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Abstract This paper presents and compares different modifications made to the

Complex-RF optimization algorithm with the aim of improving its performance for

computationally expensive models with few variables. The modifications reduce the

required number of objective function evaluations by creating and using surrogate

models (SMs) of the objective function iteratively during the optimization process.

The chosen SM type is a second order response surface. The performance of the

modified algorithm is demonstrated for both analytical and engineering problems

and compared with the performance of a number of existing algorithms. A meta-

optimization of the algorithm is also performed to optimize its performance for

arbitrary problems. To emphasize the fact that the modified algorithm uses meta-

models it is denoted Complex-RFM.

Keywords Optimization � Surrogate models � Meta-optimization

1 Introduction

The desire in industry to perform optimizations of their systems is driving the need for

efficient optimization algorithms. This is especially true in respect of computationally

demanding models where one model call might take hours to perform. Consequently,

the required computational time of an optimization may be significant since an

optimization needs numerous model calls to converge. A popular solution to this

problem is to involve computationally effective surrogate models (SMs), also known
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Division of Machine Design, Linköping University, Linköping, Sweden
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as metamodels in earlier literature, in the optimization process (Duvigneau and

Praveen 2007; Kitayama et al. 2011).

SMs are numerical approximations of how the output of a system or model varies

when the parameters of the system or model are varied. If the SM is considered to be an

accurate reanimation of the original model, it is beneficial to perform analyses on the

SM instead of the original model for engineering applications, since the wall-clock

time of one model call may be reduced to parts of seconds (Johnson et al. 2008).

There are two main approaches to use SMs to reduce the wall-clock time of an

optimization process (Duvigneau and Praveen 2007). The first and probably the

most popular method is to create a global SM, which has a desired accuracy over the

whole design space, of the original model before the optimization is started (Park

and Dang 2010). Then the optimization is performed on the SM and consequently

the received optimum is the optimum of the SM. The other approach is to create and

fit SMs iteratively during the optimization process.

The benefit when a global SM is fitted before the optimization is started is that

the created SM may be used afterwards for other analyses of the system it

reanimates. However, since the location of the optimum is often unknown before an

optimization has been performed, the SM needs to be accurate over the whole

domain (Duvigneau and Praveen 2007). It would be unfortunate to have a low

accuracy in the parts of the design space where the optimum is located. The samples

used to fit the SM therefore need to be spread over the design space, meaning that

samples may be drawn in places that are not reached by the optimization algorithm.

One advantage when SMs are fitted iteratively during the optimization process is

that the only model calls of the original model that are made are those that are

needed for the progress of the optimization. Consequently, no unnecessary samples

are drawn. The vicinity of the found optimum should also be reanimated accurately

by the last SM since the samples that are used to fit the SMs are drawn closer and

closer to the optimum. A drawback is that the first SMs will be coarser since the

initial samples are few. This means that the SM may be a bad reanimation of the

original model, which might make the optimization converge to a bad solution.

The purpose of the work is to modify an existing optimization algorithm to

improve its performance for moderately computationally expensive models where

an optimization takes around a day to perform. The aim of the proposed method is to

make the algorithm more effective by using SMs iteratively during the optimization.

The parameters of the algorithm are also optimized to optimize the performance of

the algorithm for arbitrary problems.

Many different SMs exist and several attempts have been made to compare their

performances for both analytical functions and engineering problems (Jin et al. 2001,

2003; Shan and Wang 2010; Tarkian et al. 2011). However, it is difficult to draw any

general conclusion about which SM performs best (Wang and Shan 2007). Since the

SM is updated iteratively during the optimization process, it is undesirable to wait for

an optimization of the SM parameters each time the SM is updated. The SM type that is

chosen should therefore be one where the SM parameters can be determined quickly.

Polynomial response surfaces (PRSs) can be updated fast using least square

estimations, which may be performed by simple matrix operations, and they also

give accurate local estimations. For this reason, PRSs are chosen as SMs.
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The chosen optimization algorithm, which is modified to use SMs iteratively

during the design process, is the Complex-RF algorithm. The performance of

Complex-RF has been demonstrated for engineering problems in several papers; see

for example works by Andersson (2001), Johansson et al. (2002) and Krus and

Ölvander (2012).

To emphasise that the modified algorithm creates and calls models during the

optimization, it is denoted Complex-RFM, where the M stands for metamodels.

1.1 Paper outline

Section 2 describes PRSs and the proposed optimization algorithm is presented in

Sect. 3. Section 4 briefly describes meta-optimization. Section 5 demonstrates the

performance of Complex-RFM for a few analytical functions and an engineering

example and is followed by the conclusions in Sect. 6.

2 Polynomial response surfaces

PRSs are SMs where the value of a new point is estimated from a mathematical

function of a polynomial form. This can be seen in Eq. 1.

ŷ ¼ b0 þ
XN

i¼1

bixi þ
XN

i¼1

XN

j¼1

bijxixj: ð1Þ

This can also be written in matrix form, as shown in Eq. 2

ŷ ¼ Xvb; ð2Þ
where

Xv ¼ ½1 x1 x2 � � � xN x1x1 x1x2 � � � xNxN �;
b ¼ ½b0 b1 b2 � � � bN b11 b12 � � � bT

NN �:

xi stands for the value of the ith variable of the design point which is evaluated. The

coefficients bi need to be determined in order to use this SM. This can be done

effectively by performing a least square estimation. It is possible to perform a least

square estimation by creating a matrix system as shown in Eq. 3. This matrix system

consists of one row for each of the m samples, si, that are used to fit the response

surface. Each row is a realization of Eq. 1 for one sample.

Xb ¼ y; ð3Þ
where

X ¼

Xv s1ð Þ
Xv s2ð Þ

..

.

Xv smð Þ

2

6664

3

7775y ¼ y s1ð Þ y s2ð Þ � � � y smð ÞT :
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This equation system is solved in a least square sense by performing the

operations seen in Eq. 4. A least square estimation finds a solution which minimizes

the errors squared for Eq. 3.

b̂ ¼ XtX�1Xty: ð4Þ
It is necessary to use as at least as many samples as there are coefficients to fit a

PRS, but it is recommended to use an oversampling of 50 % (Redhe et al. 2002).

This is a drawback when PRSs are used for problems with many variables, since the

combination terms scale with the number of variables squared. It is desirable to use

as high a degree of polynomial as possible to capture the behaviour of the problem

as well as possible. But a high degree of the polynomial means that more samples

are needed to fit the PRS. A second degree polynomial is probably sufficient to give

accurate estimations around the optimum and is therefore a good trade-off between

accuracy and efficiency.

3 Optimization algorithms

This section presents the Complex-RFM algorithm, but begins by describing the

Complex-RF algorithm that it is based on. The problems that are solved by these

algorithms to demonstrate the performance of Complex-RFM are also solved by two

additional algorithms—a sequential approximate optimization (SAO) based on a

genetic algorithm (GA) and sequential quadratic programming (SQP).

3.1 Complex-RF

The Complex algorithm was proposed by Box (1965) and is a modified version of

the Nelder–Mead Simplex algorithm (1965). A flowchart of the algorithm is shown

in Fig. 1.

Complex-RF is a non-gradient based algorithm which starts by placing k points

randomly in the design space (Krus and Ölvander 2003). These k points span the

Complex. The objective function values of the k points are evaluated by calling the

original model and the worst point is identified. This point is reflected through the

centroid of the other points. The objective function value at the new location is

evaluated by calling the original model and comparing it with the objective function

values of the other points. If the new point is still worse than the other points, it is

moved along the imaginary line halfway towards the centroid of the other points

until it is no longer worst. This is shown at the bottom of Fig. 1.

The algorithm progresses by moving one point at a time until convergence or the

maximum number of objective function evaluations is reached. Since the starting

points are spread randomly in the design space, the Complex algorithm is suitable

for problems which are sensitive to the choice of starting point. Additionally, it is

applicable to a wide range of problems since it does not rely on a linear or

differentiable objective function.

The R in Complex-RF stands for randomization factor and is used when a point is

moved (Krus and Ölvander 2003). Instead of restricting the point to move along the
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imaginary line, it is placed in a random location close to the line. A higher

randomization factor means that the point can be placed further away from the line.

The F in Complex-RF denotes forgetting factor and is used to ensure that newer

points are preferred in the Complex (Krus and Ölvander 2003). This is useful if the

objective function varies with time or has local plateaus where the algorithm might

get stuck.

3.2 Complex-RFM

The proposed modification of the Complex algorithm uses PRSs as SMs throughout

the optimization and its flowchart is shown in Fig. 2. The algorithm performs the same

operations as Complex-RF until enough samples have been drawn. This number

corresponds to an oversampling of 50 % for the second order response surface. When

the function ‘‘Original Model / SM’’ in Fig. 2 makes that model call, it fits a PRS to the

objective function values of the model calls. During the remainder of the optimization,

a PRS is called whenever the algorithm wants to determine the objective function

value. A pseudo code for the Original Model/SM function is found in Annex 1.

This could be interpreted such that the original model will never be called after

the first PRS is created. However, it is desirable that the SM should be called

whenever its result can be trusted and the original model should otherwise be called.

But how should this be determined?

For this algorithm, it is handled by the function ‘‘SM-Check’’, whose pseudo

code can be found in Annex 2. This function is executed at the end of each iteration.
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Evaluate Points

Evaluate point

Stop Criteria 
Fulfilled?

Reflect worst point 
through centroid

Start 
Optimization

End 
Optimization

Is the point
still worst?

Evaluate point

Move point inwards
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Objective 
Function

Yes

Objective 
Function

No
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Fig. 1 A schematic flowchart for the Complex-RF optimization algorithm
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If an SM was used to estimate the objective function value of the latest point, the

characteristics of the used PRS are investigated. If the accuracy of the PRS is better

than a certain threshold, e, the quality of the SM is considered good enough and the

function ‘‘SM-check’’ is omitted for a number of iterations. Both the threshold and

the number of omitted iterations are parameters which may be optimized in order to

maximize the performance of the algorithm as described in Sect. 4.

It is possible to estimate the accuracy of the SM by comparing its estimation of a

point with the value calculated from the original model. But this information may be

redundant since it is tempting to incorporate the value of the new point into a new

SM. Since the new point is placed in a region of the design space where the

optimization algorithm is currently operating, a new SM which takes the point into

account is preferred. Consequently, a new SM is used by the optimization algorithm

as soon as a call of the original model is made and therefore the estimated accuracy

will be the accuracy of the previous model.

One approach is to compare the two latest SMs and analyse how much they differ. If

they agree well, it is probable that the SM is accurate in the area of the design space
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Evaluate Points
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Stop Criteria 
Fulfilled?

Reflect worst point 
through centroid
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Optimization

End 
Optimization

Is the point
still worst?

Evaluate point
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Original Model
/ SM
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Original Model
/ SM

No

No

No
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Fig. 2 A schematic flowchart for the Complex-RFM optimization algorithm
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which the optimization algorithm currently operates in. The determination of how well

the two latest SMs agree may be performed in several ways, but here the focus is to

compare the coefficients, bi, of the two latest response surfaces. For this algorithm, two

response surfaces are deemed to be equal if the maximum percentage difference

between the values of their coefficients is below a certain threshold. To increase the

accuracy of the SM in the area in which the optimization works, the SMs are fitted by

using only the latest samples, corresponding to an oversampling of 50 %.

3.3 SQP: fmincon

SQP is an iterative optimization method which uses gradient based methods to

converge (Bonnans et al. 2006; Nocedal and Wright 2006). The SQP implemen-

tation that is used is the function fmincon from the software package MATLAB.

Unlike the Complex algorithm, a starting point must be supplied by the user and

fmincon will return the same suggested optimum every time an optimization of a

problem is performed with the same starting point. The need for a starting point and

the gradient based solving procedure make fmincon sensitive to the choice of

starting point for multimodal problems.

Different algorithms are used by fmincon depending on the settings used when

the functions are called. Here, fmincon is used with its standard settings and no

gradients are supplied when the objective functions are called. Instead, fmincon uses

finite differences to estimate the gradients.

3.4 SAO based on a GA

A GA is an optimization algorithm which reanimates nature’s way of evolution

(Goldberg and Holland 1988; Holland 1975). It starts by creating an initial

population with parameter values selected randomly in the design space.

The objective function value of each individual in the population is then

calculated, and the further evolution of the population is inspired by the Darwinian

principle of survival of the fittest. Hence, the best individuals are chosen for

reproduction, using genetic operators such as cross over and mutation.

It is possible to control the behaviour of the algorithm by changing the number of

individuals in the population and the number of generations, as well as by

modifying other factors such as the mutation and crossover operators. For example,

if a lot of mutation is allowed, each individual may mutate and get dramatically

changed parameter values, which encourage the search for the global optimum.

A drawback with GAs is that they usually require numerous objective function

evaluations to converge since the fitness value of all individuals of all generations

need to be estimated (Kitayama et al. 2011). This can however be remedied since it

is possible to estimate the value of each individual in a generation in parallel. If

many computers or cores are available it is therefore possible to reduce the wall

clock time to the time it takes to simulate one individual multiplied by the number

of generations needed.

An SAO begins by drawing some initial samples of the problem and fits an SM to

the samples (Forrester et al. 2008; Kitayama et al. 2011). An optimization is then
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performed on the SM to find its optimal value. The original problem is simulated at

the found optimum and this sample is used to update the SM. Another optimization

is performed on the updated SM and once again the value of the original model at

the found optimum is calculated by simulating the original model. The SM is then

updated once again and this process continues until the same optimum has been

found several times in a row or the maximum number of simulations of the original

model is reached.

The SAO that is used to solve the following problems uses Kriging as SM.

Kriging originates from geostatistics and is widely used as SM by the engineering

community. The interested reader is encouraged to read the work by Isaaks and

Srivastava (1989) for a good introduction to Kriging.

4 Meta-optimization

In order to maximize the performance of an optimization algorithm, its parameters

can be tuned, so called meta-optimization (Grefenstette 1986; Krus and Ölvander

2012; Smit and Eiben 2009). An illustration of how to perform an optimization in

order to optimize the parameters of the optimization algorithm is shown in Fig. 3.

To enable optimization of the parameters, an objective function must be chosen.

The most interesting characteristics of an optimization algorithm for a computation-

ally expensive model are the probability of finding the optimum, P, and the required

number of model calls, nrec (Krus and Ölvander 2012). The objective function should

therefore be a combination of both properties. If the hit-rate is P, then the probability of

not finding the optimum is 1 - P. The probability of not finding the optimum for

q optimizations could thus be expressed as (1 - P)q and consequently the probability

of finding the optimum is calculated according to Eq. 5.

Pfound ¼ 1� ð1� PÞq: ð5Þ

Fig. 3 A schematic flowchart for optimization of the parameters of an optimization algorithm
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However, different optimization algorithms require different numbers of objective

function calls to converge and consequently the exponent q in Eq. 5 should be replaced

with the allowed number of model calls divided by the required number of model calls,

ncalls. If the allowed number of model calls is set high, the probability of finding the

optimum will be close to one for all algorithms. Here, the number is set to 100, as

shown in Eq. 6, meaning that Eq. 6 can be interpreted as the probability of finding the

optimum by performing 100 model calls. Naturally, it might be impossible to perform

optimizations corresponding to exactly 100 model calls, but the purpose of the

performance index is to enable comparison of the performance of different

optimization algorithms and the difficulty of different problems.

Perf Index ¼ 1� ð1� PÞ100=ncalls : ð6Þ
It can be noted that the performance index equals one for all algorithms where the

probability of finding the global optimum is 100 %. Fortunately, this is no major

issue since if two algorithms have the same hit-rate, the one which requires less

model calls is the superior.

5 Performance demonstration and meta-optimization of Complex-RFM

The performance of Complex-RFM is demonstrated for two analytical problems and

three engineering examples. To get an idea of whether the performance is good or

bad, the same problems are solved with the other algorithms that are presented in

Sect. 3. 1,000 optimizations are performed for each algorithm and problem in order

to estimate the corresponding hit-rates, mean number of model calls and

performance indexes. The starting point for each optimization is randomly selected

to be within the lower and upper bounds of the parameter values for the different

problems. For the SAO, the number of individuals in the population is set to 40, the

generation gap is set to 95 % (meaning that the two best individuals in each

generation are kept) and the optimization is stopped when the same optimum has

been found five consecutive times. Since meta-optimization of Complex-RFM is in

focus, its parameters are optimized to maximize its performance for each problem.

This process can be seen in Fig. 3. The Complex-RF algorithm with standard values

for R and F is used as an optimizer to optimize the parameters of Complex-RFM for

the studied problems. The four parameters are the forgetting and randomization

factors, c and Rfak, as well as the following two parameters:

e is the threshold which decides if two SMs are equal or not.

1 is the number of iterations ‘‘SM-check’’ is omitted when an SM is deemed

accurate.

The comparison will be biased towards Complex-RFM since its parameters are

optimized whereas the parameters of the other algorithms are not. To make it more

fair, standard parameters for Complex-RFM that can be used to solve arbitrary

problems are suggested in Sect. 5.7 and all problems are solved with these

parameters as well. This means that all algorithms optimize the problems with

standard parameters and the comparison should be more fair.
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The criterion for whether an optimization was successful or not is important for

the performance index and in the following problems it is assumed to be a solution

that is among the best 0.1 % of all possible solutions. This is a reasonable

assumption of a successful optimization from an engineering point of view and is

for example used by Reisenthel and Lesieutre (2011). This is estimated by drawing

10 million random samples in the design space for the analytical problems and

100,000 samples for the engineering problems.

5.1 Analytical test function: the Peaks function

Peaks is an analytical function which can be viewed by writing peaks in the

MATLAB command window and its equation is shown in Eq. 7. It consists of a flat

area surrounding several peaks, which builds a global minimum in [0.231 -1.626]

and a local minimum in [-1.348 0.205].

g1ðxÞ ¼ 3 1� x1ð Þ2exp �x2
1 � x2 þ 1ð Þ2

n o

� 10
x1

5
� x3

1 � x5
2 exp �x2

1 � x2
2

� �
� 1

3
exp � x1 þ 1ð Þ2�x2

2

n o
;

ð7Þ

subject to

�3� xi� 3; i ¼ 1; 2:

For the comparison of the hit-rates of the different optimization algorithms,

optimizations that result in a value of less than -6.4 are considered successful. The

resulting hit-rates and mean numbers of required calls of Peaks can be seen in

Table 1 and the optimal parameters for the Complex-RFM algorithm in Table 7.

The average optimum function value for all 1,000 optimizations for the same

optimization algorithm is shown in the row ‘‘Mean Objective Value’’ and the

standard deviations of these function values are shown in the row below, ‘‘Standard

Deviation’’. There are two columns for Complex-RFM. The one named ‘‘optimal’’

has been optimized to be as efficient as possible for this problem, whereas the one

named ‘‘standard’’ uses the suggested parameter values that are found in Table 7.

A Welch’s t test (1947) of the mean values and standard deviations of the optimums

found by Complex-RF and Complex-RFM reveals that the optimums belong to different

distributions (t = 3.69, df = 1933, p B 0.01). Even though the hit-rate of the Complex-

RFM is lower than the hit-rate for Complex-RF, the decrease in evaluations of peaks

Table 1 Comparison of the performance of a few optimization algorithms for Peaks

Entities Complex-RF Complex-RFM

Optimized

Complex-RFM

Standard

fmincon SAO

Hit-rate (%) 67.4 56.7 60.1 31.8 92.8

Function evaluations 116 39 51 27 47

Mean Optimum Value -5.21 -4.58 -4.86 -2.70 -6.35

Standard Deviation 2.05 2.50 2.21 2.87 0.80

Performance index 0.620 0.883 0.835 0.758 0.996
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results in a better performance index for Complex-RFM. Also note that fmincon gets a

high performance index even though the hit-rate is a rather mediocre 30% since the

number of function calls is low. The GA-based SAO clearly outperforms the other

algorithms since it has a higher hit-rate and requires fewer function calls.

5.2 Analytical test function: Hartmann6

To investigate the impact of increasing number of variables, the Harmann6 function

is chosen. It has six variables and is consequently difficult to plot, but its equation is

shown in Eq. 8.

f ðxÞ ¼ �
X4

i¼1

cie
�
P6

j¼1
aijðxj�pijÞ2 : ð8Þ

The numerous coefficients of this function can be found in Annex 3. The function has

a global minimum of -3.32 in xopt = [0.2 0.15 0.475 0.275 0.31 0.655] and an

optimization is deemed successful if the value at the suggested optimum is less than

-2.7. The resulting performance of the different optimization algorithms can be found in

Table 2, whereas the optimal parameters for Complex-RFM can be found in Table 7.

All optimization algorithms display high hit-rates for this problem. This means

that fmincon would be the recommended algorithm since it needs the fewest

function evaluations to converge. It should also be noted that Complex-RFM is

much more effective than Complex-RF. Complex-RFM needs many function

evaluations to converge, but most are performed on the SM. Since Hartmann6 is an

analytical function it is redundant, but if it had been a computationally expensive

model it would have been essential.

5.3 Engine Timing Model with closed-loop control

An engineering optimization problem is to optimize the control system of the Engine

Timing Model that is part of the demo package of MATLAB Simulink. It can be found

in the Simulink toolbox under the name ‘‘sldemo_ enginewc’’. The control system

consists of two parameters—a proportional and an integral part. Since the purpose of

the control system is to adapt the output signal, y, as accurately as possible to the

reference signal, yref, the objective function is chosen to be the error squared between

the two signals for each time-step, as shown in Eq. 9.

Table 2 Comparison of the performance of a few optimization algorithms for the Hartmann6 function

Entities Complex-RF Complex-RFM

Optimized

Complex-RFM

Standard

fmincon SAO

Hit-rate (%) 100 100 99.9 100 98.0

Function evaluations 500 268 235 129 60

Mean Optimum Value -3.29 -3.29 -3.28 -3.28 -3.18

Standard Deviation 0.063 0.060 0.116 0.056 0.0203

Performance index 1 1 0.947 1 0.999
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y ¼
XT

t¼1

ðyref ðtÞ � yðtÞÞ2: ð9Þ

The values of the two parameters are constrained to a range between 0.001 and 1

and the criterion for a successful optimization is that the design has an objective

function value of less than 3.5e7.

The results can be seen in Table 3 and it is notable that the performance index of

Complex-RFM is more than double the indices of the other optimization algorithms.

This means that there is at least a doubled chance to find the optimum with Complex-

RFM when the allowed computational budget is 100 simulations. The gradient-based

fmincon struggles with this problem and has the worst performance index.

5.4 Anti-Windup PID Control demonstration with feedforward control

Another engineering optimization problem that is part of the MATLAB Simulink

demo package is a demonstration of Anti-Windup for a PID controller. The model can

be found in the Simulink toolbox under the name ‘‘sldemo_ antiwindupfeedforward’’

and the controller consists of four parameters. The parameters are the proportional,

integral and derivative parts as well as the filter coefficient. Those parameters are

allowed to be between [0.001 0.001 -5 0.001] and [15 15 5 5]. This problem also uses

Eq. 9 as objective function and a value below 2,000 is considered successful.

The results can be seen in Table 4. The GA-based SAO performs best thanks to

the fact that it requires few function evaluations to converge and it is closely

followed by Complex-RFM.

Table 3 Comparison of the performance of a few optimization algorithms for the Engine Timing Model

Entities Complex-RF Complex-RFM

Optimized

Complex-RFM

Standard

fmincon SAO

Hit-rate (%) 39.7 42.8 37.9 17.6 13.4

Function evaluations 158 54 67 92 50

Mean Optimum Value 3.67e7 3.64e7 3.73e7 4.48e7 3.77e7

Standard Deviation 4.45e6 3.52e6 5.27e6 3.13e7 2.24e6

Performance index 0.274 0.644 0.509 0.190 0.250

Table 4 Comparison of the performance of a few optimization algorithms for the Anti-Windup PID

Control model

Entities Complex-RF Complex-RFM

Optimized

Complex-RFM

Standard

fmincon SAO

Hit-rate (%) 85.5 61.5 53.5 31.8 24.5

Function evaluations 497 120 160 160 49

Mean Optimum Value 1,580 1,792 1,890 2,390 2,120

Standard Deviation 344 398 405 915 337

Performance index 0.322 0.549 0.380 0.213 0.436

38 J. A. Persson, J. Ölvander
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5.5 Electrical motorcycle

The last engineering application is the design of a gearbox with two gears for an

electric motorcycle. The model is implemented in MATLAB Simulink and a

screenshot is shown in Fig. 4. The model consists of a battery, an electric motor, a

gearbox and the motorcycle itself. A more detailed description can be found in

Annex 4.

For the design problem, the target is to design an electric motorcycle with as high

acceleration as possible and the speed after 5 s is used as an acceleration measure.

The design variables are the gear ratios of the first and second gears and the velocity

when the gear is changed. The design variables are considered to lie between [1 1 1]

and [20 20 75].

The criterion for a successful optimization for this comparison is a suggested

design which leads to a speed after 5 s of more than 72 km/h. The performance of

the optimization algorithms is shown in Table 5. fmincon has major difficulties to

converge to the global optimum. The SAO and Complex-RFM perform approx-

imately similar and outperforms the other algorithms with a large margin.

5.6 Standard parameters

Complex-RFM has a set of parameters that need to be determined. The optimal

values of the parameters of Complex-RFM for each of the different problems are

Fig. 4 A screenshot of the electric motorcycle model from MATLAB Simulink
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shown in Table 7. An optimization which takes the performance indices of all of the

presented functions into account is performed to get a recommendation of optimal

parameters for an arbitrary problem. This objective function can be seen in Eq. 10.

The numbers that are used to normalize each performance index consist of the

optimal performance index for each problem, which can be seen in the ‘‘Complex-

RFM optimized’’ column of Table 6.

minf ðxÞ ¼ � piPeaks

0:883

� �2

þ piHart6

1

� �2

þ piEngine

0:644

� �2

þ piPID

0:549

� �2

þ piELMC

0:822

� �2
 !

;

ð10Þ

where

x ¼ ½Rfakce1�:

The performance of Complex-RFM when the suggested standard parameters are

used is shown in Table 6. Performance is slightly worse than when optimal

parameters for each problem are used, which can be expected. Complex-RFM

nevertheless performs well. The optimal parameters obtained when Eq. 10 is solved

are noted suggested standard parameters and are shown in the bottom of Table 7.

5.7 Summary of the comparison

The resulting performance indexes for the different algorithms and problems are

summarized in Table 6. Here it can be seen that fmincon performs well for the

analytical problems but struggles to solve the engineering problems. The SAO

performs reasonably well for all problems. The most interesting comparison is

between Complex-RFM and Complex-RF since the impact of the modifications can

be seen there. Complex-RFM outperforms Complex-RF for all problems, which

indicates that the modifications have improved the algorithm. Both are well suited to

solve the engineering problems according to Table 6. Complex-RFM generally has

the highest performance indices of the compared algorithms. This means that it has

the highest chance of finding the optimum if the budget for the optimization is fixed.

It is important to mention that the comparison is biased towards Complex-RFM

since its parameters are optimized to maximize its performance, whereas the other

algorithms are used with their standard settings. It is probably possible to improve the

Table 5 Comparison of the performance of a few optimization algorithms for the electrical motorcycle

Entities Complex-RF Complex-RFM

Optimized

Complex-RFM

Standard

fmincon SAO

Hit-rate (%) 89.0 88.6 89.3 27.5 55.7

Function evaluations 353 126 146 131 50

Mean Optimum Value -73.9 -73.4 -73.6 -66.4 -71.9

Standard Deviation 2.76 4.61 3.04 10.02 2.36

Performance index 0.465 0.822 0.784 0.218 0.804
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performance of the SAO by tuning its parameters but here it is only used to give more

reference performance indices for the comparison. Even though fmincon and the SAO

are used with their standard settings it is interesting to see their performances to get a

better understanding of the capacity of the other algorithms. The Complex-RFM with

standard parameters performs well, which indicates that it is suitable for these kinds of

problems.

It should also be pointed out that the criterion for when an optimization is

successful or not affects the hit-rate and therefore also the value of the performance

index. Other definitions of successful optimizations may therefore lead to different

conclusions regarding the performance of the algorithms. The measure of a

successful optimization being a solution that is better than 99.9 % of all possible

solutions is meaningful from an engineering perspective. However, from a strictly

mathematical perspective one might argue that other convergence criteria might be

more accurate.

6 Conclusions

A new modified version of the Complex-RF optimization algorithm, Complex-

RFM, is proposed. The intended use of Complex-RFM is for low-dimensional,

moderately expensive models, with optimization wall-clock times of around a day.

This is done by creating and using SMs iteratively during the optimization process.

The calculations performed between each model call are kept low to make the

algorithm fast and easy to use and modify.

Table 6 Performance indices for the optimization algorithms and problems

Problems Complex-RF Complex-RFM

Optimized

Complex-RFM

Standard

fmincon SAO

Peaks 0.620 0.883 0.835 0.758 0.996

Hartmann6 1 1 0.947 1 0.999

Engine Timing 0.274 0.644 0.509 0.190 0.250

PID demonstration 0.322 0.549 0.380 0.213 0.436

EL-MC 0.465 0.822 0.784 0.218 0.804

Table 7 Optimal parameters for Complex-RFM for each problem

Problems Rfak c e 1

Peaks 1 0.05 25 0.01

Hartmann6 0.2 0.05 2 0.002

Engine Timing 0.86 0 1 0.005

PID demonstration 0.79 0.04 3 0.001

Electrical MC 0.28 0.06 2 0.008

Suggested standard 0.50 0.20 4 0.004
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A meta-optimization is performed to get a recommendation for standard parameters

of Complex-RFM that can be used when an arbitrary problem is solved. Complex-

RFM is a good all-round algorithm for optimization of problems with few variables

according to the performed experiments. The experiments show that for a fixed

computational budget, Complex-RFM has a greater chance than Complex-RF of

finding a good optimum for Simulink system models with few parameters. It also

outperforms the gradient-based fmincon and performs similarly to a GA-based SAO.

A suggestion for future work is to evaluate the performance of Complex-RFM for

other problems since all tests up to this point have been done in MATLAB and Simulink.

Annex 1: pseudo code for the Original Model/SM activity of Complex-RFM

Annex 2: pseudo code for the SM check activity of Complex-RFM

Annex 3: coefficients of the Hartmann6 function

See Table 8.
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Annex 4: a description of the electric motorcycle model

The electric motorcycle model consists of four major parts—a battery, an electric

motor, a gearbox and the motorcycle itself. The parameters of the model can be seen

in Table 9.

Table 8 Parameters for

Hartmann6

The equation can be seen in

Eq. 8

a

i\j 1 2 3 4 5 6

1 10 3 17 3.5 1.7 8

2 0.05 10 17 0.1 8 14

3 3 3.5 1.7 10 17 8

4 17 8 0.05 10 0.1 14

c

i 1 2 3 4

1 1.2 3 3.2

p

i\j 1 2 3 4 5 6

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 0.2348 0.1451 0.3522 0.2883 0.3047 0.665

4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

Table 9 Parameters for the

electric motorcycle model
Motorcycle parameters

m = 200 (kg)

A = 0.75

Cd = 0.75 Drag coefficient (-)

q = 1.2 Air density (kg/m3)

l = 0.1 Friction coefficient (-)

r = 0.3 Wheel radius (m)

Electric motor parameters

L = 0.01 Inductance (H)

R = 0.05 Resistance (Ohm)

ke = 0.18 Motor constant (Nm/A)

km = ke

Imax = 300 Maximum current (A)

Battery parameters

Umax = 72 Maximum voltage (V)

Ahmax = 60

Kbat = 0.18 Battery coefficient to reduce the voltage

Gearbox parameters

u1 = 6 Gear ratio first gear

u2 = 4 Gear ratio second gear

vshift = 60 Speed when shifting from u1 to u2

speedref = 150 Target speed
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The battery model

The voltage of the battery is modeled as a linearly decreasing function of the energy

it has delivered, see Eq. 11.

VðtÞ ¼ Umax � Kbat

Z t

0

Adt: ð11Þ

However, the battery can only deliver a certain amount of energy. When the

maximum number of Ah is reached, the battery is considered empty and the voltage

is set to zero.

The electric motor

The equations used to model the electric motor are shown in Eq. 12.

L
di

dt
¼ CinU � kEx� R � i; ð12Þ

Tout ¼ kmi:

A picture of the motor model is shown in Fig.5. The control signal to the motor

(Cin in Eq. 12) enters the model at the top and is used to reduce the voltage to the

motor. The control signal is between -1 and 1 where 1 means full throttle.

The gearbox

The gearbox has two gears and it is modeled using three parameters, u1, u2 and vshift.

The gear ratio is changed from u1 to u2 at the rotational speed vshift. In the gearbox,

the output torque is amplified by a factor u1 (or u2) and the torque is then reduced by

Fig. 6 A screenshot of the gearbox submodel from MATLAB Simulink
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a factor of 0.95 which models all mechanical losses of the transmission. The model

of the gearbox is shown in Fig. 6.

The motorcycle model

The motorcycle itself is modeled using Newton’s second law, where the input

torque is divided by the wheel radius to give the force driving the motorcycle

forward. From this force a rolling resistance and the air drag are subtracted, see

Eq. 13.

TinðtÞ
r
� CdAq

vðtÞ2

2
� l � mg ¼ m � aðtÞ: ð13Þ

The acceleration a(t) is then integrated to obtain the velocity, which in turn is

integrated in order to calculate the distance travelled by the motorcycle, see Fig. 7.
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