
MISO: mixed-integer surrogate optimization
framework

Juliane Müller1

Received: 12 August 2014 / Revised: 5 January 2015 / Accepted: 7 May 2015 /

Published online: 20 June 2015

� Springer Science+Business Media New York 2015

Abstract We introduce MISO, the mixed-integer surrogate optimization frame-

work. MISO aims at solving computationally expensive black-box optimization

problems with mixed-integer variables. This type of optimization problem is

encountered in many applications for which time consuming simulation codes must

be run in order to obtain an objective function value. Examples include optimal

reliability design and structural optimization. A single objective function evaluation

may take from several minutes to hours or even days. Thus, only very few objective

function evaluations are allowable during the optimization. The development of

algorithms for this type of optimization problems has, however, rarely been

addressed in the literature. Because the objective function is black-box, derivatives

are not available and numerically approximating the derivatives requires a pro-

hibitively large number of function evaluations. Therefore, we use computationally

cheap surrogate models to approximate the expensive objective function and to

decide at which points in the variable domain the expensive objective function

should be evaluated. We develop a general surrogate model framework and show

how sampling strategies of well-known surrogate model algorithms for continuous

optimization can be modified for mixed-integer variables. We introduce two new

algorithms that combine different sampling strategies and local search to obtain

high-accuracy solutions. We compare MISO in numerical experiments to a genetic

algorithm, NOMAD version 3.6.2, and SO-MI. The results show that MISO is in

general more efficient than NOMAD and the genetic algorithm with respect to

Electronic supplementary material The online version of this article (doi:10.1007/s11081-015-9281-

2) contains supplementary material, which is available to authorized users.

& Juliane Müller

juliane.mueller2901@gmail.com

1 Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory,

Berkeley, CA 94720, USA

123

Optim Eng (2016) 17:177–203

DOI 10.1007/s11081-015-9281-2

http://dx.doi.org/10.1007/s11081-015-9281-2
http://dx.doi.org/10.1007/s11081-015-9281-2
http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-015-9281-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-015-9281-2&domain=pdf

finding improved solutions within a limited budget of allowable evaluations. The

performance of MISO depends on the chosen sampling strategy. The MISO algo-

rithm that combines a coordinate perturbation search with a target value strategy

and a local search performs best among all algorithms.

Keywords Mixed-integer optimization � Surrogate models � Black-box
optimization � Radial basis functions � Derivative-free � Global optimization

Abbreviations
DYCORS DYnamic COordinate search using response surface models

(Regis and Shoemaker 2013)

EGO Efficient global optimization (Jones et al. 1998)

MISO Mixed-integer surrogate optimization

MISO-CP MISO-coordinate perturbation

MISO-EI MISO-expected improvement

MISO-RS MISO-random sampling

MISO-SM MISO-surface minimum

MISO-TV MISO-target value

MISO-CPTV MISO with combination of CP and TV

MISO-CPTV-local MISO with combination of CP, TV, and a local search

MISO-CPTV-l(f) MISO-CPTV-local that uses fmincon as local optimizer

MISO-CPTV-l(o) MISO-CPTV-local that uses ORBIT (Wild et al. 2007) as

local optimizer

NOMAD Nonlinear optimization by mesh-adaptive direct search (Le

Digabel 2011), version 3.6.2

RBF Radial basis function

SO-MI Surrogate optimization-mixed integer (Müller et al. 2013b)

SRBF Stochastic radial basis function algorithm (Regis and

Shoemaker 2007)

f(�) Computationally expensive objective function

d Problem dimension

d1 Number of integer variables

d2 Number of continuous variables

z Variable vector

zli, z
u
i

Lower and upper variable bounds of the ith variable

Z Set of evaluated points, Z ¼ fz1; . . .; zng
Zl Set of points evaluated during the local search (l-step)

n0 Number of points in the initial experimental design

n1 Number of function evaluations done in the local search (l-step)

n Number of already evaluated points

snð�Þ Surrogate model fit to n data points

I Indices of the integer variables

178 J. Müller

123

1 Introduction and motivation

In engineering optimization problems, evaluating the objective function often requires

a computationally expensive computer simulation that approximates the physical

behavior of the system under consideration. These simulation models are black-box,

and thus the analytical description and derivatives are not available. Automatic

differentiation is in many cases not applicable due to confidentiality restrictions of the

simulation codes. Numerical differentiation requires many computationally expen-

sive objective function evaluations and is therefore inefficient. Thus, derivative-free

methods (Conn et al. 2009) are widely used.

When optimizing computationally expensive black-box problems, the goal is to find

near optimal solutions within only few (often only few hundred) expensive objective

function evaluations in order to keep the optimization time acceptable. Surrogate models

(also knownas response surfacemodels ormetamodels) have been developed to efficiently

solve this type of optimization problems (Forrester et al. 2008; Giunta et al. 1997; Glaz

et al. 2008; Koziel and Leifsson 2013; Marsden et al. 2004; Simpson et al. 2001).

Surrogate models are computationally cheap approximations of the expensive objective

function (Booker et al. 1999). During the iterative optimization routine, the information

from the surrogate model is exploited in order to select promising sample points in the

variable domain. Hence, the computationally expensive objective function is evaluated

only at carefully selected points, and thus near optimal solutions can be found efficiently.

Surrogate model algorithms have mainly been developed for continuous

optimization problems (Gutmann 2001; Jones et al. 1998; Müller and Piché 2011;

Müller and Shoemaker 2014; Regis and Shoemaker 2007, 2013; Wild et al. 2007).

Only recently have surrogate model algorithms been devised for optimization

problems that have integer constraints for some or all variables (Davis and Ierapetritou

2009; Holmström 2008b; Müller et al. 2013a, b; Rashid and Cetinkaya 2012) and

where the integer variables may assume a large range of values rather than only binary

values (Müller et al. 2013a, b). The goal of this paper is to develop an algorithm

framework for computationally expensive black-box mixed-integer optimization

problems where the variables are not restricted to binary values. This framework

allows the choice of various surrogate models and sampling strategies and is a major

contribution to the area of algorithms for mixed-integer computationally expensive

global optimization. The MATLAB codes of our mixed-integer surrogate optimiza-

tion (MISO) framework are available from the author upon request.

We consider optimization problems of the following form:

min f ðzÞ ð1Þ

s:t:�1\zli � zi � zui\1; i ¼ 1; . . .; d ð2Þ

z 2 Z
d1 � R

d2 ; d1 þ d2 ¼ d; ð3Þ

where f(�) denotes the computationally expensive black-box objective function, and

zli and zui denote the lower and upper bounds of variable i. We assume that the lower

and upper bounds of the integer variables are integer values. d is the problem

dimension, d1 denotes the number of the integer variables, and d2 denotes the

Mixed-integer surrogate optimization framework 179

123

number of continuous variables. For real world applications where a single function

evaluation may require several hours or even days, only few hundred evaluations of

f ðzÞ are allowable, and thus algorithms that are able to find a (near) optimal solution

within a limited budget of function evaluations are needed.

In Sect. 2, we briefly describe different surrogate model types. We give a general

surrogate model optimization algorithm description in Sect. 3 and we briefly review

widely-used surrogate model algorithms for continuous optimization and the few

developments for mixed-integer problems. In Sect. 4, we describe the MISO

framework and show how the sampling strategies of existing continuous surrogate

model algorithms can be modified for mixed-integer optimization problems. We

also introduce a new memetic algorithm, i.e., a combination of local and global

search, in order to find solutions of higher accuracy.

MISO differs from our previous mixed-integer algorithm SO-MI (Müller et al.

2013b). In SO-MI, sample points were generated by perturbing the variables of the

best point found so far with constant perturbation probability. In MISO, we allow

various sampling strategies. SO-MI does not contain a local search which makes it

difficult for SO-MI to find high accuracy solutions. SO-MI can generally be

considered as part of MISO and we show in the numerical experiments that we can

improve upon the performance of SO-MI by using an additional local search.

In Sect. 5, we compare various algorithms that follow the MISO framework with

SO-MI (Müller et al. 2013b), NOMAD version 3.6.2 (Abramson et al. 2009; Le

Digabel 2011), and MATLAB’s genetic algorithm on a set of benchmark problems

and applications arising in reliability-redundancy optimization and structural design

optimization. We show that the algorithms following the MISO framework are more

efficient when the goal is to find good solutions within a limited number of function

evaluations. Sect. 6 concludes the paper.

2 Surrogate models

Various surrogate model types have been used in the literature within optimization

frameworks. Radial basis functions (RBFs) (Gutmann 2001; Müller et al. 2013b;

Powell 1992; Regis and Shoemaker 2007, 2009; Wild and Shoemaker 2013) and

kriging (Davis and Ierapetritou 2009; Forrester et al. 2008; Jones et al. 1998; Simpson

et al. 2001) are interpolating models, whereas polynomial regression models (Myers

and Montgomery 1995) and multivariate adaptive regression splines (Friedman 1991)

are non-interpolating. Moreover, there are mixture models (also known as ensemble

models) that exploit information from several different surrogate model types (Goel

et al. 2007; Müller and Piché 2011; Müller and Shoemaker 2014; Viana et al. 2009).

Although in general any type of surrogate model (ensemble) can be used within

our MISO framework, we focus here on RBFs because they have been shown most

successful in comparison to other surrogate model types (Müller and Shoemaker

2014). An RBF interpolant is defined as follows:

sðzÞ ¼
Xn

i¼1

ki/ðkz � zikÞ þ pðzÞ; ð4Þ

180 J. Müller

123

where /ð�Þ is a radial basis function (here we use the cubic function /ðrÞ ¼ r3

because Wild and Shoemaker (2013) showed that it performs better than other

types), zi; i ¼ 1; . . .; n, denotes the points at which the objective function value is

known (already sampled points), and pð�Þ denotes the polynomial tail whose order

depends on the chosen RBF type (for the cubic RBF we need at least a linear

polynomial tail pðzÞ ¼ aþ bTz). The parameters ki 2 R; i ¼ 1; . . .; n, and the

parameters a 2 R and b ¼ ½b1; . . .; bd�T 2 R
d are determined by solving the fol-

lowing linear system of equations

U P

PT 0

� �
k

c

� �
¼

F

0

� �
; ð5Þ

where Uim ¼ /ðkzi � zmkÞ, i; m ¼ 1; . . .; n, 0 is a matrix with all entries 0 of

appropriate dimension, and

P ¼

zT1 1

zT2 1

..

. ..
.

zTn 1

2
66664

3
77775
; k ¼

k1
k2

..

.

kn

2
66664

3
77775
; c ¼

b1

b2

..

.

bd

a

2

66666664

3

77777775

; F ¼

f ðz1Þ
f ðz2Þ
..
.

f ðznÞ

2
66664

3
77775
: ð6Þ

The matrix in (5) is invertible if and only if rankðPÞ ¼ d þ 1 (Powell 1992).

3 Review of surrogate model algorithms

3.1 General surrogate model algorithm

Surrogate model algorithms generally follow the same steps. First, an initial

experimental design is created and the computationally expensive objective function

is evaluated at the selected points. The objective function value predictions of the

surrogate model at unsampled points are then used to select the next evaluation point.

After the new function value has been obtained, the surrogate model is updated if the

stopping criterion has not been satisfied (for example, the budget of function evaluations

has not been exhausted) and a new point is selected for evaluation. Otherwise the

algorithm stops and returns the best solution found during the optimization.

This surrogate optimization framework has been adopted in several well-known

algorithms for continuousoptimization such asEGO(Joneset al. 1998),Gutmann’sRBF

method (Gutmann 2001), DYCORS (Regis and Shoemaker 2013), SRBF (Regis and

Shoemaker 2007), and SO-M-s (Müller and Shoemaker 2014). The major differences

between these algorithms are the type of surrogate model used to approximate the

expensive objective function and the method for selecting a new evaluation point.

Mixed-integer surrogate optimization framework 181

123

3.2 Previous surrogate model algorithms for continuous optimization

Several surrogate model algorithms have been introduced in the literature for

computationally expensive black-box optimization problems with continuous vari-

ables. The efficient global optimization algorithm (EGO) by Jones et al. (1998) uses a

kriging surrogate model. A new decision variable vector is selected based on the

solution of an auxiliary optimization problem that aims at maximizing the expected

improvement that is computed based on the error estimate of the kriging surface.

Gutmann (2001) uses RBF surrogate models and selects the next evaluation point

based on a target value strategy. A target value is defined and a computationally

cheap auxiliary optimization problem that aims at minimizing a bumpiness measure

is solved on the RBF model.

SO-M-s (Müller and Shoemaker 2014) does the next computationally expensive

function evaluation at theminimumpoint of the surrogate surface.Any type of surrogate

model may be used within the SO-M-s framework, but the authors showed that RBFs

and ensembles containingRBFsperformgenerallywell.EGO,Gutmann’sRBFmethod,

and SO-M-s have in common that an auxiliary optimization problem is solved on the

computationally cheap surrogate model in order to select the next evaluation point.

The algorithm SRBF by Regis and Shoemaker (2007) uses an RBF model and a

stochastic sampling approach. A large set of candidates for the next evaluation point

is generated by adding random perturbations to all variables of the best point found

so far. Two scores are computed for each candidate point and the candidate with the

best weighted sum of these scores is selected as new evaluation point.

Regis and Shoemaker (2013) suggested a second stochastic sampling approach

called DYCORS. The generation of candidate points in DYCORS is similar to

SRBF, except that the probability of perturbing each variable of the best point found

so far decreases with the number of realized expensive objective function

evaluations. The search thus becomes more local. DYCORS has been shown to

be more efficient for large-dimensional problems.

3.3 Previous surrogate model algorithms for mixed-integer optimization

Surrogate model algorithms for mixed-integer optimization of computationally

expensive black-box problems are scarce and implementations of the algorithms are

hardly available. SO-MI (Müller et al. 2013b; Müller 2014) is the first surrogate

model based algorithm for mixed-integer optimization that is able to address

problems with large numbers of variables that may have a large range and are not

restricted to binary values. SO-MI uses a cubic RBF model and a stochastic

sampling strategy in which four points are evaluated in parallel in each iteration.

The MATLAB implementation is open source and available from the authors.

Holmström’s radial basis function algorithm for mixed-integer problems (Holm-

ström 2008b) uses an adaptive version of Gutmann’s target value sampling strategy.

The algorithm was shown to perform well for low-dimensional problems (up to 11

dimensions) with up to six integer variables of which most were binary. The

implementation is contained in the commercial TOMLAB toolbox for MATLAB.

182 J. Müller

123

Davis and Ierapetritou (Davis and Ierapetritou 2009) developed a surrogate

model algorithm for mixed-integer problems with binary variables. The authors

combine a branch and bound algorithm with a kriging surface and show the

effectiveness of the algorithm on two application examples from process synthesis.

Hemker et al. (2008) introduced a mixed-integer surrogate optimization approach

for water resources management.

Surrogate models have been used in connection with evolutionary strategies in

order to address problems with computationally expensive objective functions.

Zhuang et al. (2013) developed an algorithm that combines radial basis function

neural networks and mixed-integer evolutionary strategies. Similarly, Li et al.

(2008) used metamodels within mixed-integer evolutionary strategies and showed

their applicability to ultrasound image analysis.

4 MISO framework

The algorithms for continuous optimization briefly reviewed in Sect. 3.2 can be

easily modified for mixed-integer optimization problems. Only the initial exper-

imental design and the strategy for selecting new sample points must be adjusted.

The goal is to find a near-optimal solution within a limited number of function

evaluations. Hence, no computationally expensive evaluations should be wasted at

points that do not satisfy the integrality constraints. Also, for many application

problems, the black-box simulation model may crash when continuous values are

used for integer variables. This makes the application of methods such as branch

and bound, that depend on solving relaxed subproblems, impossible. Thus, the goal

is to evaluate the expensive objective function only at integer-feasible points. The

general surrogate model framework can thus be modified to the mixed-integer

surrogate optimization (MISO) framework shown in Algorithm 1.

Algorithm 1 General MISO Framework

1: Initialization
2: Create an initial experimental design. Ensure that the integer variables of

the points in the design assume integer values. Do the expensive objective
function evaluations at the selected points.

3: Surrogate Model
4: Fit the chosen surrogate model to the data in Step 2.
5: Sampling
6: Use the information from the surrogate model to select the point for doing

the next expensive function evaluation. Ensure with the sampling strategy
that the newly selected point znew satisfies the integrality constraints.

7: Do the expensive evaluation at znew: fnew = f(znew).
8: if Stopping criterion is not met then
9: Update the surrogate model and go to Step 6.

10: else
11: Return the best solution found during the optimization.
12: end if

Mixed-integer surrogate optimization framework 183

123

In Step 2 of Algorithm 1, when creating the initial experimental design, we only

select points that satisfy the integrality constraints. We use a symmetric Latin

hypercube design and round the values of the integer variables. The computationally

expensive objective function evaluations are done at the selected points and the

surrogate model is fit to this data in Step 4. When fitting the surrogate model, we

assume that all variables are continuous in order to obtain a smooth surface.

However, in Step 6 we have to guarantee that each newly selected evaluation point

satisfies the integer constraints.

Our previous algorithm SO-MI (Müller et al. 2013b) fits into the MISO framework

and may thus be considered part of it. SO-MI generates four groups of integer-feasible

sample points in each iteration by (a) perturbing only the integer variables,

(b) perturbing only the continuous variables, (c) perturbing both integer and

continuous variables of the best point found so far, and (d) uniformly generating

integer-feasible points from the whole variable domain. In contrast to MISO, we select

in SO-MI always four new points in each iteration for doing the expensive function

evaluation. If parallel computing resources are available, one can thus do almost four

times as many expensive evaluations within the same number of iterations as MISO.

On the other hand, if it is not possible to do several function evaluations in parallel, SO-

MI may have a disadvantage because in MISO we update the surrogate model after

each evaluation and thus we have more information available for selecting the next

sample point, whereas in SO-MI we select always four points at once given the current

information. MISO’s sampling strategies can easily be extended to methods that select

more than one new point in each iteration. Parallel sampling strategies are, however,

beyond the scope of the present paper and we will investigate them in the future.

4.1 Modifications of continuous surrogate model algorithms for mixed-
integer problems

We adapted SRBF (Regis and Shoemaker 2007), DYCORS (Regis and Shoemaker

2013), Gutmann’s RBF method (Gutmann 2001), SO-M-s (Müller and Shoemaker

2014), and Forrester’s implementation of EGO (Forrester et al. 2008) according to the

MISO framework formixed-integer problems.Wewill denote the algorithms as follows:

– MISO-CP (MISO-coordinate perturbation): the mixed-integer version of

DYCORS;

– MISO-RS (MISO-random sampling): the mixed-integer version of SRBF;

– MISO-EI (MISO-expected improvement): the mixed-integer version of For-

rester’s EGO implementation (Forrester et al. 2008);

– MISO-TV (MISO-target value): the mixed-integer version of Gutmann’s RBF

method;

– MISO-SM (MISO-surface minimum): the mixed-integer version of SO-M-s.

MISO-CP and MISO-RS both follow the steps of the continuous algorithms

described by Regis and Shoemaker (2007, 2013). Both methods generate candidate

points by perturbing the best point found so far (zbest). For mixed-integer problems,

we use the perturbation r ¼ sgnðqÞmaxf1; ½jrqj�g for the integer variables, where

184 J. Müller

123

q�Nð0; 1Þ, r denotes the perturbation radius of the current iteration, [�] denotes
the nearest integer, and sgnð�Þ denotes the sign function. Thus, the integer

perturbation is at least one unit and integer which is either added or subtracted to the

parameter value depending on the sign of q. When perturbing the continuous

variables of zbest, we add r ¼ rq to the parameter value to be perturbed where the

value of qr is, depending on q, either positive or negative. In particular, denote the

candidate point in the following by zcand and let zcand;i and zbest;i be the ith variable of
zcand and zbest, respectively. Then

zcand;i ¼
maxfzli;minfzbest;i þ r; zui gg if i is chosen for perturbation

zbest;i if i is not chosen for perturbation

(

ð7Þ

where

r ¼
qr; if i is a continuous variable

sgnðqÞmaxf1; ½jrqj�g if i is an integer variable

�
: ð8Þ

The probability of perturbing the ith variable of zbest is different for MISO-RS (all

variables are perturbed) and MISO-CP (each variable is perturbed with decreasing

probability, see Eq. (9) below).

For algorithms that solve an auxiliary optimization problem on the surrogate

model in order to select new sample points such as MISO-EI, MISO-TV, and

MISO-SM, we can substitute the optimization routine used for solving the auxiliary

problem with a mixed-integer global optimization algorithm. Finding the optimum

of the auxiliary problem is in general itself a global optimization problem. Thus, we

can use, for example, a mixed-integer genetic algorithm for minimizing the

bumpiness measure in MISO-TV, for finding the minimum point of the surrogate

surface in MISO-SM, and for finding the maximum of the expected improvement in

MISO-EI, respectively. Hence, the newly selected point znew (the optimum of the

auxiliary problem) will satisfy the integer constraints. Except for the optimization

subroutine used for solving the auxiliary problems, MISO-EI, MISO-TV, and

MISO-SM follow the steps of the algorithms described by Forrester et al. (2008),

Gutmann (2001), Holmström (2008b), and Müller and Shoemaker (2014),

respectively.

Table 1 gives an overview of all MISO algorithms that we examine in this paper.

The table contains information about the algorithms’ abbreviations, the meaning of

the abbreviation and the type of search method that is used, and a literature

reference in which the sampling strategy has been introduced in the continuous

optimization literature (if applicable). The table also shows the type of surrogate

model that is used and the number of the algorithm in which the steps are explained

in this paper.

Mixed-integer surrogate optimization framework 185

123

4.2 MISO-CPTV and MISO-CPTV-local

We developed two new algorithms, namely MISO-CPTV and MISO-CPTV-local,

that combine a coordinate perturbation search (c-step, stochastic) with a target value

search (t-step, minimizing an auxiliary objective function on the surrogate model).

MISO-CPTV-local is a memetic algorithm, i.e., we combine global (c- and t-step)

and local optimization search (l-step), which aims at improving the solution found

by MISO-CPTV locally for higher accuracy. A general overview of the individual

steps of MISO-CPTV and MISO-CPTV-local is shown in Algorithm 2.

Table 1 MISO-based algorithms

MISO- Full name/ search method/ reference Surrogate Alg. no.

1 CP Coordinate perturbation (Regis and Shoemaker 2013), c-step Cub. RBF 4

2 RS Random sampling (Regis and Shoemaker 2007) Cub. RBF

3 SM Surface minimum (Müller and Shoemaker 2014) Cub. RBF

4 TV Target value (Gutmann 2001), t-step Cub. RBF 5

5 EI Expected improvement (Forrester et al. 2008) Kriging

6 CPTV Combination of #1 and #4 Cub. RBF 3

7 CPTV-

l(f)

Combination of #6 and gradient based local search on

continuous variables

Cub. RBF 3

8 CPTV-

l(o)

Combination of #6 and gradient-free local search on

continuous variables

Cub. RBF 3

Abbreviation, full name, literature references, type of surrogate model used, and index of the algorithm

(Alg. no.) in which the steps are described in this paper

Algorithm 2 MISO-CPTV/MISO-CPTV-local: general overview

1: Initialization
2: Create an initial experimental design and fit the surrogate model to the

data.
3: while Stopping criterion not met do
4: Compute znew:
5: if c-Step then
6: Create a large set of candidate points by adding random perturbations

to randomly selected variables of the best point found so far. Use scor-
ing criteria based on the surrogate model to select the best candidate
point.

7: else if t-Step then
8: Define a target value for the objective function and minimize a bumpi-

ness measure on the surrogate model.
9: else if l-Step (for MISO-CPTV-local only) then

10: Fix the integer variables of the best point found so far and do a local
search on the continuous variables only.

11: end if
12: Do the expensive evaluation at znew.
13: Update the surrogate model with the new data.
14: end while

186 J. Müller

123

Algorithm 3 contains a detailed description of MISO-CPTV and MISO-CPTV-

local. Details of the c-, t-, and l-steps are described in Algorithms 4, 5, and 6,

respectively. Both algorithms require the following parameters, where the parameter

settings 3–10 related to the c-step are adopted from Regis and Shoemaker (2013).

1. The number of points in the initial experimental design n0 ¼ 2ðd þ 1Þ.
2. A maximum number of allowed function evaluations nmax.

3. The initial perturbation radius r0 ¼ 0:2lðDÞ, where lðDÞ is the shortest side of
the hyper-rectangle D defined by the variables’ upper and lower bounds.

4. A minimum rl ¼ 2�6r0 for the perturbation radius r (rl � r).
5. The number of candidate points generated in each iteration

N ¼ minf500d; 5000g.
6. A threshold for the number of allowed consecutive successful improvement

trials in the c-step (coordinate search step) Tc
s ¼ 3.

7. A threshold for the number of allowed consecutive unsuccessful improvement

trials in the c-step Tc
f ¼ maxf5; dg.

8. A threshold for the number of times the perturbation radius in the c-step can be

decreased Tc
r ¼ 5.

9. A weight pattern W ¼ \0:3; 0:5; 0:8; 0:95[for computing the weighted

sum of scores for the candidate points.

10. A function to determine the perturbation probability

qðnÞ ¼ minf20=d; 1gð1� logðn� n0 þ 1Þ= logðnmax � n0ÞÞ; ð9Þ

where n denotes the number of function evaluations done so far.

11. A pattern for the target value strategy stage G ¼ \0; 1; . . .;P;Pþ 1[,

where P = 10.

12. A threshold for the number of consecutive unsuccessful improvement trials in

the t-step Tt
f ¼ jGj, where |G| denotes the cardinality of the set G.

13. A surrogate model constructed by using n evaluation points snð�Þ.
14. A mixed-integer genetic algorithm MI-GA.

15. A threshold distance d below which two points are considered equal. The

distance k � k between two points is the Euclidean distance.

16. For MISO-CPTV-local only: a local optimization algorithm for continuous

problems.

The number of points in the initial experimental design has to be large enough to

fit the chosen surrogate model. For the cubic RBF with linear polynomial tail we

need at least d = 1 points. The more points that are contained in the initial

design, the better is the global fit of the initial surrogate model. However, the

larger this number is, the fewer evaluations can be done during the iterative

optimization. Hence, depending on whether insight into the global or the local

behavior of the objective function is desired, the number of points in the initial

design should be adjusted. If more points are allowed for the iterative

improvement trials, then the local search will be more thorough and better

objective function values can be found. The maximum number of allowed

Mixed-integer surrogate optimization framework 187

123

function evaluations depends on the time a single objective function evaluation

requires and how much time there is to obtain the solution. If an evaluation

takes, for example, approximately one hour, and a result has to be obtained

within 30 days, then (neglecting the algorithm’s own computational overhead,

which is negligible in comparison to the time needed for the function

evaluation), at most 720 evaluations can be done.

The parameters related to the perturbation radius (r0, rl, Tc
r) and the thresholds

Tc
f and Tc

s , respectively, influence how thorough the local search is. Increasing Tc
f ,

Tc
s , and T

c
r and decreasing rl and r0 leads to a more thorough local search during the

c-step because the generated candidate points will be closer to the best point found

so far and the number of attempts to improve the current best point within the same

perturbation radius is larger. Thus, more accurate solutions may be found during the

c-step. If the budget of allowable function evaluations is small in comparison to the

problem dimension d, we will have to be satisfied with a good approximation of a

local minimum. The goal may be to find a good solution fast and searching locally is

more efficient than using many evaluations for the global search in order to find

various other promising parameter regions which can then not be explored because

the budget of evaluations is exhausted. The choice of these parameters should

depend on the problem dimension d, the number of allowable function evaluations,

and the desired accuracy level. In MISO we adjusted these values following Regis

and Shoemaker (2013). In connection with the perturbation parameters is the

adjustment of the threshold distance d. This value should be decreased if higher

accuracy solutions are desired.

The weight pattern W may be adjusted depending on the desired search type. If

the budget of allowable function evaluations is low relative to the problem

dimension d (for example, d = 30, nmax ¼ 100) and a local search is the best chance

of finding an improved solution, then using a weight pattern only with values close

to zero is more efficient because preference will then be given to candidate points

that have low predicted objective function values which is likely to be close to the

best solution found so far and the search will therefore be more local. If the budget

of allowable evaluations is large enough to cycle between local and global search,

then the weight pattern should contain values from the whole range between zero

and one. The adjustment of Tc
f should depend on the length of W in order to allow

cycling at least once through the whole weight pattern after an improved solution

has been found.

As shown by Holmström (2008a), the adjustment of the pattern for the target

value sampling strategy influences the solution quality and a variety of target values

is needed to make the sampling strategy effective for a wide range of problems. The

length of the target value pattern should also depend on the number of allowable

function evaluations. If the budget is low, then emphasis should be on the local

search, and therefore fewer cycles in the global search step (smaller value for P)

should be used. If there are sufficiently many function evaluations for a global

search, P should be increased. We set the value of Tt
f equal to the length of the target

value pattern in order to allow at least one cycle through all target values.

188 J. Müller

123

Algorithm 3 MISO-CPTV/MISO-CPTV-local

1: Initialization
2: c-Step ← true, t-Step ← false, l-Step ← false.
3: Cc

f ← 0, Cc
s ← 0, Cc

r ← 0, Cc
i ← 0, Ct

f ← 0, Ct
s ← 0, Ct

i ← 0.
4: Create a symmetric Latin hypercube design with n0 = 2(d+1) points and

round the integer variables. Do the computationally expensive function
evaluations at the generated points. Denote the set of sampled points by
Z, i.e., Z ← {z1, . . . , zn0}.

5: n ← n0.
6: Fit the surrogate model sn(·) to the data.
7: while Stopping criterion not met (n < nmax) do
8: Compute znew:
9: if c-Step then

10: c-Step
11: Cc

i ← Cc
i + 1.

12: Use the sampling strategy described in Algorithm 4.
13: n ← n + 1, Z ← Z ∪ znew.
14: else if t-Step then
15: t-Step
16: Ct

i ← Ct
i + 1.

17: Use the sampling strategy described in Algorithm 5.
18: n ← n + 1, Z ← Z ∪ znew.
19: else if l-Step (for MISO-CPTV-local only) then
20: l-Step
21: Use the local search strategy described in Algorithm 6.
22: n ← n + nl, Z ← Z ∪ Zl.
23: end if
24: Update the surrogate model with the new data.
25: end while

In Algorithm 3, we first initialize the search type. We initialize the counters Cc
f

and Ct
f for the number of consecutive failed improvement trials in the c-and t-step,

respectively. We initialize Cc
s and Ct

s for counting the number of consecutive

successful improvement trials in the c- and t-step, respectively, and Cc
r for counting

the number of times we decreased the perturbation radius r in the c-step. We also

initialize the iteration counters Cc
i and Ct

i for the c- and t-step, respectively. We use

the same approach for creating the initial experimental design as for the other MISO

algorithms, i.e., a symmetric Latin hypercube design in which we round the integer

variables. The evaluation of the computationally expensive objective function at the

points in the initial design can be done in parallel if the necessary computing

resources are available and the function evaluations are independent of each other.

We fit a cubic RBF model with linear polynomial tail to the data and select znew
either by the coordinate perturbation strategy (c-step) or the target value strategy (t-

step) in MISO-CPTV (see Algorithms 4 and 5, respectively). In MISO-CPTV-local,

an additional l-step may be used (a local search described in Algorithm 6). The

Mixed-integer surrogate optimization framework 189

123

number of function evaluations and the set of points evaluated during the l-step are

denoted by nl and Zl, respectively. MISO-CPTV and MISO-CPTV-local both start

with the c-step.

4.2.1 c-Step: coordinate perturbation search

The details of the c-step are given in Algorithm 4. The goal of using the c-step is to

explore the whole variable domain and detect promising valleys in which the global

minimum may be located.

Algorithm 4 c-Step details

1: Coordinate perturbation strategy
2: Determine the best point found so far: zbest ∈ argmin{f(z), z ∈ Z},

fbest = f(zbest).
3: Determine the probability qn = q(n) of perturbing each variable of zbest.
4: Generate candidate points
5: Create a set of N candidate points by perturbing each variable of zbest

with probability qn according to (7) and (8). If no variable is selected for
perturbation by using probability qn, randomly select one variable.

6: Score the candidate points
7: Use the surrogate model sn to predict the objective function values at the

candidate points. Scale the predicted values to the interval [0, 1] (surrogate
model score, Ss).

8: Compute the distance of each candidate point to the set Z and scale the
values to [0,1] (distance score, Sd).

9: Compute the weighted sum of the two scores, St = wsSs + wdSd, where
wd ∈ W and ws = 1 − wd. Select the candidate point with the best score
(lowest value) as new evaluation point (znew).

10: Function evaluation and updates
11: Do the expensive function evaluation fnew = f(znew).
12: if fbest < fnew (no improvement found) then
13: Cc

f ← Cc
f + 1, Cc

s ← 0.
14: if Cc

f > T c
f then

15: if Cc
r > T c

r then
16: c-Step ← false, t-Step ← true, Cc

r ← 0, Cc
f ← 0.

17: end if
18: else
19: Cc

r ← Cc
r + 1, σ ← max{σl, σ/2}, Cc

f ← 0.
20: end if
21: else
22: fbest ← fnew, zbest ← znew, Cc

s ← Cc
s + 1, Cc

f ← 0.
23: if Cc

s > T c
s then

24: σ ← min{σ0, 2σ}, Cc
s ← 0.

25: end if
26: end if

190 J. Müller

123

We generate a set of N candidates for the next sample point by adding random

perturbations to randomly selected variables of the best point found so far (zbest).
Each candidate point is initially set equal to zbest and a uniform random number

ti �Uð0; 1Þ is drawn for each variable i ¼ 1; . . .; d. If ti\qðnÞ (the perturbation

probability computed in Step 3), we add a random perturbation to that variable. We

use the perturbation probability in Eq. (9) which decreases as the number of

function evaluations increases. Hence, initially the perturbation probability is large

and therefore the search is more global because the more variables that are

perturbed, the more likely it is that the distance to zbest is large. As the algorithm

progresses, the probability of perturbing the variables of zbest decreases, and thus the
search becomes more local. If no variable is selected for perturbation, one variable

is selected for perturbation at random.

We compute two scores for each candidate point. First, we use the surrogate

surface to predict the objective function values of the candidate points (Step 7). We

scale the values to [0,1] where low predicted objective function values will have a

score Ss close to zero and large values will have a value Ss close to one. Secondly,

we compute the distance of each candidate point to the set Z (Step 8) and scale

these values to [0,1] such that points far away from Z (points in relatively

unexplored regions of the variable domain) obtain a value Sd close to zero, and

points that are close to Z obtain a score Sd close to one.

We compute a weighted sum of both scores in Step 9. The weights ws and wd for

the surrogate surface criterion and the distance criterion, respectively, are adjusted

in a cycling manner, i.e., in each iteration, wd is selected as

wd ¼
W½k� if k � Cc

imodjWj[0

W½jWj� otherwise

�
; ð10Þ

where j � j denotes the cardinality of a set andW½j� denotes the jth element ofW (see

input 9). The candidate point with the lowest total score St is selected for evaluation.

The computationally expensive objective function is evaluated at the newly

selected point (fnew ¼ f ðznewÞ) in Step 11 and depending on whether or not fnew is

better than fbest, C
c
f ;C

c
s , C

c
r , and fbest are updated (see Steps 12–26). The c-step ends

when the threshold of failed improvement trials Tc
f has been reached Tc

r times and

the perturbation radius r has been decreased Tc
r times (Steps 15–17).

4.2.2 t-Step: target value search

The details of the t-step are described in Algorithm 5. The goal of the t-step is to

explore the vicinity of promising valleys in the variable domain in a more

systematic way (define a target value and examine in which valley of the variable

domain the resulting surface is least bumpy). Hence, the c-step helps us to find

promising regions of the variable domain and the t-step is used to find improved

solutions in these regions more efficiently.

Mixed-integer surrogate optimization framework 191

123

Algorithm 5 t-Step details

1: Target value sampling
2: Select sample stage g ∈ G.
3: if g=0 then
4: Inf-Step
5: Use MI-GA to solve (12) and obtain znew.
6: else if 1 ≤ g ≤ P (Cycle step) then
7: Global Search
8: Use MI-GA to solve (15) and obtain (zs, ss).
9: wg ← (1 − g/|G|)2.

10: Define the target value t ← ss − wg(max{f(zi), zi ∈ Z} − ss).
11: Use MI-GA to solve (16) and obtain znew.
12: else (Cycle step)
13: Local Search
14: Use MI-GA to solve (15) and obtain (zs, ss).
15: if ss < fbest − 10−6|fbest| then
16: znew ← zs.
17: else
18: Define the target value t ← fbest − 10−2|fbest|.
19: Use MI-GA to solve (16) and obtain znew.
20: end if
21: end if
22: if znew − zi δ for any i ∈ {1, , n} then
23: repeat Randomly select a new point znew from D.
24: until znew − zi > δ for all i ∈ {1, , n}.
25: end if
26: Function evaluation and updates
27: Do the expensive function evaluation fnew = f(znew).
28: if fbest < fnew (no improvement found) then
29: Ct

f ← Ct
f + 1, Ct

s ← 0.
30: if Ct

f > T t
f then

31: t-Step ← false, c-Step ← true, Ct
f ← 0.

32: end if
33: else
34: fbest ← fnew, zbest ← znew, Ct

s ← Ct
s + 1, Ct

f ← 0.
35: end if

There are three different cases (Steps 3–21) in which an auxiliary optimization

problem is solved to determine the next sample point (see also Holmström (2008a),

AlgorithmRBF). We use the same notation as Gutmann (2001) and Holmström

(2008a) for minimizing the bumpiness measure. Throughout the t-step, we have to

solve one of the following computationally cheap auxiliary minimization problems

depending on the type g of the target value step the algorithm is currently in (Step

2). The step type g is defined by

192 J. Müller

123

g ¼ G½k� if k � Ct
imodjGj[0

G½jGj� otherwise

�
: ð11Þ

In the ‘‘Inf-Step’’ (Steps 3–5), we select as new evaluation point

znew 2 argmin
z2D

lnðzÞ; ð12Þ

where lnðzÞ corresponds to the (n ? 1)th value of v when solving the augmented

linear system

Uz Pz

PT
z 0

� �
v ¼

0n

1

0d

2

64

3

75; ð13Þ

where 0n and 0d denote vectors with n and d zeros, respectively, and

Uz ¼
U /z

/T
z 0

� �
; Pz ¼

P

zT 1

� �
; and ð/zÞi ¼ /ðkz � zikÞ; i ¼ 1; . . .; n:

ð14Þ

In the ‘‘Cycle step - global search’’ (Steps 6–11), the goal is to first find the

minimum point of the surrogate surface (Step 8):

zs 2 argmin
z2D

snðzÞ; ð15Þ

and we denote ss ¼ snðzsÞ. Based on the value of ss and a target value t that is

computed based on the pattern G (Steps 9–10), we determine

znew 2 argmin
z2D

lnðzÞ snðzÞ � t½ �2; ð16Þ

where lnðzÞ is defined as for (12).

In the ‘‘Cycle step - local search’’ (Steps 12–20), we first find the minimum of the

surrogate surface by solving (15) (Step 14). If the value ss ¼ snðzsÞ is a relative

improvement of fbest of at least 10
�6, we use the minimum point of the surrogate

surface as new evaluation point (Steps 15–16). Otherwise, we define a target value

that corresponds to a 1 % improvement of the best function value found so far and

we solve (16) (Steps 18–19).

For each of the three cases, if the newly determined point znew is closer than the

threshold distance d to an already evaluated point, we repeatedly uniformly select a

random point from D until the selected point has a distance larger than d to the set of
already evaluated points Z (Steps 22–25). When generating the random point, we

ensure that the integrality constraints are satisfied. We do the computationally

expensive function evaluation at the newly selected point (Step 27). If the new

function value is not an improvement of fbest, we update the counters Ct
f and Ct

s,

respectively (Steps 28–29). If the fail counter Ct
f exceeds the threshold of allowable

failed improvement trials Tt
f , we leave the t-step and go back to the c-step (Steps

30–32). If we found an improvement, we update fbest; zbest;C
t
s, and C

t
f (Steps 33–35).

Mixed-integer surrogate optimization framework 193

123

4.2.3 l-Step: local search

The local search step is only used in MISO-CPTV-local. While MISO-CPTV

alternates only between the c-step and the t-Step until the maximum number of

function evaluations has been reached, MISO-CPTV-local enters a local search

phase whenever the sequence \c-Step, t-Step, c-Step[did not lead to any

improvement. The goal of using this sequence is to first explore the whole

variable domain using the c-step and to find promising regions of the variable

domain. Initially, the c-step search is more global because the perturbation

probability of the variables of the best point found so far is large (see Eq. 9).

Denote the best point found during the c-step by zcbest. In the t-step, we aim at

finding an improvement of zcbest by applying the target value strategy. It is likely

that improvements found during the t-step are in promising valleys of the

variable domain that were detected during the c-step because the predicted

objective function values are lower. Denote the best point found during the t-step

by ztbest. The goal of using the c-step again after the t-step is to explore the

neighborhood of ztbest because the perturbation probability of the variables of ztbest
is now lower (see Eq. (9)) and the search is therefore more local. Furthermore, it

is possible that ztbest is in a different region of the variable domain than zcbest, and
thus, exploring the close vicinity of ztbest will improve the response surface in

that region and a better starting guess for the following local search may be

found. If all three improvement attempts \c-step, t-step, c-step[fail, it is an

indicator that improvements by a global search and random perturbations cannot

be found anymore and a more thorough and accurate local search is necessary.

The goal of the local search step is to further improve the accuracy of the best

solution found so far. Thus, during the local search we only consider the

continuous variables.

In general, if |M| denotes all possible combinations of integer variable values for

a given problem, then there is for each such combination a global minimum with

respect to the continuous variables. During the c- and t-step we determined the best

point found so far zbest by searching over the integer and continuous variables. In the
local search we now try to improve the objective function value by fixing the integer

variables of zbest and doing a local optimization only with respect to the continuous

variables:

zl 2 argmin
z2D

ff ðzjziÞ; zi ¼ zbest;i8i 2 Ig; ð17Þ

where I denotes the indices of the integer variables and zbest;i denotes the ith variable

of zbest. Hence, we will be able to find at least a local minimum associated with the

integer variables of zbest. If the best objective function value fl ¼ f ðzlÞ found by the

local search is better than fbest, we update the best solution found so far (Algorithm

6, Steps 3–4). If the budget of allowed function evaluations has not been exhausted

during the l-step, we go back to the c-step (Step 6).

194 J. Müller

123

Algorithm 6 l-Step (Local Search Step)

1: Fix the integer variables of zbest.
2: Use a local search algorithm on the true objective function starting from

the best solution found so far to solve (17) and obtain (zl, fl) (the best
solution found by the local search).

3: if fl < fbest (improvement found) then
4: fbest ← fl, zbest ← zl.
5: end if
6: c-Step ← true, l-Step ← false, t-Step ← false.

We consider two options of local search algorithms in the l-step for searching on

the true objective function, namely the MATLAB built-in optimizer fmincon that

numerically computes derivatives and the derivative-free algorithm ORBIT (Wild

et al. 2007) that uses a cubic radial basis function surrogate model. In the latter case,

after ORBIT has finished, we use fmincon in an attempt to further improve the

solution. The incentive behind using first ORBIT and then fmincon is that ORBIT

might be able to find a better starting guess for fmincon and hence fewer expensive

function evaluations may be needed in the fmincon stage. We call the algorithm that

uses fmincon only for the local search MISO-CPTV-l(f) and the algorithm that uses

ORBIT we call MISO-CPTV-l(o).

5 Numerical experiments

5.1 Experimental setup

Algorithms for computationally expensive black-box optimization problems with

integrality constraints are scarce. In the numerical experiments we compare the

performance of the MISO algorithms introduced in Sect. 4 to SO-MI (Müller et al.

2013b; Müller 2014), nonlinear optimization by mesh adaptive direct search

(NOMAD) (Le Digabel 2011), and MATLAB’s genetic algorithm (GA). We

include GA because it is a widely used algorithm for mixed-integer black-box

problems, but we do not expect it to perform very well for computationally

expensive problems where only few hundred function evaluations are allowable.

We use a cubic RBF model in SO-MI as done in Müller et al. (2013b). Note that

SO-MI is contained in MATSuMoTo (MATLAB Surrogate Model Toolbox (Müller

2014)) and can in general be used with any other surrogate model. NOMAD is a

mesh-adaptive direct search method developed for computationally expensive

black-box optimization problems and is, although not primarily developed for

problems with integrality constraints, applicable to mixed-integer problems

(Abramson et al. 2009). We use NOMAD version 3.6.2 in the numerical

experiments with the setting VNS 0.75 (variable neighborhood search method in

an attempt to escape from local minima), which is contained in the OPTI Toolbox

v2.05 (Currie and Wilson 2012).

Mixed-integer surrogate optimization framework 195

123

The goal of this paper is to develop algorithms that are able to find near optimal

solutions for computationally expensive optimization problems efficiently. We limit the

number of allowed function evaluations to 500 for all test problems since inpracticeoften

only few hundred function evaluations are allowable.We compare the algorithms based

on the best objective function value found after an equal number of function evaluations.

In practice, the computational expense is caused mainly by the objective function

evaluations and the computational overhead of theoptimization algorithms themselves is

in comparison negligible. We do 20 trials with each algorithm for each problem.

In order to facilitate a fair comparison, all algorithms use the same initial

experimental design for the same trial of the same problem. NOMAD starts the

systematic search from the best point contained in the initial design. For the genetic

algorithm, we give the best point from the initial design as partial initial population.

The remaining individuals in the initial population are generated with default

MATLAB settings. We use a population size of 20. We cannot use all points from

the initial experimental design as starting population since the number of points

depends on the number of variables (2(d?1)) and is generally not equal to 20.

5.2 Test problems

We compared the algorithms on ten numerically inexpensive test problems, four

problems arising in reliability redundancy engineering, and a problem arising in the

optimal design of truss structures. For the computationally cheap test problems, we

know the analytical description of the objective function (see the online

supplement). However, we treat the problems as black-boxes in order to examine

the efficiency of the algorithms for problems with different characteristics such as

multimodality, convexity, and binary variables. The test problems have been

derived from benchmark problems that are often used in continuous global

optimization and we impose integer constraints for some of the variables.

In reliability-redundancy optimization, the goal is to maximize the reliability of a

system (the mean time to failure) given restrictions on, for example, the total costs

and weight of the system. A system consists of several components. The reliability

of the system can be increased by either increasing each component’s reliability

(continuous variables) or by adding redundancy (integer variables). See the online

supplement for further details.

The second application problem arises in optimal design. The goal is to minimize

the weight of a truss dome subject to a displacement constraint. The dome consists

of tubular members whose lengths (continuous variables) and wall thicknesses

(integer variables, production restrictions do not allow arbitrary wall thicknesses)

are the decision variables. The nodal displacement under loading is computed by a

finite element analysis. The structure consists of 24 elements (24 integer variables)

and the location of 7 nodes can be adjusted (7 continuous variables).

Table 2 gives an overview over the test problems. The table shows the problem

number (column ‘‘ID’’), the number of integer variables (column ‘‘d1’’), the number of

continuous variables (column ‘‘d2’’), and the variable ranges. Problems 1–10 are the

computationally cheap test problems. Problems 11–14 are the reliability redundancy

optimization problems, and problem 15 is the structural optimization problem.

196 J. Müller

123

5.3 Numerical results and discussion

At this point we want to note that the computational effort of MISO-EI is

considerably larger than that of all other algorithms (as observed also by Müller and

Shoemaker (2014)). MISO-EI needs on average 500 times more computation time

than MISO-CPTV-l(f) (more than 120 h versus 0.2 h) which is due to the

computation of the kriging parameters. Since MISO-EI does not appear to be

efficient, we only examined its performance for the first five test problems (the

results are summarized in Table A1 in the online supplement where the average best

solution and standard deviations over 20 trials found by each algorithm are shown).

The results for these test problems show that MISO-EI is not promising and

performs worst for two of the problems. One reason for the worse performance of

MISO-EI may be related to the difficulty of finding the maximum of the expected

improvement function as the number of variables and sample points increases. The

number of local maxima generally increases as the number of evaluated points

increases, and hence finding the global optimum of the expected improvement

function becomes increasingly difficult. One could possibly adjust the parameter

settings of the subsolver that maximizes the expected improvement function to

explore local maxima more thoroughly, but this would come at a cost of

computation time which is larger for kriging than for the other surrogate models in

general. Based on these preliminary results and the computational cost of MISO-EI,

we decided to not use MISO-EI for the remaining problems and we do not include it

in the following analysis.

Table 2 Test problems for

algorithm comparison
ID d1 d2 Variable range

1 5 7 f�1; 3g5 � ½�1; 3�7

2 4 4 f�10; 10g4 � ½�10; 10�4

3 2 3 f�100; 100g2 � ½�100; 100�3

4 2 3 f0; 10g2 � ½0; 10� � ½0; 1�2

5 5 5 f3; 9g5 � ½3; 9�5

6 6 9 f�15; 30g6 � ½�15; 30�9

7 1 1 f�5; 10g � ½0; 15�
8 10 5 f�15; 30g10 � ½�15; 30�5

9 1 2 f0; 1g � ½0; 1�2

10 30 30 f�15; 30g30 � ½�15; 30�30

11 5 5 f1; 10g5 � ½0:5; 0:999999�5

12 4 4 f1; 10g4 � ½0:5; 0:999999�4

13 5 5 f1; 10g5 � ½0:5; 0:999999�5

14 5 5 f1; 10g5 � ½0:5; 0:999999�5

15 24 7 f1; 10g24 � ½0; 1000�7

Mixed-integer surrogate optimization framework 197

123

We summarize the results of the numerical experiments in form of data and

performance profiles as suggested by Moré and Wild (2009) (the numerical results

are summarized in Tables A2 and A3 in the online supplement where we show the

average best objective function values and standard deviations). We use the

MATLAB codes provided on http://www.mcs.anl.gov/*more/dfo/ for creating

Figs. 1 and 2. We create the profile plots based on the average objective function

value found over all 20 trials by each algorithm.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of simplex gradient estimates κ

δ a(κ
)

CP
TV
SM
RS
CPTV
CPTV−l(f)
CPTV−l(o)
SO−MI
GA
NOMAD

τ = 10−1.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of simplex gradient estimates κ

δ a(κ
)

(a)

(b)

Fig. 1 Data profiles. Both figures share the same legend. The algorithms following the MISO framework
are abbreviated with their sampling strategies

198 J. Müller

123

http://www.mcs.anl.gov/~more/dfo/

We denote the set of problems and the set of algorithms in the comparison by P
and A, respectively. Let lc;a, where c 2 P and a 2 A, be the used performance

measure. Then the performance ratio is defined as (Moré and Wild 2009)

rc;a ¼
lc;a

minflc;a : a 2 Ag : ð18Þ

The performance profile of algorithm a 2 A shows the fraction of problems where

the performance ratio is at most a:

1 2 4 8 16
0

0.2

0.4

0.6

0.8

1

Performance ratio α

ρ a(α
)

CP
TV
SM
RS
CPTV
CPTV−l(f)
CPTV−l(o)
SO−MI
GA
NOMAD

1 2 4 8 16
0

0.2

0.4

0.6

0.8

1

Performance ratio α

ρ a(α
)

(a)

(b)

Fig. 2 Performance profiles. Both figures share the same legend. The algorithms following the MISO
framework are abbreviated with their sampling strategies

Mixed-integer surrogate optimization framework 199

123

qaðaÞ ¼
1

jPj sizefc 2 P : rc;a � ag: ð19Þ

Here jPj denotes the cardinality of the set P. High values for qaðaÞ are better. The

performance profile reflects how well an algorithm performs relative to the other

algorithms. Data profiles on the other hand show the raw data. They illustrate the

percentage of problems solved for a given tolerance s within a given number of

simplex gradient estimates j ¼ n=ðd þ 1Þ, where n denotes the number of function

evaluations. If lc;a denotes the number of function evaluations needed to satisfy a

convergence test with tolerance s, then the percentage of problems that can be

solved within j simplex gradient estimates is defined as

daðjÞ ¼
1

jPj size c 2 P :
lc;a

dc þ 1
� j

� �
; ð20Þ

where dc denotes the dimension of problem c 2 P.
Figure 1 shows data profiles for all algorithms for accuracy level s ¼ 10�1 and

s ¼ 10�3. In practice, one is often satisfied with an accuracy of s ¼ 10�3 since the

simulation models themselves are approximations of physical phenomena and

therefore inaccurate. For reasons of space considerations, we abbreviate the

algorithms following the MISO framework by their sampling strategy in Figs. 1 and

2. For example, CPTV stands for MISO-CPTV, etc.

For both accuracy levels, we observe that except for GA all algorithms perform

initially (up to 10 simplex gradient estimates) similarly. However, for s ¼ 10�1,

after about 10 simplex gradient estimates, we can see that MISO-CPTV, MISO-

CPTV-l(o), and MISO-CPTV-l(f) outperform the other algorithms. In fact, there is

no difference between the performance of these algorithms. Similarly, for the

accuracy s ¼ 10�3, MISO-CPTV-l(o) and MISO-CPTV-l(f) find better solutions

than the other algorithms. MISO-CPTV-l(o) and MISO-CPTV-l(f) perform better

than MISO-CPTV, which shows that the local search leads to higher-accuracy

solutions. GA is able to outperform MISO-TV and MISO-SM after about 25

simplex gradient estimates for the accuracy level s ¼ 10�1. If solutions of higher

accuracy are required, we can see that GA performs worst among all algorithms.

The performance profiles in Fig. 2 show similar results. MISO-CPTV, MISO-

CPTV-l(o), and MISO-CPTV-l(f) perform equally well for s ¼ 10�1, whereas

MISO-CPTV-l(f) performs better than all other algorithms for s ¼ 10�3. Figure 2b

shows, for example, that for the performance ratio of a ¼ 4 there is a performance

difference between NOMAD and MISO-CPTV-l(f) of about 25 %, which means

that for 25 % of the problems, NOMAD needs four times as many function

evaluations to reach the same accuracy as MISO-CPTV-l(f).

In summary, the results of the numerical experiments show that the MISO

algorithms that combine coordinate search with target value and local search

(MISO-CPTV, MISO-CPTV-l(o), MISO-CPTV-l(f)) perform better than the

algorithms that use only a single sampling method (MISO-SM, MISO-RS, MISO-

TV, MISO-CP). One reason why MISO-CPTV performs better than MISO-CP may

be that MISO-CPTV initially searches globally for improvements (the perturbation

200 J. Müller

123

probability of each variable of the best point found so far is large) and then switches

to the target value strategy. The target value strategy then explores promising

regions of the variable domain found during the c-step more systematically (low

target values are more likely to be assumed in regions where low objective function

values have been observed) than when only random candidates are generated within

a decreasing perturbation radius. On the other hand, using only the target value

sampling (MISO-TV) may lead to a very thorough exploration of some local

minimum which does not improve the surrogate model globally, and thus other

promising regions of the variable domain may be missed. We can also see that,

similar to the results for continuous problems reported in Regis and Shoemaker

(2013), the coordinate perturbation strategy (MISO-CP), which only perturbs a

fraction of the variables of the best point found so far for creating candidate points,

performs better than the random strategy (MISO-RS), which perturbs all variables,

especially for lower tolerance levels s. In comparison to our previous algorithm SO-

MI, the results show that MISO-CPTV, MISO-CPTV-l(o), and MISO-CPTV-l(f) are

an improvement.

The comparison of MISO-CPTV-l(f) and MISO-CPTV-l(o) shows that for the

low accuracy s ¼ 10�1 both versions perform equally well. For the higher accuracy

s ¼ 10�3, MISO-CPTV-l(f) performs slightly better, indicating that for our

approach of fixing the integer variables and locally searching for improvements

only with respect to the continuous variables, a derivative-free local search does not

have an advantage over immediately using a local search that numerically computes

derivatives.

6 Conclusions

The goal of this paper was to introduce the mixed-integer surrogate optimization

(MISO) framework, a new algorithm framework for solving computationally

expensive black-box optimization problems with mixed-integer variables that may

have large ranges and are not restricted to binary values. TheMISO framework ensures

that all sample points satisfy the integer constraints, and thus no computationally

expensive function evaluations are wasted on evaluating points that do not satisfy the

integer constraints. This is a great advantage over algorithms that are based on solving

relaxed subproblems such as branch and bound methods, especially for black-box

simulations that crash when integer variables take on real values.

We used the MISO framework in combination with several well-known sampling

strategies from the continuous optimization literature that we modified for mixed-

integer problems such as Gutmann’s target value strategy (Gutmann 2001),

DYCORS (Regis and Shoemaker 2013), SRBF (Regis and Shoemaker 2007),

expected improvement (Forrester et al. 2008), and SO-M-s (Müller and Shoemaker

2014). We also introduced two new MISO algorithms, namely MISO-CPTV that

combines a coordinate perturbation search with a target value strategy, and MISO-

CPTV-local that uses in addition a local search to further improve the solution

accuracy.

Mixed-integer surrogate optimization framework 201

123

We compared MISO in numerical experiments to our previous algorithm SO-MI

(Müller et al. 2013b), NOMAD version 3.6.2 (Le Digabel 2011), and MATLAB’s

genetic algorithm. The numerical comparison on ten benchmark problems, four

application problems arising in reliability optimization, and one structural

optimization application shows that the MISO algorithms that use combinations

of sampling strategies, namely MISO-CPTV and MISO-CPTV-local, find improved

solutions much more efficiently than all other algorithms. Hence, MISO is a

promising approach to solving computationally expensive mixed-integer black-box

optimization problems.

Finally, we want to remark that we can develop a framework similar to MISO for

pure integer problems where the integer variables have large ranges and are not

restricted to binary values only. For the random sampling methods such as the

coordinate perturbation strategy, one has to guarantee that all candidate points’

variables are integer. For sampling strategies that solve an auxiliary optimization

problem on the surrogate surface, one has to choose a subsolver that is able to

address pure integer global optimization problems (for example, genetic algorithms

or, depending on the range of the variables, complete enumeration may be possible).

This, however, will be the topic of future research.

Acknowledgments This material is based upon work supported by the U.S. Department of Energy,

Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program

under contract number DE-AC02005CH11231. Partial support was also provided by NSF CISE 1116298

to Prof. Shoemaker at Cornell University, School of Civil and Environmental Engineering.

References

Abramson M, Audet C, Chrissis J, Walston J (2009) Mesh adaptive direct search algorithms for mixed

variable optimization. Optim Lett 3:35–47

Booker A, Dennis J Jr, Frank P, Serafini D, Torczon V, Trosset M (1999) A rigorous framework for

optimization of expensive functions by surrogates. Struct Multidiscip Optim 17:1–13

Conn A, Scheinberg K, Vicente L (2009) Introduction to Derivative-Free Optimization. SIAM

Currie J, Wilson D (2012) Foundations of computer-aided process operations. OPTI: lowering the barrier

between open source optimizers and the industrial MATLAB user. Savannah, Georgia, USA

Davis E, Ierapetritou M (2009) Kriging based method for the solution of mixed-integer nonlinear

programs containing black-box functions. J Glob Optim 43:191–205

Forrester A, Sóbester A, Keane A (2008) Engineering design via surrogate modelling—a practical guide.

Wiley, Chichester

Friedman J (1991) Multivariate adaptive regression splines. Ann Stat 19:1–141

Giunta A, Balabanov V, Haim D, Grossman B, Mason W, Watson L, Haftka R (1997) Aircraft

multidisciplinary design optimisation using design of experiments theory and response surface

modelling. Aeronaut J 101:347–356

Glaz B, Friedmann P, Liu L (2008) Surrogate based optimization of helicopter rotor blades for vibration

reduction in forward flight. Struct Multidiscip Optim 35:341–363

Goel T, Haftka RT, Shyy W, Queipo NV (2007) Ensemble of surrogates. Struct Multidiscip Optim

33:199–216

Gutmann H (2001) A radial basis function method for global optimization. J Glob Optim 19:201–227

Hemker T, Fowler K, Farthing M, von Stryk O (2008) A mixed-integer simulation-based optimization

approach with surrogate functions in water resources management. Optim Eng 9:341–360

Holmström K (2008a) An adaptive radial basis algorithm (ARBF) for expensive black-box global

optimization. J Glob Optim 41:447–464

202 J. Müller

123

Holmström K (2008b) An adaptive radial basis algorithm (ARBF) for expensive black-box mixed-integer

global optimization. J Glob Optim 9:311–339

Jones D, Schonlau M, Welch W (1998) Efficient global optimization of expensive black-box functions.

J Glob Optim 13:455–492

Koziel S, Leifsson L (2013) Surroagte-based modeling and optimization: applications in engineering.

Springer, New York

Le Digabel S (2011) Algorithm 909: NOMAD: nonlinear optimization with the mads algorithm. ACM

Trans Math Softw 37:44

Li R, Emmerich M, Eggermont J, Bovenkamp E, Back T, Dijkstra J, Reiber H (2008) Metamodel-assisted

mixed-integer evolution strategies and their applications to intravascular ultrasound image analysis.

In: IEEE World Congress on Computational Intelligence, IEEE, pp 2764–2771

Marsden A, Wang M, Dennis J Jr, Moin P (2004) Optimal aeroacoustic shape design using the surrogate

management framework. Optim Eng 5:235–262

Moré J, Wild S (2009) Benchmarking derivative-free optimization algorithms. SIAM J Optim

20:172–191

Müller J (2014) MATSuMoTo: The MATLAB surrogate model toolbox for computationally expensive

black-box global optimization problems. arXiv:14044261

Müller J, Shoemaker C, Piché R (2013a) SO-I: a surrogate model algorithm for expensive nonlinear

integer programming problems including global optimization applications. J Glob Optim

59:865–889. doi:10.1007/s10,898-013-0101-y

Müller J, Shoemaker C, Piché R (2013b) SO-MI: a surrogate model algorithm for computationally

expensive nonlinear mixed-integer black-box global optimization problems. Comput Oper Res

40:1383–1400

Müller J, Piché R (2011) Mixture surrogate models based on Dempster–Shafer theory for global

optimization problems. J Glob Optim 51:79–104

Müller J, Shoemaker C (2014) Influence of ensemble surrogate models and sampling strategy on the

solution quality of algorithms for computationally expensive black-box global optimization

problems. J Glob Optim 60:123–144. doi:10.1007/s10898-014-0184-0

Myers R, Montgomery D (1995) Response surface methodology: process and product optimization using

designed experiments. Wiley-Interscience Publication, Hoboken

Powell M (1992) Advances in numerical analysis, vol. 2: wavelets, subdivision algorithms and radial

basis functions. In: Light WA (ed) The theory of radial basis function approximation in 1990.

Oxford University Press, Oxford, pp 105–210

Rashid S, Ambani S, Cetinkaya E (2012) An adaptive multiquadric radial basis function method for

expensive black-box mixed-integer nonlinear constrained optimization. Eng Optim 45:185–206.

doi:10.1080/0305215X.2012.665450

Regis R, Shoemaker C (2007) A stochastic radial basis function method for the global optimization of

expensive functions. INFORMS J Comput 19:497–509

Regis R, Shoemaker C (2009) Parallel stochastic global optimization using radial basis functions.

INFORMS J Comput 21:411–426

Regis R, Shoemaker C (2013) Combining radial basis function surrogates and dynamic coordinate search

in high-dimensional expensive black-box optimization. Eng Optim 45:529–555

Simpson T, Mauery T, Korte J, Mistree F (2001) Kriging metamodels for global approximation in

simulation-based multidisciplinary design optimization. AIAA J 39:2233–2241

Viana F, Haftka R, Steffen V (2009) Multiple surrogates: how cross-validation errors can help us to

obtain the best predictor. Struct Multidiscip Optim 39:439–457

Wild S, Regis R, Shoemaker C (2007) ORBIT: optimization by radial basis function interpolation in trust-

regions. SIAM J Sci Comput 30:3197–3219

Wild S, Shoemaker C (2013) Global convergence of radial basis function trust-region algorithms for

derivative-free optimization. SIAM Rev 55:349–371

Zhuang L, Tang K, Jin Y (2013) Metamodel assisted mixed-integer evolution strategies based on Kendall

rank correlation coefficient. In: Hea Yin (ed) IDEAL 2013. Springer-Verlag, Berlin, pp 366–375

Mixed-integer surrogate optimization framework 203

123

http://dx.doi.org/10.1007/s10,898-013-0101-y
http://dx.doi.org/10.1007/s10898-014-0184-0
http://dx.doi.org/10.1080/0305215X.2012.665450

	MISO: mixed-integer surrogate optimization framework
	Abstract
	Introduction and motivation
	Surrogate models
	Review of surrogate model algorithms
	General surrogate model algorithm
	Previous surrogate model algorithms for continuous optimization
	Previous surrogate model algorithms for mixed-integer optimization

	MISO framework
	Modifications of continuous surrogate model algorithms for mixed-integer problems
	MISO-CPTV and MISO-CPTV-local
	c-Step: coordinate perturbation search
	t-Step: target value search
	l-Step: local search

	Numerical experiments
	Experimental setup
	Test problems
	Numerical results and discussion

	Conclusions
	Acknowledgments
	References

