we draw some conclusions and describe future lines of research in

Sect. 6.

2 Full-waveform inversion

Estimating the subsurface velocity from seismic recordings is the main goal of the

full-waveform inversion procedure. One uses the recorded wavefields to guess the

physical properties of the medium through which the wavefield has propagated.

Two formulations (either time-domain or frequency-domain based) are traditionally

used for finding the solution of this inverse problem. Relevant details on both

approaches can be found in, e.g., (Brossier 2009; Pratt and Worthington 1990;

Sirgue and Pratt 2004; Virieux and Operto 2009). Since the frequency-domain

approach is regarded as more advantageous when solving the full-waveform

inversion in the multiple frequency case (Virieux and Operto 2009), we will

exclusively consider this approach in our paper. Below we briefly detail the full

seismic wavefield problem (forward problem) and the associated problem used to

recover the velocity model (inverse problem). At the end of the section, we will also

introduce the three-dimensional public domain velocity model used in all our

numerical illustrations and experiments.

2.1 The forward problem

Given the medium properties (e.g., the subsurface velocity), the forward problem

consists of modeling the full seismic wavefield in a three-dimensional parallelipedic

domain X � R3 at a given frequency. The wave propagation is usually controlled by

a partial differential equation, whose formulation depends on the characteristics of

the propagation model (Cohen 2002; Pinel 2010). In the frequency domain, the

acoustic propagation of a pressure field u(x, y, z) at the position ðx; y; zÞ 2 X in a

heterogeneous medium is governed by the Helmholtz equation defined as:

�Duðx; y; zÞ � k2ðx; y; zÞuðx; y; zÞ ¼ sðx; y; zÞ; ð1Þ

where kðx; y; zÞ ¼ 2pf=mðx; y; zÞ is the wavenumber, f 2 Rþ is the frequency in Hz,
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and m(x, y, z) is the variable acoustic-wave velocity model in m/s. In Eq. (1), D
represents the standard Laplace operator and s(x, y, z) a Dirac source term. In a

more realistic scenario, the source excitation is estimated by solving an inverse

problem [see Sjogreen and Petersson (2014)]. The wavelength is given

by m(x, y, z) / f. We consider absorbing boundary conditions: First, a popular

approach, called perfectly matched layer formulation (PML) (Berenger 1994, 1996),

is used to obtain a satisfactory near boundary solution, without many artificial

reflections; Second, this artificial boundary layer is used to absorb outgoing waves at

any incidence angle as shown in (Berenger 1994). The acoustic full-waveform

inversion requires the solution of three-dimensional Helmholtz problems at various

locations of the Dirac sources and thus leads to multiple right-hand side problems

(Sourbier et al. 2009a, b).

In this paper, we consider a standard second-order accurate seven point finite-

difference discretization of the Helmholtz equation (1) on an uniform equidistant

Cartesian grid of size Nx � Ny � Nz. For later use, we define N ¼ Nx � Ny � Nz, h

the corresponding mesh grid size, and Xh the discrete computational domain. After

discretization, the acoustic full-wave inversion leads to the following linear system

with p multiple right-hand sides:

AU ¼ S ð2Þ

where S 2 CN�p and A 2 CN�N is a sparse complex matrix (nonhermitian and

nonsymmetric due to the PML formulation). We note that the matrix A embeds the

properties of the subsurface and depends on the propagation velocity model m that

we want to quantify. Since a stability condition has to be satisfied to correctly

represent the wave propagation phenomena (Cohen 2002), we consider numerical

discretization schemes with 10 points per wavelength. Consequently, at a given

frequency f in Hz, we deduce the mesh grid size h in m as

h ¼
min

ðx;y;zÞ2Xh

mðx; y; zÞ

10 f
: ð3Þ

In practice this last relation imposes the solution of very large systems of equations

(see Sect. 5, where N � 106) at the frequencies of interest for the geophysicists.

Such a task may be too computationally and memory expensive when solving linear

systems by sparse direct methods. Due to their indefiniteness, these systems are

known to be very challenging for iterative methods (Ernst and Gander 2012). Based

on previous studies (Calandra et al. 2013, 2012; Lago 2013), we consider a recently

proposed block flexible Krylov subspace method [BFGMRES-S (Calandra et al.

2013, Algorithm3)] for the solution of the linear system with multiple right-hand

sides (2). In (Calandra et al. 2013) the authors have shown the relevance of the

BFGMRES-S algorithm combined with a variable two-level preconditioner to

address the solution of such large-scale acoustic forward problems in a distributed

memory parallel environment. We refer the reader to (Calandra et al. 2012, Algo-

rithm 5) for a complete description of the geometric two-grid preconditioner and to

(Pinel 2010) for additional theoretical properties in relation with Krylov subspace
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methods. Applications to large-scale forward acoustic problems have been con-

sidered in detail in (Lago 2013, Chap. 4).

Figure 2 depicts a graphical representation of the SEG1/EAGE2 salt dome

velocity model (described later in Sect. 2.3) and the real part of the wavefield at

frequency 12Hz obtained after solving the Helmholtz equation in the case of a

single source. The numerical solution has been obtained using BFGMRES-S. We

note that the wave propagation is affected by the properties of the velocity model.

The interference of the waves with the reflected layer generates reflection waves.

The latter are recorded at different time steps using geophones to generate the so-

called seismograms, i.e., the observed data for the associated inverse problem

detailed next.

2.2 Full-waveform inversion as a least-squares global optimization problem

The standard formulation of acoustic full-waveform inversion (at a given frequency

f) aims at minimizing the following least-squares misfit function (Tarantola 2005):

J ðmÞ ¼ 1

2

Xp

i¼1

ðdiðmÞ � diobsÞ
y
WiðdiðmÞ � diobsÞ; ð4Þ

where y denotes the adjoint operator (transpose conjugate). The weighting matrices

Wi are in general used to include a priori data information. The misfit vector

diðmÞ � diobs 2 Rn, related to the i-th source, is computed as the difference at the

receiver positions between the recorded seismic data diobs (i.e. seismograms) and the

modeled seismic one diðmÞ. The latter one corresponds to the modeled seismic

wavefield ui [computed as the i-th column of the U solution of (2)], projected using

the operator Pdata, which extracts the values of the wavefield at the receiver posi-

tions for each source, i.e., diðmÞ ¼ PdataðuiÞ. The use of this projection operator

makes the full-waveform inversion an ill-posed problem, meaning that an infinite

number of velocity models matches the data, leading to the same objective function

value. Therefore, an additional regularization term is classically added to the

Fig. 2 3D SEG/EAGE salt dome velocity model: problem geometry with velocity distribution (left) and
real part of numerical solution at 12Hz (right). Figures from (Lago 2013, Chap. 4)

1 The Society of Exploration Geophysicists.
2 European Association of Geoscientists and Engineers.
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inversion problem to make it well posed (Tarantola 2005). In addition to the

velocity model, the source excitation is generally unknown and must be included as

an unknown of the problem (Pratt 1999). Provided that a good starting velocity

model ms is available (good in the sense that smoothly represents the structure of

the true velocity model), the minimization of the objective function (4) is in practice

solved using a Newton type method [see Virieux and Operto (2009) and references

therein].

2.3 The SEG/EAGE salt dome velocity model

We have conducted our numerical studies on the acoustic inverse problem using a

three-dimensional public domain velocity model known in the geophysics

community as the SEG/EAGE salt dome velocity model.

This velocity model (depicted in Fig. 3) is based on a typical US Golf coast salt

structure, and special care was taken to ensure that it is geologically feasible. Hence

it is widely accepted as an adequate benchmark model for seismic imaging in the

geophysics community. Next, we will introduce a parametrization procedure to

compute an appropriate basis for the velocity models, which will then allows to

(a) The full velocity model. (b) A vertical section in the plane y = 10 km.

(c) An horizontal section in the plane z = 2.5 km. (d) The salt dome.

Fig. 3 Visualization of the 3D SEG/EAGE salt dome velocity model using ParaView (Henderson 2007).

The geophysical domain is of size 20� 20� 5 km3. The seismic waves propagate in water and in the salt
dome at the minimal and maximal velocities of 1500 and 4418 m/s, respectively. The occurrence of a salt
dome in the subsurface of Earth abruptly increases the velocity of propagation of the waveslabelfig
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compute an accurate and smooth representation of the SEG/EAGE salt dome

velocity model using a reduced number of parameters.

3 Search space reduction

Evolution Strategies are heuristic methods designed for the solution of global

optimization problems (with continuous variables) that have performed well in

terms of the quality of the final point computed [see Auger et al. (2013, 2009),

Hansen et al. (2010), Rios and Sahinidis (2013)]. However, like any other method

for global optimization, ES’s suffer from the curse of dimensionality, meaning that

their performance is satisfactory on low dimensional problems, but deteriorates as

the dimensionality of the search space increases (Nabi and Xiaodong 2010). For

realistic simulations of full-waveform inversion (Lago 2013; Pinel 2010), the typical

size N of the velocity models exceeds in general 106, and thus trying to solve

directly the problem using an ES is ruled out.

However, our purpose is not to solve the full-waveform inversion problem but

rather to find a good starting velocity model ms which can be later improved using a

local gradient based method. The initial velocity model ms is only required to

represent the general structure of the true model, and such a representation is often

smooth and can be expressed using only a few parameters (Virieux and Operto

2009). Given an appropriate and efficient procedure to represent a velocity model

using a reduced number of parameters, the ES method will be applied to try to find

the values of the parameters that lead to a smooth representation of the unknown

velocity model to be inverted.

The problem of search space reduction has been investigated over the past years

using subspace approaches (Kennett et al. 1988; Oldenburg et al. 1993; Skilling and

Bryan 1984). In our context, a velocity model perturbation ~m 2 RN can be restricted

to lie in an n-dimensional subspace of RN , spanned by the vectors fvigi¼1;...;n, with

n�N (as with N, n will also later have a 3-D interpretation). The model

perturbation can be then written as follows:

~m ¼
Xn

i¼1

givi ¼ Vg;

where g 2 Rn are the new parameters to invert, and V ¼ ½v1; . . .; vn� 2 RN�n is the

so-called reduction basis. Subspace approaches lead to an important simplification

of the problem (Kennett et al. 1988; Skilling and Bryan 1984), but are unfortunately

very sensitive to the choice of the reduction basis. In fact, by restricting the search

space to directions in a subspace, the neglected ones could be the vectors which are

important in finding a local or global minimum of the objective function J given in

(4). Often researchers use a sinusoidal basis as a reduction basis and try to find a

vector g of parameters which produces an acceptable agreement to the observation

(Oldenburg et al. 1993). The existing subspace methods, previously cited, use

gradient information of the objective function, thus the reduction process is problem

10 Y. Diouane et al.
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dependent. In our case, no information about the objective function will be used,

thus our subspace technique can be applied regardless of the problem.

Inspired by the methodology used in image compressing, we propose in this work

a new procedure to construct this basis using a combination of sinusoidal and

rectangular basis functions, more specifically a discrete cosine transform (DCT)

(Britanak et al. 2006) and a step function transform. In fact, the step function used

to magnify the vector parameter g 2 Rn, so that it fits the original space RN , usually

leads to a pixelization effect. Thus a DCT is then applied to produce a smooth

velocity model, reducing such pixelization. To simplify the exposition, we will first

explain our approach in the one-dimensional case, and then give a generalization to

cover the realistic 3D geometry of interest. We refer the reader to (Diouane 2014,

Chap. 7) for a complete description of these procedures.

3.1 One-dimensional space reduction

There are three main procedures in our space reduction scheme: a reduction, a

duplication, and a magnification.

In the reduction procedure, given a vector m 2 RN discretizing a velocity vector,

n subdivisions are first created. Then, it is taken the mean value the parameters

included in each subdivision. In our context, the reduction operation will be only

used to estimate how efficient is our magnification procedure.

The duplication procedure consists of building a vector m 2 RN using a small-

size vector g 2 Rn with n\N. We first construct an empty vector m of size N,

considering n subdivisions of indices ½xi; xiþ1�. Each subdivision contains around

d ¼ ½N=n� parameters and thus d ¼ xiþ1 � xi and xi ¼ ði� 1Þdþ 1. The n param-

eters of the velocity vector g are distributed over the n subdivisions. The value

associated to each subdivision is then duplicated over the d parameters of m as-

signed for that subdivision. The duplication procedure, as presented here, introduces

a pixelization effect in the constructed vector m. A DCT can then be applied to

improve the quality of the duplication and to remove the subdivision discontinuities.

A magnification procedure aims in general at removing noise or producing a less

pixelated image. The most used smoothing algorithms are based on Gaussian

smoothing (Aditya et al. 2012), bilateral filters (Tomasi and Manduchi 1998), and

sinusoidal based approaches (Britanak et al. 2006). As a smoothing procedure, we

choose to work with a sinusoidal basis since it is one of the most popular subspace

approaches for FWI to generate a smooth approximation vector using few

coefficients (Oldenburg et al. 1993). We will smooth the pixelization effect in the

magnified vector using a DCT (Britanak et al. 2006).

As we have seen before, when duplicating a velocity vector from a vector of

smaller size, the value in each subdivision is constant and thus it can be seen as a

mean of all the subdivision values. Such a property will be imposed as well on the

magnified velocity vector m in the sense that it corresponds to a model mð�Þ such
that

A parallel evolution strategy for an earth imaging problem... 11
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1

xi � xiþ1

Z xi

xiþ1

mðxÞdx ¼ gðiÞ; i ¼ 1; . . .; n: ð5Þ

In turn, this velocity model mð�Þ is expressed using a discrete cosine basis in the

following way:

mðxÞ ¼
Xn

j¼1

aj cos

�
ðj� 1Þp

N
ðx� 1Þ

�
; ð6Þ

where a ¼ ðajÞ1� j� n 2 Rn. By incorporating the expression (6) into the equa-

tions (5), we can obtain the vector a by solving a linear system of the form

Ca ¼ g; ð7Þ

where C 2 Rn�n is a matrix with the following coefficients:

Cij ¼
1 if j ¼ 1;

2N

ðj� 1Þpd cos
�
p
N
ðj� 1Þði� 1

2
Þd
�
sin

�
dp
2N

ðj� 1Þ
�

otherwise.

8
<

:

The matrix C is nonsingular (see the proof in the appendix). The one-dimensional

smoothed vector m is then built by evaluating (8) for all i 2 f1; . . .;Ng, which
amounts to

mi ¼
Xn

j¼1

aj cos

�
ðj� 1Þði� 1Þp

N

�
;

or, equivalently, to

m ¼ Mg; ð8Þ

where M ¼ KC�1 2 RN�n and K 2 RN�n is the matrix defined by Kij ¼
cosððj�1Þði�1Þp

N
Þ. Equation (8) shows that the magnification procedure corresponds to

the application of a linear operator. The magnification cost is negligible compared to

an objective function evaluation. In fact, the magnification is accomplished by first

computing C�1g 2 Rn and then multiplying it by K 2 RN�n, resulting in

KðC�1gÞ 2 RN , while an evaluation of the objective function requires the solution

of a larger linear system of size N � N with p multiple right-hand sides [see (2)].

3.2 Three-dimensional space reduction

A multi-dimensional transform (known as fast direct multi-dimensional DCT) can

be carried out by using a composition of the one-dimensional magnification

procedure along each dimension (Britanak et al. 2006). Equation (8) can then be

immediately extended to 2D or 3D velocity models. A detailed description of the

extension of Eq. (8) to higher dimensions is given in (Britanak et al. 2006). In

12 Y. Diouane et al.
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the case of three-dimensional data, given a 3D velocity model G of n ¼
nx � ny � nz parameters, we ought to build a magnified 3D velocity model m of

size N ¼ Nx � Ny � Nz 	 n parameters. The magnification procedure is obtained

by applying (8) first to the x axis, then to y, and finally to z as follows (using

Matlab notation):

20 40 60 80 100 120 140 160 180 200 220
1500

2000

2500

3000

3500

4000

4500

5000

5500

i

m
(i)

 A 1D velocity model

the true velocity model
the duplicated velocity model

(a) The duplication procedure following x axis.
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3000

3500

4000

4500

5000

5500

i

m
(i)

 A 1D velocity model

the true velocity model
the magnified velocity model

(b) The magnification procedure following x axis.
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3500
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4500

5000

5500
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m
(i)

 A 1D velocity model

the true velocity model
the duplicated velocity model

(c) The duplication procedure following y axis.
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5000
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 A 1D velocity model

the true velocity model
the magnified velocity model

(d) The magnification procedure following y axis.
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(e) The duplication procedure following z axis.
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3500
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5000
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i

m
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 A 1D velocity model

the true velocity model
the magnified velocity model

(f) The magnification procedure following z axis.

Fig. 4 Illustration using 1D SEG/EAGE salt dome velocity profiles
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Vð:; :; kÞ ¼MxGð:; :; kÞ; k ¼ 1; . . .; nz;

Tð:; :; kÞ ¼Vð:; :; kÞM>
y ; k ¼ 1; . . .; nz;

mði; :; :Þ ¼ Tði; :; :ÞM>
z ; i ¼ 1; . . .;Nx;

where Mx 2 RNx�nx , My 2 RNy�ny , and Mz 2 RNz�nz are the one-dimensional

smoothing matrices defined in (8) along the axes x, y, and z, respectively.

3.3 Application to the SEG/EAGE salt dome velocity model

To illustrate numerically the performance of the three-dimensional approximation

procedure, we have used the SEG/EAGE salt dome velocity model introduced in

Sect. 2.3.

Figure 4 outlines three one-dimensional SEG/EAGE salt dome velocity profiles

(with respect to the x, y, and z axes, respectively). Reduction procedures were then

applied to these velocity profiles to create vectors for duplication and magnification.

Following the x axis (resp. y axis), the velocity profile has been selected at the

(a) True model. (b) A vertical slice (y = 10 km). (c) An horizontal slice
(z = 2.5 km).

(d) Duplicated model. (e) A vertical slice (y = 10 km). (f) An horizontal slice
(z = 2.5 km).

(g) Magnified model. (h) A vertical slice (y = 10 km). (i) An horizontal slice
(z = 2.5 km).

Fig. 5 3D duplicated and magnified models of the SEG/EAGE salt dome velocity model. The velocity
models are built using n ¼ 8� 8� 5 ¼ 320 parameters, while N ¼ 225� 225� 70 ¼ 3543750
parameters are required for the true velocity model

14 Y. Diouane et al.
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position y ¼ 8:9 km and z ¼ 2:5 km (resp. x ¼ 8:9 km and z ¼ 2:5 km). In both

cases the reduced velocity vector is built using n ¼ 8 parameters only, while N ¼
225 parameters are required for the true velocity vector. Following the z axis, the

velocity profile (selected at the position x ¼ 8:9 km and y ¼ 8:9 km) is reduced

using n ¼ 5 parameters compared to the true N ¼ 70 ones. From the results

obtained, we observe that the smoothing effect of the DCT transform improves the

quality of the duplicated velocity profiles as a representation of the original ones,

and that the space reduction approach can work relatively well with a reduced

number of parameters.

For the three dimensional case, we have found that the true velocity model can be

relatively well approximated using n ¼ 8� 8� 5 ¼ 320 parameters instead of the

original N ¼ 225� 225� 70 ¼ 3543750 ones, in the sense of still representing the

main structure (i.e., the salt dome) of the true velocity model. Figure 5 outlines an

illustration of the obtained results. As expected, the magnification procedure using

DCT (see Fig. 5g–i) gives better results compared to the duplication procedure

which is based on the step function transform (see Fig. 5d–f). Although we use only

a few parameters to represent the velocity model, our smooth magnification

procedure preserves the main specificity of the true model, in particular the salt

dome.

4 A parallel ES for acoustic full-waveform inversion

In this section we start by briefly reviewing the existing methods to compute a

satisfactory initial velocity model for seismic inversion. Then we explain how to

apply ES’s for this purpose when using the space reduction introduced before. A

parallel implementation of the resulting ES’s is also proposed.

4.1 Existing methods

The acoustic full-waveform inversion problem introduced in Sect. 2.2 is nonconvex,

and thus its solution by optimization algorithms crucially depends on the starting

velocity model ms. In fact, it is known that the inversion procedure converges to

satisfactory results only if the starting velocity model is situated not far from a

global minimizer (Virieux and Operto 2009). Hence, before applying the full-

waveform inversion, a starting model is generally built. To do this, the most

common techniques are first-arrival travel-time tomography (FATT) (Nolet 1987),

stereotomography (Lambaré 2008) or, more recently, inversion in the Laplace

domain (Shin and Cha 2008). For many years, FATT has proven to be stable in

generating smooth velocity models of the subsurface. Some examples of application

of FWI to real data using a starting model built by FATT are described in (Operto

et al. 2006; Ravaut et al. 2004). Similarly, the stereotomography is regarded as one

of the most promising methods for building a smooth velocity model. It exploits the

arrival time of locally coherent events within an automatic procedure to select a

seismogram collection (Lambaré 2008). Some applications to synthetic and real

data sets are shown in (Billette et al. 2003; Billette and Lambaré 1998). Finally, the
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inversion in the Laplace domain can be viewed as a frequency domain inversion

using a pure imaginary complex valued frequency that controls the time damping of

the seismic wavefield. Applications of Laplace domain FWI to synthetic and real

data are proposed in (Shin and Cha 2008; Shin and Ha 2008, 2012).

4.2 Evolution strategies and CMA–ES

Evolutions strategies are a class of evolutionary algorithms designed for the

optimization of a possibly nonconvex function in a continuous domain without

using derivatives. It has been originally developed in (Rechenberg 1973) for the

unconstrained optimization of a function, minv2Rn f ðvÞ, and has been extensively

investigated and tested [see, e.g., Beyer and Schwefel (2002), Hansen et al. (to

appear)] and the references therein]. We are interested in a large class of ES’s

denoted by ðl; kÞ–ES, with l and k integers such that 1\l� k, where a certain

number k of points are randomly generated in each iteration, among which l of

them are selected as the best in terms of the objective function f.

CMA–ES (Hansen et al. 1995) (where CMA stands for covariance matrix

adaptation) is regarded as one of the best in the class ðl; kÞ–ES in terms of

numerical performance (Auger et al. 2013, 2009; Hansen et al. 2010; Rios and

Sahinidis 2013). More precisely, CMA–ES belongs to the ES family denoted by

ðl=lW ; kÞ–ES, where the subscript ‘W’ indicates the use of ‘recombination’ via

weights. Broadly speaking, at iteration k, a candidate minimizer �xk is used to

produce a generation of k ‘offspring’, each consisting of adding to �xk a random

direction multiplied by a parameter controlling the length or size of the steps; the

best l of these are retained as ‘parents’ in a ‘selection’, and �xkþ1 is taken as a

weighted combination (‘recombination’) of these parents. The CMA component

considers a Gaussian distribution of mean zero for the random generation of the

directions and provides a scheme for updating the corresponding covariance matrix

as well as the step length.

4.3 A modified CMA–ES

CMA–ES has exhibited robust performance for difficult ill-conditioned, non-

separable, and highly multi-modal problems (Auger et al. 2013, 2009; Hansen et al.

2010; Rios and Sahinidis 2013). Its main drawback is, however, that a large budget

is required to provide outstanding results. Recently, the authors in (Diouane et al.

2015) have proposed modifications to the class of algorithms in ðl=lW ; kÞ–ES to

make them enjoying a favorable convergence property and performing better for

smaller budgets. The modifications have been essentially the imposition of a

sufficient decrease on the objective function values to accept new iterates and the

reduction of the step size when such a condition is not satisfied. Under such

modifications, these ES’s can converge globally (meaning independently of the

starting point) for a first-order stationary point. Algorithm 1 shows an adaptation of

the globally convergent ES’s proposed in (Diouane et al. 2015) to the context of

full-waveform inversion.
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The authors in (Diouane et al. 2015) have proposed three different globally

convergent ES versions named mean/mean, max/max, and max/mean. On a large

data set of problems, the mean/mean version has performed numerically the best.

However, the incorporation of the mean/mean sufficient decrease condition requires

an extra objective function evaluation J ðmtrial
kþ1Þ at each iteration, where mtrial

kþ1 is the

trial mean parent computed as the mean of the best l generated velocity models.

The mean/mean version would therefore corrupt the parallel nature of ES’s. In fact,

if one supposes that the evaluation of J at the offspring is performed at the same

time using synchronized parallel clusters, the mean parent evaluation J ðmtrial
kþ1Þ will

force all these clusters to wait until the end of such an evaluation to be able to restart

a new offspring generation. Alternatively, the max/max version has shown good

performance (not as good as the mean/mean version) without the need of any extra

objective function evaluation to impose the corresponding sufficient decrease

condition. Consequently, we have adopted the max/max version in Algorithm 1.

We also note that the update of the weights to enforce the sufficient decrease

condition, originally proposed in (Diouane et al. 2015), has not been activated in

our setting since we aim at the least amount of changes in the original ES’s and

since such an update did not seem to have a real impact on the results for the

max/max version [see Diouane et al. (2015)].

Moreover, in the evaluation procedure of the objective function, one needs to

satisfy the relation (3). Hence we have imposed a lower bound on the velocity equal

to a known minimum value mmin ¼ 1500m=s (the velocity model value of the

water). A maximum value on the velocity model of mmax ¼ 4500m=s has been also

imposed to avoid propagation by meaningless velocity models. Both requirements

were guaranteed by projecting the offspring models onto the feasible domain

defined by the bounds, an approach that has been shown to be globally convergent

in (Diouane et al. 2015). Since there are no other constraints rather than simple

bounds on the variables one can use the simple orthogonal ‘2-projection.

4.4 A parallel implementation

The proposed ES implementation consists of a synchronized parallel optimizer

composed of k clusters (typically, the population size). Each cluster is composed of

a group of processors, which is assigned to evaluate the objective function (4). At a

given iteration k, the clusters are synchronized and not activated until the new mean

parent mkþ1 is defined, which in turn depends on the iteration state (successful or

not). Figure 6 sketches in detail a given iteration of our proposed parallel

implementation of Algorithm 1.

The proposed parallel implementation can be described as follows. In addition, at

each iteration, k clusters, represented in Fig. 6 by the components [Generate mi],

are launched in a synchronous manner. Each of these clusters generates a reduced

velocity model based on the ES parameters and strategies. Once the velocity model

is generated, the related cluster evokes the component [Propagate mi].

The wave propagation simulation related to each velocity model considers the p

source terms (i.e., p right-hand sides) at once. The [Propagate mi] component is

A parallel evolution strategy for an earth imaging problem... 17
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based on MPI (Message Passing Interface) and is responsible for discretizing and

generating the linear system related to the forward problem (see Sect. 2.1) and to

provide the information needed to evaluate the objective function J given in (4).

The last component will just return the value of the objective function to the unique

master processor [Master]. Once the master processor has received results from

the k clusters, it will choose the best, decide whether the iteration is successful or

not, and update the mean parent accordingly. The [Master] component updates

also the ES parameters (e.g., the distribution and the step length) and repeats the

loop until a convergence criterion is achieved.

The propagation in itself behaves as a black box process, hiding from the ES the

complexity of the discretization and of the forward solver. Changing the

discretization and/or forward solver parameters will not incur in any rewriting of

18 Y. Diouane et al.
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the ES implementation. MPI-2 has been used with the MPI_COMM_SPAWN
primitive which allows an MPI process to spawn a number of clusters. Each newly

spawned cluster has a specific MPI_COMM_WORLD intracommunicator that allows

us to launch easily the propagation simulations over a number of CPU cores. We

note that the proposed ES implementation is portable and that the propagator itself

can be a standalone client. When the available cluster number is less than k, one can
launch many propagation simulations on the same cluster until we obtain the needed

function evaluations.

5 Numerical experiments

In this section we first describe the validation scenario and detail the parameters of

the global optimization algorithm. Then we analyze the numerical results obtained

for the inversion procedure at two frequencies. The numerical simulations have

been performed on CURIE 3, a parallel cluster located at TGCC, France (two eight-

cores Intel Sandy Bridge EP (E5-2680) at 2.7 GHz and 64 GB RAM per computing

node with InfiniBand QDR Full Fat Tree interconnect) using a Fortran 2003

implementation with MPI in single precision arithmetic. The code has been

compiled by the Intel ifort compiler suite with standard compiling options and

linked with the MKL library. The numerical experiments have been performed on a

fixed number of cores (2048, i.e., 128 computing nodes) with a maximal allowed

elapsed computing time of 24 hours.

Fig. 6 A graphical illustration for a given iteration of the parallel evolution strategy
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5.1 Problem and algorithm specifications

We have used a simple scenario where the p source terms are supposed to be Dirac

functions and where the observed data diobs [i.e. seismograms (Tarantola 2005)] are

generated from the propagating velocity model that we are trying to invert (see

Sect. 2.3). The p sources (with p ¼ 16) are uniformly distributed in a survey plan

located at 500 meters of depth (10% of the exploration depth).

In this scenario we consider the acoustic full waveform inversion procedure at

two different frequencies (1Hz and 2Hz respectively) with only 320 parameters for

the initial velocity model (see Sect. 3). Table 1 reports the dimensions Nx � Ny � Nz

of the forward problem in agreement with the stability condition (3), the number of

clusters, as well as the population size k versus the frequency. As the frequency

increases, the number of cores dedicated to the objective function evaluation

becomes larger. In fact, the forward problem gets more complicated to solve as the

frequency f increases. The initial iterate �x0, for the parallel ES algorithm in the case

of 1 Hz, is built using the magnification procedure based on two given velocity

values (3000 m/s and 1500 m/s, distributed as follows 2 ¼ 1� 1� 2). Both the

nonlinearity and the ill-posedness of the FWI problem are in practice tackled in the

frequency domain using a multi-scale approach where one starts the inversion

procedure in a low frequency range to mitigate the nonlinearity of the inversion, and

then incorporate progressively higher frequencies (Sirgue 2006; Virieux and Operto

2009). Hence the velocity model solution obtained in the case of 1Hz will serve as a

warm-starting point for the 2Hz case.

In the context of CMA–ES, the choice k ¼ floor ð4þ 3 logðnÞÞ (where floor ð�Þ
rounds to the nearest integer no larger than the number given) has been shown to

provide a good compromise between quality of the solution found and effort in

determining it [see Hansen (2011)]. However, given the strong need for global

exploration at 1Hz, we have chosen an even larger value, equal to k ¼ 512, to

better take advantage of the number of cores and cores per cluster, as we explain

next. Since doubling the frequency doubles the number of discretization points in

each direction, the number of cores per cluster is multiplied by at least a factor of

eight when considering the case of 2Hz. A factor of 16 has been retained in these

numerical experiments. Given that the total number of cores is fixed to 2048 in both

experiments, we note that the number of clusters at 2Hz is reduced from 2048=8 ¼
256 to 2048=128 ¼ 16. Since the population size k is chosen as twice the number of

3 http://www-hpc.cea.fr/fr/complexe/tgcc-curie.htm.

Table 1 The distribution of the clusters and the population size versus frequency

Frequency (Hz) Nx � Ny � Nz Number of clusters Population size k

1 136� 136� 34 256 (8 cores/cluster) 512 (2 evaluations/cluster)

2 272� 272� 68 16 (128 cores/cluster) 32 (2 evaluations/cluster)
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available clusters, we had to run two evaluations on the same cluster to get the entire

offspring population (for both frequencies).

The parameters of the optimization algorithm are chosen similarly to those of

CMA–ES for unconstrained optimization [see Hansen (2011)]: l ¼ floor ðk=2Þ and
xi

0 ¼ ai=ða1 þ � � � þ alÞ with ai ¼ logðk=2þ 1=2Þ � logðiÞ, i ¼ 1; . . .; l. The

choices of the distribution Ck and of the update of rESk also followed CMA–ES

for unconstrained optimization [see Hansen (2011)]. The selected forcing function

was qðrÞ ¼ 10�4r2. To reduce the step length in unsuccessful iterations we have

used rkþ1 ¼ 0:5rk which corresponds to set b1 ¼ b2 ¼ 0:5. Finally, the initial step

size r0 is set to half of the difference between the velocity value on the bottom and

the one on the top, given (in SEG/EAGE salt dome velocity model) by 3000 and

1500 m/s, respectively.

5.2 Numerical results for full-waveform inversion

Figure 7 reports a graphical representation of the inverted velocity model at 1 Hz.

These numerical results are found to be satisfactory since a smooth version of the

true velocity model is obtained. We can indeed consider that we are able to invert

the general structure of the regarded velocity model, since in particular the salt

dome structure is recovered. We also remark that such a model can be considered as

a good starting point when using gradient based methods (Virieux and Operto

2009).

Figure 9a depicts the values of the objective function at the best population point

at each iteration for the case 1Hz. The variation of the objective function is more

significant only at the early stages of the inversion process. Such a behavior is due to

the sufficient decrease condition which monitors the quality of the sampling

procedure. We note that the objective function value decreases from 2042.113 to

575.8082, and that after 278 iterations the inversion procedure is stopped due to the

maximal elapsed computational time.

Figure 8 shows the results obtained for f ¼ 2Hz. Even though the optimization

procedure is started from the inverted velocity model obtained at 1Hz, we note that

the inversion result is getting less accurate and rather far from being a good

approximation of the targeted velocity model.

(a) The inverted model. (b) A vertical slice (y = 10 km). (c) An horizontal slice
(z = 2.5 km).

Fig. 7 Inversion results for the salt dome velocity model using n ¼ 320 parameters. The 1Hz case
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Figure 9b shows that the optimization procedure is converging to a fixed velocity

model with an objective function value of 123.2841 after 1220 iterations. Unlike the

1Hz case, this plot at 2Hz indicates that the inversion process is getting stacked at a

local minimum. The explanation of such results is that the objective function

becomes more and more noisy and multi-modal as far as the frequency increases

(Sirgue 2006). A possible way to overcome such a difficulty is to increase the

population size of the ES in order to encourage the global exploration.

6 Conclusion

In this paper we have presented a numerical method based on evolution strategies

for the solution of the acoustic full-waveform inversion problem arising in Earth

imaging in geophysics. Considering that each parameter in the velocity model to be

inverted is an additional variable to optimize, we have proposed a new

parametrization of the problem, reducing the number of parameters needed to

faithfully representing the velocity models. We have illustrated the efficiency of our

(a) The inverted model. (b) A vertical slice (y = 10 km). (c) An horizontal slice
(z = 2.5 km).

Fig. 8 Inversion results for the salt dome velocity model using n ¼ 320 parameters. The 2Hz case
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Fig. 9 Objective function values at the best population point during the application of Algorithm 1 for
FWI
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parametrization on the public domain SEG/EAGE salt dome velocity model, where

we were able to reconstruct a rather satisfactory approximation using very few

parameters.

We have then adapted the chosen ES’s to a reduction of the original space, in

particular to the full-waveform inversion setting when using reduced parameterized

velocity models. The main purpose of the incorporation of ES’s in the inversion

procedure is to find a good starting velocity model without the need of sophisticated

a priori knowledge on the background velocity model.

Given the high cost of the problem function evaluations, a highly parallel

scheme for such ES’s has been derived and validated on parallel distributed memory

platforms. The parallel implementation has been tested in combination with the new

model parametrization. The obtained numerical results have shown that a great

improvement can be obtained in the automation of the inversion procedure.

The testing scenario used for the acoustic full-waveform inversion problem is a

simple one where the source excitations are known and the observed data (i.e.

seismograms) is generated using the propagating velocity model which we are

trying to invert. We note that such a scenario is not truly realistic for the following

two reasons: (a) the source excitation is generally unknown and must be rather

included as an unknown of the problem, and (b) the observed data is generally given

by geophones located at the surface of the exploration domain. Thus, a more

realistic test case has to be investigated in the future to fully understand the potential

of the proposed approach.

Finally we remark that our model reduction procedure can certainly be

generalized to cover other fields of applications. Similarly, the developed parallel

approach can also be applied to other optimization problems in geosciences (e.g.

well placement in reservoir modeling or analysis of permeability of rocks in

petrophysics).
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Appendix

Theorem 6.1 Given n 2 N;N 2 N with n\N and d ¼ ½N=n�; the coefficient

matrix C 2 Rn�n defined as

Cij ¼ 2N

ðj� 1Þpd cos
�
p
N
ðj� 1Þði� 1

2
Þd
�
sin

�
dp
2N

ðj� 1Þ
�

is nonsingular. (Note that for j ¼ 1 we have used the convention sinð0Þ=0 ¼ 1, i.e.,

Ci1 ¼ 1.)

Proof A direct calculation shows that
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detðCÞ ¼
Yn

j¼1

2N

ðj� 1Þpd sin
dp
2N

ðj� 1Þ
� �

detðMÞ;

where M 2 Rn�n is defined as Mij ¼ cosðp
N
ðj� 1Þði� 1

2
ÞdÞ. The nonsingularity of M

can be deduced from the properties of DCT-III (Britanak et al. 2006). h
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