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Abstract Maximizing economical asset of oil reservoirs is a simulation-based

optimization involving large-scale simulation models. In this work we propose the

use of reduced-order models for solving optimization problems in oil reservoir

simulation using a Lagrangian barrier method for the treatment of nonlinear

inequality constraints. The optimization with reduced-order models is done by

employing a trust-region proper orthogonal decomposition (TRPOD) algorithm. In

addition to the POD method, we also build a reduced-order model based on a

discrete empirical interpolation method. In the algorithm, the first-order gradient of

the objective function is computed by using the adjoint method, while the inverse of

the second-order gradient is approximated using the BFGS method. The reduced-

order models involve both the forward (state) and backward (adjoint) equations.

Three optimization case examples in production optimization of oil reservoirs are

used to study the method. They show that the TRPOD method works efficiently

while simultaneously honoring the nonlinear constraints.
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1 Introduction

As the rise of human population and the modernization of civilization, the need for

fossil fuel energy has been increasing. To fulfill this demand, maximizing oil

production from an oil reservoir is a challenging task. An oil reservoir is usually

modeled by partial differential equations (PDEs), where the geological model is in

the order of 106–109 discretized grids. The geological model is developed by

geologists which is then further used by reservoir engineers. In this paper we focus

on the production optimization of oil reservoirs with emphasis on water flooding

which is typically handled by the reservoir engineers. The injected water aims to

sweep remaining oil efficiently. With the current state-of-the-art computing power,

reservoir simulation models are usually reduced to the order between 104 and 106

grid blocks. This process is known as upscaling since it creates a coarse model from

the geological model. Upscaling is done based on geophysical interpretation by the

reservoir engineers. This involves heuristics and can be a time-consuming runtime

simulation process both with regards to computations and human labour (see e.g.,

Aarnes et al. (2007)).

Model order reduction techniques can be used to facilitate the upscaling process.

The use of model order reduction techniques has been around in the reservoir

simulation research since early 2000, see e.g., Markovinovic et al. (2002) and

Markovinovic et al. (2002). The work of Heijn et al. (2004) compared methods for

reduced-order modeling which treat oil reservoirs both as linear and nonlinear

models. The methods originate from systems and control theory. Balanced

truncation, subspace identification, and proper orthogonal decomposition (POD)

methods were compared. Based on the examples considered in Heijn et al. (2004),

the conclusion was that the POD method gave the best approximation of the oil

reservoir dynamics. In follow up work Doren et al. (2006), Markovinovic and

Jansen (2006), the POD method was used for gradient-based production optimi-

zation. The adjoint equations were derived using reduced-order models of the state

equations. The POD method generates reduced-order models with global basis

functions. Another approach was presented in Krogstad et al. (2011) where a

multiscale method was applied to compute local basis functions. In that work an

optimization problem using a real geometry of an oil reservoir was solved in 15

minutes, compared to a normal length of hours or even days. In a more recent work

a combination of multiscale and POD methods was presented in Krogstad (2011),

yielding a local POD basis function. The selection of local basis functions in a

multiscale method is done by considering physical aspects such as fault locations

and flux boundaries, which is more intuitive to the reservoir engineers since the

reservoir model is divided into some coarsened segments, where each of the

segment has its own local basis function.

The use of the trajectory-piecewise-linearization (TPWL) method, which models

the oil reservoir as a linear time varying (LTV) system along selected operating

points, was proposed in Cardoso and Durlofsky (2010). The same authors also

proposed the use of missing point estimation (MPE)-POD (Astrid et al. (2008)) in

Cardoso et al. (2009) and further used the TPWL-based model order reduction for
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production optimization in Cardoso and Durlofsky (2010). Two optimization

methods were presented in Cardoso and Durlofsky (2010). These were the gradient-

based and generalized pattern search methods. None of the production optimization

papers mentioned above discuss the state or nonlinear output constraint problem. In

more recent work, the use of approximate dynamic programming combined with

POD method was proposed in Wen et al. (2011). This work used the penalty method

to handle the state constraint problem.

In other areas, the POD method has been used for constraints handling in low-

fidelity model optimization. Among these, the trust-region POD (TRPOD),

originally proposed in Fahl (2000) for unconstrained optimization problems, was

further developed for constrained optimization. The idea is that the POD method

gives a good approximation of the high-fidelity model by updating POD basis

functions in limited (or ‘‘trusted’’) operating points. During the course of

optimization the decision variables are always changed, therefore the POD basis

functions need to be updated using the new update of decision variables. Without

this updating, the POD basis functions represent the previous/old decision variables,

which are no longer valid and give a poor approximation of the high-fidelity model.

The constrained TRPOD, which means optimization using reduced-order models in

the presence of (equality/inequality) constraints, was initiated in Alexandrov et al.

(2001). The authors developed penalty, augmented Lagrangian, and SQP-like

methods. A similar approach was used in Robinson (2007), where POD, space

mapping methods, and their combination were proposed for constructing the

reduced-order models. Furthermore, the use of the filter method, for nonlinear

constraints handling, in low-fidelity models optimization along with TRPOD was

presented in Agarwal (2010), Agarwal and Biegler (2011).

In this work, we follow the TRPOD method and to handle the state constraints we

use the Lagrangian barrier method, which is a continuation of our work in Suwartadi

et al. (2010). To best of our knowledge, the TRPOD method has not been applied to

the reservoir simulation problem. Hence, the contribution of this work is to apply

the TRPOD method to the production optimization of oil reservoirs. Furthermore,

we consider nonlinear inequality constraints. Our method is a gradient-based

optimization method which uses the POD method for computing basis functions for

state and adjoint equations. Since we have implemented the adjoint method in the

high-fidelity model and to avoid the difficulty of re-implementating the adjoint-

based gradient in the reduced-order model, we take snapshots of the adjoint

equations as well. Thus, the reduced-order models in this work consist of reduced-

order state and adjoint equations. Our approach is different from the work of Doren

et al. (2006), Markovinovic and Jansen (2006) where the reduced order model for

the adjoint equations were derived based on the forward reduced order model.

It should be noted that there are many variants of the POD methods in addition

ones mentioned above. A combined POD and discrete empirical interpolation

method (DEIM), where DEIM is a variant of EIM Barrault et al. (2004), was

recently proposed in Chaturantabut and Sorensen (2010). This work pointed out that

the POD method is only good for approximating linear or bi-linear terms of

equations. As shown in an example in Chaturantabut and Sorensen (2011), for

nonlinear systems, the POD method in conjunction with DEIM gives considerable
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CPU time speedup compared to the POD method alone. Since the oil reservoir

models contain highly nonlinear terms, in this work we also compare the POD and

POD-DEIM methods. The application of DEIM to optimization problems involving

oil reservoir models is another contribution of this work.

The outline of this paper is the following. In Sect. 2 we describe the oil reservoir

model which consists of pressure and saturation equations representing the state

variables. We refer to these state equations as forward equations. In this section we

also derive the adjoint equations and the reduced-order models. The production

optimization problem is explained in Sect. 3, which basically is an economic

optimization problem. In Sect. 4, we present the algorithms for the TRPOD method

and the Lagrangian barrier method for nonlinear constraint handling. The

algorithms use the TRPOD method in the inner iteration and the Lagrangian

barrier in the outer iteration. This means the TRPOD method is used within the

Lagrangian barrier iteration. Case examples that use 2D and 3D oil reservoirs are

presented and the results are discussed in Sect. 5. Finally, based on the case

example results we conclude this paper in Sect. 6.

In this paper we use standard linear algebra notations for describing mathemat-

ical equations. The superscript T is used to denote vector or matrix transpose.

Matrices and vectors are written with bold letters while scalars are typed as ordinary

letters.

2 Oil reservoir model

Water flooding is the most common secondary recovery technique for oil reservoirs.

During early stages of oil reservoir production, the pressure in the reservoir is high

enough to support production alone. However, water is often injected to provide

additional pressure support in the reservoir and thereby increase recovery.

We assume the reservoir is above the bubble point so that the oil component is in

liquid form only. Furthermore, we assume the process is isothermal, the liquids are

incompressible, immiscible (water and oil cannot be mixed), no capillary pressure

between oil and water, no gravity effect, and no-flow at the boundary of the

reservoirs.

2.1 Forward model

The oil reservoir is governed by the continuity equation which expresses

conservation of mass. We refer the model exposition here to Aarnes et al. (2007).

The state equations consist of pressure and saturation equations. Let X be a porous

media domain with boundary oX. The pressure equation is given by

v ¼ �KktðsÞrp; r � v ¼ q in X; ð1Þ

where v is the Darcy velocity, K is the permeability tensor, p is the pressure, s is the

water saturation, and q is the volumetric source/sink term. Finally kt is the total

mobility, which in this setting is the sum of the water and oil mobility functions,
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kt sð Þ ¼ kw sð Þ þ ko sð Þ ¼ krw sð Þ
lw

þ kro sð Þ
lo

: ð2Þ

Here, krw; kro and lw; lo are the water and oil relative permeabilities and viscosities,

respectively. Assuming no-flow boundaries means that the normal component of the

Darcy velocity across boundaries is zero.

The saturation equation is given by

/
os

ot
þr � fwðsÞvð Þ ¼ qw in X; ð3Þ

where / is the porosity and qw is the volumetric water source. Finally, fw is the

water fractional flow function fwðsÞ ¼ kwðsÞ=ktðsÞ, which is also known as water

cut. The nonlinear behavior of the above equations is mainly dictated by the shape

of the relative permeability functions, which in this paper are taken to be quadratic.

The relative permeability data are obtained from laboratory experiments using small

portions of rocks which do not generally represent the rock properties of the whole

reservoir. Hence, uncertainties are unavoidable.

Equations (1) and (3), which are elliptic and parabolic PDEs respectively, are

solved numerically. Hence, we need to discretize the equations. We discretize the

domain X into a set of polyhedral grid blocks Eif g, where a grid block E contains

faces ek, k ¼ 1; . . .; nE. Let vE ¼ ve1 ; ve2 ; . . .; venE

� �
be the outward pointing flux

vectors corresponding to the faces of E, pE the pressure at the grid block center, and

pE the pressures at the grid faces. Then, the discretized pressure equation for a

single grid-block is

vE ¼k sEð ÞTE pE � pEð Þ
XnE
i¼1

vijeij ¼ qE;
ð4Þ

where TE is the transmissibility matrix, and qE is the source/sink term in block E.

Here, we discretize according to the two-point flux-approximation (TPFA) (see e.g.,

Aziz and Settari (1979)), which will result in diagonal transmissibility matrices.

The boundary conditions are only located at wells since we assume no-flow

boundary. As in (1) the sink/source terms represent injector/producer wells. The

wells are modeled by the Peaceman equation Peaceman (1983) as follows

qwE ¼ �k sEð ÞWIwE pE � pwE
� �

: ð5Þ

Here qwE is the flow rate from well w into grid block E and pwE is the wellbore

pressure (assumed to be constant since we neglect gravity and wellbore flow

effects). Finally, WIwE is the Peaceman well-index for the grid block E.

The discretized pressure Eq. (4) and the well Eq. (5) can be combined such that

they construct the following linear equation
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Bn sn�1ð Þ 0 C D 0
0 Bn

w sn�1ð Þ Cw 0 Dw;N

CT CT
w 0 0 0

DT 0 0 0 0
0 DT

w;N 0 0 0

0
BBBB@

1
CCCCA

vn

�qnw
�pn

pn

pnw;N

0
BBBB@

1
CCCCA

¼

0
�Dw;Dp

n
w;D unð Þ
0
0

�qntot;N unð Þ

0
BBBB@

1
CCCCA
: ð6Þ

Here, the first and the second rows in the block-matrix above represent to

Darcy’s law as in (1) and (5) for all grid blocks. The third row corresponds to

mass conservation for all grid blocks and the last two rows refer to continuity of

fluxes for all grid block faces. The solution vector of the block-matrix equation

above is

vn �qnw �pn pn pnw;N
� �T

include the fluxes, the well rates, the grid-block pressures, the face and well pres-

sures, and the wellbore pressure, respectively. The matrices B, Bw, C, and Cw are

block diagonal with each block corresponding to a grid block. Similarly, each

column of D and Dw;N correspond to a unique face. Superscript n represents the time

step and un is the control input at time step n, which could be either bottom-hole

pressure (BHP): un ¼ pnw;N or well rate: un ¼ vn. The block-matrix Eq. (6) is solved

for time step n using the default linear solver in MATLAB which is a direct sparse

method (see Davis (2006)). We note that when TPFA is used, the pressure Eq. (6)

can be reduced to a system of cell pressure-unknowns only, while the current

implementation uses a mixed formulation where fluxes and cell pressures are solved

for simultaneously.

We discretize the saturation Eq. (3) using a standard upstream weighted implicit

finite volume method to form

sn ¼ sn�1 þ Mtn D�1
PV A vnð Þ fw snð Þ þ q vnð Þþ
� �

: ð7Þ

Here, Mtn is the time step and DPV is the diagonal matrix containing the grid block

pore volumes. The matrix A vnð Þ is the sparse flux matrix based on the upstream

weighted discretization scheme, and qðvnÞþ is the vector of positive sources (in this

setting, water injection rates). We note that the matrix A and vector q are linear

functions of vn. The discretized saturation Eq. (7) is solved implicitly for the current

time step nþ 1 using a Newton-Raphson method.

As seen the Eqs. (6) and (7) are coupled. The solution strategy to solve these

equations is first solving the discretized pressure Eq. (6) using initial water

saturation values, and then solve the discretized saturation Eq. (7). This procedure is

repeated forward in time until the final time is reached. This kind of solution

strategy is known as a sequential-splitting method Aarnes et al. (2007). The model

used in this work is implemented in Lie et al. (2011). For convenience, we write the

discrete state Eqs. (6) and (7) in an implicit form F ex; euð Þ ¼ 0 as
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Fðex; euÞ ¼
F1 p1; s0; s1; u1ð Þ

..

.

FN pN ; sN�1; sN ; uNð Þ

0
BB@

1
CCA ¼ 0

xnT ¼ ðpnT ; snTÞ; n ¼ 1; :::;N;

exT ¼ ðx1T ; :::; xNTÞ;
euT ¼ ðu1T ; :::; uNTÞ:

ð8Þ

The state vectors and control input vectors are stacked for all time instances from

n ¼ 1; . . .;N. The dimension of ex and eu depends on the number of grid blocks and

time steps.

2.2 Adjoint equations

Let J ex; euð Þ ¼
PN

n¼1 J n xn; unð Þ be an objective function, and denote by reuJ the

gradient with respect to a control input eu. The detailed description of the objective

function J ex; euð Þ will be explained in Sect. 3. We then construct an augmented

objective function or Lagrangian functional

L ex; eu; kð Þ ¼ J ex; euð Þ þ kTF ex; euð Þ

¼
XN
n¼1

J n xn; unð Þ þ knTF xn; xn�1; un
� �� �

;
ð9Þ

for n ¼ 1; . . .;N, where

knTF ¼ knTv Bnvn � Cpn þ Dpnð Þ

þ knTqw �Bn
wqw � Cwp

n þ Dw;Np
n
w;N unð Þ

� �

þ knTp CTvn � CT
wq

n
w

� �

þ knTp DTvn

þ knTpw;N �DT
w;Nq

n
w þ qntot;N unð Þ

� �

þ knTs sn � sn�1 � Mtnin
� �

:

Here in ¼ D�1
PV A vnð Þfw snð Þ þ q vnð Þþ
� �

. By choosing k that makes r~xL ¼ 0, we

arrive at the adjoint equations

oF xn; xn�1; unð Þ
oxn

� 	T

kn þ oF xnþ1; xn; unþ1ð Þ
oxn

� 	T

knþ1 ¼ � oJ n xn; unð Þ
oxn

� 	T

;

ð10Þ

for n ¼ N; . . .; 1. The details of (10) are
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Bn sn�1ð Þ 0 C D 0
0 Bn

w sn�1ð Þ Cw 0 Dw;N

CT CT
w 0 0 0

DT 0 0 0 0
0 DT

w;N 0 0 0

0
BBBB@

1
CCCCA

knv
knqw
knp
knp
knpw;N

0
BBBB@

1
CCCCA

¼

oin

ovn

� 	T

kns �
oJ
ovn

� 	T

oJ n

oqnw

� 	T

0
0
0

0
BBBBBBBBB@

1
CCCCCCCCCA

;

ð11Þ

for the corresponding pressure equation and the following for the saturation

I� Mt
oin

osn

� 	T
 !

kns ¼ knþ1
s � oJ n

osn

� 	T

� o

osn
Bnþ1vnþ1
� �� 	T

knþ1
v

þ o

osn
Bnþ1
w qnþ1

w

� �� 	T

knþ1
qw

:

ð12Þ

Using the fact that at the final time kNa ¼ 0 for a ¼ v; qw; p; p; pw;N ; s

 �

, we are able

to compute the Lagrangian multiplier for each time step backward in time. It should

be noted that (11) and (12) are linear equations and they are solved using the direct

sparse method as well. Finally using the obtained Lagrangian multipliers values, the

gradient with respect to eu is

reuLn ¼ oJ n xn; unð Þ
oun

þ knT
oF xn; xn�1; unð Þ

oun
: ð13Þ

2.3 Reduced-order models

2.3.1 POD method

In order to build a reduced-order model based on the POD method, we need to take

snapshots of the high-fidelity model described in (6) and (7). Let xT ¼ p s½ � ¼
xTp xTs
� �

2 R
nx be the snapshot of the solution of the forward equations with nx as

the dimension of the solution, which is the number of grid block. Given a set of

snapshots x1; . . .; xNf g 2 R
nx�N, the snapshot matrices are

xp ¼

x1p1 x2p1 . . . xNp1
x1p2 x2p2 . . . xNp2

..

. ..
. . .

. ..
.

x1pnx x2pnx . . . xNpnx

2
66664

3
77775
nx�N

; xs ¼

x1s1 x2s1 . . . xNs1
x1s2 x2s2 . . . xNs2
..
. ..

. . .
. ..

.

x1snx x2snx . . . xNsnx

2
66664

3
77775
nx�N

ð14Þ

It should be noted there is no additional computational time to build the snapshot

matrices since they are merely solutions of the forward state equations. Let V ¼
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span x1; . . .; xNf g , the POD basis function is a solution of an optimization problem

for finding orthonormal vectors wif g‘i¼1, where ‘� rank Vð Þ. The optimization for-

mulation is

min
wif g‘i¼1

J w1; . . .;w‘ð Þ :¼
XN
j¼1

xj �
X‘
i¼1

xTj wi

� �
wi

�����

�����
2

2

subject towT
i wj ¼ dij ¼

1 if i ¼ j

0 otherwise



:

ð15Þ

We define a Lagrangian functional

L w1; . . .;w‘; k11; . . .; k‘‘ð Þ ¼ J w1; . . .;w‘ð Þ þ
X‘
i;j¼1

kij w
T
i wj � dij

� �
: ð16Þ

The necessary optimality conditions, oL
owi

¼ 0 and oL
okij

¼ 0, give us an eigenvalue

problem

XN
j¼1

xj xTj wi

� �
¼ kiiwi; for i ¼ 1; . . .; ‘ ð17Þ

or by setting ki ¼ kii and X ¼ x1; . . .; xN½ � 2 R
nx�N, then the problem reads

XXTwi ¼ kiwi; for i ¼ 1; . . .; ‘: ð18Þ

To compute the solution of (18), we decompose the vector X using singular value

decomposition (SVD), that is,

X ¼ URVT ; ð19Þ

where U ¼ u1; . . .; unx½ � 2 R
nx�nx and V ¼ v1; . . .; vN½ � 2 R

N�N are orthogonal

matrices, and R 2 R
nx�N is the diagonal matrix with diagonal arranged in a

decreased order, that is, r1 � r2 � . . .� rN � 0: In other words,

UTXV ¼ R: ð20Þ

Moreover, it follows that for 1� i�N that

Xvi ¼ riui; X
Tui ¼ rivi; XX

Tui ¼ r2i ui: ð21Þ

The solution of problem (18) is a POD basis wi ¼ ui and ki ¼ r2i [ 0 for

i ¼ 1; . . .; ‘� d ¼ dimV. The minimized objective function (15) is then

J w1; . . .;w‘ð Þ :¼
XN
j¼1

xj �
X‘
i¼1

xTj wi

� �
wi

�����

�����
2

2

¼
Xd
i¼‘þ1

ki: ð22Þ

To determine the dimension of ‘, the singular value is cut according to the following
‘energy’ truncation
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E ¼
P‘

i¼1 riPN
i¼1 ri

\a; ð23Þ

where typically 0:9� a\1. This choice of truncation is a rather heuristic consid-

eration Volkwein (2003). We follow what is commonly used in the literature. In

other work, one may use quadratic summation of the singular value, see e.g., Doren

et al. (2006), Markovinovic and Jansen (2006).

The POD method is applied to the state and adjoint equations. Let ‘p, ‘s, and np,

ns be the dimension of the pressure and saturation equations in reduced-order and

high-fidelity models respectively, where ‘p � np and ‘s � ns. Then transformation

from the reduced-order to the high-fidelity model is

xp ¼ Vpx̂p þ xp;

xs ¼ Vsx̂s þ xs:
ð24Þ

The high-fidelity model is represented by xp 2 R
np , xs 2 R

ns and their respective

averages during the snapshots xp 2 R
np and xs 2 R

ns , i.e.,

x ¼ 1

N

XN
i¼1

xi: ð25Þ

In the reduced-order space, x̂p 2 R
‘p and x̂s 2 R

‘s , the forward equations now

become

VT
p

Bn sn�1ð Þ 0 C D 0

0 Bn
w sn�1ð Þ Cw 0 Dw;N

CT CT
w 0 0 0

DT 0 0 0 0

0 DT
w;N 0 0 0

0
BBBBBB@

1
CCCCCCA
Vpx̂

n
p

¼ VT
p

0

�Dw;Dp
n
w;D unð Þ
0

0

�qntot;N unð Þ

0
BBBBBB@

1
CCCCCCA

�

Bn sn�1ð Þ 0 C D 0

0 Bn
w sn�1ð Þ Cw 0 Dw;N

CT CT
w 0 0 0

DT 0 0 0 0

0 DT
w;N 0 0 0

0
BBBBBB@

1
CCCCCCA
�xp

0
BBBBBB@

1
CCCCCCA
;

ð26Þ

ŝn ¼ ŝn�1 þ MtVT
s D

�1
PV A vnð Þ fw Vsŝ

n þ �sð Þ þ q vnð Þþ
� �

: ð27Þ

Similarly, we also take snapshots of the adjoint Eqs. (11) and (12) and obtain

reduced-order adjoint equations. The reduced-order corresponding adjoint pressure

and saturation respectively are
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VT
ap

Bn sn�1ð Þ 0 C D 0

0 Bn
w sn�1ð Þ Cw 0 Dw;N

CT CT
w 0 0 0

DT 0 0 0 0

0 DT
w;N 0 0 0

0
BBBBBB@

1
CCCCCCA
Vap

k̂nv

k̂nqw

k̂np

k̂np

k̂npw;N

0
BBBBBBBB@

1
CCCCCCCCA

¼ VT
ap

oin

ovn

� 	T

kns �
oJ
ovn

� 	T

oJ n

oqnw

� 	T

0

0

0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

�

Bn sn�1ð Þ 0 C D 0

0 Bn
w sn�1ð Þ Cw 0 Dw;N

CT CT
w 0 0 0

DT 0 0 0 0

0 DT
w;N 0 0 0

0
BBBBBB@

1
CCCCCCA

8>>>>>>>>>>><
>>>>>>>>>>>:
kv

kqw

kp

kp

kpw;N

0
BBBBBB@

1
CCCCCCA

9>>>>>>=
>>>>>>;

;

ð28Þ

VT
as I� Mt

oin

osn

� 	T
 !

Vask̂
n
s ¼VT

as knþ1
s � oJ n

osn

� 	T

� o

osn
Bnþ1vnþ1
� �� 	T

knþ1
v

( )

þ VT
as

o

osn
Bnþ1
w qnþ1

w

� �� 	T

knþ1
qw

( )

� VT
as I� Mt

oin

osn

� 	T
 !

�ks

( )
;

ð29Þ

where Vap and Vas are the basis functions for the corresponding adjoint pressure

and saturation equations, and �k is the average snapshot of Lagrangian multipliers

of adjoint equation solutions. As seen in all reduced-order Eqs. (11), (12), (28)

and (29), the reconstruction of high-fidelity equations are needed in order to

solve the reduced-order equations. Hence, after solving the reduced-order equa-

tions we reconstruct the high-fidelity solution through the transformation (24).

This will inevitably give an overhead in the computational time. Nonetheless, we

still gain computational reduction in CPU time compared to the high-fidelity

model run.
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2.3.2 POD-DEIM

Let us consider the water saturation Eq. (7) in the following form

snþ1 ¼ sn þ Mtn D�1
PV A vnð Þ fw snþ1

� �
þ q vnð Þþ

� �
: ð30Þ

This equation is solved for time step nþ 1 implicitly using Newton-Raphson

method, that is,

0 	 G snþ1
� �

¼ snþ1 � sn � Mtn D�1
PV A vnð Þ fw snþ1

� �
þ q vnð Þþ

� �
: ð31Þ

Given an initial guess ~s, then by Taylor expansion, the equation above is approxi-

mated by

0 ¼ G snþ1
� �


 G esð Þ þ G0 esð Þ snþ1 � es� �
; ð32Þ

where the solution snþ1 is obtained through snþ1 ¼ ~sþ d~s. The changes d~s ¼
snþ1 � ~s satisfies the linear equation �G0 ~sð Þd~s ¼ G ~sð Þ. The Jacobian G0 ~sð Þ is

G0 ~sð Þ ¼ I� Mtn D�1
PVA vnð Þ f 0w snð Þ

Note that the terms f
0
w snð Þ and fw snþ1ð Þ are evaluated componentwise, which means

that they are evaluated at each gridblock.

The reduced-order water saturation equation can be written as follows

ŝnþ1 ¼ ŝn þ Dtn D�1
PV VT

s|{z}
‘s�ns

A vnð Þ|fflffl{zfflffl}
ns�ns

fw Vsŝ
nþ1 þ �s

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

ns�1

þ VT
s q vnð Þþ

0
B@

1
CA: ð33Þ

As seen above, we still need to evaluate the nonlinear term, which is in this case is

the water cut fw snþ1ð Þ, in high-fidelity dimension ns. Similarly, in solving (32) in the

reduced-order space, we evaluate the Jacobian in high-fidelity. This is obviously not

desirable. To mitigate this, we construct another reduced-order model for the water

cut term. This is when the POD-DEIM Chaturantabut and Sorensen (2010) comes

into play. The method projects the nonlinear term onto a lower dimension, such that

f sð Þ ’ Uc sð Þ þ �f ð34Þ

whereU ¼ U1; . . .;Um½ � 2 R
nx�m, c sð Þ is the corresponding vector coefficient, and �f

is the average value of the nonlinear term in the snapshot.

The vector c sð Þ is determined by selecting the appropriate m rows from the

overdetermined f sð Þ ’ Uc sð Þ þ �f. The selection is done by a matrix

P ¼ e}1
; . . .; e}m

� �
2 R

nx�m, where ej is the j-th column of the identity matrix. If

PTU is invertible, the coefficient vector c sð Þ can be determined from

PT f sð Þ ¼ PTUc sð Þ þ PT f; ð35Þ

with some rearrangement, we end up with
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c sð Þ ¼ PTU
� ��1

PT f sð Þ � f
� �

: ð36Þ

Finally, the high-fidelity nonlinear approximation of (34) is

f sð Þ ’ Uc sð Þ þ f ¼ U PTU
� ��1

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
‘�m

PT f sð Þ � f
� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
m�1

8><
>:

9>=
>;

þ f: ð37Þ

From this equation, we now need to construct the U and P matrices. U is selected as

the POD basis function of the water cut fw, while the P matrix (interpolation index)

is determined by Algorithm 1. The max in the algorithm refers to MATLAB

function max. Therefore, q }‘½ � ¼ max rj jf g means q ¼ r}‘

�� �� ¼ maxi¼1;...;n rij jf g.

We employ the POD-DEIM just for the forward saturation equation, since this is

the only equation that contains the nonlinear water cut term. So now the reduced-

order equation of water saturation is

ŝnþ1 ¼ ŝn þ MtnD�1
PV ¤ þ VT

s q vnð Þþ
� �

; ð38Þ

where ¤ ¼ VT
s A vnð ÞUT PTU

� ��1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
‘s�m

PT fw Vsŝ
nþ1 þ s

� �
� fw

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m�1

. Here, by using the

interpolation matrix P we evaluate the nonlinear water cut term fw in the reduced-

space of dimension m rather than in the high-fidelity space of dimension ns.

One may notice there is a nonlinear dependence in the pressure Eq. (6) as well,

that is, in the term Bn sn�1ð Þ, involving water saturation from the previous time step.

Because (6) is a linear equation and the POD method has proved to be good for

linear terms, we do not apply POD-DEIM for the pressure equations. Nevertheless,

this opens an opportunity for future investigation. To this end, we introduce the

implicit form of reduced-order equation equivalent to (8) as F ~xr; ~uð Þ ¼ 0 in the

following
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F ~xr; ~uð Þ ¼
F1 p̂1; ŝ0; ŝ1; u1ð Þ

..

.

FN p̂N ; ŝN�1; ŝN ; uNð Þ

0
BB@

1
CCA

x̂nT ¼ p̂nT ; ŝnT
� �

; n ¼ 1; . . .;N;

~xTr ¼ x̂1T ; . . .; x̂NT
� �

;

~uT ¼ u1T ; . . .; uNT
� �

:

ð39Þ

~xr is the stacked reduced-order state vector from the solution of the forward

equations.

3 Production optimization problem

By injecting water into reservoirs, cumulative oil production may increase. This is

cast as the following optimization problem using a reduced-order model

ðP̂ :Þmax
~u2Rn ~u

J ~xr;~uð Þ

subject to :F ~xr; ~uð Þ ¼ 0

g unð Þ� 0; 8n ¼ 1; . . .;N

h x̂n; unð Þ� 0; 8n ¼ 1; . . .;N

x0 is given:

J ~xr; ~uð Þ, gðunÞ, h x̂n; unð Þ are assumed C1. The control input and the state constraints
are represented by g : Rn ~u ! R

ng and h : Rnx�n ~u ! R
nh , respectively. The objective

function is given by J : Rn~xr�n ~u ! R and the state equations are posed as implicit

constraints. The state variables and the control inputs are dependent, therefore we

are able to perform the optimization in the control input space of eu instead of in the

space of ~xr; ~uð Þ. To this end, we denote the objective as J ~uð Þ omitting J ~xr ~uð Þ; ~uð Þ.
In this work, we use the recovery factor (RF) as the objective function

J ~uð Þ ¼
PNgb

i¼1 DPVi
ð1� sNi ~uÞð Þ
Vgb

� 100; ð40Þ

where DPVi
is the diagonal element of the pore volume matrix, sNi ~uð Þ is the water

saturation at grid block i at the final time step N, ~u the control input in this case is

well rate, Ngb is the number of grid blocks in the reservoir, and Vgb is the total pore

volume of the reservoir. In other words, the recovery factor represents the per-

centage of oil that can be produced from the reservoir. Water flooding can normally

give a recovery factor somewhere between 20 and 40 %, meaning that 20–40 % of

the oil is extracted from the reservoir.

The optimization problem in high-fidelity is described as
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ðP :Þ max
~u2Rn ~u

J
�
~xr; ~u

�

subject to :F ~x; ~uð Þ ¼ 0

g unð Þ� 0; 8n ¼ 1; . . .;N

h xn; unð Þ� 0; 8n ¼ 1; . . .;N

x0 is given:

Let Uopt and Ûopt be the solutions of the optimization problem in high-fidelity P and

reduced-space P̂, respectively. In Hinze and Volkwein (2005), the error estimate

between Uopt and Ûopt is

Uopt � Ûopt

�� ��

� cp x0 �Ux̂0
�� ��þ ~x�U~̂x

�� ��þ k~x ~x ~uð Þð Þ �U k~x ~x ~uð Þð Þð Þk k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd
i¼‘þ1

ki

vuut
8<
:

9=
;:

ð41Þ

Here cp is a positive constant, U are the basis functions (eigenvectors) obtained from

the POD method, k~x is the Lagrangian multiplier in the adjoint Eqs. (11) and (12),

and the last term contains k from the residual of POD truncation as in (22).

The second term of the error estimate (41) ~x�U~xrk k can be reduced by taking

snapshots of the state equations. Similarly, the term k~x ~x ~uð Þð Þ �U k~x ~x ~uð Þð Þð Þk k may

give smaller error by taking snapshots of the adjoint equations. We will proceed

with this approach and will explain it in the next section.

4 Solution method

In this section we explain how to use a reduced-order model to solve the

optimization problem P̂.

4.1 Trust-region POD

The optimization is performed using a reduced-order model, which is known as

surrogate optimization. The principle of surrogate optimization is depicted in Fig. 1.

During the course of optimization many simulation runs are needed, and therefore by

using a reduced-order model the goal is to reduce simulation runtime. Furthermore, as

mentioned in the introduction there are alternative ways to construct reduced-order

models. Here we will use POD and DEIM described in the previous section.

To maintain the quality of reduced-order models, we apply a trust-region

framework. The trust-region framework is used as the globalization strategy in

gradient-based optimization Conn et al. (2000). In a trust-region globalization strategy

a quadratic approximation is used to approximate the objective function while in the

surrogate optimization trust-region framework, which is called the trust-region POD

(TRPOD) method, one builds a POD-based reduced-order model. The method will in
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principle enlarge its region when good approximations are obtained and reduce the

region when the quality of model approximation is poor, or keep the region if the

approximation quality is the same as at the previous iteration. The quality of

approximation is measured by checking the value of the objective function in the

high-fidelity model. Finally, the method will terminate due to some stopping criteria.

The details of this method is explained in Algorithm 2 with some remarks below.

During the k-th iteration the TRPOD method solves the following subproblem

max
d2Rn ~u

JR
b;k ~uþ dð Þ

s:t:Fk ~xr; ~uþ dð Þ ¼ 0

gk un þ dð Þ� 0; 8n ¼ 1; . . .;N

hk x̂n; un þ dð Þ� 0; 8n ¼ 1; . . .;N

dk k1 �Mk

ð42Þ

The optimized variables in the subproblem are the steps d, where the length,

expressed in infinite norm, is bounded by a trust-region radius Mk, and the implicit

form of reservoir dynamics

Fk ~xr; ~uþ dð Þ ¼
F1 p̂1; ŝ0; ŝ1; u1k þ d1k
� �

..

.

FN p̂N ; ŝN�1; ŝN ; uNk þ dNk
� �

0
B@

1
CA: ð43Þ

J R
b;k is the modified objective function using the Lagrangian barrier method (44),

explained in next subsection, evaluated using the (forward) reduced-order model.

Optimization

Reduced-order models

High-fidelity model

Optimization in reduced-order space

Compute approximate
gradient and objective

function value
Update decision

variable

Evaluate decision
variable

Update reduced-order
models

Fig. 1 Optimization in reduced space (surrogate optimization). Optimization is performed using
reduced-order models (ROMs) and the ROMS are updated according to the trust-region rule. This figure
is modified after Alexandrov et al. (2001)
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Remark 1 The subproblem (42) is not the standard quadratic model approximation

as in the trust-region globalization strategy. Instead, it is an approximation of the

high-fidelity model. In Fahl (2000), an algorithm based on the Cauchy condition is

used to solve the subproblem. In this work, we use the KNITRO optimization

package Byrd et al. (2006) for finding optimal steps dk.

Remark 2 The stopping criteria applied in high-fidelity optimization are usually the

absolute changes in the objective function or constraints violation as described in

Algorithm 3. In the TRPOD method, the stopping criterion based on the trust-region

radius. If the trust-region radius is less than theminimum trust-region radiusMmin, then

the optimization is terminated. Since the objective function of the surrogate model can

be lower (maximization case) than in the previous iteration, which may yield negative

value of qk, we take absolute value of qk. Moreover the value of qk can be infinite due
to constraint violation, we hence reduce the trust-region radius.

Remark 3 The bound constraint in the high-fidelity optimization g unð Þ is adjusted
in the reduced-space optimization due to the infinite norm constraints on the steps

dk. The optimization in surrogate model may be stopped if the bound constraint in

high-fidelity optimization is violated.

Remark 4 The trust-region parameters in the TRPOD method are chosen as follows
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g1 ¼ 0:02; g2 ¼ 0:5; g3 ¼ 1; c1 ¼ 0:25; c2 ¼ 0:5; c3 ¼ 1:5:

The small value of g1 ¼ 0:02 means we accept small improvement in the objective

function value.

Remark 5 The discussion on convergence and convergence rate of the algorithm

can be found in Fahl (2000), Agarwal (2010).

It should be noted that to speed up the optimization convergence we employ the

BFGS method using the first-order gradient from the adjoint method. Alternatively,

one may use the SR1 algorithm to approximate the Hessian matrix, which is quite

common in the trust-region scheme.

4.2 Lagrangian barrier methods

Sincewe also handle state constraints, in thisworkwe employ the Lagrangian barriermethod

(a simplified version of Conn et al. 1997), which requires a Lagrangian barrier function

J b eu; k; lð Þ ¼ J euð Þ þ l
Xnh
i¼1

kilog hi x̂
n; unð Þð Þ: ð44Þ

Here l is the barrier parameter and ki is the componentwise Lagrange multiplier

estimates, which are updated during the course of optimization. The Lagrangian

barriermethod is described inAlgorithm 3.TheTRPODmethod is used in step 1 of the

Lagrangian barrier method. This method will terminate either due to (most likely)

objective function criterion or constraint violation.We refer to Suwartadi et al. (2012)

for further details of algorithm discussion and its uses for production optimization.
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5 Case examples

In this section, we present four case examples. The first case will compare POD and

DEIM in building reduced-order models in terms of CPU time and its accuracy. The

second example will demonstrate how the TRPOD method works in an optimization

case without the presence of nonlinear output constraints. The last two case

examples will show how the TRPOD and Lagrangian methods handle the nonlinear

output constraints in surrogate optimization. Simulations for these case examples

were done on a 64-bit Linux box with Intel(R) Xeon(R) CPU @ 3.00GHz. All the

SVD computation in the case examples are done by using the SVD function in

MATLAB. We use the economical option (SVD(‘‘*’’,‘‘con’’’) in order to choose the

eigenvectors corresponding to the largest singular values.

5.1 Case 1

The reservoir model in this case is taken from layer 10 of SPE 10th comparative

study Christie and Blunt (2001). The grid consists of 60� 220 gridblocks, where the

dimension of a grid block is 10 ft� 20 ft� 2 ft. The connate oil saturation and

residual water saturation are zero. The porosity, for simplicity, is set homogenously

to 0.3, while the permeability is heterogenous as depicted in Fig. 2. The oil to water

mobility ratio is set to 0.2 and initial water saturation is zero. The well configuration

is a 5-spot pattern with an injector in the middle and four producers at the corners.

The simulation is run for 1,200 days and the control inputs are the well rates. We

divide the control inputs into 40 intervals, which means we can change the well

rates every 30 days. The number of control variables are 40� 5 ¼ 200. Initial

injection rate is set to 0.5 PVI
1;200 days. Moreover, the snapshots of the forward and

adjoint equations are taken from the 40 control intervals.

In this case example, we compare reduced-order models obtained from the POD

and DEIM methods. The reduced-order models are constructed based on the

snapshots of the forward and adjoint equations. For the POD method, the snapshots

for the forward equations comprise the solution of pressures and water saturation for

40 control steps. While for the DEIM method, we need additional water cut

snapshots representing the nonlinear terms, which is also from 40 control steps. In

the adjoint equations, since there is no nonlinear term, we apply the POD method.

Thus, the snapshot for the adjoint equations will be the solution of the adjoint

equations. We will explain the reduced-order models for both types of equations in

the following subsection.

5.1.1 Forward equations

The runtime of the high-fidelity model is described in Table 1. To build reduced-

order models for the forward equations, we choose an energy level truncation. We

vary the value of energy truncation in order to know a good value or dimension of

the reduced-order models. Furthermore, we define the error of the reduced-order

model by the following equation
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E:¼ sN � ŝNk k2
sNk k2

; ð45Þ

where sN is water saturation at final time step N, and ŝN is the reduced-order water

saturation at the final time step.

Figures 3, 4, and 5 depict the singular values of the state variables: pressure,

saturation, and the nonlinear term, water cut.

We then run simulations with a variation of energy truncations and the results are

displayed in Table 2. In general the POD method gives significant speedup for the

pressure equation compared to that of the high-fidelity model runtime described in

Table 1. However, only a slight CPU time reduction is obtained for the saturation

equation. On the other hand, DEIM gives more speedup for the saturation equation.

The approximation errors and the CPU time speedups decrease when the number of

basis functions increase.

To show the quality of reduced-order model POD and DEIM, we display water

saturation at the end time using energy truncation 90 % for the pressure, 90 % for

the water saturation, and 90 % for the water cut in Fig. 6.

5.1.2 Adjoint equations

Here, we continue to vary the energy truncation of the adjoint equations. The

runtime for the high-fidelity model of the adjoint equations is described in Table 3.

Furthermore, we plot the singular values of the corresponding pressure and

saturation equations in Figs. 7 and 8.

Similarly, we have done some simulations using variation of energy truncations

and the results are described in Table 4. We define the error of the adjoint-gradient

in the reduced-order model by the following equation

Egrad :¼
grad� ^grad
�� ��

2

gradk k2
; ð46Þ

which compare the gradient in high-fidelity (grad) and in reduced-order ( ^grad).
Both the POD and DEIM methods, shown in Table 4, give speedup in runtime

compare to the adjoint equations in high-fidelity described in Table 3. We run both

POD and DEIM for the adjoint equations since they need forward reduced-order

models. Furthermore, the CPU time for corresponding adjoint saturation is

comparable to that of high-fidelity runtime. This is because of the sparsity property

in the linear adjoint saturation equation. In the high-fidelity equation the adjoint

saturation is solved using a sparse linear solver. However, in a reduced-order model

we loose the sparsity structure of the adjoint saturation equation. One may get better

speedup for the adjoint saturation equation if the reservoir model has a larger

number of grid blocks.
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We also present the quality of the gradient approximation in the reduced-order

models in Fig. 9, where the truncation is 90 % for both the corresponding pressure

and saturation.

5.1.3 Effect of perturbations

In order to know the robustness of basis functions, we first build a reduced order

model using DEIM with 90 % energy truncation for pressure, saturation, and water

cut. We then change well rates at producer wells around 5, 10, and 20 % in the sense

Prd4

Prd2

Inj1

Prd1

Prd3

−2

−1

0

1

2

3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Relative permeability curves

Water
Oil

Fig. 2 The logarithm of permeability field in millidarcy (mD), well location and relative permeability
curves. The well locations follow the 5-spot pattern in which four producers (Prd1, Prd2, Prd3, Prd4) are
placed in the corners and one injector (Inj1) in the middle

Table 1 CPU time measured in second for forward equations using the high-fidelity model

Pressure Eq. Saturation Eq. Total time

15.6 5.3 20.9

0 5 10 15 20 25 30 35 40
10−10

10−5

100

105

1010
Pressure − Singular values (# snapshots=40)

Fig. 3 Singular values of pressure snapshots
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that we perturb the initial well rates when the basis functions are constructed. As

seen in Figs. 10 and 11 below, the reduced-order model is good enough to

approximate the high-fidelity model. However, it is not good enough for the 20 %

perturbation as depicted in Fig. 12. The relative error saturation is the water

saturation difference between high-fidelity model and reduced-order model divided

by saturation in high-fidelity model.

5.2 Case 2

In this case we set up a surrogate optimization without any output constraints. The

goal is to show the performance of TRPOD method compared to the optimization

using a high-fidelity model. Since there are no nonlinear output constraint, the

constraints appear only on the control, that is, bound constraints and an equality

constraint due to the incompressible flow (the total injector rate must be equal the

total producer rate). The objective function in this case is net present value (NPV)

with oil price 80 $
m3, water separation cost 19 $

m3, and water injection cost 1 $
m3. It

0 5 10 15 20 25 30 35 40
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−15

10
−10

10
−5

10
0

10
5

Water saturation − Singular values (# snapshots=40)

Fig. 4 Singular values of water saturation snapshots
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Water cut − Singular values (# snapshots=40)

Fig. 5 Singular values of water cut snapshots
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Table 2 Comparison POD and DEIM in the variation of energy truncation

Energy truncation # Basis functions CPU time (s) Error Sat.

Pres.

(%)

W. Sat.

(%)

W. Cut

(%)

Pres. W.

Sat.

W.

Cut

Pres.

Eq.

Sat.

Eq.

Total

time

POD

90 90 – 4 9 – 4.2 3.3 7.5 2:1� 10�2

95 – 13 – 3.6 7.8 1:3� 10�2

99 – 24 – 4.6 8.8 4:0� 10�3

95 90 – 5 9 – 4.5 4.4 8.9 2:1� 10�2

95 – 13 – 4.8 9.3 1:3� 10�2

99 – 24 – 5.4 9.9 3:0� 10�3

99 90 – 11 9 – 5.1 4.1 9.2 2:1� 10�2

95 – 13 – 4.1 9.2 1:3� 10�2

99 – 24 – 4.8 9.9 3:0� 10�3

99.9 99.9 – 24 35 – 6.9 6.2 13.1 1:0� 10�4

99.99 99.99 – 35 40 – 9.6 6.4 16.0 1:0� 10�4

DEIM

90 90 90 4 9 9 4.4 2.5 6.9 2:0� 10�2

95 95 13 13 2.7 7.1 1:0� 10�2

99 99 24 22 3.8 8.1 1:0� 10�2

95 90 90 5 9 9 4.6 2.3 6.9 2:0� 10�2

95 95 13 13 2.7 7.3 1:0� 10�2

99 99 24 22 4.1 8.7 9:0� 10�3

99 90 90 11 9 9 5.2 2.6 7.8 2:0� 10�2

95 95 13 13 2.8 8.0 1:0� 10�2

99 99 24 22 3.8 9.0 1:0� 10�2

99.9 99.9 99.9 24 35 34 6.8 5.0 11.8 1:0� 10�3

99.99 99.99 99.99 35 40 38 9.8 5.3 15.1 1:0� 10�4
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Fig. 6 Comparison of water saturation at final time for the high-fidelity model and reduced order models;
POD and DEIM
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should be noted there is no augmented objective function in this case. Furthermore,

we continue using the reservoir setting described in case 1 with initial injection rate

is 0.4 PVI for 1,200 simulation days (40 control intervals). The control inputs are

well rates at producer and injector wells. The reduced-order model is built using

DEIM due to its faster CPU time than POD.

To fully capture the dynamics of reservoir, we extend the simulation a bit further

until 1,800 days ensuring a water cut value of 0.80 reaches all producer wells (based

on the price setting). This is performed when building the initial basis functions but

not during the basis functions update within the TRPOD strategy. We use an energy

level of 99 % for the forward pressure, 95 % for saturation equation, and 95 % for

the water cut. For the adjoint equations we use 95 % energy level for the

Table 3 CPU time measured in second for adjoint equations using the high-fidelity model

Pressure Eq. Saturation Eq. Total Time

15.9 2.1 18.0

0 5 10 15 20 25 30 35 40
10

−10

10
−5

10
0

10
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10
10

Adjoint Pressure − Singular values (#snapshot=40)

Fig. 7 Singular values of corresponding adjoint pressure equation snapshots
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Fig. 8 Singular values of corresponding adjoint water saturation equation snapshots
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corresponding pressure and saturation equations. Using these energy truncations, an

initial forward reduced-order model consists of 12, 16, and 15 basis functions for the

pressure, saturation, and water cut, respectively. The interpolation points are shown

in Fig. 13. The adjoint reduced-order model has 13 and 8 basis functions for the

corresponding pressure and saturation equations, respectively.

We then run surrogate optimization. To evaluate the optimization, we also run

the optimization using the high-fidelity model. The stopping criteria are the absolute

gradient tolerance 10�8 and absolute step length 10�8. These stopping criteria apply

both for reduced and high-fidelity model optimizations. The surrogate optimization

is run with an initial trust-region radius, M0, set to 0:03� Vgb

1;200 days, the maximum

trust-region radius, Mmax, is 0:03� Vgb

1;200 days. This maximum trust-region radius

represents the bound in which the reduced order model is robust enough to the

control input perturbation. Moreover, the minimum trust-region radius Mmin, is

10�3 � Vgb

1;200 days. The minimum trust-region ratio qmin is set 0.001. The bound

constraints on the control input are set between 0 and 0:6� Vgb

1;200 days.

After running the optimization, the evolution of the objective function is depicted

in Fig. 14. Note that the number of iterations in the high-fidelity optimization

represents the number of inner iteration while the number of iterations in the

surrogate optimization denotes the number of outer iterations, involved in the

TRPOD method. Table 5 describes the runtime and obtained objective function

values. The details of the surrogate optimization are described in Table 6, where Ĵ
is the objective function in reduced-order model and J is the objective function

evaluated in high-fidelity model. The surrogate optimization terminates due to the

minimum trust-region radius.
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Fig. 9 Comparison of adjoint-gradient in high-fidelity and reduced-order models (POD and DEIM)

466 E. Suwartadi et al.

123



In Table 6 above, the trust-region ratio q determines when the basis functions

must be updated as well as when the radius ratio will be enlarged or shrunk. The

trust-region parameter settings are described in Sect. 4. The basis functions and the

trust-region will not be updated and enlarged if the trust-region ratio q has value less

than 0.02. The trust-region radius will be enlarged only if the trust-region ratio is

larger than 1. Otherwise, it will be kept or reduced. Hence, starting from the fifth

iteration, seen in Table 6, the trust-region radius is shrunk. In the seventh iteration,

the trust-region radius is kept as the same previous iteration and is decreased
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Fig. 10 5 % variation of producers well rates with relative error in saturation approximation of 0.021
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Fig. 11 10 % variation of producers well rates with relative error in saturation approximation of 0.029
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afterwards. Consequently, the optimization terminates due to the minimum trust-

region radius criterion. Fig. 15 shows the comparison of optimization solutions in

high-fidelity and surrogate optimization. Here, we denote the injector rate with

positive sign and producer rate with negative sign.

Next, we run another optimization with initial injection rate of 0.5 PVI
1;200 days using

the same parameter values (initial trust-region radius). This initial rate is closer to

the optimization solution in a high-fidelity model. The objective function evolutions

are described in Fig. 16. The details of the optimization in the reduced-space model

can be seen in Table 8 and CPU time speedup is described in Table 7. The

optimization in high-fidelity model terminates due to the step length tolerance,

while in surrogate optimization stops because it hits the upper bound constraint, that

is, 0:6� Vgb

1;200 days.

It turns out that the surrogate optimization reaches a different local maximum

than optimization with high-fidelity model. However, the runtime is still quite

cheap. The optimization in high-fidelity seems to converge in the same local

maxima but with the cost of higher CPU time. The speedup factor in this case can be

up to 20 times.

5.3 Case 3

This case is a continuation of the previous case, which uses the same reservoir, and

well setting, however, with the inclusion of output constraints and a more accurate

reduced-order model with an increased energy truncation for saturation and water

cut to 99 %. The objective function is now recovery factor (RF), described in (40).

In this case we constrain the water fractional flow (water cut), which is function of
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Fig. 12 20 % variation of producers well rates with relative error in saturation approximation of 0.052
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water saturation, at the producer wells. We limit the water cut for the producer wells

at the final time to fw;max, which is set to 0:80. To this end, the augmented objective

function is

J b ~u; k; lð Þ ¼ J ~uð Þ þ l
X4
i¼1

kilog fw;max � f Nw;prodi

� �
: ð47Þ

The parameter settings in this case are: k0 ¼ 1 1 1 1½ �T , s ¼ 0:1, l0 ¼ 104,

x0 ¼ 10�6, absolute maximum water cut tolerance g� ¼ 10�6, and absolute

objective function changes �� ¼ 10�4 percent of recovery factor. We choose an

active set algorithm in KNITRO to the handle control input constraints g ~uð Þ. The
initial trust-region radius, M0, and the maximum trust-region radius, Mmax, are set

Fig. 13 Interpolation points
(represented with D) for the
nonlinear water cut term are
located at grid blocks: 12076,
4285, 13031, 3445, 12622, 5495,
314, 10308, 5129, 282, 12437,
3746, 378, 7106, and 11869
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Fig. 14 Evolution of the
objection functions using the

initial injection 0.4 PVI
1;200 days

Table 5 Comparison of optimization in high-fidelity and reduced-space using initial injection of 0.4
PVI

1;200 days

Comparison Full-model POD-DEIM

NPV (in $) 1:44� 106 1:43� 106

CPU time (s) 5,715 1,270
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equally to 0:01� Vgb

1200 day
, the minimum trust-region radius Mmin, is 10�4 � Vgb

1200 day
,

and minimum trust-region ratio qmin is 0.001. The bound constraints on the control

input are set between 0 and 0:8� Vgb

1;200 days. We run two optimizations with different

initial injector settings.

5.3.1 Initial injection rate 0.5 PVI
1;200 days

We start the optimization with an initial injector rate 0.5 PVI
1;200 days. The optimization

with the high-fidelity model stops due to the objective function change criterion.

Furthermore, Table 9 describes the results and constraint violations are shown in

Fig. 18. The comparison of the objective function evolution is displayed in Fig. 19.

The infinite objective function value in the reduced-order space indicates that the

output constraint is violated.

The surrogate optimization terminates because of the minimum trust-region

radius. POD-DEIM in this case gives a speedup more than 1.3 times. The output

constraints are active only for Prd1 in the reduced-order model while for the other

production wells, the constraints are very close to being active.

In Fig. 20 the optimization solutions using high-fidelity and reduced-order model

are shown. The producer rates are shown in negative sign while the injector rate is in

positive sign. Again, it is clear the surrogate optimization resulted in a local

maximum. The figure also shows water saturation at final time step. As seen, the

water saturation is slightly different around Prd4 area.

5.3.2 Initial injection rate 0.4 PVI
1;200 days

We continue the optimization using reduced-order model with different initial

solution. Here, we set initial injection rate to 0.4 PVI
1;200 days. The results are shown in

Table 6 Iteration in surrogate optimization using initial injection of 0.4 PVI
1;200 days

k q Ĵ J

0 – 1.27 9 106 1.27 9 106

1 1.16 9 101 1.28 9 106 1.32 9 106

2 1.07 9 100 1.31 9 106 1.35 9 106

3 9.28 9 10-1 1.34 9 106 1.37 9 106

4 8.09 9 10-1 1.37 9 106 1.39 9 106

5 2.37 9 10-1 1.44 9 106 1.41 9 106

6 2.34 9 10-1 1.41 9 106 1.42 9 106

7 5.67 9 10-1 1.42 9 106 1.43 9 106

8 3.44 9 10-1 1.43 9 106 1.43 9 106

9 3.88 9 10-1 1.43 9 106 1.43 9 106

10 3.28 9 10-1 1.43 9 106 1.43 9 106
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Table 10, constraints satisfaction in Fig. 21. Similarly, the optimization terminates

due to the minimum trust-region radius and Prd1 is active, while the other

production wells are almost active. The evolution of the objective function is shown

in Fig. 22, and control input solution is in Fig. 23.

5.4 Case 4

This case originates from the Norne comparative study Rwechungura et al. (2010)

with a simplified model. The reservoir is depicted in Fig. 24 and there are 6 wells.
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Fig. 15 Optimization solutions in high-fidelity and reduced-space models and water saturation at final
time
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Table 7 Comparison of optimization in high-fidelity and reduced-space using initial injection of 0.5
PVI

1;200 days

Comparison Full-model POD-DEIM

NPV ($) 1:44� 106 1:44� 106

CPU time (s) 26,681 1,269
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Initial water saturation and pressures at each grid block are set to 0.2 and 40 bar,

respectively. The mobility ratio between water and oil is 1 to 5. The end points of

connate water saturation and oil saturation are both set to 0.2. The relative

permeability curves are displayed in Fig. 24. The simulation is run for 500 days and

divided into 50 control intervals. Thus, in total the controls consist of 300 variables.

The controls in this case are well rates. Similar to the previous cases, we deal with

equality constraints due to incompressible flow, that is, total injection rate must

equal total production rate. In addition, we set bound constraint on the injectors,

which is set lower than 2 PVI
500 days

. The initial water injection rates are 0.25 and 0.30 of

total pore volume using constant rates. The number of snapshots for building the

reduced-order models is the same as the number control of intervals, which is 50

snapshots.

In this case we constrain the total water production at the final control interval to

5� 10�3 of the pore volume of the reservoir and define this constraint as Qw;max.

Hence, in this case the augmented objective function is

Table 8 Iteration in surrogate optimization using initial injection of 0.5 PVI
1;200 days

k q Ĵ J

0 – 1:38� 106 1:38� 106

1 1:06� 100 1:36� 106 1:41� 106

2 2:16� 10�1 1:42� 106 1:42� 106

3 4:75� 10�1 1:41� 106 1:43� 106

4 1:31� 10�1 1:43� 106 1:43� 106

5 7:09� 10�1 1:43� 106 1:43� 106

6 1:45� 100 1:43� 106 1:43� 106

7 1:03� 100 1:43� 106 1:44� 106

8 3:69� 10�1 1:42� 106 1:44� 106
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Fig. 17 Optimization solutions in high-fidelity and reduced-space models and water saturation at final
time
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J b ~u; k; lð Þ ¼ J ~uð Þ þ lk log Qw;max �
Xnh¼4

i¼1

QN
w;i

 !
: ð48Þ

Here the output constraint is just a scalar, that is, the total water production of each

producer well at final control interval.

The reduced-order models are constructed using 90 % energy truncation for the

pressure and saturation equations, and 90 % for the non-linear water cut term. This

results in 4, 7, 7 basis functions for the pressure, saturation and water cut,

respectively. For the adjoint equations, we use a 95 % energy level both for the

Table 9 Optimization results. The water injected is measured in pore volume injected (PVI)

Comparison High-fidelity model POD-DEIM

Recovery factor (%) 48.41 47.96

CPU time (s) 12,054 8,809

Total water Injected (in PVI) 0.77 0.75
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Fig. 18 The state constraints satisfaction, i.e., the water-cut at final time step
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corresponding pressure and saturation equations. To this end, the reduced-order

adjoint equations have dimension 16 and 4, respectively. The CPU time comparison

of the full-model and reduced-order models are described in Table 11. The POD-

DEIM results are consistently faster than the standard POD. Significant speedup is

obtained for the forward equations, but the corresponding saturation equation is

again similar to the first case. Due to sparsity property in the high-fidelity adjoint

equation and the dense matrix in the reduced-order models, the speedup of the

corresponding saturation adjoint equations is not that significant. To this end, we use

the reduced-order model of POD-DEIM for surrogate optimization.

The parameter settings in this case are: k ¼ 1, s ¼ 0:1, l ¼ 107, x0 ¼ 10�3, and

absolute total water production tolerance g� ¼ 10�4. We choose an active

set algorithm in KNITRO to handle control input constraints g ~uð Þ. The maximum

trust-region radius, Mmax, is 0:1� Vgb

500 day
, and minimum trust-region radius Mmin, is

0:001� Vgb

500 day
and initial trust-region radius, which are M0 ¼ 0:1� Vgb

500 days
.

5.4.1 Initial injection rate 0.25 PVI
500 days

We firstly run the optimization with initial injection 0.25 PVI
500 days

. The results are

summarized in Table 12, the constraint satisfaction in Fig. 25, and comparison of

optimized control inputs in Fig. 26. The optimization terminated due to the

minimum trust-region radius.

5.4.2 Initial injection rate 0.3 PVI
500 days

We then run optimization with initial injection rate 0.3 PVI
500 days

. The results are

described in Table 13, Figs. 27 and 28. The optimization in this case terminates

due to the minimum trust-region radius.
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Fig. 20 Optimization solutions in high-fidelity and reduced-space models and water saturation at final
time
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5.5 Discussion

We have presented four case examples. The first case example shows the quality of

a reduced-order model given a variation of energy truncation. It turns out that the

POD method is more CPU intensive than the POD-DEIM simulation run. Reducing

the energy truncation will reduce CPU time at the expense of accuracy. The case

example uses a 2D reservoir consisting of 13200 grid blocks. The POD method

results in significant speedup for the pressure equation. However, for the saturation

equation the CPU time in the reduced-order model is marginally faster than the

high-fidelity model. In the same case example it is shown that DEIM can slightly

Table 10 Optimization results. The water injected is measured in pore volume injected (PVI)

Comparison High-fidelity model POD-DEIM

Recovery factor (%) 48.35 47.88

CPU time (s) 13,615 11,181

Total water Injected (in PVI) 0.77 0.74
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Fig. 21 The state constraints satisfaction, i.e., the water-cut at final time step
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improve the CPU time of the saturation equation. Furthermore, in the saturation

adjoint equation we loose the sparsity property. Consequently, the sparse linear

solver, which is used to solve the adjoint equation, consumes more CPU time.

In the second case, we demonstrate the performance of the TRPOD method.

Based on the first case, we continue the optimization only with the DEIM reduced-

order model because the method gives more speedup than POD. Using two different

initial controls (injector rate), the TRPOD method is trapped into local maxima with

comparable objective function (NPV) values. This implies that the choice of initial

control and initial trust-region radius are important considerations. The speedups in

this case are significant, between 5 and 20 times for the two different initial controls.

In the third case, we introduce output constraints in the surrogate optimization.

The output constraints are water cut at the producer wells. This represents a

multidimensional output constraint problem. The TRPOD combined with Lagrang-

ian barrier does not achieve the same solution as the high-fidelity optimization. We
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have tried to use two different initial controls. The water cut value at one of the

producer wells is active, while at the other wells are almost active. The speedups in

this case are slightly faster than the high-fidelity optimization, which are around 27

and 18 %.

In the fourth case, we apply TRPOD and the Lagrangian barrier method to

constrain total water production. This case is a one-dimensional output constraint

problem. The results from this case show that our proposed method is able to make

the optimization in reduced-space converges to a better local maxima than that of

high-fidelity optimization. Moreover, the constraint is active and the speed up factor

is up to four times.

The third and the fourth case examples show the performance of TRPOD for

nonlinear constraint handling. As this work focuses on the nonlinear constraint

handling, the speedup factor can be obtained up to 400 % for the 3D oil reservoir

while only 27 % for the 2D oil reservoir.

Apart from the results above, both the TRPOD and Lagrangian barrier methods

rely on some parameter settings. In the Lagrangian barrier method we need to

supply suitable values of initial l and its stopping criteria, and the TRPOD method

needs more parameters, which are the minimum trust-region radius Mmin, its initial

value M0, and its maximum value Mmax. These parameters values have important

impact on the optimization results. To find good values for them, it would be

interesting to use a derivative-free optimization method, see e.g. Audet and Orban

(2006), rather than to use a heuristic approach.

Another point worthwhile to note is the fact that gradient-based optimization is

sensitive to initial guess values. We have therefore run some optimizations with

different initial controls. The results consistently show that the surrogate optimi-

zation has substantially lower CPU time while honoring the nonlinear output

constraints.

6 Conclusion

The use of the TRPOD method in two case examples has been presented in this

paper. Two kinds of model order reduction techniques, the POD and POD-DEIM

Table 11 Comparison of CPU time of forward and adjoint equations

CPU Time (s) High-fidelity model POD POD-DEIM

Forward equations

Pressure Eq. 154 32 29

Saturation Eq. 51 19 11

Total time forward Eqs. 205 51 40

Adjoint equations

Pressure Eq. 215 92 86

Saturation Eq. 18 15 15

Total time adjoint Eqs. 233 107 101
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Table 12 Optimization results with initial injection rate 0.25 PVI
500 days

. The water injected is measured in

pore volume injected (PVI)

Comparison High-fidelity model POD-DEIM

Recovery factor (%) 37.52 37.61

CPU time (in hours) 9.20 2.32

Total water Injected (in PVI) 0.31 0.32
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Fig. 25 The output constraints satisfaction, i.e., the total volume of water production at the final time
step
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Fig. 26 Optimization solutions in high-fidelity and reduced-space models

Table 13 Optimization results with initial injection rate 0.3 PVI
500 days

. The water injected is measured in

pore volume injected (PVI)

Comparison High-fidelity model POD-DEIM

Recovery factor (%) 37.29 37.28

CPU time (in hours) 7.30 3.57

Total Water Injected (in PVI) 0.32 0.32
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methods, have been presented. Because of the nonlinear nature of oil reservoirs,

particularly the water saturation equation, the POD method may result in a slight

speedup in terms of CPU runtime. To get more CPU time speedup, we use POD-

DEIM that is consistently faster for the forward saturation equation. In the 2D

reservoir example, the sparse linear solver seems to be efficient to solve the linear

equation of the adjoint systems. Hence, the corresponding adjoint-saturation

equation in the reduced-order model cannot be much faster. The surrogate

optimization using the POD-DEIM reduced-order model has shown to give

considerable speedup and may also give a comparable objective function value. In

addition, result from surrogate optimization can be used as an initial guess to an

optimization algorithm using a high-fidelity model.

The Lagrangian barrier method is sensitive to the choice of algorithm parameters,

such as the barrier multiplier. In addition, the TRPOD method also requires suitable

choices of parameter values. The choice of these parameters will affect the

optimization solution.

The state equations in this work are solved using a sequential method, that is,

implicit-pressure and implicit-saturation solvers. The POD-DEIM is then applied to

the implicit water saturation equation. In commercial reservoir simulators, a fully-
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Fig. 27 The output constraints satisfaction, i.e., the total volume of water production at the final time
step
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implicit method, that is, implicit solutions for both pressure and saturation are

commonly used. We foresee the use of POD-DEIM in fully-implicit reservoir

simulators may give even better speedups than observed in this work.

In this work the choice of POD basis functions is paramount. Due to the limited

operating point, the POD basis functions are updated with a trust-region strategy

during the course of optimization. However, there exist many variants of POD

methods that extend the operating range of the POD model. For example the

extrapolation strategy proposed in Burkardt et al. (2006), may give better

approximation. Furthermore, the TRPOD method depends heavily on some

important parameters, namely, the initial and maximum trust-region radius. Method

like adaptive TRPOD Sachs (2009) can be applied to partially overcome

dependency of these parameters.
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