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Abstract When structures and microstructures consisting of two or more materials

with positive thermal expansion have specific configurations, they are able to have

negative thermal expansion coefficients, i.e., they contract when heated. This paper

proposes a topology optimization methodology of frame structures for designing a

planar periodic structure that exhibits negative thermal expansion property. Pro-

vided that beam section of each existing member is chosen from a set of finitely

many predetermined candidates, we show that this topology optimization problem

with multiple material phases can be formulated as a mixed-integer linear pro-

gramming problem. A global optimal solution can hence be found with a readily

available software package. Since the proposed method treats frame structures and

addresses local stress constraints, the optimal solution contains neither thin mem-

bers nor hinge-like regions. To avoid too complicated structural designs realized as

assemblage of many small pieces, this paper develops the constraints that separate

distributions of two different materials. Numerical experiments are performed to

show that structures with negative or near zero thermal expansion can be obtained

by the proposed method.
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1 Introduction

There existmany engineering structures that undergo large thermal stresses due to large

temperature changes. For instance, the surface of a hypersonic cruise vehicle may be

above 1000 �C due to viscous heating, which makes crucial thermal expansion

mismatch between thevehicle interior; seeSteeves andEvans (2011) and the references

therein. Ducted exhaust systems of engines of low-observable aircrafts are also

subjected to very large thermal stresses (Deaton and Grandhi 2013). Other examples

include aerospace structures subjected to non-uniform heating, such as satellite

telescope structures (Jacquot et al. 1998) and lattice structures for supporting satellite

antennae andphotovoltaic arrays (Palumbo et al. 2011). These structures undergo large

temperature differences between sunny and shady sides. In such a situation, materials

and/or structures with (nearly) zero thermal expansion properties are attractive.

The majority of materials have positive thermal expansion coefficients. Materials

with negative thermal expansion coefficients will contract when they are heated.

Some materials, e.g., zirconium tungstate family (Sleight 1998; Ramirez and

Kowach 1998; Martinek and Hummel 1968; Evans et al. 1999) and a number of

zeolites (Lightfoot et al. 2001), have negative thermal expansion coefficients. Such

materials might be used, together with conventional materials, to make composites

that have any desired thermal expansion properties. As another application, Sleight

(1998) mentioned that sensitive temperature sensors can be made by combining thin

films of materials with large positive and large negative thermal expansion

properties. Thermal contraction property also has an application to thermal

fasteners, which can be inserted into a hole at high temperature and fits tightly

into the hole when it cools down (Sigmund and Torquato 1996). See Miller et al.

(2009), Lind (2012), Barrera et al. (2005), Evans (1999), and Sleight (1998) for

extensive surveys on negative thermal expansion solids.

Using two constituents with different positive thermal expansion coefficients, one

can design three-phase materials, i.e., composites of two constituents combined with

empty spaces, so as to have overall negative thermal expansion coefficients (Lakes

1996; Gibiansky and Torquato 1997; Sigmund and Torquato 1997). Sigmund and

Torquato (1996, 1997) actually found such designs of three-phase composites by

solving three-phase topology optimization problems. Chen et al. (2001) also showed

that microstructures with unusual thermoelastic properties can be found by using

topology optimization. Subsequently, various types of negative thermal expansion

composites, consisting of positive thermal expansion materials, have been proposed;

e.g., sandwich composite structures (Grima et al. 2010), composites with needle-like

inclusions (Grima et al. 2010), and the ones with disc and cylindrical shaped inclusions

(Grima et al. 2013). Also, periodic lattice structures consisting of two positive thermal

expansion materials have attracted much attention. Lakes (1996) and Jefferson et al.

(2009) presented bi-material lattices that can exhibit negative thermal expansion

properties. Grima et al. (2007) showed that a simple periodic truss structure consisting

of three different materials can have wide range of positive and negative thermal

expansion properties. Lim (2005, 2012) presented two-material periodic hinged

structures that can exhibit negative thermal expansion. Steeves et al. (2007) designed

two-material periodic lattice structures that have near-zero thermal expansion together
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with high stiffness. Miller et al. (2008) performed tailoring thermal expansion property

of a three-bar truss, one member of which consists of a material different from the other

two members. This unit triangle truss can be tessellated into more complex structures.

Many studies have been done concerning structural optimization under thermal

loads. Thermal stress is a typical design-dependent load. As early works, Rodrigues

and Fernandes (1995) developed homogenization method for topology optimization

of thermoelastic structures and Jog (1996) treated material and geometrical

nonlinearity. Topology optimization has been used to design thermally actuated

compliant mechanisms (Li et al. 2004; Sigmund 2001). Recent studies on

optimization of thermoelastic structures include Pedersen and Pedersen (2010,

2012), Deaton and Grandhi (2013), Wang et al. (2011), Gao and Zhang (2010),

Deng et al. (2013), and Xia and Wang (2008). Among them, Pedersen and Pedersen

(2010) discussed that, for maximizing strength of thermoelastic structures,

minimization of compliance is questionable and attempted to find a design with

uniform energy density. Deng et al. (2013) optimized an overall thermoelastic

structure and its material microstructure simultaneously.

There might exist some links between negative thermal expansion and negative

Poisson’s ratio properties; see, e.g., Lim (2005), Grima et al. (2010), Baughman and

Galvão (1993), and Miller et al. (2008). Recently Kureta and Kanno (2014) proposed a

topology optimization method of frame structures to design a periodic planar structure

that exhibits negative Poisson’s ratio property. In this method, the optimization

problem is recast as a mixed-integer linear programming (MILP) problem and is

solved globally. The optimal solution has neither hinges nor thin members and local

stress constraints were fully addressed in optimization. The computed optimal solution

was actually fabricated by applying a photo-etching technique to a steel plate. It was

confirmed that the fabricated model actually exhibits negative Poisson’s ratio property.

In continuation of this previous work, the present paper develops an MILP approach to

designing a planar periodic frame structure that exhibits negative thermal expansion

property. We suppose that a periodic frame structure is constructed by connecting a

unique base cell, i.e., the smallest unit, and that each member of the frame structure

consists of either one of given two different positive thermal expansion materials or

void. Based upon the conventional ground structure method, topology of the base cell

is optimized to minimize its thermal expansion coefficient. Material selection for each

member, from among the two materials and void, is handled directly by using discrete

design variables. Local stress constraints are imposed on existing members. Small

deformation is assumed throughout the paper and issues of material and geometrical

nonlinearity are not addressed. A global optimal solution is then found with an existing

algorithm for MILP; several software packages, e.g., CPLEX (IBM ILOG 2013), are

available for this purpose. The MILP formulation presented in this paper is viewed as a

natural extension of the one for frame optimization proposed by Kureta and Kanno

(2014). Similar MILP formulations for structural optimization were developed for

continua with binary design variables (Stolpe and Svanberg 2003; Stolpe 2007), trusses

with discrete member cross-sectional areas (Rasmussen and Stolpe 2008), and

tensegrity structures (Kanno 2013).

Continuum topology optimization for achieving negative thermal expansion

property sometimes results in very complicated structural designs. Also, the
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obtained structures often have hinge-like regions. Such designs may in practice

require manual post-processing before actual fabrication process. For instance, Qi

and Halloran (2004) used a microfabrication by an oxide co-extrusion technique to

fabricate the optimal design obtained by Chen et al. (2001) and mentioned that ‘‘an

engineering interpretation of the theoretical design’’ was necessary for strengthen-

ing some weak parts and smoothing material distribution. It is actually often that

optimal solutions, obtained by continuum topology optimization, have hinge-like

regions, because hinges help thermal contraction deformation to attain extremum.

Thickness of hinges of an optimal solution should be adjusted carefully before

fabrication process, because a structure with thin hinges can sustain only small

forces while by thickening hinges the structure may lose basic feature from which

negative thermal expansion accrues. One possible remedy for this issue might be to

use a special technique to avoid hinge-like regions; hinge-free optimization is a

current active research topic in continuum topology optimization (Poulsen 2003;

Sigmund 2007; Yoon et al. 2004; Zhu et al. 2013). Alternatively, this paper

proposes to use topology optimization of frame structures. In our approach, local

stress constraints are fully addressed in the optimization process. Also, the section

of each member is chosen from predetermined candidates. Consequently, the

optimal solution has neither hinges nor thin members and, hence, may be able to be

fabricated without manual post-processing, like the one with negative Poisson’s

ratio obtained in the previous work (Kureta and Kanno 2014). It should be

mentioned that topology optimization of continuum structures with local stress

constraints have been a challenging problem and various approaches are still being

examined; see, e.g., Duysinx (1998), Cheng and Guo (1997), Bruggi (2008), Allaire

and Jouve (2008), Guo et al. (2011), Holmberg et al. (2013), and references therein.

Most of existing studies on local stress constraints consider single-material phase

topology optimization problems.

The paper is organized as follows. Section 2 design presents a concept of design

problem of a periodic frame structure exhibiting negative thermal expansion

behavior. Section 3 recasts this design problem as an MILP. Section 4 develops an

alternative formulation to obtain a base cell such that the distributions of the two

different materials are clearly separated. Section 5 presents numerical experiments.

We conclude in Sect. 6.

2 Design problem of structures with negative thermal expansion

Section 2.1 defines a design problem of a planar periodic frame structure with

negative thermal expansion coefficient property. Section 2.2 formulates an

optimization problem of a base cell frame structure, where structural topology

and material distribution are simultaneously optimized.

2.1 Periodic frame structure with thermal contraction

We consider a planar frame structure realized by arranging a basic frame unit

repeatedly. The properties of this frame structure are described as follows.
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(i) The structure has periodicity such that a unique base cell, i.e., the smallest

square unit, is connected repeatedly in a regular way.

(ii) As for connection pattern of base cells, we consider two cases in Fig. 1. In

the case of pattern (A), we add four short beams to a base cell as shown in

Fig. 1a, in order to connect the cell to adjacent ones. In the case of pattern

(B) in Fig. 1b, the nodes at the four corners of the base cell serve as

interfaces for connection.

(iii) Thermal deformation of the base cell is supposed to have square symmetry.

(iv) The whole periodic structure consisting of the base cells will contract when

temperature is elevated from the ordinary value.

The design domain of our design problem is the base cell shown in Fig. 2a, due

to the periodicity property in (i). To realize the symmetry property in (iii), we

suppose that the configuration of the unit cell is symmetric with respect to reflection

across the thin lines in Fig. 2a. Figure 2b shows an example of ground structure,

which corresponds to a quarter of the base cell in Fig. 2a. The dashed line in Fig. 2b

is an axis of symmetry of the structural design. Also, from property (iii),

deformation of the whole periodic structure depends solely upon the displacements

of the four nodes described in property (ii). We call these four nodes interface

nodes. Property (iv) defines the negative thermal expansion property considered in

this paper. This property can be related to the displacement of the interface node as

follows. Suppose that base cells are connected according to pattern (A) in Fig. 1a.

Let u1 and u2 denote the displacements of two interface nodes of the unit cell, as

shown in Fig. 2b, when temperature increases by the specified degrees DT ð[ 0Þ:
The side length of a unit cell is lcell. From property (iii), thermoelastic deformation

is symmetric, and hence u1 ¼ u2: Hence, the side length of the cell becomes

lcell þ 2u1 due to temperature elevation DT. The thermal coefficient of area

expansion, which is given by the ratio of the area occupied by the deformed cell to

the undeformed area, is written as

(a) (b)

Fig. 1 Two types of repeated frame structures obtained by connecting unit base cells. a Connection
pattern (A); and b connection pattern (B)
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ðlcell þ 2u1Þ2

lcell
2

’ 1þ 4u1

lcell
:

Therefore, the structure shows thermal contraction if the interface nodes of the base

cell move inward from their positions at the ordinary temperature. This motivates us

to minimize u1 ð¼ u2Þ at the equilibrium state under temperature elevation

DT. Similarly, for connection pattern (B), we can consider a minimization problem

of a displacement of a corner node of the base cell.

In designing a base cell, we explore the structure with a minimum thermal

expansion coefficient by making use of some different materials with positive

thermal expansion coefficients. More precisely, we determine the material that

constitutes each member of the ground structure. Members will be removed if the

null material is assigned. Thus we simultaneously optimize topology and material

distribution of the base cell. In the course of optimization we shall make use of the

following assumptions.

– Small deformations and linear elasticity are assumed.

– The base cell is supposed to consist of two different materials with positive

thermal exposition coefficients.1 Each member is thereby to be assigned either

material 1, material 2, or void. Material parameters of these two materials are

specified a priori.

– At nodes of the frame structure, members constituted different materials are

assumed to be bonded perfectly.

– Temperature is assumed to distribute uniformly in the frame structure.

– In the thermal deformation of each beam element, the axial extension is

dominant and expansions in the other directions are assumed to be negligible.

(a) (b)

Fig. 2 Problem setting. a A unit base cell and symmetry axes; and b an example of ground structure

1 Extension of the proposed formulation to a case with more than two materials is straightforward; see

Remark 7.
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Thus the problem dealt with in this paper is viewed as a three-phase (i.e., two

materials and void) material distribution optimization on a given ground structure.

For continuum structures, three-phase topology optimization has been studied

extensively; see, e.g., Chen and Kikuchi (2001), Chen et al. (2001), and Sigmund

and Torquato (1997).

As observed in Sigmund and Torquato (1997), it is often that structures with

negative thermal expansion coefficients have low global stiffness. An example is, as

discussed in Steeves et al. (2007), a bi-material lattice due to Lakes (1996). For

practical applications, we therefore introduce the constraint on the global stiffness in

the course of optimization. Specifically, we suppose that fictitious external forces

are applied to the interface nodes at the ordinary temperature as shown in Fig. 3 and

impose the upper bound constraint for the compliance, together with the local stress

constraints. Pedersen and Pedersen (2010) pointed out that, for thermoelastic

structures, minimization of compliance does not necessarily result in a design with

maximum strength. In this paper we consider local stress constraints, both at the

elevated and ordinary temperatures, for securing structural strength directly.

Descriptive summary of the optimization problem considered in this paper is

given as follows.

– Topology optimization problem of a planar frame structure is solved to obtain a

base cell. Selection of materials, including the null material, for each beam

element is considered a design variable. The material parameters of the

constituent materials are specified.

– The displacement of the interface node induced by the temperature increase is

minimized.

– The section of each existing beam element is specified.2

– Compliance constraint is considered for the external forces applied to the

interface nodes.

– Stress constraints of existing beam elements are fully addressed.

– Existence of mutually crossing beam elements is not allowed.

In the optimization process, selection of constituent materials is handled by using

some discrete design variables. We solve the optimization problem within the

framework of mixed integer programming. Usually, in topology optimization of

continua, material selection is handled with an interpolation and penalization

scheme of material constants. As an extension of the standard SIMP (solid isotropic

material with penalization) scheme for interpolation, Sigmund and Torquato (1997)

and Gibiansky and Sigmund (2000) presented a three-phase (i.e., two materials and

void) topology optimization method. In this method, two variables are used for each

finite element, where one of them determines whether the element is void or not and

the other interpolates the material constants of the two constituent materials. This

interpolation scheme was further extended to optimization with arbitrary many

materials by Stegmann and Lund (2005). An extension of the RAMP (rational

2 Extension of the proposed formulation to a case with more than one available beam sections is

straightforward; see Remark 1.
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approximation of material properties) scheme to multiple material phases is due to

Hvejsel and Lund (2011). Bruyneel (2011) proposed to use shape functions of finite

element method to represent the weights in material interpolation. Multi-material

topology optimization was also treated within the frameworks of level-set methods

(Wang and Wang 2004) and phase-field methods (Zhou and Wang 2007). For

instance, in the multi-phase level-set method due to Wang and Wang (2004), one

material domain is represented as a union of level sets of some different implicit

functions. In contrast to the literature cited above, the approach presented in this

paper does not resort to any interpolation or penalization techniques but directly

solves an optimization problem with discrete design variables. Since the optimiza-

tion problem is recast as an MILP, a global optimal solution can be found by using,

e.g., a branch-and-cut method. This guaranteed global optimality might be

considered a major advantage of the proposed method to the existing methods

using interpolation and penalization. Instead, a potential disadvantage of the

proposed method is that computational cost to solve the optimization problem might

increase drastically as the number of discrete design variables increases. This is

because algorithms for MILP are essentially based on enumeration of solutions.

Remark 1 Suppose that section of each member of the base cell is chosen from a

set of some (i.e., finitely many) predetermined candidates. Then the design

optimization problem can still be formulated as an MILP. For simplicity of

presentation, however, this paper discusses only the case where single candidate is

given for each member. Extension to the case with more than one candidate sections

can be done in a manner similar to Kureta and Kanno (2014).

2.2 Optimization problem

This section presents the optimization problem for the design problem sketched in

Sect. 2.1.

Consider a planar frame structure that serves as a ground structure. Figure 2b

shows an example. The ground structure consists of many candidate members. Each

member is modeled as a Timoshenko beam element. Locations of nodes are

specified. Let E and V denote the set of members and the set of nodes, respectively.

Fig. 3 The fictitious forces for
the compliance constraint in the
case of connection pattern (A)
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For example, the ground structure in Fig. 2b consists of jEj ¼ 28 members and

jVj ¼ 9 nodes.

Suppose that the material of each member is chosen among ‘‘material 1’’ and

‘‘material 2.’’ Let M1 and M2 denote the sets of members constituted by material 1

and material 2, respectively. We use N to denote the set of members removed as a

result of optimization. Then the design problem is regarded as a problem finding a

partition

E ¼ M1 [M2 [ N ð1Þ

of E; whereM1;M2; andN are disjoint sets. Material parameters of the constituent

materials, listed in Table 1, are specified.

As discussed in Sect. 2.1, we attempt to minimize the target displacement

induced by the temperature increase to find the structure with the minimum thermal

expansion behavior. Consider the equilibrium state of the frame structure when

increase in temperature of DT degrees is given. Let u 2 R
d denote the vector of

nodal displacements, where d is the number of degree of freedom of displacements.

It should be clear that u ¼ 0 when no external load is applied at the ordinary

temperature. For member e 2 E; let Ee;Ge; and ae denote the Young modulus, shear

modulus, and thermal expansion coefficient, respectively. For notational conve-

nience, we use vectors E ¼ ðEe j e 2 EÞ;G ¼ ðGe j e 2 EÞ; and a ¼ ðae j e 2 EÞ:
We use KðE;GÞ 2 R

d�d to denote the stiffness matrix. The equation of thermoe-

lastic equilibrium may be written as

KðE;GÞu� tða;DTÞ ¼ 0; ð2Þ

where tða;DTÞ 2 R
d is the vector of thermal forces. Explicit expression of (2) will

be presented in Sect. 3.1. Thus we attempt to minimize u1 in Fig. 2b under con-

straint (2). Here, it should be clear that Ee;Ge; and ae depend on selection of the

material that constitutes member e. Precisely, we have that Ee ¼ �E1 if e 2
M1;Ee ¼ �E2 if e 2 M2; and Ee ¼ 0 if e 2 N : In the same manner, Ge and ae are
treated as discrete design variables.

The sections of existing members (e 62 N ) are specified a priori. Let �A; �I; and �Z
denote the specified cross-sectional area, moment of inertia, and elastic section

modulus, respectively. We use j to denote the shear correction factor in the

Timoshenko beam theory. These parameters are treated as constants in the

optimization problem.

We next consider the compliance constraint. Without taking into account the

global stiffness of the structure, the topology optimization problem that minimizes

Table 1 The material

parameters of the constituent

materials

Material parameter M1 M2 N

Young’s modulus �E1
�E2 0

Shear modulus �G1
�G2 0

Thermal expansion coefficient �a1 �a2 0

Yield stress �ry1 �ry2 0
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the target displacement has meaningless optimal solutions. As an extreme example,

if all the members of the ground structure vanish, then the target node can move

freely. Such a solution is optimal and, hence, the optimal value is not bounded

below. To make the optimization problem meaningful, we use the upper bound

constraint of the compliance. Suppose that, at the ordinary temperature, external

forces are applied to the interface nodes as shown in Fig. 3. We use ~f 2 R
d to denote

this external load. The displacement vector, ~u 2 R
d; at the equilibrium state in the

presence of ~f is obtained from

KðE;GÞ~u ¼ ~f : ð3Þ

It should be clear that ~u is different from the solution, u, of (2); the latter is the

displacement induced by the thermal change when no external force is applied. The

compliance constraint is then written as

~f> ~u� cu; ð4Þ

where cu [ 0 is the specified upper bound.

Stress constraints are formulated as follows. Consider member e ¼ ði; jÞ 2 E;
which connects node i and node j ði; j 2 VÞ: Let mðiÞ

e and m
ðjÞ
e denote the two end

moments. We use qe to denote the axial force. Since members are subjected to nodal

loads only, the stress constraints are considered only at the two ends of member e.

Based upon a simple piecewise-linear model of yield condition, stress constraint can

be written as

jqej
�A

þ
max jmðiÞ

e j; jmðjÞ
e j

n o

�Z
� rue :

ð5Þ

The upper bound for stress, rue ; depends on the material constituting member e as

rue ¼
�ru1 if e 2 M1;

�ru2 if e 2 M2;

0 if e 2 N ;

8><
>:

ð6Þ

where �ru1 and �ru2 are positive constants.3 For notational convenience, define u :

R
3 ! R by

uðqe;mðiÞ
e ;mðjÞ

e Þ ¼ jqej
�A

þ
max jmðiÞ

e j; jmðjÞ
e j

n o

�Z

¼ jqej
�A

þ 1

2

jmðiÞ
e þ m

ðjÞ
e j

�Z
þ 1

2

jmðiÞ
e � m

ðjÞ
e j

�Z
:

ð7Þ

Then (5) is written as

3 For example, we may determine �ru1 and �ru2 from the yield stresses of the materials and a safety factor;

see Remark 2.
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uðqe;mðiÞ
e ;mðjÞ

e Þ � rue : ð8Þ

Presence of mutually crossing members should be avoided. Let Ecross denote the

set of pairs of members that mutually cross in the ground structure. Namely, we

write ðe; e0Þ 2 Ecross if member e and member e0 cross. Then at least one of these

two members should belong to N : This condition is further equivalent to

fe; e0g 6� M1 [M2; 8ðe; e0Þ 2 Ecross:

By summing up the results in this section, the optimization problem to be solved

is formulated as follows.

min u1 ð9aÞ

s: t: KðE;GÞu� tða;DTÞ ¼ 0; ð9bÞ

uðqeðuÞ;mðiÞ
e ðuÞ;mðjÞ

e ðuÞÞ� rue ; 8e ¼ ði; jÞ 2 E; ð9cÞ

KðE;GÞ~u ¼ ~f ; ð9dÞ

~f> ~u� cu; ð9eÞ

uðqeð~uÞ;mðiÞ
e ð~uÞ;mðjÞ

e ð~uÞÞ� rue ; 8e ¼ ði; jÞ 2 E; ð9fÞ

fe; e0g 6� M1 [M2; 8ðe; e0Þ 2 Ecross; ð9gÞ

ðae;Ee;Ge;r
u
eÞ ¼

ð�a1; �E1; �G1; �ru1Þ if e 2M1;
ð�a2; �E2; �G2; �ru2Þ if e 2M2;
ð0;0;0;0Þ if e 2N ;

8<
: 8e 2 E: ð9hÞ

Here, the decision variables in optimization are u; ~u;M1;M2; and N :We select the

constituent material of each member according to (9h), where fM1;M2;Ng is a

partition of E: Constraints (9b) and (9c) are concerned with the equilibrium state at

the high temperature, and thence the minimal thermal expansion property is

achieved by minimizing u1. Constraints (9d), (9e), and (9f) are concerned with the

equilibrium state at the ordinary temperature, where the fictitious external load, ~f ; is
applied. Constraints on the compliance and member stresses are considered. Pres-

ence of mutually crossing members is forbidden by (9g).

Remark 2 Stress constraint (5) has been derived as follows. Let �ryp denote the yield
stress of material p ðp ¼ 1; 2Þ; which is a given constant. The upper bound stress, �rup;
may be determined as

�rup ¼ �ryp=c;

where c� 1 is a specified safety factor. Then the upper bound stress of member
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e ¼ ði; jÞ is defined by (6). The upper bounds for absolute values of the axial force

and the end moment, denoted que and mu
e ; are given by

que ¼ rue �A; mu
e ¼ rue �Z: ð10Þ

The stress constraints are written at both ends of the member as

jqej
que

þ jmðiÞ
e j

mu
e

� 1;
jqej
que

þ jmðjÞ
e j

mu
e

� 1: ð11Þ

By substituting (10) into (11) and putting together the two inequalities, we obtain

(5).

Remark 3 Generally speaking, in topology optimization the stress constraints

should be imposed only on existing members. In other words, if member e vanishes

in the course of optimization, i.e., if e 2 N ; then the stress constraint on member e

should be removed from the optimization problem (Cheng and Guo 1997; Achtziger

and Kanzow 2008; Rozvany 2001). It should be clear that in this section the stress

constraints, i.e., (9c) and (9f), have been formulated in terms of the axial force and

the two end moments. In the course optimization, all the members have a specified

common section, i.e., �A; �I; and �Z are considered constants, while the material

parameters for e 2 N are ae ¼ Ee ¼ Ge ¼ 0: Therefore, if e ¼ ði; jÞ 2 N ; then we

obtain

qeðuÞ ¼ mðiÞ
e ðuÞ ¼ mðjÞ

e ðuÞ ¼ 0:

This implies that adding the condition

uðqe;mðiÞ
e ;mðjÞ

e Þ� 0; 8e 2 N ð12Þ

to the optimization problem as the constraints does not change the feasible set.

Condition (12) has been actually incorporated in (9c) and (9f).

Remark 4 As explained in Sect. 2.1, the configuration of the unit cell is set to be

symmetric with respect to the dashed line in Fig. 2b. This constraint is formally

written as follows. Let Esym denote the set of pairs of members that are located at

symmetric positions. Namely, we write ðe; e0Þ 2 Esym if member e is swapped with

member e0 by the reflection depicted in Fig. 2b. Then these two members should

have the same material selection, i.e., each ðe; e0Þ 2 Esym should satisfy

e 2 M1 , e0 2 M1; ð13aÞ

e 2 M2 , e0 2 M2; ð13bÞ

e 2 N , e0 2 N : ð13cÞ

In practice, this condition is added to problem (9) as a constraint.

778 M. Hirota, Y. Kanno

123



3 Mixed-integer linear programming approach

In this section we present an MILP approach to the design optimization problem for

finding frame structures with negative thermal expansion properties. As mentioned

in Sect. 2.2, in this design problem each member belongs either M1;M2; orN :We

express this choice by making use of two 0–1 design variables. Section 3.1 presents

explicit forms of the constraints of problem (9). Section 3.2 reformulates problem

(9) as an MILP problem.

3.1 Thermoelastic equilibrium equations with material selection

In this section we write the constraints of problem (9) explicitly as preparation for

the MILP formulation presented in Sect. 3.2. Particular attention is focused on the

thermoelastic equilibrium equation, (9b), in conjunction with the material selection

constraint, (9h). A key is the decomposition of the stiffness matrix of a frame

structure, which was used also in Kureta and Kanno (2014). Two differences from

the previous formulation in Kureta and Kanno (2014) are that we now consider

thermal effect and material selection.

According to Sect. 3.2 of Kureta and Kanno (2014), the equilibrium equation,

KðE;GÞu ¼ f ; ð14Þ

is decomposed into the force-balance equation written as

X
e2E

X3
t¼1

setbet ¼ f ð15Þ

and the relations between the generalized stresses and the displacement vector

written as

set ¼ ketb
>
etu; t ¼ 1; 2; 3; 8e 2 E: ð16Þ

Here, be1; be2; be3 2 R
d ð8e 2 EÞ are constant vectors. Constants ke1; ke2; ke3 2

R ð8e 2 EÞ are defined by

ke1 ¼
EeAe

le
; ð17aÞ

ke2 ¼
1

le

l2e
12EeIe

þ 1

jGeAe

� ��1

; ð17bÞ

ke3 ¼
EeIe

le
; ð17cÞ

where Ae is the cross-sectional area, Ie is the moment of inertia, and le is the

undeformed length of beam element e. In (17b), we define ke2 ¼ 0 if Ee ¼ Ge ¼ 0

for convention. By eliminating set’s, we see that (15) and (16) revert to (14).

Optimal design of structures with negative thermal expansion 779

123



Expression in (15) and (16) serves as basis of our MILP formulation. Details of the

decomposition above appear in appendix 7.

The equation of thermoelastic equilibrium, (2), can be written explicitly as

follows. Let le denote the undeformed length of member e e 2 Eð Þ: Due to

temperature change DT, the length of the member becomes leð1þ aeDTÞ:
Therefore, the relation between the axial force and the displacements, i.e., t = 1

in (16), is now given by

se1 ¼ ke1ðb>e1ue � leaeDTÞ:

Since we assume that thermal expansions in directions other than the axial direction

are negligible, se2 and se3 are given by (16). Recall that, in the course of opti-

mization, coefficients ke1; ke2; ke3; and ae are determined by the material selected for

member e. By incorporating this selection, we see that the equation of thermoelastic

equilibrium can be written explicitly as

X
e2E

X3
t¼1

setbet ¼ 0; ð18aÞ

se1 ¼
�ke11ðb>e1u� le�a1DTÞ if e 2 M1;
�ke12ðb>e1u� le�a2DTÞ if e 2 M2;
0 if e 2 N ;

8<
: ð18bÞ

set ¼
�ket1b

>
etu if e 2 M1;

�ket2b
>
etu if e 2 M2;

0 if e 2 N ;

8<
: t ¼ 2; 3; ð18cÞ

where constants �ketp ðt ¼ 1; 2; 3; p ¼ 1; 2Þ are defined by

�ke1p ¼
�Ep

�A

le
; ð19aÞ

�ke2p ¼
1

le

l2e
12�Ep

�I
þ 1

�Gpj�A

� ��1

; ð19bÞ

�ke3p ¼
�Ep
�I

le
: ð19cÞ

The displacement in the compliance constraint, (9e), is defined by the

equilibrium equation at the ordinary temperature, (9d). By using expression in

(15) and (16), (9d) can be rewritten as

X
e2E

X3
t¼1

~setbet ¼ ~f ; ð20aÞ

~set ¼ ketb
>
et ~u; t ¼ 1; 2; 3; e 2 E; ð20bÞ

where ket ¼ �ketp if e 2 Mp; otherwise ket ¼ 0; as explicitly written in (18).
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It is useful to rewrite the stress constraints, i.e., (9c) and (9f), in terms of the

generalized stresses, set ðt ¼ 1; 2; 3Þ: It follows from (7) and (48) (in appendix 7)

that (9c) can be rewritten as

jse1j
�A

þ 1

2

lejse2j
�Z

þ jse3j
�Z

� rue : ð21Þ

Similarly, (9f) can be rewritten as

j~se1j
�A

þ 1

2

lej~se2j
�Z

þ j~se3j
�Z

� rue : ð22Þ

It should be clear that rue in (21) and (22) depends on material selection for member

e; see (6).

As the upshot of this section, it is worth noting that constraints (18b), (18c), (20b),

(21), and (22) involve terms depending on material selections. This reflects intrinsical

combinatorial properties of our design problem. In Sect. 3.2 we shall introduce some

binary variables to treat these constraints within the framework of MILP.

3.2 Reformulation to mixed-integer linear programming problem

In this section, optimization problem (9) presented in Sect. 2.2 is reduced to an

MILP problem. We make use of the formulations developed in Sect. 3.1 for

thermoelastic equilibrium equations.

As mentioned earlier, the design problem is interpreted as finding a partition of a

set of members, (1), such that the objective function is minimized. A key idea to

deal with this partition in our optimization problem is making use of integer

variables that serve as labels of members. Specifically, we use two 0-1 variables,

ðxe1; xe2Þ 2 f0; 1g2; ð23Þ

to express the label of member e 2 E as

ðxe1; xe2Þ ¼ ð1; 0Þ , e 2 M1; ð24aÞ

ðxe1; xe2Þ ¼ ð0; 1Þ , e 2 M2; ð24bÞ

ðxe1; xe2Þ ¼ ð0; 0Þ , e 2 N : ð24cÞ

These variables are subjected to the constraint

xe1 þ xe2 � 1: ð25Þ

We begin by reformulating constraint (18), i.e., the equilibrium equation at the

high temperature. Since (18a) is a linear constraint, attention is focused on (18b) and

(18c). By making use of xe1 and xe2 in (24), (18b) can be rewritten as

jse1 � �ke1pðb>e1u� le�apDTÞj � Lð1� xepÞ; p ¼ 1; 2; ð26aÞ

jse1j � Lðxe1 þ xe2Þ; ð26bÞ
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where L � 0 is a sufficiently large constant. Similarly, (18c) is equivalent to

jset � �ketpðb>etuÞj � Lð1� xepÞ; p ¼ 1; 2; t ¼ 2; 3; ð27aÞ

jsetj � Lðxe1 þ xe2Þ; t ¼ 2; 3: ð27bÞ

We next consider the stress constraint, (21). Note that rue in (21) is defined by (6),

i.e.,

rue ¼ �ru1xe1 þ �ru2xe2:

Hence, (21) is equivalent to

jse1j
�A

þ lejse2j
2�Z

þ jse3j
�Z

� �ru1xe1 þ �ru2xe2: ð28Þ

Constraint (22) can be rewritten by using xe1 and xe2 similarly. By imposing (28) on

the optimization problem as a constraint, constraints (26b) and (27b) become re-

dundant and, thence, are omitted.

Constraint (9g), which avoids existence of mutually intersecting members, can

also be written in terms of xe1 and xe2: Observe that xe1 þ xe2 ¼ 1 holds if and only

if e 2 M1 [M2: Therefore, (9g) is equivalent to

xe1 þ xe2 þ xe01 þ xe02 � 1; 8ðe; e0Þ 2 Ecross: ð29Þ

By summing up the results above, problem (9) is reduced to the following MILP

problem:

min u1 ð30aÞ

s: t:
X
e2E

X3
t¼1

setbet ¼ f ; ð30bÞ

jse1 � �ke1pðb>e1u� le�apDTÞj � Lð1� xepÞ; p ¼ 1; 2; 8e; ð30cÞ

jset � �ketpb
>
etuj�Lð1� xepÞ; t¼ 2;3; p¼ 1;2; 8e; ð30dÞ

jse1j
�A

þ lejse2j
2�Z

þ jse3j
�Z

�
X2
p¼1

�rupxep; 8e; ð30eÞ

X
e2E

X3
t¼1

~setbet ¼ ~f ; ð30fÞ

j~set� �ketpb
>
et ~uj�Lð1�xepÞ; t¼ 1;2;3; p¼ 1;2; 8e; ð30gÞ

~f> ~u� cu; ð30hÞ
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j~se1j
�A

þ lej~se2j
2�Z

þ j~se3j
�Z

�
X2
p¼1

�rupxep; 8e; ð30iÞ

xe1 þ xe2 þ xe01 þ xe02 � 1; 8ðe; e0Þ 2 Ecross; ð30jÞ

xe1 þ xe2 � 1; 8e; ð30kÞ

xe1; xe2 2 f0; 1g; 8e: ð30lÞ

Here, continuous variables are u 2 R
d; ~u 2 R

d; set 2 R; and ~set 2 R ð8e 2 E; t ¼
1; 2; 3Þ; while 0-1 variables are xe1 and xe2 ð8e 2 EÞ: All the constraints other than

the integrality constraints, (30l), are linear constraints. Thus, problem (30) is an

MILP problem, and hence it can be solved globally with, e.g., a branch-and-cut

method. Several software packages, e.g., CPLEX (IBM ILOG 2013), Gurobi Op-

timizer (Gurobi 2013), and SCIP (Achterberg 2009), are available for this purpose.

Remark 5 Constraints (30c), (30d), (30e), (30g), and (30i) involve absolute values.

These constraints can be rewritten as some linear inequalities. For instance,

constraint (30c) is reduced to

�Lð1� xepÞ� se1 � �ke1pðb>e1u� le�apDTÞ� Lð1� xepÞ; p ¼ 1; 2; 8e:

The other constraints can be dealt with similarly.

Remark 6 In Remark 4, the constraint on symmetry in configuration of the base

cell was formulated as (13). This constraint can also be rewritten in terms of 0-1

variables, xe1 and xe2 ðe 2 EÞ: Recall that ðe; e0Þ 2 Esym means that member e and

member e0 are located at symmetric positions. Then the symmetry constraint, (13),

is equivalently rewritten as

ðxe1; xe2Þ ¼ ðxe01; xe02Þ; 8ðe; e0Þ 2 Esym:

In practice, this condition is added to problem (30) as linear equality constraints.

Remark 7 The approach developed above can be extended to a case in which more

than two constituent materials are available to design a structure. For instance,

suppose that three materials, i.e., M1; M2; and M3; are available. Contrary to

(24), in this case we use three 0–1 variables to express selection of material for

member e as

ðxe1; xe2; xe3Þ ¼ ð1; 0; 0Þ , e 2 M1;

ðxe1; xe2; xe3Þ ¼ ð0; 1; 0Þ , e 2 M2;

ðxe1; xe2; xe3Þ ¼ ð0; 0; 1Þ , e 2 M3;

ðxe1; xe2; xe3Þ ¼ ð0; 0; 0Þ , e 2 N :

Constraint (25) is then replaced with

xe1 þ xe2 þ xe3 � 1:
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The other constraints can also be rewritten by using xe1; xe2; and xe3 ð8e 2 EÞ in a

straightforward manner.

4 Separation of material distribution domains

A base cell consists of two materials. Distributions of the materials at the optimal

solution can possibly become complicated. Then the base cell becomes assemblage

of many small pieces, each of which consists of a single material; see Fig. 9d in

Sect. 5.1 for a typical example. Such complex material distributions in a base cell

may cause difficulty in the manufacture of the periodic structure. This motivates us

in this section to develop a formulation of the design problem that can avoid mixture

of material distributions. Section 4.1 introduces binary variables used for

representing the material domains on a given ground structure. Section 4.2 shows

that the design optimization problem with the separation constraint on material

distributions can be recast as an MILP problem.

4.1 Notion of material domains

The optimal solution of the problem formulated in Sect. 3 may possibly have

complicated material distributions in a base cell, which can be a source of difficulty

in the actual fabrication process.4 In the following, for an obtained base cell, we call

the set of members consisting of a single material a material domain. We say that

two material domains are separated if there exists a (closed) curve that separates

two domains.

Steeves et al. (2007) used base cells with separated material domains to create

planar periodic lattices exhibiting negative thermal expansion properties; subse-

quently, these lattices were studied further in Steeves and Evans (2011) and Steeves

et al. (2009). In these base cells, the material with low thermal expansion is placed

outside of the material with high thermal expansion. Hence, when temperature is

elevated, compression forces will act on interfaces between two different materials.

Due to these compression forces, bonding between two materials will be

strengthened automatically. Thus, placing the material with low thermal expansion

outside of the material with high thermal expansion might have a practical

advantage. In the following, we suppose �a1 [ �a2 without loss of generality and

attempt to place M2 outside of M1: Note that we do not consider explicit

constraints that prohibit tension forces at interfaces between two different materials.

4 By using a modern sophisticated processing technique, we can probably fabricate periodic structures

with complicated configurations. For instance, Chen et al. (2001) used a direct metal deposition, which

melts powdered metals by laser, to fabricate a periodic structure with negative thermal expansion, which

was found by three-phase topology optimization. Also, Qi and Halloran (2004) fabricated the structure in

Chen et al. (2001) with microfabrication by co-extrusion, which is a powder based thermoplastic

processing technique. Therefore, with such a processing technique, it is probably possible to fabricate the

optimal solutions obtained by using the formulation in Sect. 3. In Sect. 4 we attempt to find a design

which can be fabricated even with a more naive technique.
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Therefore, at the optimal solution it is not guaranteed that forces acting at those

interfaces are compressive.

To separate distributions of the two materials on a ground structure, we introduce

the notion of material domains as follows. Recall that E is the set of members of the

ground structure. Consider partition E ¼ D1 [ D2 of E; where D1 D2 are the sets of

members that can be constituted by material 1 and material 2, respectively. Namely,

M1 and M2 should satisfy

M1 � D1; M2 � D2:

For node i 2 V; let zi 2 f0; 1g be a binary variable. We represent D1 and D2 by

using zi ð8i 2 VÞ as

zi þ zj � 1 , e ¼ ði; jÞ 2 D1; ð31aÞ

zi þ zj ¼ 2 , e ¼ ði; jÞ 2 D2; ð31bÞ

see Fig. 4 for an example. To place M2 outside ofM1; we introduce the constraints
that nodes near the center of the base cell satisfy zi ¼ 0 and nodes exterior of the

base cell satisfy zi ¼ 1: Roughly speaking, if node i is farther than node j from the

origin, O, in Fig. 4, then we impose the constraint

zi � zj; ð32Þ

see, for details, (39), (40), and (41) in section 4.2.

Besides zi ð8i 2 VÞ; we use variable xe 2 f0; 1g which serves as an indicator of

existence of member e 2 E: Namely, existence of member e is represented as

xe ¼ 1 , e 2 M1 [M2; ð33aÞ

xe ¼ 0 , e 2 N : ð33bÞ

It follows from (31) and (33) that selection of the material for member e is ex-

pressed as

xe ¼ 1; zi þ zj � 1 , e 2 M1; ð34aÞ

xe ¼ 1; zi þ zj ¼ 2 , e 2 M2; ð34bÞ

xe ¼ 0; zi þ zj � 2 , e 2 N : ð34cÞ

In the optimization process we shall determine xe ð8e 2 EÞ and zi ð8i 2 VÞ:

4.2 MILP formulation with domain separation constraint

This section demonstrates that, under the setting introduced in Sect. 4.1, the design

optimization problem can be formulated as an MILP problem. To see this, we show

that the constraints in Sect. 3.2, which have been formulated with variables

ðxe1; xe2Þ 2 f0; 1g2 ð8e 2 EÞ; can now be rewritten with xe 2 f0; 1g ð8e 2 EÞ and
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zi 2 f0; 1g ð8i 2 VÞ: The equilibrium equations together with the stress constraints,

the compliance constraint, the constraint prohibiting intersection of members, and

the constraint on symmetry in the configuration are considered. Also, we handle the

constraint separating the material domains, D1 and D2: All these constraints shall be
formulated as linear constraints in terms of xe’s, zi’s, and some continuous variables.

We begin by rewriting (18), i.e., the equilibrium equation at the high

temperature, with binary variables xe and zi: Since (18a) is independent of material

selection, attention is focused on (18b) and (18c). Referring to (34), we can rewrite

(18b) for each e ¼ ði; jÞ 2 E as

jse1 � �ke11ðb>e1u� le�a1DTÞj � Lð1� xe þ ziÞ; ð35aÞ

jse1 � �ke11ðb>e1u� le�a1DTÞj � Lð1� xe þ zjÞ; ð35bÞ

jse1 � �ke12ðb>e1u� le�a2DTÞj � Lð3� xe � zi � zjÞ; ð35cÞ

jse1j � Lxe; ð35dÞ

where L � 0 is a sufficiently large constant. In the same manner, (18c) can be

reduced to linear inequality constraints by using xe; zi; and zj:
We next consider the stress constraints in (21), where rue is defined by (6).

Referring to (34), we see that (21) with (6) can be rewritten by using xe andzi as

jse1j
�A

þ lejse2j
2�Z

þ jse3j
�Z

� �ru1ð2� zi � zjÞ þ �ru2zi; ð36aÞ

jse1j
�A

þ lejse2j
2�Z

þ jse3j
�Z

� �ru1ð2� zi � zjÞ þ �ru2zj; ð36bÞ

jse1j
�A

þ lejse2j
2�Z

þ jse3j
�Z

� �ru1ð1þ zi þ zjÞ þ �ru2ðzi þ zjÞ: ð36cÞ

The equilibrium equations at the ordinary temperature are given by (20). Here,

(20a) is a system of linear equality constraints. On the other hand, (20b) can be

Fig. 4 An example of values of
zi ð8i 2 VÞ and the
corresponding material domains,
D1 and D2
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rewritten as linear inequality constraints by using xe and zi in the same manner as

(35). Also, the stress constraints, (22), can be reformulated in the same manner as

(36).

The constraint prohibiting existence of mutually crossing members is given by

(9g). By using (33), this constraint can be rewritten in terms of xe’s as

xe þ xe0 � 1; 8ðe; e0Þ 2 Ecross: ð37Þ

The constraint on symmetry of the base cell is formulated as follows. Unlike

Remark 6, we now have to use variables xe and zi to write this constraint. Recall

that ðe; e0Þ 2 Esym means that member e and member e0 are located at symmetric

positions. Similarly, we write ði; jÞ 2 Vsym if node i is swapped with node j by the

reflection depicted in Fig. 2(b). Then the symmetry constraint is given by

xe ¼ xe0 ; 8ðe; e0Þ 2 Esym; ð38aÞ

zi ¼ zj; 8ði; jÞ 2 Vsym: ð38bÞ

Finally we consider the constraint for separating material domains, D1 and D2:
An essential idea for this constraint has been sketched in Sect. 4.1; see (32). Explicit

forms of this constraint depend on the shape of a ground structure. In this paper we

restrict ourselves to ground structures with grid shapes such as the one in Fig. 4.

Due to symmetry, we consider only the upper triangular portion. First, let Vupper 	
V denote the set of nodes that are located above the diagonal line; see Fig. 5(a). For

i 2 Vupper; the node located just below node i is called node The X-coordinates of

node i and node r1(i) are the same. Hence, node i is farther than node r1(i) from the

origin, O, of the coordinate system illustrated in Fig. 5. Recall that member e ¼
ði; jÞ 2 E can satisfy ði; jÞ 2 M2 only if zi ¼ zj ¼ 1; see (31). Since we attempt to

(a) (b)

Fig. 5 Notation for the domain separation constraints. a The set of nodes depicted by filled circles is
Vupper; and b the set of nodes depicted by filled circles is Vdiag
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place M2 outside of M1; we require zr1ðiÞ ¼ 0 if the outside node, i 2 Vupper;

satisfies zi ¼ 0: For this reason we consider the following constraint:

zi � zr1ðiÞ; 8i 2 Vupper: ð39Þ

Second, consider the nodes on the diagonal of the base cell. We denote by Vdiag 	 V
the set of these nodes as shown in Fig. 5(b). Note that we exclude the top rightmost

node from Vdiag for notational convenience. For i 2 Vdiag; the diagonal node just

outside of node i is called node r2(i). Node r2(i) is farther than node i from the

origin, O. Hence, if zr2ðiÞx ¼ 0; then the inside node, i, should satisfy zi ¼ 0: This

motivates us to consider the following constraint:

zr2ðiÞ � zi; 8i 2 Vdiag: ð40Þ

For i 2 Vdiag; consider nodes r�1
1 ðiÞ and r2(i), where r�1

1 ðiÞ is defined by

r1ðr�1
1 ðiÞÞ ¼ i: As listed in Fig. 6, there exist five cases of ðzi; zr�1

1
ðiÞ; zr2ðiÞÞ satisfying

(39) and (40). Among these five patterns, only the rightmost one is not acceptable,

because a member of M2 is surrounded by members of M1: It is observed from the

bottom row of Fig. 6 that this unacceptable pattern can be excluded by adding the

following constraint:

zr�1
1

ðiÞ � zr2ðiÞ þ zi; 8i 2 Vdiag: ð41Þ

Thus all the constraints are written as linear constraints in terms of u 2 R
d; ~u 2

R
d; set 2 R; ~set 2 R; xe 2 f0; 1g; and si 2 f0; 1g ð8e 2 E; 8i 2 V; t ¼ 1; 2; 3Þ:

Therefore, the optimization problem considered in this section can be recast as an

MILP problem.

We elaborate the full description of this MILP formulation with comparing with

MILP problem (30) in Sect. 3.2, i.e., the one without the separation constraint. First,

the objective function is same as the one of problem (30). Namely, we minimize the

displacement of the interface node, u1.

Second, the constraints are given as follows.

– Constraints (30b), (30f), and (30h) are retained without change, i.e.,

Fig. 6 Enumeration of ðzi; zr�1
1

ðiÞ; zr2ðiÞÞ satisfying (39) and (40) for i 2 Vdiag and the corresponding

material distributions. The values of zr�1
1

ðiÞ � ðzr2ðiÞ þ ziÞ are listed in the bottom row
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X
e2E

X3
t¼1

setbet ¼ f ; ð42Þ

X
e2E

X3
t¼1

~setbet ¼ ~f ; ð43Þ

~f> ~u � cu: ð44Þ

– Corresponding to constraints (30c) and (30d), relations between the generalized

stresses and the displacements caused by the elevation of temperature are given

as

jse1 � �ke11ðb>e1u� le�a1DTÞj � Lð1� xe þ ziÞ; 8e ¼ ði; jÞ;
jse1 � �ke11ðb>e1u� le�a1DTÞj � Lð1� xe þ zjÞ; 8e ¼ ði; jÞ;
jse1 � �ke12ðb>e1u� le�a2DTÞj � Lð3� xe � zi � zjÞ; 8e ¼ ði; jÞ;
jse1j � Lxe; 8e

and

jset � �ket1b
>
etuj � Lð1� xe þ ziÞ; t ¼ 2; 3; 8e ¼ ði; jÞ;

jset � �ket1b
>
etuj � Lð1� xe þ zjÞ; t ¼ 2; 3; 8e ¼ ði; jÞ;

jset � �ket2b
>
etuj � Lð3� xe � zi � zjÞ; t ¼ 2; 3; 8e ¼ ði; jÞ;

jsetj � Lxe; t ¼ 2; 3; 8e:

– Instead of (30e), the stress constraints at the elevated temperature are written as

jse1j
�A

þ lejse2j
2�Z

þ jse3j
�Z

� �ru1ð2� zi � zjÞ þ �ru2zi; 8e ¼ ði; jÞ;

jse1j
�A

þ lejse2j
2�Z

þ jse3j
�Z

� �ru1ð2� zi � zjÞ þ �ru2zj; 8e ¼ ði; jÞ;

jse1j
�A

þ lejse2j
2�Z

þ jse3j
�Z

� �ru1ð1þ zi þ zjÞ þ �ru2ðzi þ zjÞ; 8e ¼ ði; jÞ:

– Corresponding to constraint (30g), relations between the generalized stresses

and the displacements caused by the fictitious external load are given as

j~set � �ket1b
>
et ~uj � Lð1� xe þ ziÞ; t ¼ 1; 2; 3; 8e ¼ ði; jÞ;

j~set � �ket1b
>
et ~uj � Lð1� xe þ zjÞ; t ¼ 1; 2; 3; 8e ¼ ði; jÞ;

j~set � �ket2b
>
et ~uj � Lð3� xe � zi � zjÞ; t ¼ 1; 2; 3; 8e ¼ ði; jÞ;

j~setj � Lxe; t ¼ 1; 2; 3; 8e:

– Instead of constraint (30i), the stress constraints at the ordinary temperature are

given as
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j~se1j
�A

þ lej~se2j
2�Z

þ j~se3j
�Z

� �ru1ð2� zi � zjÞ þ �ru2zi; 8e ¼ ði; jÞ;

j~se1j
�A

þ lej~se2j
2�Z

þ j~se3j
�Z

� �ru1ð2� zi � zjÞ þ �ru2zj; 8e ¼ ði; jÞ;

j~se1j
�A

þ lej~se2j
2�Z

þ j~se3j
�Z

� �ru1ð1þ zi þ zjÞ þ �ru2ðzi þ zjÞ; 8e ¼ ði; jÞ:

– Instead of constraint (30j), the constraint prohibiting intersection of members is

given as

xe þ xe0 � 1; 8ðe; e0Þ 2 Ecross:

– Concerning symmetry of the base cell, we have the following constraints:

xe ¼ xe0 ; 8ðe; e0Þ 2 Esym;

zi ¼ zj; 8ði; jÞ 2 Vsym:

– Concerning separation of material distributions, we have the following

constraints:

zr1ðiÞ � zi; 8i 2 Vupper;

zi � zr2ðiÞ; 8i 2 Vdiag;

zr�1
1

ðiÞ � zi þ zr2ðiÞ; 8i 2 Vdiag:

– Finally, binary constraints are

xe 2 f0; 1g; 8e 2 E;
zi 2 f0; 1g; 8i 2 V:

Thus the optimization problem is an MILP problem, where u 2 R
d; ~u 2 R

d; set 2
R; ~set 2 R; xe 2 f0; 1g; and si 2 f0; 1g ð8e 2 E; 8i 2 V; t ¼ 1; 2; 3Þ are variables to
be optimized.

5 Numerical experiments

In this section we perform numerical experiments by solving the proposed MILP

problems. Section 5.1 collects design examples of the formulation presented in Sect.

3 (called formulation (I)), while Sect. 5.2 collects the ones of the formulation

developed in Sect. 4 (called formulation (II)). Section 5.3 examines a simple

heuristic strategy, using techniques already implemented in the MILP solver, for

larger instances. Computation was carried out on 2.66 GHz 6-Core Intel Xeon

Westmere processors with 64 GB RAM. MILP problems were solved by using

CPLEX ver. 12.2 (IBM ILOG 2013). As for parameters of CPLEX, the integrality
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tolerance and feasibility tolerance were set to ¼ 10�8: The other parameters of

CPLEX were set to the default values.

Each existing member has a rectangular cross-section with width �w ¼ 1mm and

thickness �t ¼ 1mm: The cross-sectional area, the elastic section modulus, and the

moment of inertia are given by

�A ¼ �t �w ¼ 1mm2; �Z ¼ 1

6
�t �w2 ¼ 1

6
mm3; �I ¼ 1

12
�t �w3 ¼ 1

12
mm4:

The shear correction factor of Timoshenko elements is j ¼ 5=6: The constant L in

problem (30) is given as follows. We actually use different values for

e 2 E; t ¼ 1; 2; 3, and p ¼ 1; 2: Namely, the constants on the right-hand side of

(30c) are specified as Le1p ¼ �ke1ple=lcell; where lcell is the side length of a unit cell.

The constants on the right-hand side of (30d) are

Le2p ¼
1

lcell

l2cell
12�Ep

�I
þ 1

j �Gp
�A

� ��1

; Le3p ¼ �ke3p
le

lcell
:

The constants L in (30g) are specified in a similar manner. These values were

determined from preliminary numerical experiments, although there might remain

room for tightening these values. It seems to be difficult to predict the smallest

allowable value of L in advance.

The material parameters of two constituent materials, approximating an

aluminium alloy (7075-T6) and a titanium alloy (Ti-6Al-4V), are listed in Table 2.

The temperature change is DT ¼ 200K: The side length of a unit cell is lcell ¼
24mm: Concerning the compliance constraint in (30h), the upper bound for the

compliance is cu ¼ 10�2 J ð¼ 10�2 N �mÞ and a force of 1N is applied as fictitious

external load, ~f : As explained in Sect. 2.2, this compliance constraint is used to

avoid meaningless solutions by ensuring that there exists a connected path between

interface nodes. Certainly, cu can be set to a smaller value if more global stiffness,

in terms of the compliance against the assumed external load, is required.

5.1 Formulation (I)

This section presents the results obtained by solving problem (30) in Sect. 3.2.

Hence, the separation constraint on material distributions is not considered. As for

connection pattern of base cells, the two cases shown in Fig. 1 are considered. We

consider the two ground structures shown in Fig. 7. The frame structure in Fig. 7a

Table 2 Material properties of the constituent materials used in the numerical examples

Material 1 (M1) Material 2 (M2)

Young’s modulus �E1 ¼ 70GPa �E2 ¼ 110GPa

Shear modulus �G1 ¼ 25GPa �G2 ¼ 45GPa

Thermal expansion coefficient �a1 ¼ 25� 10�6 K�1 �a2 ¼ 10� 10�6 K�1

Upper bound for stress �ru1 ¼ 340MPa �ru2 ¼ 860MPa
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consists of jVj ¼ 3� 3 ¼ 9 nodes and jEj ¼ 28 members, while the one in Fig. 7b

consists of jVj ¼ 4� 4 ¼ 16 nodes and jEj ¼ 66 members.

5.1.1 Connection pattern (A) with formulation (I)

We begin with the results for connection pattern (A). The optimal solutions obtained

for the two ground structures are shown in Fig. 8a and c. In these figures, black lines

and gray lines show members that consist of material 1 (M1) and material 2 (M2),

respectively. The computational results are listed in Table 3. Here, ‘‘time’’ shows

the computational time spent by CPLEX (IBM ILOG 2013), ‘‘# of nodes’’ reports

the number of enumeration nodes explored by CPLEX, ‘‘# of cuts’’ is the number of

cuts added by CPLEX, and the optimal value means the displacement of the

interface node. Since the optimal values are negative in both cases, structures

possessing thermal contraction properties are successfully obtained. CPLEX

requires more than 66 h to solve the problem instance with the larger ground

structure in Fig. 7b.

Figure 8b and d show the optimized base cells. Deformations due to the thermal

increase, DT ¼ 200K; are also depicted in these figures, where displacements are

magnified 920. It is observed in Fig. 8b that M1; i.e., the material with the higher

thermal expansion coefficient, forms a star-shaped octagon, i.e., an octagon with

four reentrant corners. Also, in Fig. 8d we can find a reentrant polygon consisting of

M1: Similar shapes can be found in structures with negative Poisson’s ratio

(Sigmund and Torquato 1997); see, e.g., Lakes (1987), Kureta and Kanno (2014),

and Theocaris et al. (1997) for star-shaped structures with negative Poisson’s ratio.

5.1.2 Connection pattern (B) with formulation (I)

We next consider connection pattern (B). The two ground structures in Fig. 7 are

used. For connection pattern (B), we minimize the vertical displacement of the top-

right node.

(a) (b)

Fig. 7 The ground structures for the experiments with formulation (I). a The frame structure with
jVj ¼ 3� 3 nodes; and b the frame structure with jVj ¼ 4� 4 nodes
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The optimal solutions are shown in Fig. 9a and c. The computational results are

listed in Table 3. Figure 9b and d show the thermal deformations of the optimized

base cells. Material 1 (M1) in Fig. 9b forms a dodecagon with four reentrant

corners. In Fig. 9d, we can find a star-shaped octagon consists of material 1. In this

base cell, distributions of the two materials are intricately mixed. In contrast,

distributions in Fig. 9b are separated quite clearly. Indeed, in this solution, the four

(a) (b)

(c) (d)

Fig. 8 The optimal solutions of formulation (I) with connection pattern (A). a The optimal topology
obtained from the ground structure in Fig. 7a; and b its deformed configuration at the high temperature. c)
The optimal topology obtained from the ground structure in Fig. 7b; and d its deformed configuration at
the high temperature. Black lines show M1 (material 1) and gray lines show M2 (material 2).
Displacements in (b) and (d) are magnified 920

Table 3 Computational results of the experiments with formulation (I)

jVj Pattern Time (s) # of nodes # of cuts Optimal value (mm)

3 9 3 (A) 14.2 21,891 15 -6.8785 9 10-2

4 9 4 (A) 237,712.7 101,573,597 95 -10.0626 9 10-2

3 9 3 (B) 23.3 52,381 22 -0.8437 9 10-2

4 9 4 (B) 490,286.8 474,076,549 94 -4.6005 9 10-2
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exterior members consisting of material 2 are used for connection with adjacent

cells can be replaced by material 1, although this makes the objective value worse a

little. The negative thermal expansion property stems mainly from the reentrant

dodecagon and its interior members.

The optimized base cells obtained in Sects. 5.1.1 and 5.1.2 have the following

characteristics; see Figs. 8b, d and 9b, d. The material with high thermal expansion

(M1) forms a polygon with some reentrant corners. A structure consisting of the

material with low thermal expansion (M2) is placed inside of the polygon. When

temperature is elevated, expansion of the polygon is partially blocked by the interior

structure and, as a result, the reentrant corners of the polygon move towards interior

of the base cell. This explains the negative thermal expansion properties of the

obtained solutions. Also, from this observation we see that the interfaces between

the two different materials, i.e., the interfaces of the reentrant polygon (M1) and its

interior structure (M2), primarily undergo tension forces. In contrast, in Sect. 5.2

we explore base cells such that M1 is surrounded by M2 by using the formulation

developed in Sect. 4. In such a solution we expect that the interfaces between the

two different materials undergo compression forces.

(a) (b)

(c) (d)

Fig. 9 The optimal solutions of formulation (I) with connection pattern (B). a The optimal topology
obtained from the ground structure in Fig. 7a; and b its deformed configuration at the high temperature
(displacements are magnified950). c The optimal topology obtained from the ground structure in Fig. 7b;
and d its deformed configuration at the high temperature (displacements are magnified 920). Black lines
show M1(material 1) and gray lines show M2 (material 2)
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5.2 Formulation (II)

This section performs the numerical experiments that incorporates the separation

constraint on material distribution, which has been presented in Sect. 4. We consider

the two ground structures shown in Fig. 10. The frame structure in Fig. 10a consists

of jVj ¼ 3� 3 nodes and jEj ¼ 20 members, while the one in Fig. 10b consists of

jVj ¼ 4� 4 nodes and jEj ¼ 42 members. As for connection pattern of base cells,

the two cases shown in Fig. 1 are considered.

5.2.1 Connection pattern (A) with formulation (II)

We first consider connection pattern (A). The optimal solutions obtained for the two

ground structures in Fig. 10 are shown in Fig. 11a and c. Figure 11b and d show the

thermal deformations of the optimal base cells. It is observed in these figures that

M2; i.e., the material with lower thermal expansion coefficient, is distributed on the

outer side of M1; i.e., the one with the higher thermal expansion coefficient.

Moreover, in Fig. 11d, M1 forms a hexadecagon with four reentrant corners.

The computational time and the optimal values are listed in Table 4. It is

observed that in both cases the optimal solutions realize thermal contraction.

CPLEX requires about 2.6 h to solve the larger instance.

5.2.2 Connection pattern (B) with formulation (II)

We next consider connection pattern (B). The obtained optimal solutions are shown

in Fig. 12a and c. The thermal deformations of the optimal base cells are depicted in

Fig. 12b and d. The computational costs and the optimal values are listed in Table 4.

In these examples, both solutions do not exhibit negative thermal expansion.

Finally we discuss properties of the optimal solutions obtained in Sects. 5.2.1 and

5.2.2; see Figs. 11a, d and 12b, d. The low thermal expansion material (M2) is

placed outside of the high thermal expansion material (M1), as expected.

Particularly, it is observed in Fig. 12(d) that, when temperature is elevated, the

(a) (b)

Fig. 10 The ground structures for the experiments with formulation (II). a The frame structure with
jVj ¼ 3� 3 nodes; and b the frame structure with jVj ¼ 4� 4 nodes
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four interfaces between M1 and M2 undergo compression forces. Therefore,

bonding between two materials is automatically strengthened by elevation of

temperature. From a practical point of view, this might be an advantage over the

solutions obtained in Sect. 5.1. However, the solution in Fig. 12d has a, very small

but, nonnegative thermal expansion coefficient. Essential mechanism from which

near zero thermal expansion stems is similar to the ones studied by Steeves et al.

(2007). In the solutions shown in Figs. 11b, d and 12b, the interior structures

(a) (b)

(c) (d)

Fig. 11 The optimal solutions of formulation (II) with connection pattern (A). a The optimal topology
obtained from the ground structure in Fig. 10a; and b its deformed configuration at the high temperature
(displacements are magnified 950). c The optimal topology obtained from the ground structure in Fig.
10b; and d its deformed configuration at the high temperature (displacements are magnified 920). Black
lines show M1 (material 1) and gray lines show M2 (material 2)

Table 4 Computational results of the experiments with formulation (II)

jVj Pattern Time (s) # of nodes # of cuts Optimal value (mm)

3 9 3 (A) 7.0 7836 29 -0.2597 9 10-2

4 9 4 (A) 9499.5 4,274,215 222 -5.1059 9 10-2

3 9 3 (B) 5.8 7514 54 2.3919 9 10-2

4 9 4 (B) 11,269.0 8,974,070 236 0.1864 9 10-2
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consisting of material 1 (M1) are disconnected. A unit cell with a negative thermal

expansion property and a connected interior structure consisting of M1 is found in

the experiment presented in Sect. 5.3.2.

5.3 A heuristic approach

It was observed in Sects. 5.1 and 5.2 that the MILP solver, CPLEX, requires large

computational time to solve the problems of the grand structures with jVj ¼
4� 4 ¼ 16 nodes. In this section we attempt to obtain high quality, hopefully nearly

optimal, solutions of larger instances by making use of the heuristics already

implemented in the MILP solver. Sometimes it happens that the solver finds very

good solutions quickly and spends a large amount of time proving the optimality of

the incumbent solution or make minor improvements to it. In such a case, the best

feasible solution found within a limited small amount of time can be adopted as a

good solution, if we do not require proof of optimality. This simple strategy is tested

as a heuristic to large instances. We use timelimit parameter to specify the

(a) (b)

(c) (d)

Fig. 12 The optimal solutions of formulation (II) with connection pattern (B). a The optimal topology
obtained from the ground structure in Fig. 10a; and b its deformed configuration at the high temperature
(displacements are magnified 950). c The optimal topology obtained from the ground structure in Fig.
10b; and d its deformed configuration at the high temperature (displacements are magnified 920). Black
lines show M1 (material 1) and gray lines show M2 (material 2)

Optimal design of structures with negative thermal expansion 797

123



maximum time that CPLEX can spend trying to solve an instance and report the best

feasible solution. The emphasis mip parameter of CPLEX is set to four

(emphasize to find hidden feasible solutions). In Sect. 5.3.1 we solve the instances in

Sects. 5.1 and 5.2 with the time limit to compare the results with the global optimal

solutions obtained without time limit. Section 5.3.2 is devoted to larger instances

that are difficult to be solved without time limit. The displacements in the following

figures are magnified 920.

5.3.1 Comparison to solutions with guaranteed optimality

The problem instances that have been solved in Sects. 5.1 and 5.2 are solved in this

section with the time limit to compare the results with the global optimal solutions.

The ground structures shown in Figs. 7b and 10b, respectively, are used for

formulations (I) and (II). Both connection patterns (A) and (B) are considered for

each formulation. As for time limit, we consider two cases, 300 and 1000 s.

The computational results are listed in Table 5. Here, ‘‘best obj.’’ reports the

objective value of the best feasible solution, and ‘‘gap’’ means the difference

between ‘‘best obj.’’ and the objective value of the best node remaining. In all the

cases, the global optimal solutions are found within 1000 s. Moreover, for

formulation (II) with connection pattern (A), CPLEX spent less than 300 s finding

the global optimal solution. In contrast, in the other three cases the best solutions

obtained within 300 s are not optimal. These solutions are shown in Fig. 13. The

solution in Fig. 13b has an exterior part that forms a reentrant polygon consisting of

the material with the higher thermal expansion coefficient. This part is same as that

of the global optimal solution in Fig. 8d. The star-shaped octagon and its interior

core of the solution in Fig. 13b are same as those the global optimal solution in

Fig. 9d. However, the exterior part has four unstressed members and has room for

improvement. The solution in Fig. 13c has the interior and exterior parts with sizes

different from the global optimal solution in Fig. 12d, although it has analogous

mechanism in essence for achieving a small thermal expansion coefficient.

Table 5 Computational results of the experiments in Sect. 5.3.1

Ex. jVj Pattern # of nodes # of cuts Gap (mm) Best obj. (mm) Time (s)

(I) 4 9 4 (A) 47,253 11 44.8474 9 10-2 -8.7499 9 10-2 300.0

(I) 4 9 4 (B) 73,536 13 103.4748 9 10-2 -3.8472 9 10-2 300.0

(II) 4 9 4 (A) 50,904 60 46.8032 9 10-2 -5.1059 9 10-2 300.0

(II) 4 9 4 (B) 72,189 74 61.6548 9 10-2 0.6752 9 10-2 300.0

(I) 4 9 4 (A) 199,633 13 31.1607 9 10-2 -10.0626 9 10-2 1000.0

(I) 4 9 4 (B) 323,581 19 77.0312 9 10-2 -4.6005 9 10-2 1000.0

(II) 4 9 4 (A) 259,046 74 26.2411 9 10-2 -5.1059 9 10-2 1000.0

(II) 4 9 4 (B) 566,646 76 17.9724 9 10-2 0.1864 9 10-2 1000.0
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5.3.2 Large-scale examples with the heuristic approach

In this section we apply the heuristic approach to some problem instances that are

larger than the ones solved above, where the MILP solver is run with time limit

43,200 s = 12 h. Therefore, optimality of the solutions obtained in this section is

not guaranteed.

We begin with formulation (I) with the ground structures shown in Fig. 14. The

frame structure in Fig. 14a consists of jVj ¼ 5� 5 ¼ 25 nodes and jEj ¼ 120

members, the one in Fig. 14b consists of jVj ¼ 4� 4 ¼ 16 nodes and jEj ¼ 86

members, and the one in Fig. 14c consists of jVj ¼ 5� 5 ¼ 25 nodes and jEj ¼ 200:
The obtained solutions are collected in Figs. 15 and 16. The computational results

are listed in Table 6.

The obtained solutions with connection pattern (A) are shown in Fig. 15a, b,

and c. In view of Figs. 8b, 15b and c, we might figure out a common feature of the

mechanisms from which the negative thermal expansion properties stem. That is, in

Fig. 8b, the material with the higher thermal expansion coefficient forms a star-

shaped octagon. The solutions in Fig. 15b and c have two nested star-shaped

octagons, which may possibly suggest an optimal fractal structure at the limit of the

(a) (b)

(c)

Fig. 13 The best feasible solutions obtained by running the MILP solver for 300 s. The solutions for a
formulation (I) with jVj ¼ 4� 4 and pattern (A); b formulation (I) with jVj ¼ 4� 4 and pattern (B); and
c formulation (II) with jVj ¼ 4� 4 and pattern (B)
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finer ground structure. The solutions in Fig. 15a, b and c have better objective

values than the solution in Fig. 8d. Moreover, the objective value of the solution in

Fig. 15b is better than that of Fig. 15a and the objective value of the solution in

Fig. 15c is better than that of Fig. 15b; increase of the number of nodes and increase

of the number of members improve the objective value. Concerning connection

pattern (B), the objective value of the solution in Fig. 15d (for the jVj ¼ 5� 5

ground structure) is not better than that in Fig. 9d (for the jVj ¼ 4� 4 ground

structure). The solution shown in Fig. 15e is same as the one in Fig. 9d; increase of

the candidate members in a ground structure does not improve the objective

function. The objective value of the solution in Fig. 15f is worse than that in

Fig. 15e. Since the instance in Fig. 15f has a large number of design variables, the

number of enumeration nodes explored by the MILP solver within 12 h is much less

than the other instances. After 48 h run, we obtain the structure shown in Fig. 16.

The number of nodes explored by the solver is comparable to the case in, e.g.,

Fig. 15d. As a result of minor improvements from Fig. 15f, repetitive alignment of

V-shape parts is visible in Fig. 16.

We next examine formulation (II). The two ground structures shown in Fig. 17

are used. The structure in Fig. 17a consists of jVj ¼ 5� 5 ¼ 25 nodes and jEj ¼ 72

members, and the one in Fig. 17b consists of jVj ¼ 6� 6 ¼ 36 nodes and jEj ¼ 110

(a) (b)

(c)

Fig. 14 The ground structures for the heuristic method with formulation (I). The frame structures with a
jEj ¼ 120members; b jEj ¼ 86members; and c jEj ¼ 200members
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members. The computational results are listed in Table 7. The obtained solutions

are collected in Fig. 18.

In the solutions shown in Fig. 18a and b, the material with low thermal expansion

ðM2Þ forms a dodecagon with four reentrant corners, that is similar to the exterior

structure of the solution in Fig. 11d. In these solutions, the interior structures

consisting of the material with high thermal expansion (M1) are disconnected. The

(a) (b)

(c) (d)

(e) (f)

Fig. 15 The best feasible solutions obtained by running the MILP solver for 12 h to solve formulation
(I). The solutions for a the ground structure in Fig. 14a with pattern (A); b the ground structure in Fig. 14b
with pattern (A); c the ground structure in Fig. 14c with pattern (A); d the ground structure in Fig. 14a
with pattern (B); e the ground structure in Fig. 14b with pattern (B); and f the ground structure in Fig. 14c
with pattern (B)
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optimal value is improved from the solution in Fig. 11d by using finer ground

structures, but the optimal value of the solution in Fig. 18b is no better than the one

in Fig. 18a. The solutions in Fig. 18c and d have connected interior structures

consisting of M1: Therefore, bonding between two materials is automatically

strengthened by elevation of temperature. Moreover, the solution in Fig. 18d

Fig. 16 The best feasible
solutions obtained by running
the MILP solver for 48 h to
solve formulation (I). The
solution for the ground structure
in Fig. 14c with pattern (B)

Table 6 Computational results of formulation (I) solved by the heuristic approach. The obtained solu-

tions are shown in Fig. 15

Ground struct. Pattern # of nodes # of cuts Gap (mm) Best obj. (mm) Time (h)

Fig. 14a (A) 1,183,797 16 28.0022 9 10-2 -10.9803 9 10-2 12.0

Fig. 14b (A) 7,736,873 20 7.25261 9 10-2 -15.6511 9 10-2 12.0

Fig. 14c (A) 570,653 12 32.9387 9 10-2 -15.8508 9 10-2 12.0

Fig. 14a (B) 2,151,308 17 109.2944 9 10-2 -1.3948 9 10-2 12.0

Fig. 14b (B) 13,172,505 28 23.5387 9 10-2 -4.6005 9 10-2 12.0

Fig. 14c (B) 838,358 16 135.3022 9 10-2 -3.6957 9 10-2 12.0

Fig. 14c (B) 3,314,683 27 111.6910 9 10-2 -4.1336 9 10-2 48.0

(a) (b)

Fig. 17 The ground structures for the heuristic method with formulation (II). The frame structures with
a jEj ¼ 72members; and b jEj ¼ 110members
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exhibits a negative thermal expansion property. This is exactly an example of the

structures that we attempt to find with the formulation presented in Sect. 4.

6 Conclusions

Materials and structures that exhibit negative thermal expansion have been received

significant interest because of their potential applications. This paper has addressed

an optimization problem of a planar periodic frame structure, where the

Table 7 Computational results of formulation (II) solved by the heuristic approach with time limit 12 h.

The obtained solutions are shown in Fig. 18

jVj Pattern # of nodes # of cuts Gap (mm) Best obj. (mm)

5 9 5 (A) 1,851,478 168 22.8522 9 10-2 -7.2319 9 10-2

6 9 6 (A) 378,319 243 59.0015 9 10-2 -7.0805 9 10-2

5 9 5 (B) 2,323,876 132 64.7893 9 10-2 0.2813 9 10-2

6 9 6 (B) 419,332 164 174.6725 9 10-2 -0.1458 9 10-2

(a) (b)

(c) (d)

Fig. 18 The best feasible solutions obtained by running the MILP solver for 12 h to solve formulation
(II). The solutions for a the ground structure in Fig. 17a with pattern (A); b the ground structure in Fig.
17b with pattern (A); c the ground structure in Fig. 17a with pattern (B); and d the ground structure in Fig.
17b with pattern (B)
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displacement induced by temperature increase is minimized. Numerical ex-

periments showed that periodic frame structures demonstrating thermal contraction

can be designed by using two materials with positive thermal expansion coefficients.

The problem dealt with in this paper is considered a three-phase material

distribution problem for a given frame structure. Namely, we solve an optimization

problem to select the material for each member among from two specified materials

and void. In the course of optimization, this material selection is handled by making

use of two binary design variables. Also, local stress constraints are fully addressed

and existing members have predetermined sections. As a result, the optimal

structure obtained by the proposed method has neither hinges nor thin members. In

this respect the proposed approach may have an advantage in ease of manufacture of

the optimal solution. It is worth noting that solutions with hinge-like regions and/or

too thin members often require that, in advance of manufacturing process, thickness

of hinges should be adjusted carefully to avoid stress concentration without losing

thermal contraction properties.

In this paper the optimization problem has been recast as a mixed-integer linear

programming (MILP) problem. Problem instances with relatively small scales can

be solved globally with a commercial software package for MILP. Larger instances

have been attacked by making use of heuristics already implemented in an MILP

solver. Namely, we put maximum time limit that the solver can spend trying to

solve an instance and report the best feasible solution. Sometimes such a solution is

near optimal and it has been shown that the problems in Sects. 5.1 and 5.2 can be

found within 1000 s. Further improvement of the MILP formulation to reduce

computational cost could be explored with advanced modeling techniques in integer

programming. In this paper we restrict ourselves to finding a structure with the

minimum thermal expansion coefficient, where the displacement of the interface

node for cell connection, u1, is minimized. The presented formulation can be

extended straightforwardly to a problem finding a structure with a nearly zero

thermal expansion coefficient. Namely, we can replace the objective function, u1, by

u1j j: The optimization problem can still be recast as an MILP problem.

In the optimal solution distributions of the two materials can be complicated.

With an intricate mixture pattern, a large number of interfaces between two different

materials exist in a base cell and many small parts may be required in real

manufacturing process. This may cause difficulty in fabrication of a base cell.

Section 4 has explored a formulation for avoiding mixture of materials. In this

formulation, binary variables are allocated to nodes to determine a material that can

be used for each member. Then we consider linear inequality constraints to

guarantee that one material is placed only outside of the other one. This formulation,

however, limits the solution space excessively. In other words, the formulation

excludes several designs with two disjoint material distributions. Also, explicit

forms of the linear inequality constraints depend on topology of a ground structure.

Hence, for the separation constraints on material distributions, more sophisticated

formulations that can express any acceptable solutions remain to be explored.

Concerning negative thermal expansion behavior, this paper has addressed

minimization of the displacement of a node that serves as an interface for periodic

connection of base unit cells. Two connection patterns have been considered, where
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the shape of base cell is supposed to be square. Other shapes of base cell, as well as

other connection patterns, remain to be studied. It might be preferable that the

connection pattern and the base cell topology are optimized simultaneously. From a

practical point of view, issues of geometrical nonlinearity and out-of-plane

deformations may possibly have to be considered. Extensions to three-dimensional

structures also remain to be explored.
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Decomposition of equilibrium equations

According to Kureta and Kanno (2014), we decompose the stiffness matrix,

KðE;GÞ; in (9b) and (9d). The results obtained below have been used in Sect. 3.1;

see (15) and (16).

Consider the local coordinate system for member e ¼ ði; jÞ 2 E as shown in

Fig. 19. The element displacement vector is written as ûe ¼
ðuðiÞx ; u

ðiÞ
y ; hðiÞ; uðjÞx ; u

ðjÞ
y ; hðjÞÞ> 2 R

6: The displacement vector of the whole ground

structure, u 2 R
d; is defined with respect to the global coordinate system. For each

e 2 E; transformation of u to ûe is written as

ûe ¼ Teu;

where Te 2 R
6�d is a constant transformation matrix. We employ the Timoshenko

beam theory to model the members of the ground structure. Let K̂eðEe;GeÞ 2 R
6�6

denote the member stiffness matrix defined with respect to the local coordinate

system. As explained in Kureta and Kanno (2014), K̂e is given by

K̂eðEe;GeÞ ¼
X3
t¼1

ketðEe;GeÞb̂etb̂>et; ð45Þ

where b̂e1; b̂e2; b̂e3 2 R
6 are defined by

b̂e1 ¼

�1

0

0

1

0

0

2
6666664

3
7777775
; b̂e2 ¼

0

�1

�le=2
0

1

�le=2

2
6666664

3
7777775
; b̂e3 ¼

0

0

�1

0

0

�1

2
6666664

3
7777775

ð46Þ

Fig. 19 Local coordinate
system for a beam element
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and ke1; ke2; ke3 2 R are defined by

ke1 ¼
EeAe

le
; ð47aÞ

ke2 ¼
1

le

l2e
12EeIe

þ 1

jGeAe

� ��1

; ð47bÞ

ke3 ¼
EeIe

le
: ð47cÞ

Here, Ee and Ge are Young’s modulus and the shear modulus of the beam material,

Ae and Ie are the cross-sectional area and the moment of inertia, le is length of the

beam element, and j is the shear correction factor in the Timoshenko beam theory.

In (47b), we define ke2 ¼ 0 if Ee ¼ Ge ¼ 0 for convention. Note that (46) and (47)

correspond to the MacNeal element in the Timoshenko beam theory (MacNeal

1978). In our problem, beams are subjected to nodal loads only. In this case, the

MacNeal element coincides with the interdependent interpolation element in Reddy

(1997), and hence the nodal displacement of a beam can be predicted exactly with

single element (Reddy 1997; Friedman and Kosmatka 1993).

For member e ¼ ði; jÞ 2 E; let se ¼ ðse1; se2; se3Þ> 2 R
3 denote the generalized

stress vector, which is defined by

se1 ¼ qe; ð48aÞ

se2 ¼ se ¼ �m
ðiÞ
e þ m

ðjÞ
e

le
; ð48bÞ

se3 ¼
�m

ðiÞ
e þ m

ðjÞ
e

2
: ð48cÞ

Here, qe is the axial force, se is the transverse shear force, and m
ðiÞ
e and m

ðjÞ
e are the

two end moments. The force-balance equation in the global coordinate system is

then given by

X
e2E

X3
t¼1

setbet ¼ f ; ð49Þ

where constant vectors be1; be2; be3 2 R
d are defined by

bet ¼ T>
e b̂et; t ¼ 1; 2; 3: ð50Þ

The generalized stress, set; is related to the displacement, u; as

set ¼ ketb
>
etu; t ¼ 1; 2; 3; 8e 2 E: ð51Þ

Since the global stiffness matrix, KðE;GÞ; is given by
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KðE;GÞ ¼
X
e2E

T>
e K̂ðEe;GeÞTe;

we can see that elimination of set’s from (49) and (51) results in the global equi-

librium equation

KðE;GÞu ¼ f :

Expression in (49) and (51) has served as basis of our MILP formulation.
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