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Abstract In many large engineering design problems, it is not computationally

feasible or realistic to store Jacobians or Hessians explicitly. Matrix-free imple-

mentations of standard optimization methods—implementations that do not

explicitly form Jacobians and Hessians, and possibly use quasi-Newton approxi-

mations—circumvent those restrictions, but such implementations are virtually non-

existent. We develop a matrix-free augmented-Lagrangian algorithm for nonconvex

problems with both equality and inequality constraints. Our implementation is

developed in the Python language, is available as an open-source package, and

allows for approximating Hessian and Jacobian information.We show that our

approach solves problems from the CUTEr and COPS test sets in a comparable

number of iterations to state-of-the-art solvers. We report numerical results on a

structural design problem that is typical in aircraft wing design optimization. The

matrix-free approach makes solving problems with thousands of design variables

and constraints tractable, even when function and gradient evaluations are costly.

Keywords Large-scale optimization � Matrix-free optimization � Structural

optimization � PDE-constrained optimization � Augmented Lagrangian

& Andrew Lambe

lambe@utias.utoronto.ca

1 GERAD, Montréal, QC, Canada
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1 Introduction

Aerospace engineered systems are a prime target for the application of numerical

optimization due to the large impact that weight reduction has on system

performance. This is evident in the fuel mass required to launch a satellite into

orbit and in the operating cost of modern transport aircraft, where the primary cost

driver is the fuel.

One of the first such applications by aerospace engineers was structural design

optimization, first proposed by Schmit (1960). The field was made possible by the

advent of the finite-element method for structural analysis (Argyris 1954; Turner

et al. 1956), which enabled engineers to analyze much more complex geometries

than was possible with analytic methods.

This work is motivated by aircraft wing design optimization using coupled, high-

fidelity physics-based models of aerodynamics and structures (Kenway et al. 2014;

Kenway and Martins 2014). In such problems, the objective, constraints, and

derivative evaluations are expensive because of the expense of the aerodynamic and

structural analyses.

The design optimization problem of interest can be stated in the general form

minimize
x2Rn

f ðxÞ subject to cðxÞ ¼ 0; ‘� x� u; ðNLPÞ

where f : Rn ! R and c : Rn ! Rm are twice continuously differentiable. For the

time being, it is sufficient to note that any nonlinear program may be reformulated

as (NLP).

Kennedy and Martins (2015) and (2014) solve aircraft design problems based on

(NLP) using general-purpose sequential quadratic programming (SQP) software,

such as SNOPT (Gill et al. 2002). This approach is particularly effective when used

in conjunction with the adjoint method, which computes first derivatives efficiently

(Kenway and Martins 2014; Lyu and Martins 2014; Lyu et al. 2015).

Structural design optimization problems often include both a large number of

constraints (e.g., a failure criterion for each structural element), and a large number

of variables (e.g., the thickness of each structural element). In addition, the

constraint Jacobian is typically dense because the structures being optimized are

statically indeterminate—the static equilibrium equations alone are not sufficient to

compute the stress in each element of the structure. As a result, the stress in a given

element depends not only on the properties of that element, but also on how the load

is transmitted throughout the structure. In consequence, each failure constraint

depends on many design variables.

To make a factorization-based SQP approach feasible, Poon and Martins (2007)

aggregate constraints. The technique is effective for solving problems with hundreds

of structural failure constraints (Kenway and Martins 2014, 2013) but causes the

final structural mass to be overestimated because the objective is minimized on a

subset of the feasible region (Poon and Martins 2007).

There is a need for an optimization approach that does not require aggregation,

yet is still computationally efficient in the presence of dense Jacobians, and a

matrix-free approach is the natural choice. However, providing a matrix-free
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implementation of an SQP or interior-point method is not straightforward, and the

current state of optimization software is insufficient. A matrix-free approach

exploiting inexact Hessian-vector products was recently proposed by Hicken (2014)

and subsequently applied to an aerodynamic shape optimization problem (Dener

et al. 2015), but this approach is currently restricted to problems with equality

constraints. The handling of inequality constraints and bounds presents a particular

challenge.

A matrix-free SQP method would compute steps as inexact minimizers of

constrained quadratic programs. If bound constraints are kept explicit as in SNOPT,

each SQP subproblem is a quadratic program with both equality and inequality

constraints, and it is not immediately apparent how to solve such problems

efficiently using a matrix-free method, even if they are convex.

Iterative methods for equality-constrained quadratic subproblems, however, have

been developed in recent years. Arioli and Orban (2013) propose families of

iterative methods that are suitable for matrix-free SQP or interior-point methods.

Building upon those methods, Arreckx and Orban (2015) describe a matrix-free

implementation of a fully-regularized SQP-type method for equality-constrained

problems related to that of Armand et al. (2012), and highlight its relationship with

the standard augmented Lagrangian method. Previously, Gill and Robinson (2013)

highlighted relationships between a primal-dual augmented Lagrangian and

regularized SQP methods.

If the bounds are enforced by way of a logarithmic barrier, as in, for example,

IPOPT (Wächter and Biegler 2006) or KNITRO (Byrd et al. 2006), the

subproblems are equality-constrained quadratic programs. IPOPT uses a line

search filter scheme to guarantee global convergence while KNITRO uses a trust

region with a merit function to ensure global convergence. A line-search variant of a

matrix-free interior-point algorithm might employ an inexact Newton strategy on an

appropriate formulation of the Newton equations. Numerous formulations are

possible and can be regularized to mitigate ill-conditioning (Greif et al. 2014), but

the linear systems must nevertheless be adequately preconditioned. Furthermore, the

resulting steps must be checked to ensure continued progress toward optimality.

A matrix-free interior-point method of the trust-region type would suffer from the

same ill-conditioning issue as the line-search variant. Furthermore, the step must be

decomposed into components that lie in the null space and range space of the

Jacobian. KNITRO uses a projected conjugate-gradient method (Gould et al. 2001)

to compute the null-space component. Unfortunately, this approach requires

accurate projections into the null space of the linear equality constraints and this is

best achieved if the Jacobian is explicitly available.

The augmented-Lagrangian method may be simpler to implement as it requires

the approximate solution of a sequence of reasonably-conditioned bound-con-

strained subproblems. The subproblem solutions are used to update estimates of the

Lagrange multipliers for the constraints of (NLP). Direction-finding subproblems

involve solving linear systems with a coefficient matrix of the form H ¼ Bþ qJTJ,

where q[ 0 is a penalty parameter. Efficient iterative methods, typically variants of

the conjugate-gradient method, are available for this type of system. Indeed if B is
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positive definite on the nullspace of J, J has full row rank, and q is sufficiently large,

H is symmetric and positive definite. Note that operator-vector products with

H require operator-vector products with the constraint Jacobian and its adjoint, an

operation that is often available in practical large-scale applications. The main

disadvantage is that augmented-Lagrangian methods typically do not exhibit the

favorable local convergence properties of SQP methods. However, the ease with

which bound constraints and inequality constraints can be treated in the algorithm

provides us with a convenient starting point for experimenting with matrix-free

optimization.

Augmented Lagrangian methods are a staple of the optimization library of

numerical methods. It would be impossible to give a complete list of references

here. We refer the reader to the general textbooks of Bertsekas (1982), Conn et al.

(2000), and Nocedal and Wright (2006) for a thorough literature review and a

complete convergence analysis.

The algorithm proposed in this paper is released as part of the open-source

package NLPy (Orban 2014), a programming environment for designing numerical

optimization methods written in the Python programming language.

Few other implementations of the augmented Lagrangian method exist. Amongst

them MINOS (Murtagh and Saunders 1978, 2003), LANCELOT (Conn et al. 1992),

and ALGENCAN (Andreani et al. 2008) are the most widely used. MINOS takes

advantage of linear constraints in the problem and, like SNOPT, is a commercial

product. Gawlik et al. (2012) develop a linearly-constrained augmented Lagrangian

method for solving partial differential equation (PDE) constrained optimization

problems as part of the Toolkit for Advanced Optimization (TAO) (Munson et al.

2012). Their matrix-free method is open-source, but only handles equality

constraints. LANCELOT is designed to exploit the group-partially separable

structure of the objective and constraints in order to gain efficiency when dealing

with large sparse problems, which makes the code arduous to modify. Although the

LANCELOT algorithm appears to require only matrix-vector products with the

Jacobian, its current implementation requires the full Jacobian, and so technically

does not qualify as matrix-free. ALGENCAN is similar to LANCELOT in that it

uses a bound-constrained problem formulation, but ALGENCAN handles inequal-

ities in a different way. While LANCELOT replaces inequalities with equalities by

way of slack variables, ALGENCAN keeps inequalities intact, and uses the Powell-

Hestenes-Rockafellar augmented Lagrangian function (Rockafellar 1973), which

leads to discontinuous second derivatives in the objective of the subproblems. Our

work follows the approach of LANCELOT.

We now introduce the notation used in the remainder of this paper. The i-th

component of the vector x is xi, whereas xk or xk;j stands for the vector x at outer

iteration k or inner iteration (k, j). Define the Lagrangian

Lðx; kÞ :¼ f ðxÞ þ kTcðxÞ; ð1Þ

where k 2 Rm is the current approximation to the vector of Lagrange multipliers

associated to the equality constraints of (NLP). The augmented Lagrangian function

is
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Uðx; k; qÞ :¼ Lðx; kÞ þ 1

2
qkcðxÞk2

2: ð2Þ

We separate k and q from x by a semicolon in the arguments of U to indicate that

they are treated as parameters, and that U is really a function of the primal variables

x. For future reference, note that

rxxUðx; k; qÞ ¼ rxxLðx; kþ qcðxÞÞ þ qJðxÞTJðxÞ: ð3Þ

Finally, PXð�xÞ is the projection of the vector �x 2 Rn into the set of simple bounds

X :¼ x 2 Rn j ‘� x� uf g;

and is defined componentwise as PXð�xÞi ¼ medianð‘i; �xi; uiÞ for i ¼ 1; . . .; n.

The rest of this paper is organized as follows. Section 2 is devoted to a detailed

description of our matrix-free algorithm and its implementation in the Python

language. We provide numerical results on standard test problems in order to

validate our implementation and to compare it to existing software. In Sect. 3 we

explore in further detail the structural design optimization problem, and show the

benefits of the matrix-free approach over SNOPT. Conclusions and future work are

discussed in Sect. 4.

2 A matrix-free augmented Lagrangian implementation

2.1 Algorithmic details

In this section, we briefly cover the algorithmic details of our augmented

Lagrangian framework. Although the framework itself is standard and well known,

the description allows us to highlight certain algorithmic choices and relate them to

implementation specifics described in Sect. 2.2.

The k-th outer iteration of the augmented-Lagrangian algorithm consists in

approximately solving the subproblem

minimize
x2Rn

Uðx; kk; qkÞ subject to ‘� x� u; ð4Þ

for fixed values of kk and qk. We enforce satisfaction of the bound constraints

explicitly in the subproblem. Each subproblem solution is followed by updates to kk,
qk, and subproblem stopping tolerances. Those updates are typically based on the

improvement in constraint violation achieved in the most recent subproblem.

Algorithm 1 summarizes this process, and follows Nocedal and Wright

(2006, Algorithm 17.4) and Conn et al. (1992). The parameter updates in Step 4 are

classic and follow updates implemented in LANCELOT (Conn et al. 1992) and

ALGENCAN (Andreani et al. 2008).
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At every outer iteration, (4) must be solved efficiently. In our implementation,

two options are available. The first option follows LANCELOT and uses the method

of Moré and Toraldo (1989). The iterate at the j-th inner iteration corresponding to

the k-th outer iteration will be denoted xk;j. We begin by building a quadratic model

qk;j of U about xk;j:

qk;jðpÞ :¼ rxUðxk;j; kk; qkÞTpþ 1

2
pTBk;jp;

where Bk;j is a symmetric approximation of rxxUðxk;j; kk; qkÞ that need not be

positive definite. Our implementation allows Bk;j to be defined as a limited-memory

BFGS or SR1 approximation (Nocedal and Wright 2006). The step pk;j is then

obtained as an approximate solution of the bound-constrained quadratic program

minimize
p2Rn

qk;jðpÞ subject to p 2 Xk;j ð9Þ

where Xk;j :¼ fp 2 Rn j xk;j þ p 2 X and kpk1 �Djg and Dj [ 0 is the current

trust-region radius. Note that Xk;j is itself a box and there exist ‘k;j and uk;j such that

Xk;j ¼ fx 2 Rn j ‘k;j � x� uk;jg. The step pk;j is accepted or rejected and the radius

Dj is updated following standard trust-region criteria (Conn et al. 2000). Algorithm

2 summarizes the main steps involved in the inner iteration.
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In Algorithm 2, the initial guess xk;0 may be simply set to the current outer iterate

xk or to a better approximation if one is available. In Step 3, pk;j is computed using a

simple extension of the method of Moré and Toraldo (1991) to nonconvex quadratic

programs. In contrast with the trust-region subproblem solver used in LANCELOT,

the method of Moré and Toraldo (1991) allows the addition of many constraints at a

time to the active-set estimate AðxÞ :¼ fi j xi ¼ ‘k;ji or xi ¼ u
k;j
i g:

The face of Xk;j containing x is defined as

Fx :¼ y 2 Xk;j j yi ¼ xi if xi ¼ ‘k;ji or u
k;j
i

n o
:

The active-set method is divided into two stages. In the first stage, a projected

gradient search is used to select a face of Xk;j that will act as a prediction of the

optimal active set of (9). In the second stage, a reduced quadratic model q̂ is formed

involving only the free variables from the selected face, that is, the components of p

that are not at their bounds. This model may be written

q̂ðvÞ :¼ qðpþ ZxvÞ;

where Zx is a prolongation operator consisting of columns of the identity that maps

Fx to Rn.

This reduced quadratic is then approximately minimized unconstrained using the

conjugate gradient method to yield a search direction d ¼ Zxv. If a direction of

negative curvature is detected during the conjugate gradient iterations, we follow

this direction to the boundary of Xk;j. A projected line search is then performed

along d to ensure sufficient decrease, and satisfaction of the bound and trust-region

constraints. Both the projected gradient search and the conjugate gradient algorithm

are designed to terminate early and promote fast progress. We employ the same

stopping conditions as Moré and Toraldo (1991).
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The binding set at x is defined by

BðxÞ :¼ fi j ðxi ¼ ‘k;ji and oiqðxÞ� 0Þ; or ðxi ¼ u
k;j
i and oiqðxÞ� 0Þg:

If the binding set at the iterate resulting from the projected search along the con-

jugate gradient direction coincides with the active set identified in the first stage, the

conjugate gradient iterations are resumed to enforce further descent. Algorithm 3

summarizes the main steps involved in this active-set method. We refer the reader to

Moré and Toraldo (1991) for more details on projected searches.

In practice, several improvements related to the management of the trust region

can increase the efficiency of Algorithm 2. Two such improvements turned out to be

effective in our implementation. The first is a non-monotone descent strategy (Toint

1997). As described, Algorithm 2 enforces a monotone descent in Uð�; kk; qkÞ. In a

non-monotone trust-region algorithm, a trial point may be accepted even if it results

in an increase in U. However, a sufficient decrease is required after a prescribed

number of iterations, which is 10 in our implementation.

The second improvement is the simplified version of the backtracking strategy of

Nocedal and Yuan (1998) described by Conn et al. (2000). If pk;j is rejected at Step

4 of Algorithm 2, we perform an Armijo line search along pk;j instead of

recomputing a new trust-region step. We impose a maximum of five backtracking

iterations. If the line search is unsuccessful, xk;j remains the current iterate, the trust-

region radius is reduced, and a new trust-region step is computed.

The second option to solve (4) is to use an existing method for bound-constrained

problems, and our method of choice for this task is TRON (Lin and Moré 1998).
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TRON is an active-set method similar in spirit to the method of Moré and Toraldo

(1991) that iteratively determines a current working set by way of a projected

gradient method, and explores faces of the feasible set using a Newton trust-region

method. In its default implementation, TRON has the significant disadvantage in

that it requires the explicit Hessian in order to compute an incomplete Cholesky

preconditioner to speed up the conjugate gradient iterations. We modified TRON so

that only Hessian-vector products are required. This modification also allows us to

use quasi-Newton approximations in place of the true Hessian. With this

modification, the incomplete Cholesky factorization is made impossible, since we

have no access to the Hessian. Matrix-free preconditioners, such as those of De

Simone and di Serafino (2014) could be applied, but our current implementation

uses no preconditioner in the conjugate gradient iterations.

2.2 Implementation

We implement the AUGLAG solver (Algorithms 1–3) in the Python language as

part of the NLPy development environment for linear and nonlinear optimization

(Orban 2014). Optimization problems are only accessed to evaluate the objective

and its gradient, evaluate the constraints, and to compute operator-vector products

with the Hessian of Lðx; kÞ and the constraint Jacobian. NLPy is open source and

available at https://github.com/dpo/nlpy.

First derivatives must be provided. Second derivatives may be provided if they

are available. However, in some applications, such as that described in Sect. 3, the

Hessian of the augmented Lagrangian cannot be computed even in the form of

Hessian-vector products, and we must be content with quasi-Newton approxima-

tions. Following the notation of Martı́nez (1988), the Broyden class of secant

updates can be written as

Sk;jþ1 ¼ Sk;j þ D2ðs; y; Sk;j; vÞ; ð10Þ

where Sk;j and Sk;jþ1 are the current and updated approximations, respectively,

D2ðs; y; S; vÞ ¼
ðy� SsÞvT þ vðy� SsÞT

vTs
� ðy� SsÞTs

ðvTsÞ2
vvT ; ð11Þ

for some choice of v 2 Rn, called the scale of the update, and s :¼ xk;jþ1 � xk;j. The

vector y is chosen so that the update Sk;jþ1 satisfies a secant equation Sk;jþ1s ¼ y. In

the BFGS and SR1 updates, v is defined by v ¼ yþ ðyTs=sTSsÞ
1
2Ss and v ¼ y� Ss,

respectively.

For conciseness, in the following, we denote rfk;j :¼ rf ðxk;jÞ, Jk;j :¼ Jðxk;jÞ, and

ck;j :¼ cðxk;jÞ. If u : Rn ! Rn is a smooth function such that Sk;jþ1 should

approximate ruðxk;jþ1Þ, then the choice y :¼ uðxk;jþ1Þ � uðxk;jÞ is appropriate.

The first possibility is to ask Sk;jþ1 to approximate rxxUðxk;jþ1; kk; qkÞ, and in that

case, we should select
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y :¼ rxUðxk;jþ1; kk; qkÞ � rxUðxk;j; kk; qkÞ
¼ rfk;jþ1 �rfk;j þ JTk;jþ1ðk

k þ qkck;jþ1Þ � JTk;jðk
k þ qkck;jÞ:

However, approximating (3) as a monolithic Hessian without exploiting its structure

leads to poor numerical behavior. Because we assume that exact first derivatives are

available, products with J(x) and JðxÞT may be evaluated, and it remains to

approximate the Hessian of (1), as suggested by Dennis Jr. and Walker (1981) in the

context of nonlinear least-squares problems using the DFP secant method. Martı́nez

(1988) generalizes this DFP Hessian approximation to the Broyden class of secant

methods, in particular to BFGS and SR1. In view of (3), the structured quasi-

Newton update takes the form

Bk;jþ1 � rxxUðxk;jþ1; kk; qkÞ ¼ rxxLðxk;jþ1; kk þ qkck;jþ1Þ þ qkJTk;jþ1Jk;jþ1:

We therefore set Bk;jþ1 :¼ Sk;jþ1 þ qkJTk;jþ1Jk;jþ1 and we seek an update Sk;jþ1 �
rxxLðxk;jþ1; k]k;jþ1Þ that satisfies a secant equation, where k]k;jþ1 :¼ kk þ qkck;jþ1.

The relevant function u is now uðxÞ :¼ rxLðx; k]k;jþ1Þ, and the appropriate secant

equation is

Sk;jþ1s ¼ rxLðxk;jþ1; k]k;jþ1Þ � rxLðxk;j; k]k;jþ1Þ

¼ rfk;jþ1 �rfk;j þ Jk;jþ1 � Jk;j
� �Tðkk þ qkck;jþ1Þ:

ð12Þ

The updated Sk;jþ1 is then defined as in (10).

In practice, AUGLAG accepts problems with a mixture of general equality and

inequality constraints and transforms the latter into non-negativity constraints, i.e.,

cEðxÞ ¼ 0 and cI ðxÞ� 0. We subsequently add slack variables to obtain constraints

of the form

cEðxÞ ¼ 0; cI ðxÞ � t ¼ 0; t� 0; ‘� x� u:

The augmented Lagrangian (2) becomes

Uðx; t; k; qÞ :¼ f ðxÞ þ kT
cEðxÞ

cI ðxÞ � t

� �
þ 1

2
q

cEðxÞ
cI ðxÞ � t

� �����
����

2

2

:

The latter augmented Lagrangian is iteratively minimized subject to the bounds

t� 0, ‘� x� u.

In the presence of inequalities, Uðx; �; k; qÞ is a convex quadratic function of t.

Every time Algorithm 2 identifies a new inner iterate ðxk;j; tk;jÞ, we may further

minimize U in t subject to t� 0. This yields the magical step (Conn et al. 1999,

2000)

ti :¼ max 0;
ki
q
þ ciðxk;jÞ

� �
; i 2 I :

Finally, our solver may perform an automatic scaling of the problem. This proce-

dure closely follows the one provided in IPOPT (Wächter and Biegler 2006), which
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is a scalar rescaling of the objective and constraint functions that ensures that the

infinity norm of the gradient at the starting point after projection onto the bounds is

less or equal to a given threshold value (100 in our implementation).

2.3 Benchmarks

The numerical results were obtained on a 2.4 GHz MacBook Pro with 4 GB of

memory running Mac OS X 10.7. We report our results using the performance

profiles of Dolan and Moré (2002).

We first present a comparison of our inner solver, SBMIN, versus the bound-

constrained optimization code TRON (Lin and Moré 1998) on all the bound-

constrained problems from the COPS 3.0 collection (Dolan et al. 2004) and from

the CUTEr collection (Gould et al. 2003). This results in 255 problems, all of which

were used in their default dimension. Each problem is given a limit of 3000

iterations and 1 hour of CPU time. The automatic problem scaling procedure

available in NLPy is disabled for the AUGLAG and SBMIN results because none of

the codes we compared to perform scaling of the problem.

By default TRON terminates the iterations as soon as

kxk � PXðxk �rf ðxkÞÞk2 � 10�7 kx0 � PXðx0 �rf ðx0ÞÞk2:

In order to make a fair comparison between the two solvers, we adjusted TRON ’s

stopping criterion such that SBMIN and TRON stop as soon as the relative infinity

norm of the projected gradient is below 10�7. For both algorithms, the initial trust

region radius is set to

D0 ¼ 1

10
kx0 � PXðx0 �rf ðx0ÞÞk1:

All other parameters for TRON are set to their default values. For SBMIN, we set

�1 ¼ 10�4, �2 ¼ 0:9, c1 ¼ 0:25 and c2 ¼ 2:5. In the bound-constrained quadratic

program solver BQP, f is set to 10�3 and when tightened, to 10�5, and j ¼ 0:1.

These values are chosen because they result in good overall performance compared

to other values we have explored.

When limited-memory quasi-Newton approximations of the Hessian are

employed, all optimization codes are run with the same number of pairs in the

history: 3 for LBFGS, and 5 for LSR1.

Figure 1 shows performance profiles in terms of number of iterations and of

Hessian-vector products. The results indicate that TRON is slightly more robust

than SBMIN, and requires substantially fewer iterations and Hessian-vector

products to converge. In this regard, it appears that enforcing the bound constraints

at the level of the nonlinear problem as in TRON, instead of at the quadratic trust-

region subproblem level, as in SBMIN, pays off in terms of efficiency.

We now compare the two variants of our matrix-free augmented-Lagrangian

implementation AUGLAG, one using SBMIN as inner solver (AUGLAG-SBMIN)

and the other one using TRON (AUGLAG-TRON), to LANCELOT A (Conn et al.

1992).
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Fig. 1 Comparison between SBMIN and TRON and their BFGS versions in terms of number of
iterations and Hessian-vector products. Note that TRON-LBFGS and SBMIN-LBFGS don’t appear in the
upper plot since they don’t use any Hessian vector-products
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Because of the matrix-free nature of our algorithm and in order to do fair

comparisons, we disable partial group separability in LANCELOT, use a box trust

region, and disable the preconditioner in the conjugate gradient method. Further-

more, we set the Cauchy point calculation option to ‘‘approximate’’. All other

options are set to their default values. Finally, for both solvers, the relative stopping

tolerances, on the infinity norm of the projected gradient and constraint violation,

are set to 10�7. The initial trust region radius is set to

D0 ¼ 1

10
kðx; tÞ0 � PXððx; tÞ0 �rUððx; tÞ0; k0; q0ÞÞk1;

where k0 is a least-square estimate of the Lagrange multipliers.

Finally, we compare the algorithms on all problems from the COPS 3.0
collection (Dolan et al. 2004) and from the CUTEr collection Gould et al. (2003)

which possess at least one equality constraint or at least one bound constraint. This

amounts to 675 problems. Again, a CPU time limit of 1 hour and an iteration count

limit of 3000 is imposed. Figure 2 summarizes the performance of LANCELOT A

and AUGLAG. The figure only reports the number of iterations because the

LANCELOT A interface doesn’t provide the number of Hessian-vector products

required. The results indicate that AUGLAG-TRON is more robust than the two

other codes when using either exact Hessian or quasi-Newton approximations. Both

versions of AUGLAG perform slightly better than LANCELOT A when using exact

derivatives. With LSR1 update, LANCELOT A, AUGLAG-SBMIN, and

AUGLAG-TRON perform well.

3 Structural design optimization application

We now turn to a particular area of application for our matrix-free algorithm:

aircraft structural design. Reducing the structural weight improves the fuel

efficiency of the aircraft and therefore influences both the operating cost to the

airline and the environmental impact of air transportation. Our goal is to minimize

the mass of the structure subject to failure constraints. While many structural

optimization problems are formulated with compliance (strain energy) constraints,

the resulting solutions often show stress concentrations that would result in failure if

the real structure were designed in that way. Therefore, optimization subject to

failure constraints is more practical from an engineering design perspective. We

start by describing the optimization problem formulation and how a matrix-free

optimizer is helpful in this case before discussing the structural design optimization

results.

3.1 Problem formulation and derivative evaluations

Structural analysis involves the solution of static equilibrium equations in the form

of a discretized PDE so this problem may be interpreted as a special case of PDE-

constrained optimization. However, the stress constraints place further restrictions

on the optimal set of state variables, and eliminating the discretized PDEs does not
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eliminate all of the constraints involving state variables. The full-space (Biros and

Ghattas 2005) or simultaneous analysis and design (SAND) problem (Haftka and

Kamat 1989; Martins and Lambe 2013) is stated as

Fig. 2 Comparison between AUGLAG-SBMIN, AUGLAG-TRON and LANCELOT A in terms of
number of iterations with exact second derivatives (top) and with quasi-Newton approximations (bottom)
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minimize
x;y

Fðx; yÞ subject to Cðx; yÞ� 0; Rðx; yÞ ¼ 0; ‘� x� u; ðSANDÞ

where x 2 RN are the design variables, y 2 RM are the state variables, C :

RN � RM ! Rm are design constraints, and R : RN � RM ! RM are the discretized

PDEs. Because we often use specialized software to solve the governing PDEs, and

because N is usually much smaller than M, an alternative is to solve the reduced-

space (Biros and Ghattas 2005) or nested analysis and design (NAND) problem

(Haftka and Kamat 1989)

minimize
x

f ðxÞ subject to cðxÞ� 0; ‘� x� u; ðNANDÞ

where y(x) is defined implicitly via Rðx; yðxÞÞ ¼ 0, f ðxÞ :¼ Fðx; yðxÞÞ, and

cðxÞ :¼ Cðx; yðxÞÞ. Despite its smaller size, even (NAND) can have thousands of

variables and constraints. Furthermore, the governing equations Rðx; yðxÞÞ ¼ 0 must

be re-solved for each new point computed by the optimizer, making function and

gradient evaluation expensive. The chain rule and the implicit function theorem yield

rcðxÞ ¼ rxCðx; yðxÞÞ þ rxyðxÞryCðx; yðxÞÞ ð13Þ

¼ rxCðx; yðxÞÞ � rxRðx; yðxÞÞryRðx; yðxÞÞ�1ryCðx; yðxÞÞ ð14Þ

where rxCðx; yðxÞÞ denotes the transpose Jacobian of C with respect to x, i.e., the

matrix whose columns are the gradients with respect to x of the component func-

tions of C. We use a similar notation for the derivatives of R, and use ‘‘�1 ’’ for the

matrix inverse. Each matrix-vector product with rcðxÞ and rcðxÞT involves solving

a linear system with coefficient matrix ryRðx; yðxÞÞ and ryRðx; yðxÞÞT , respec-

tively. Because both operations involve the solution of a large system of linear

equations, the computational cost of a single matrix-vector product is similar to the

cost of evaluating all the objective and constraint functions. Therefore, the success

of the matrix-free approach for solving problem (NAND) hinges on keeping the sum

of function evaluations and matrix-vector products small.

3.2 Approximating Jacobian information

As mentioned in Sect. 2.2, exploiting the structure of the Hessian of the augmented

Lagrangian leads to better performance on a wide range of problems. In particular,

computing exact Jacobian-vector products within the trust-region solver and using a

structured Hessian approximation to estimate the remaining terms is an effective

strategy. However, this strategy can be too expensive when applied to structural

design problems. Every time a Hessian-vector product is computed in the trust-

region solver, two products with the Jacobian (one forward and one transpose) are

required. We have observed many instances in which the number of Jacobian-vector

products needed to solve a given trust-region subproblem exceeds the number of

constraints of the problem. Under these circumstances, if sufficient memory were

available, it would be more efficient to form and store the entire Jacobian for

computing these products than to compute the products from scratch. Therefore, we
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need to further refine the basic algorithm to reduce the number of expensive matrix-

vector products.

We propose two different approaches for reducing the number of Jacobian-vector

products in our matrix-free algorithm. Both approaches rely on using the Jacobian-

vector products to create more accurate trust-region subproblem models using

additional quasi-Newton matrix approximations. By using approximate Jacobian

information in the trust-region subproblem, we prevent the number of Jacobian-vector

products in any given inner iteration from becoming too large and keep the cost of

solving the subproblem low. Note that exact Jacobian-vector products are still used to

compute gradients of the Lagrangian and augmented Lagrangian function. Approx-

imate Jacobian information is only used in the trust-region subproblem.

The first approach estimates the Hessian of the quadratic penalty term of the

augmented Lagrangian function separately from the Hessian of the Lagrangian. We

refer to this approach as the ‘‘split’’ quasi-Newton method. Briefly setting aside the

structured quasi-Newton method of Sect. 2.2, we define BL � r2
xxL and

BI � r2
xx

1
2
qcðxÞTcðxÞ. The gradient of the infeasibility function is simply

qJðxÞTcðxÞ so constructing the Hessian approximation is straightforward by

splitting the gradient of the augmented Lagrangian function into the gradient of

the Lagrangian and the gradient of the infeasibility function. We obtained the best

results using the limited-memory SR1 approximation for BL and the limited-

memory BFGS for BI . The choice of a combination of quasi-Newton methods is

informed by the fact that r2
xx

1
2
qcðxÞTcðxÞ � JðxÞTJðxÞ, a positive semidefinite

matrix, near the optimal solution, while r2
xxL is not guaranteed to be definite near

the optimal solution. To further improve the approximation provided by BI , we use

a starting diagonal that is an approximation of the true diagonal of JðxÞTJðxÞ. The

approximation is computed in the same way as the preconditioner proposed by De

Simone and di Serafino (2014). Because both quasi-Newton approximations are

limited-memory approximations, this approach is very memory-efficient for large

optimization problems.

The second approach estimates the Jacobian matrix directly. In other words, we

replace the true Jacobian-vector products for the algorithm outlined in Sect. 2.2 with

the products of the same vectors with an approximate Jacobian matrix. In general,

the Jacobian is not a square matrix, so alternative quasi-Newton approximations

need to be used. Two such approximations are the two-sided rank-one (TR1)

method, proposed by Griewank and Walther (2002), and the adjoint Broyden

method, proposed by Schlenkrich et al. (2010). Because the TR1 method requires

more frequent updates to the Lagrange multipliers than we have available in our

algorithm, we have selected the adjoint Broyden method for implementation.

Unfortunately, no convergence theory exists for limited-memory quasi-Newton

Jacobian estimates and it is not obvious how to initiate a robust limited-memory

approximation. Therefore, we have chosen to implement a full-memory version of

this approximation.

The basic adjoint Broyden update is given by the formula
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Ak;jþ1 ¼ Ak;j þ rk;jrk;j;T

rk;j;Trk;j
Jðxk;jþ1Þ � Ak;j
� �

ð15Þ

where A is the approximate Jacobian and r is an ‘‘adjoint search direction.’’ Note

that this update requires at least one (adjoint) Jacobian-vector product. Unlike

traditional quasi-Newton methods, the choice of the search direction is not obvious.

Schlenkrich et al. (2010) suggest several alternatives, from which we choose option

(A), given by

rk;j ¼ ðJðxk;jþ1Þ � Ak;jÞsk;j ð16Þ

where sk;j ¼ xk;jþ1 � xk;j, as the method to use with our algorithm. This particular

choice of r yields an update that is similar to the original TR1 update. Compared to

the split quasi-Newton strategy, this strategy requires an additional Jacobian-vector

product to compute rk;j. Despite the increase in required memory and higher cost of

the update, this method has a distinct advantage over the split quasi-Newton

approach in that the sparsity structure of any slack variables in the Hessian is

preserved. That is, the block of r2
xx

1
2
qcðxÞTcðxÞ associated with the slack variables is

known exactly (an identity matrix) so it may be treated exactly in the Hessian-vector

product. This approach leads to a much more accurate Hessian approximation than

the split quasi-Newton method if the problem contains many slack variables.

We close this section with a few implementation details of the adjoint Broyden

method. Similar to other quasi-Newton schemes, we reject the update if the

denominator of the update term in (15) is sufficiently small, i.e., if rTr� 10�20. Our

initial approximation A0;0 is set to be the exact Jacobian J0;0. While this strategy has

a very high up-front cost, we found that it paid off on our test problem in terms of

many fewer inner iterations required by the optimization. We recognize that our

strategy may not be sound for all problems, especially those in which the constraints

are highly nonlinear. However, we expect the approach to be successful on many

problems given the established robustness of quasi-Newton methods.

3.3 Optimization results

We use the following test problem to compare our matrix-free algorithm against an

optimizer that requires the full Jacobian. The problem is to minimize the mass of a

square, metallic plate that is clamped on all sides and subject to a uniform pressure

load, as shown in Fig. 3. The structural analysis of the plate is performed using the

finite-element program TACS (Kennedy and Martins 2014) with third-order shell

elements. The optimization problem is constrained so that the maximum von Mises

stress on any of the plate elements does not exceed the material yield stress. The

design variables of the problem are the thicknesses of each plate element. Minimum

and maximum thicknesses are imposed on each element. To simplify the problem,

we analyze only one quarter of the plate and apply symmetry boundary conditions

on the unclamped edges. Since each structural element is associated with one design

variable (its thickness) and one constraint (the stress), the number of structural
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elements, design variables, and constraints is the same for a given problem. Except

for the design variable bounds, all constraints are nonlinear.

While this test problem does not represent a complete aircraft structure, it shares

two challenging features of such structures. First, the structure is a shell structure

subject to a distributed load. This type of structure requires higher-order two- or

three-dimensional finite elements to be used for accurate analysis of the structural

behavior. The resulting analysis is therefore much more expensive than analyses

using one-dimensional elements due to the larger number of degrees of freedom.

Second, and more importantly, the structure is not statically determinate and has

many degrees of indeterminacy. This means that the full finite-element analysis

must be completed in order to compute stresses and strains; no shortcuts can be

taken in evaluating the failure constraints. In practice, this finite-element analysis

can be ill-conditioned so the NAND problem formulation (NAND) is used to hide

the ill-conditioning from the optimizer.

Our benchmark optimizer for this test is the general-purpose optimizer SNOPT
(Gill et al. 2002) which is accessed in Python through the pyOpt interface (Perez

et al. 2012). SNOPT is an active-set SQP optimizer capable of solving nonlinear

and nonconvex problems. While the full version of SNOPT has no limits on the

number of variables or constraints in the problem, it is especially suited to problems

with a large number of sparse constraints and few degrees of freedom. Like our

optimizer, SNOPT does not require second derivatives because it approximates

them using a limited-memory quasi-Newton method. Unlike our optimizer, SNOPT
requires first derivative information from the objective and all constraint functions.

Our optimizer just requires the gradient of the objective function and forward and

transpose products with the constraint Jacobian.

Due to the design of the TACS software, we are able to accommodate both

traditional optimizers like SNOPT and matrix-free optimizers. For our expression

for the Jacobian of the reduced-space problem in (14), TACS provides modules for

computing the action of rxRðx; yðxÞÞ and rxRðx; yðxÞÞT on vectors of appropriate

length. The different partial derivatives of the constraints themselves are computed

with respect to individual constraints, effectively providing column-wise evaluation

X

Y

Z

0.40 MPa

Ly = 320 mm

Lx = 320 mm

tinit = 5 mm

Fig. 3 Geometry and load condition of plate mass minimization problem
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of rxCðx; yðxÞÞ and ryCðx; yðxÞÞ. The term ryRðx; yðxÞÞ�1
is computed implicitly

by a specialized, sparse, parallel, direct factorization method. Every time we

multiply this inverse or its transpose by a vector, we solve the appropriate upper-

and lower-triangular systems by substitution. When computing the full Jacobian for

SNOPT, TACS exploits parallel structure in the adjoint method to compute

multiple adjoint vectors at the same time. This feature is not needed by the matrix-

free optimizer since only individual matrix-vector products are ever called for.

However, this added awareness of parallel computing does tend to skew the run-

time results in favour of SNOPT.

We use the following settings in our matrix-free optimizer. The LSR1 Hessian

approximation with five pairs of vectors is used to estimate the Hessian of the

Lagrangian. The adjoint Broyden approximation is used to estimate the constraint

Jacobian, where the initial Jacobian is computed exactly. In the split quasi-Newton

strategy, the LBFGS approximation with five pairs of vectors is used to estimate the

feasibility Hessian. Both magical steps and Nocedal–Yuan backtracking are turned

on in the nonlinear, bound-constrained solver. In SBMIN, a limit of 50 iterations is

imposed to solve the quadratic model problem. (On this specific problem, we found

that SBMIN was superior to TRON.) Finally, parallel computations are used in the

adjoint Broyden approximation to allow the approximate Jacobian to be stored in a

distributed fashion.

For this optimization problem, we also introduced an update to the Lagrange

multipliers, modified from the update specified by Algorithm 1, that we found to be

effective at improving algorithm performance. The multiplier update now takes the

form

kkþ1 ¼ kk þ akqkcðxkþ1Þ ð17Þ

where 0� ak � 1 is a chosen damping factor. Note that ak ¼ 1 corresponds to the

traditional update specified in Algorithm 1. In this damped update, ak is computed

as the solution to the convex minimization problem

minimize
ak

1

2
jjrf ðxkþ1Þ þ Jðxkþ1ÞTkkþ1jj22 subject to 0� ak � 1: ð18Þ

The solution to Problem (18) is easily determined to be

ak ¼ median 0;
�qkcðxkþ1ÞTJðxkþ1Þðrf ðxkþ1Þ þ Jðxkþ1ÞTkkÞ

jjqkJðxkþ1ÞTcðxkþ1Þjj22
; 1

 !
: ð19Þ

If Jðxkþ1ÞTcðxkþ1Þ ¼ 0 then ak is also set to zero. In practice, this modified update

improves the multiplier estimates in the first few outer iterations. We also observe

that ak is chosen close to 1 after a few updates, suggesting that the traditional

multiplier update is optimal when x and k are near a solution.

Example design solutions to the benchmark problem are shown in Fig. 4 for three

different mesh sizes, and the corresponding stress distributions are shown in Fig. 5.

In these figures, the x- and y-axes of the plots correspond to the clamped edges of
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the plate. The built-up regions of the plate along the clamped edges and in the center

of the plate are clearly visible. For every case in which both solvers found an

optimal solution, both SNOPT and AUGLAG converged to similar final designs.

The feasibility and optimality tolerances of both solvers were set to 10�5, and both

solvers achieved these tolerances at the final designs.

Figure 6 compares the number of finite-element linear systems—those involving

ryRðx; yðxÞÞ—that are solved using each algorithm for a range of problem sizes.

The finest mesh solved using either optimizer was 70 � 70 elements. The

corresponding optimization problem had 4900 thickness variables and 4900 failure

constraints. We use the number of finite-element linear system solutions as the

primary metric for comparing the optimizers because solving the linear system

associated with the finite-element method is the most costly operation in the

optimization process. This operation occurs once to evaluate the failure constraints

and once for every Jacobian-vector product. To form the entire Jacobian for

SNOPT, a linear system is solved to obtain one column of the matrix so the matrix

size determines the total work. Figure 6 demonstrates that, by not forming the

Jacobian at each iteration, both matrix-free algorithms successfully reduce the

number of expensive linear solve operations as the problem size increases. In fact,

for problems with more than 1000 variables and constraints, the reduction produced

by the approximate Jacobian approach is nearly one order of magnitude over

SNOPT.

Fig. 4 Final thickness distributions for the 400-, 1600-, and 3600-element plate problems. These
solutions were all obtained by the matrix-free optimizer. The solutions from SNOPT for the 400- and
1600-element problems are nearly identical

Fig. 5 Stress distributions as a fraction of the local yield stress for the 400-, 1600-, and 3600-element
plate problems
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Figure 6 also shows that the matrix-free optimizer was able to solve larger

optimization problems than SNOPT. SNOPT was unable to solve any problems for

meshes larger than 50 � 50 elements due to a lack of memory. Each instance of the

benchmark problem was solved in a distributed-memory computing environment.

Because SNOPT was not designed to exploit this environment, it could only access

the memory available to a single computing node, limiting the size of problem it

could solve. We emphasize, however, that this is an artifact of the implementation

of the SNOPT algorithm and not a fundamental limitation of the algorithm itself.

There is no reason why an active-set SQP algorithm could not be developed to

exploit the distributed-memory computing environment used to solve this problem.

Nevertheless, both matrix-free strategies lend themselves to more memory-

efficient implementations. The reason for the high memory usage of SNOPT seems

to be the symbolic factorization of the Jacobian as part of the active-set SQP

algorithm. In the approximate Jacobian implementation of AUGLAG, we need to

store the matrix, but we do not need to factorize it. While Message Passing Interface

(MPI) standard commands are used, via the mpi4py library, to distribute the stored

matrix across multiple nodes and compute matrix-vector products in parallel, a

sequential implementation of the algorithm should be capable of solving the

problem sizes shown here, though with a longer run time. In the split quasi-Newton

implementation of AUGLAG, only limited-memory matrix approximations are

used, and no special provisions are made for parallel computing. Therefore, if the

optimizer were restricted to run on a single processor, we would expect the run time

of that implementation to be identical.

Figure 7 shows a wall-time comparison for solving the optimization problems

using 64 processors. Comparing Figs. 6 and 7, the large reduction in linear system

solve operations does not translate into reduced run time. In fact, SNOPT is still the

fastest optimizer for the problem sizes that it is able to solve. We attribute this

Fig. 6 Number of finite-element linear solve operations required to solve the plate optimization problem
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behavior to two causes. First, as mentioned above, the TACS solver is able to

parallelize the (implicit) multiplication of ryRðx; yðxÞÞ�1
by multiple right hand

sides, reducing the time needed to form a large Jacobian. In other words, TACS is

able to solve multiple adjoint systems simultaneously. This is a special feature of the

TACS solver. Second, SNOPT requires many fewer iterations than our augmented

Lagrangian solver to find the solution in each case. Fewer iterations means fewer

points for which the partial derivative matrices must be recomputed. While this cost

is small in comparison to the cost of a linear solve operation, the increase in the

number of iterations outweighs the reduction in linear solves for this choice of

algorithm.

One implementation decision that does not exert too much influence on the run

time is the choice of implementation language of the optimizer. Figure 8 shows the

fraction of the run time spent computing the next point in the optimizer for each

case. When using SNOPT, only a small fraction of the run time is spent in the

optimizer unless the problem is large. This increase in run time is probably due to

the additional work needed to factorize the Jacobian in the active-set SQP

algorithm. For the approximate Jacobian version of AUGLAG, the optimizer

appears to take up the majority of the run time of the optimization process.

However, nearly all of this time is spent forming matrix-vector products with the

approximate Jacobian. Python makes use of both distributed-memory parallel

processing and compiled-language libraries to complete this operation, so it is

unlikely that moving to a compiled-language implementation would result in a large

reduction in run time. For the split quasi-Newton version of AUGLAG, the fraction

of the run time spent in the optimizer decreases with increasing problem size.

Because so little time is spent within the optimizer itself using this approach,

replacing the Python implementation of the algorithm with a compiled-language

implementation would not result in large reductions in wall time.

Fig. 7 Run time to solve the plate optimization problem using 64 processors
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These results effectively show the intrinsic trade-off of matrix-free optimization

in engineering design applications. As demonstrated in Fig. 6, if the engineering

design problem has many constraints, using a matrix-free optimizer can lead to a

massive reduction in the computational effort spent calculating gradient informa-

tion. However, this reduction is offset by the overhead incurred by recomputing the

design constraints and the relevant partial derivative matrices at more points in the

design space. We suspect that changing the basic optimization algorithm from an

augmented Lagrangian to an SQP or interior-point method would result in a matrix-

free optimizer that is more competitive in terms of run time.

This example problem also raised the general issue of how to better exploit

parallel computing within the optimization process. Because this particular problem

is relatively small and dense, distributing the vectors used by the optimizer over

multiple processors may not improve algorithm performance at all. The cost of

communicating results between processors would outweigh the performance

benefits of parallelized linear algebra. (The main exception to this statement is

the matrix-vector products with the full-memory approximate Jacobian.) Instead,

parallel processing is most beneficial in performing the structural analysis and

computing functions and their gradients, including matrix-vector products. The only

parallel capability in the TACS code that was not exploited by our matrix-free

optimizer was the ability to form a group of gradients, i.e., a Jacobian matrix, using

parallel matrix multiplication. The equivalent operation in a matrix-free optimizer

would be to compute several matrix-vector products at the same time for a given

design point. The optimizer and quasi-Newton approximations would need to be

Fig. 8 Percentage of wall time spent in optimizer for each instance of the plate problem
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carefully chosen and structured to allow for this setup. Because the main bottleneck

in parallel processing is often communication between processors, identifying

operations that require a high computational effort but little communication

between processors is critical to exploiting the parallel processing environment.

4 Conclusion and future work

This paper details the implementation of a matrix-free optimizer based on the

augmented Lagrangian algorithm. Benchmarking results indicate that this optimizer

is competitive with LANCELOT on standard test sets. We then extend the algorithm

to store approximate Jacobian information to reduce the required number of matrix-

vector products. The extended algorithm is then applied to a test problem motivated

by aircraft structural design. Our results indicate that the matrix-free optimizer

successfully reduces the computational work of the structural analysis, represented

by the number of linear system solutions, when the structural design problem has a

large number of design variables and a large number of constraints. The reduction

can be as much as an order of magnitude when the number of variables and the

number of constraints are both large.

Our study also highlighted key areas for improvement in terms of the capability

of matrix-free optimizers. Namely, providing a solver for quadratic problems with

both equality and inequality constraints, or equality and bound constraints, is the

key to developing a matrix-free SQP method. In addition, because the problems for

which matrix-free optimizers are most useful rely heavily on parallel computing, the

matrix-free optimizer itself should exhibit strong, scalable performance in a parallel

computing environment.

In the near future, we hope to extend our engineering application to the design of

aircraft wings, including coupled aerodynamic and structural optimization (Kenway

et al. 2014; Kenway and Martins 2014). The case of coupled aerodynamic and

structural optimization is interesting because the features of the TACS solver that

make it so fast on structural optimization problems (specialized parallel matrix

factorization and parallel solution of multiple adjoint linear systems) would be

nullified in the multidisciplinary optimization problem. In that case, we expect the

matrix-free optimizer to become a particularly attractive option.
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