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Abstract The application of optimization methods and algorithms to energy man-
agement is crucial when trying to find instantaneous compromises between various
energy sources that can provide the power required by a powertrain. Because of the
complexity of both the problem and the system structure, it is difficult to determine
the optimal strategy in real time (on-line and using the onboard computer). This arti-
cle tackles the problem of optimizing the power provided by various sources available
to meet the power demand from the driver whilst minimizing the total hydrogen con-
sumption during a journey. The real challenge is to find an energy management law
applicable in real time on any power profile. This paper presents two new energy
management methods: off-line “Dynamic Programming with Improved Constraints
(DPIC)” and a real-time optimized decision-maker based on a two-levels optimized
Fuzzy Logic (Fuzzy Switching of Fuzzy Rules—FSFR). DPIC produces better results
than the classical discrete dynamic programming with state-of-the-art constraints, in
terms of execution time and hydrogen consumption. FSFR is a real time energy man-
agement algorithm based on fuzzy rules learnt on specific profiles and real-time fuzzy
switching of these fuzzy rules. Both methods are evaluated on different types of real
world profiles (urban, road and highway profiles), to assess and confirm their effec-
tiveness.
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1 Introduction

The development of Hybrid Electric Vehicles (HEV) has started since the year 1900
with the beginning of the design of such cars. In 2011, more than 4.5 million hybrid
vehicles have been sold worldwide. This increase is mainly due to the increase of the
human population in the world from 1.7 billion people in 1900 to 7 billion people in
2011 (Chan 2002). Before the last decade there was no crisis in fossil fuels and the
HEV diffusion was limited by the technology of electrical energy storage. Now, tak-
ing into account the eco-design, sustainable development and the price of oil, HEV
promotion is a necessity to maintain or increase ones market shares. The name Hybrid
Vehicle refers to the use of at least two different energy sources for the propulsion
of the vehicles. Often, an internal combustion engine is used as the primary source
for propulsion, mechanically coupled to the second source (batteries and electrical
motor are commonly used in such called parallel structure), such as for the Toyota
Prius II (Cheng et al. 2011). Such Hybrid Vehicles (Chan 2007; Burke 2007) are a
good compromise because they are using existant manufacturing processes based on
thermic engines. Due to the inflexibility of the actual power grid, the full Electric
Vehicle using only batteries or capacitors is not yet feasible (Su et al. 2011) due to
possible grid-overload when charging billions of EV. Another promising main energy
source is the Fuel Cell, which is considered as the best energy source that reduces fuel
consumption and the CO2 emission von Ellis et al. (2001), Rajashekara (2005). Fuel
Cell System (FCS) cars are considered nature-friendly and already commercialized
under well known brands such as Toyota (Aso et al. 2007). Since the onboard FCS
does not deliver high power and because the energy generated during braking should
be recovered for later reuse, it is necessary to add a reversible source of energy (Stor-
age Element), generally an electro-chemical battery or super-capacitors (Chau et al.
1999; Thounthong et al. 2006). The SE is used as an assistant in peak power and
recovers braking energy for a later reuse, allowing an optimization step dealing with
the optimal splitting between both sources (Destraz et al. 2004). This paper is thus
focused on HEV composed of a Fuel Cell System and Supercapacitors adding their
electrical energy to feed the electrical moto-propulsion group (called serial structure).
Combining such architecture shown on Fig. 1 with smart power management reduces
considerably the fuel consumption (Wang and Li 2010) . The hybrid vehicle support
of the work in this paper operates with two different power sources: a Fuel Cell Sys-
tem and a super-capacitor as SE. The biggest problem of using this hybridization is
how to use optimally the different sources in order to minimize the global cost of
hydrogen consumption for any mission. Hence the need to integrate an Energy Man-
agement System. A non-exhaustive list of methods and approaches existing in the
literature of powers management is given in Desai and Williamson (2009).

Energy Management Strategies are divided into two classes depending on the
knowledge of the profile: if all road sections are known in advance, then, it is pos-
sible to use off-line strategies for global optimization; otherwise real-time manage-
ment strategies are required (Hankache et al. 2008; Caux et al. 2010a,b; Neffati et al.
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Fig. 1 Series-hybrid architecture of the vehicle

2011). Classical discrete Dynamic Programming, referred to as DP, is used as a refer-
ence off-line method, because it is the most popular method used in the literature for
solving off-line optimization problems keeping computation time and data volume
feasible onboard (O’Keefe and Markel 2006; Yu et al. 2009; Hofman et al. 2007;
Sinoquet et al. 2009; Malaize and Tona 2011; Koot et al. 2005). The mathematical
constraints formulation is significantly improved in this paper. The second real time
energy management strategy proposed here is based on a system of fuzzy inference
rules optimized through a Genetic Algorithm (G.A.). The G.A. optimizes the param-
eters of the fuzzy membership function and generates specific rules for each profile
that characterize the relationship between the input and the output variable (Lom-
bardi et al. 2006). The original method proposed develop a fuzzy switching of the
fuzzy rules in real time. Such strategy is applicable to any unknown profile.

The paper is organized as follows: Section 2 presents the problem formulation
of HEV energy management. Section 3 describes an energy management strategy
off-line based on the Dynamic Programming and the Dynamic programming with
Improved Constraints (DPIC). Section 4 focusses on a real-time energy management
strategy based on Fuzzy Switching for Fuzzy Rules. Finally, Sect. 5 presents the
results on different driving cycles by applying the different methods.

2 Problem description

The hybrid system under consideration has two energy sources, as illustrated on
Fig. 1: a Fuel Cell Stack and a Storage Element (super-capacitor). It derives from
a hybrid full electric vehicle classified as hybridization series. The FCS is the main
energy source used to produce electricity from hydrogen. Usually it provides the elec-
tricity needed for the traction whereas the SE can recover the energy generated during
braking phases, or from the FCS itself, for a later reuse.

The goal is to minimize the overall cost of hydrogen consumption for a given
vehicle that follows a given profile of power demand, by optimizing the distribution
of power between the two sources under several constraints: availability of the two
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Table 1 Characteristics of the
storage element and FCS Value Description

PSEmin = −60 kW min power extractible from SE

PSEmax = 60 kW max power extractible from SE

SOCmin = 400 kW s min energy storable in SE

SOCmax = 1600 kW s max energy storable in SE

SOC0 = 900 kW s initial State of Charge

SOCN = 900 kW s final State Of Charge

PFCmax = 70 kW max power deliverable by FCS

Fig. 2 Efficiency curve of the
FCS (obtained experimentally)

sources (power and energy limits), performance (varying efficiency curves) and State
of Charge (SOC) of the super-capacitator.

The design of the power sources is outside the scope of this paper. The optimiza-
tion problem considered here is done on a pre-defined system whose characteristics
are summarized in Table 1.

2.1 Fuel cell system (FCS)

A Fuel Cell System (FCS) is a device that transforms chemical energy into electrical
energy from a chemical reaction between the hydrogen contained in a storage tank
in the first side and oxygen on the other side. It is considered as the primary source.
There is no pollutant emission, only water is generated if pressure, gaz flow and heat
are locally controlled. The main feature of the controlled FCS is the efficiency curve
taken experimentally as a non-linear function of the power delivered by the FCS (see
Fig. 2). The optimization criterion is the minimization of the hydrogen consumption
cost during a mission, with the aim of increasing its autonomy whilst respecting all
its constraints (design and internal control fixing efficiency curves, minimum and
maximum deliverable power).

2.2 Storage element system (SE)

A Storage Element (SE) is needed to follow high accelerations of a few sec-
onds that cannot be provided by the main source (which otherwise would be over-
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dimensioned). To fulfill this requirement, a super-capacitor is more suitable than a
battery, because it presents a higher dynamic to quickly deliver the power during a
short period of time (Lu et al. 2007). It also has an almost constant efficiency coeffi-
cient. Let the State Of Charge SOC(t) be the amount of energy contained in the SE at
instant-time t . SOCmin and SOCmax are respectively the minimum and the maximum
amount of energy that the SE can contain. Generally the Storage Element can only be
used between 25 % and 100 % of its energy capacity (Tallner and Lannetoft 2005).

If the SE supplies power to the powertrain system (discharge) then PSE > 0 and
ẋ(t) < 0 (x represents State Of Charge). Otherwise, if the SE absorbs the power
recovered by the braking (recharge) then PSE < 0 and ẋ(t) > 0. Therefore, equation
(1) is always valid.

ẋ(t) = −PES(t) (1)

2.3 Powertrain system

The powertrain is responsible for the traction in the HEV. The system consumes the
electrical energy provided by both sources. If the power of this moto-propulsion-
group is positive then the system is in traction, if it is negative then the vehicle is in
braking. At the end, if the power demand is zero then the vehicle is stopped.

2.4 Power demand profile

Energy optimization can be performed once the following elements have been identi-
fied: the profile of the power demand corresponding to the journey of the vehicle, the
loss characteristic of the SE, and the efficiency of the FCS. Three profiles provided
by INRETS/IFSTTAR (National Institut on Science and Technology in Transport)
are used in this paper: the path of an Electric Vehicle in Urban environments, a Road
mission (fluent traffic) and a Highway mission (Neffati et al. 2011).

3 Off-line strategy

Assuming that the mission is known in advance, it is possible to apply an off-line
global optimization algorithm. The goal is to compute the lower consumption cost
reachable, that can later be used as a reference when trying to evaluate the global
performance of the vehicle achievable with the real time optimization approaches.

3.1 Problem formulation

The problem is formulated as a non-linear problem with non-linear constraints as
follows:

– Decision variables
�PFCi

= instantaneous power generated by the FCS at time i, PFCi
≥ 0

�PSEi
= instantaneous power generated (PSEi

≥ 0) or stored (PSEi
≤ 0) by the SE

at time i

�SOCi = State Of Charge at time i (the following percentage is used xi = SOCi

SOCmax
)
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– Bounds

∀i ∈ [1, . . . , n], PFCmin ≤ PFCi
≤ PFCmax

∀i ∈ [1, . . . , n], PSEmin ≤ PSEi
≤ PSEmax

(2)

– Objective function: Minimize the total energy consumed by the fuel cell

min F(PFC) = min
n∑

i=1

f (PFCi
) (3)

� Definition of the function f (PFCi
)

f (PFCi
) = PFCi

ρ(PFCi
)

(4)

where ρ is the efficiency function of the fuel cell. Since the data is obtained exper-
imentally, there are two ways to represent this function: as a continuous function
per piece or polynomial function of degree three or greater according to the super-
position of the function with the experimental curve.

– Constraints
� Meet the power demand at each instant time

∀i ∈ [1, . . . , n], PFCi
+ PSEi

= Pr(i) (5)

� Initial state of charge equal to final state of charge:
n∑

i=1

[PSEi
+ ρ̃(PSEi

)] = 0 (6)

where ρ̃(PSEi
) is the energy losses function of the SE. With this condition, the SE

ends with a state of charge equal to its initial state of charge, allowing the vehicle to
restart the mission in the same condition as often as requested. In this case, it reuses
all the amount of energy recovered from braking. If the energy level is not imposed
to the SE at the end of the profile, then the equation becomes:

if SOC0 ≤ SOCn ⇒
n∑

i=1

[PSEi
+ ρ̃(PSEi

)] ≥ 0 (7)

if SOC0 ≥ SOCn ⇒
n∑

i=1

[PSEi
+ ρ̃(PSEi

)] ≤ 0 (8)

� Bounds on the variation of the state of charge:

∀i ∈ [1..n[ 25 % SOCmax ≤ SOC0 −
i∑

k=1

[PSEk
+ ρ̃(PSEk

)]

∀i ∈ [1..n[ SOC0 −
i∑

k=1

[PSEk
+ ρ̃(PSEk

)] ≤ 100 % SOCmax

(9)

The classical discrete dynamic programming is applied to solve this problem.
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3.2 Dynamic programming (DP)

In the energy management literature, the most popular method used is Dynamic Pro-
gramming (Bonnans et al. 2004; Won et al. 2005; Lin et al. 2003). It is based for the
discrete form, on a recurrence relation allowing for the computation of the cost of
hydrogen consumption.

Classical formulations of the global optimization problem are usually based on
a state equation (10) and consist in finding a command that brings the system from
the predefined initial state to a desired final state with a minimized cost criterion (11)
while respecting constraints (12). In the HEV case, the state corresponds to the energy
evolution in the SE; these evolution imposes the complementary FCS solicitation thus
fuel consumption and constraints classically applied during a mission are (5) and (6).

State equation:

ẋ(t) = f (x(t), u(t), t), x(t0) = x0, (10)

Cost criterion to be minimized:
∫ tN

t0

γ (x(t), u(t), t) (11)

Constraints:
{

χ(x(t), u(t), t) = 0
ϕ(x(t), u(t), t) ≤ 0

(12)

where

– x(t) represents the system State Of Charge, which in the HEV case corresponds to
the SOC of the SE

– u(t) represents the command variable, which in the HEV case corresponds to the
power from the FCS

– γ represents the criterion cost, which in the HEV case corresponds to the hydrogen
consumption

When the time horizon is discretized, the state equation can be written with equa-
tion (13). Then, an admissible command u(k) at each step k moves the system from
state x(k) to another state x(k + 1). Such move has a cost γ (x(k), u(k), k) and by
definition, an admissible command corresponds to a trajectory of the state variable x

satisfying all the constraints (12). The set of feasible trajectories is the validity do-
main. The total cost is equal to the sum of all movement costs between the initial and
the final time step.

x(k + 1) = f (x(k), u(k), k) (13)

Starting from a known initial state x(0) = SOC0, the goal is to find an admissible
command sequence u(1), u(2), . . . , u(N), where N is the number of discrete time
steps, that minimizes the total cost of the mission described in (14).

C(u) =
N∑

k=0

γ (x(k), u(k), k) (14)



1000 M. Guemri et al.

The application of DP requires a fully discretized validity domain. A profile of
the power demand must be discretized in function of time (“horizontal discretization
of the validity domain”) �t = (tN − t0)/N , not only because the power repartition
decisions are computed onboard but also to take into account the fact that it is not
possible in practice to have instantaneous variations of the power delivered by the
sources (because of a voltage equilibrium control in the SE and an internal control
fluid dynamic in the FCS). Therefore, an additional discretization of the energy levels
of the SE (“vertical discretization of the validity domain”) is necessary before DP
can be applied, usually �SOC = (SOCmax − SOCmin)/M , where M is the number
of energy steps chosen. The value of M should not be small (no accuracy on the
resulting optimization solution) and not too large so as not to overload the onboard
computer.

A summary of DP is given in Algorithm 1, where:

(i) Cost(j, k) is the optimal cost to go from a SOC value of j at time k to the
predefined final SOCN at time N ,

(ii) Ek is the vector of all feasible (in the validity domain) SOC values at instant k

and
(iii) CommandSeq(j, k) is the command u(k) related to the cost Cost(j, k). Note

that if Cost′(k, j,p) is the cost of moving from state j at time k to state p at
time k + 1, then DP consists in the backward computation (from the end to
the beginning) of a shortest path from a predefined starting-node to the desired
ending-node, on a graph where:

• each node corresponds to a couple (time_step, SOC_level)
• the starting node corresponds to time step 0 and the initial SOC level; the

ending node corresponds to time step N and the desired final SOC
• an arc (i, j) exists only if it is possible to move from node i to node j in a

single time step; the cost associated to such arc (i, j) is the fuel consumption
necessary to perform the move from node i to node j

Cost(j, k) = Cost(p, k + 1) + Cost′(k, j,p) (15)

Algorithm 1 DP Principle
1: for j ∈ EN−1 do
2: Compute Cost(j,N − 1) and update CommandSeq(j,N − 1) consequently
3: end for
4: for k = N − 1 to 0 do
5: for j ∈ Ek do
6: for i ∈ Ek+1 do
7: Compute Cost(j, k) and update CommandSeq(j, k) consequently
8: end for
9: end for

10: end for
11: return Cost and CommandSeq matrices
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Fig. 3 Contrary example that
don’t recover all the braking
energy

3.3 Main weaknesses identified in DP

3.3.1 Recovery of energy braking

The main idea of using a reversible source is to recover braking energy for later use.
Hence a reduction of the energy consumption cost. However, contrary to the common
assumption, imposing that braking energy has to be recovered and reused may lead
to worst solutions. In fact in such case the power tend to be delivered by the SE to
ensure that it is discharged before the end, lowering the use of FCS to lower efficiency
points and a greater Hydrogen consumption.

Figure 3 illustrates an example, on a 15 seconds profile, where Pr is power re-
quested (or power demand), PSE and PFC are the power provided by respectively the
SE and the FCS. In the first case, when retrieving braking energy, the cost of the
mission is equal to 37 kWs. In the second case, no braking energy is recovered and
the cost is reduced to 32 kWs. Another example can be generated by considering a
vehicle descending a downward path. In this case, the amount of braking energy is
greater than the amount of traction, therefore there is no feasible solution that allows
to recover all of the braking energy.

As a consequence, the equality constraint Pr = PFC + PSE, should be replaced
with the inequality Pr ≤ PFC + PSE. This means that during braking, the recovery
of all or part of the energy generated is authorized but not mandatory. Unrecovered
braking energy can be simply dissipated as in mechanical heat and as having no effect
on the optimization.

3.3.2 Final state of charge of the SE

To facilitate comparisons between different algorithms and to be able to repeat the
same cycles in the same conditions, Rousseau et al. (2008) and Serrao et al. (2011)
proposed to impose an equality between the initial (at instant-time t0) and the final
(at instant-time tN ) state of the SE. However, for some instances, this means that the
vehicle had to “burn” excess energy towards the end of the profile to return the energy
level to its initial state. As a solution, we propose to forbid the driver to return the SE
at the end with less energy than the quantity he had at the beginning of the profile, but
to allow the final energy level to be higher than at start (but with no special reward
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Fig. 4 Excess energy at the end
(final SOC greater than the
starting SOC)

Fig. 5 Penalties during the
optimization

for the additional energy). In a DP algorithm, this corresponds to opening the validity
domain and allowing the final SOC element to vary in an interval, instead of being
reduced to a single point (see example Fig. 4).

3.3.3 Penalties due to SE discretization

Figure 5 illustrates an example where the braking energy is greater than the traction
energy which should lead to a cost of zero. DP produces a solution which uses the
FCS and therefore has a cost strictly positive. Basically, since the power levels have
been discretized, the system tends to respond too strongly to demands that are not
exact multiples of the discretization step. This flaw has been handled when designing
the following proposed algorithms.

To summarize, DP produces good results in the literature, even better than the
fuzzy logic and optimal control. However, there is an increasing need for a new and
more efficient approach to find better solutions in terms of total cost as well as com-
putation time taking into account specific constraints in HEV energy management
and sampling DP form used in ship onboard computer.

3.4 Dynamic programming with improved constraints (DPIC)

The goal of DPIC is to get only the amount of energy that would not deteriorate the
quality of the final solution. As a consequence, the constraint (5) is relaxed for all
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instant times k ∈ [1, . . . ,N]:
Basic equation Pr(k) = PFC(k) + PSE(k)���
Improved equation Pr(k) = PFC(k) + PSE(k) + ε(k)

(16)

The idea is to get less energy from braking and provide a little more than the
required energy if it leads the FCS to a better point on the efficiency curve (thus a
better solution). So at each instant k ∈ [1, . . . ,N ], ε(k) must be calculated in order
to avoid the wasted energy done by the constraint equation (5) and explained in the
Sect. 3.3.1.

In terms of implementation, it consists in modifying the costs of arcs on the (time
step, SOC level)-graph on which the shortest path is computed. Indeed, Cost′(k, j,p)

is now equal to the minimum cost among all costs of movements that can move the
system from energy level j to any energy level p′ with 0 ≤ p′ − p ≤ discretization
step. The excess electrical energy (surplus quantity = p′ − p) can be dissipated as
heat (in resistances present in the braking system) or reused at home.

3.5 Intermediate results

3.5.1 Multi-objective optimization

An open validity domain is established by fixing only the initial or the final SOC
value and authorizing the variation of the other in an interval, so that a multi-objective
optimization (cost vs initial or final SOC value) is obtained in a single run of DP. Time
and energy discretization defined are input variables,set here, taking into account the
onboard computer limitation, to 1 kWh for the energy step and 1s for time step. Note
that in the case of multi-start, the final SOC is 900 kWs and in the case of multi-end,
the initial SOC is 900 kWs (arbitrarily chosen in the middle of [SOCmin SOCmax].
Figure 6 shows that the cost of hydrogen consumption and the initial or final SOC
are connected through two affine functions. Each of the two lines inclined to the left
represents a multi-start SOC with a final fixed SOC depending on the minimum cost
corresponding to each starting point. It should be noticed that each point on the line
represents an optimal solution obtained (best fuel cost achieved vs the corresponding
starting SOC). These two straight lines are parallel and show that the benefit of DPIC
versus DP is constant (1130 kWs). The figure also shows the characteristics that the
SE should have (such as minimum and maximum SOC achievable). In this example,
the smallest possible final SOC, by absorbing all the energy from braking is 691 kWs,
therefore it is impossible to return with an empty SE at the end of the mission.

3.5.2 Intersection energy

If the initial SOC is fixed to SOC(x0), the application of DP recursively from the
initial SOC to finals SOC shows that it is possible to connect all the possible final
states of charge to the initial SOC with an optimal consumption cost path. Similarly,
when the final SOC is fixed to SOC(xN), the application of DP recursively from the
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Fig. 6 Benefit of the DPIC vs
DP

Fig. 7 Multi start SOC vs fixed
final SOC

final SOC to initial states of charge shows that, as illustrated on Fig. 7 it is possible
to connect any feasible initial state of charge with the final SOC through an optimal
consumption cost path.

The interest in recording all solutions is the possibility to find alternatives if a
disturbance occurred on the system or if there was a posterior decision change about
the desired final state of charge. To do this, finding an intersection with another path
that leads to the desired state of charge is necessary. Figure 8 shows that from a single
intersection point between two solutions, four paths are obtained, so it is possible to
change the path with an easily quantifiable consumption cost.

4 On-line strategy

The Energy Management Strategy (EMS) using Dynamic Programming provides a
benchmark regarding the maximum potential fuel savings. A real-time EMS using
DP is hampered by two restrictions. First, an a priori knowledge is needed about the
power demand along the entire driving cycle. Second, calculations from DP over a
lengthy driving cycle are computationally demanding (Yu et al. 2009; O’Keefe and
Markel 2006). To overcome both problems, this paper proposes an on-line EMS based
on a fuzzy logic decision system (Caux et al. 2010a; Neffati et al. 2011).
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Fig. 8 Intersection of two
solutions create a new solution
(INRETS profile)

Fig. 9 Optimal fuzzy rules for each profile (linking Pr/SOC to optimal PFC)

4.1 Fuzzy energy management

The fuzzy logic rules are used to identify the instantaneous power output to be sup-
plied by FCS using two input variables: the SOC and the power required. The fuzzy
inference system is characterized by rules that are already have been already turned
by a Genetic Algorithm (Fig. 9). GA is used to optimize the choice of the param-
eters of the fuzzy membership functions and generate these specific rules for each
profile that characterize the relationship that should be enforced between the input
and the output variables (Neffati et al. 2011). Once the optimal rules have been iden-
tified off-line, the fuzzy decision can be used in the EMS without prior knowledge
of the journey. When applying a rule on the profile on which it was optimized, better
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Table 2 Consumption obtained
applying a single rule for each
profile

Fuzzy rules Urban Road H.way

Rule 1 (kWs) 3390 11311 19819

Rule 2 (kWs) 3457 11020 19921

Rule 3 (kWs) 3490 11469 19660

Fig. 10 Inputs variable membership function for Pr and index

results are obtained. And if another rule is applied the consumption degrades. The
consumption obtained by applying a single rule for each profile is shown in Table 2.

Several characteristics and various power classes can be found in a power profile.
In this context, a method is proposed to optimally switch between different set of op-
timal rules that involves manipulating the fuzzy rules according to the required power
via a segmentation method (Neffati et al. 2011). The switching rules is a program that
uses the average power as an indicator, then it computes the average power of seg-
ments to give each segment an index, this index will be used later in the optimization
algorithm to choose the optimal rule to be used from the existing rules. This indicator
can be seen as a prediction to help the decision.

In order to establish a method of EMS in real time and in the case of an unknown
profile, the decision on the choice of the best rule should now be made in real time.

4.2 Real-time fuzzy switching of fuzzy rules FSFR

Instead of using pattern recognition or clustering approach, a fuzzy switching deci-
sion is sought. The second fuzzy decision system proposed is used to characterize
in real time the power required to identify the best fuzzy rule management to use
for each power demand. The membership functions and the universes of discourse
of each variable of the fuzzy switching rules are shown in Fig. 10. The second fuzzy
system for switching fuzzy (Fig. 10(a)) uses two input variables: the power demand
in real time at the moment i, and a prediction factor which contains the average of
three previous power demand (Fig. 10(b)).

The output variable of the system is the best decision of the fuzzy rule (Rule 1
(R.1), Rule 2 (R.2), Rule 3 (R.3)) to be applied for the power demand at this mo-
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Fig. 11 Management strategy on-line

ment i. The universe of discourse of each variable is divided into three classes, the
power required and the prediction factor are characterized by “low”, “average” and
“high”. The output variable of fuzzy switching system takes three decisions “Rule 1
of the urban profile”, “Rule 2 of the road profile” and “Rule 3 of the highway profile”.
All parameters of the fuzzy controller were optimized using genetic algorithm in or-
der to have a complete energy management in real time based on the fuzzy switching
of fuzzy rules (Fig. 11(b)). The choice of the output variable and more precisely the
identification of the best fuzzy rule to be used after, depends on the input parameters
which are formulated as a description language using the fuzzification to the output
variable. The linguistic description of the inference system adopted in this fuzzy de-
cision is as follows:

If Pr is “Low” and index is “Low” then use a “R. 1”
If Pr is “Average” and index is “Low” then use a “R. 1”
If Pr is “High” and index is “Low” then use a “R. 2”
If Pr is “Low” and index is “Average” then use a “R. 1”
If Pr is “Average” and index is “Average” then use a “R. 2”
If Pr is “High” and index is “Average” then use a “R. 3”
If Pr is “Low” and index is “High” then use a “R. 2”
If Pr is “Average” and index is “High” then use a “R. 3”
If Pr is “High” and index is “High” then use a “R. 3”

Note that the power supplied by the FCS, is in terms of two input parameters, the
required power on one hand and the SOC of the SE on the other. If the rules were
mixed together, the power supplied would risk to not be optimal, because at every
moment, each rule i makes a different calculation of the value of their output, which
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explains why an error (Pr �= PFC + PSE) appears in this method of fuzzy switching if
the rules are mixed.

In order to solve the problem of energy errors (Pr not satisfied), an adjustment
was made in the optimization algorithm, corresponding to the cases where the power
supplied by FCS should be calculated by two fuzzy rules at the same time. The cor-
rection highlights the need to always use a single fuzzy rule “Urban or Road or High-
way”. Improving the fuzzy inference system requires an adjustment phase and an
improvement of its parameters. For this purpose, the genetic algorithm is again used
to optimize the choice of the parameters of the fuzzy decision switching to finally
obtain a complete system of energy management in real time. This system is called
FSFR.

The results show that EMS based on FSFR has improved energy consumption
compared to the application of one rule that has been optimized using another profile.
This finding leads us to note that if the fuzzy switching algorithm is applied on any
unknown profile, the results will still be very near to the optimal consumption with
zero error of energy.

5 Results and comparisons

Four instances are used. The upper bounds are obtained by assuming that the storage
element is not used, as if the vehicle was not hybrid. Dynamic Programming provides
good solutions, better than this upper bound, but DPIC produces even better solutions
in the case of off-line computation and the Fuzzy Logic in the case of the on-line
management.

For Urban profile and off-line strategy, the improvement of DP over the up-
per bound is small (9 %) compared to the improvement obtained with DPIC
(nearly 60 %). Therefore we can conclude that for the off-line strategy, the use of
DPIC gives always better result compared to the use of the Fuel Cell alone or com-
pared to the classical DP constraints.

For the Highway profile, there is less braking energy than in Urban profile and
consequently there is less energy recoverable for reuse, thus there is no great effect
of the use of a EMS on the overall consumption both in the on-line or off-line strategy
as shown in Fig. 12(c). The improvement is not very large compared to the use of the
fuel cell alone and represents a maximum of 15 %.

On the Road profile, the instantaneous consumption using FSFR is equal to con-
sumption using DPIC until 60 % of the mission (see Fig. 12(b)), and from this point
the DPIC solution converges to a better solution.

The improvement obtained by applying the FSFR method is given in Table 3.
The gain is significant for the four profiles, compared to the off-line method DP
(Fig. 12 and Table 3). Recall that the dynamic algorithm must respect the state-of-
the-art constraints expression and that have been called into question in Sect. 3 of this
paper, such as recovery of all braking energy and the equality constraint on initial and
final SOC. So the algorithm is sometimes in critical situations, where it is forced to
operate the FCS in points that are characterized by low efficiency in order to meet
these constraints. On the contrary, the FSFR is more flexible. The originality of a
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Fig. 12 Profiles consumption vs methods

Table 3 Result for each method (UB (upper bound): Maximum consumption when using FCS only for
Pr ≥ 0)

Method Urban Road Highway INRETS

UB 5815 15 451 23084 15 903

DP Cost 5312 12341 20012 9881

gain vs UB 9 % 20 % 13 % 38 %

DPIC DPIC 2298 9945 18800 8718

gain vs UB 60 % 36 % 19 % 45 %

F.L cost 3390 11030 19732 9466

gain vs UB 42 % 29 % 15 % 40 %
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Fig. 13 Energy variation in the storage element

fuzzy rule is to provide a better consumption, within the limits of charge, so as to
bring the fuel cell to work in points that are characterized by better efficiency while
remaining within the limits (Fig. 12). The fuzzy rules allow, during the profile, to
not recover energy braking if necessary, avoiding low fuel cell efficiency. If the SE
is empty at the end, reloading it after the journey is more efficient (even if the FCS
system is used to reload the SE, the vehicle is stopped and it is possible to use the
FCS at its maximum efficiency point).

Figure 13 shows that the energy variation of the SE is important from a strategy to
another, but the variation of the hydrogen consumption cost is not so important. That
shows the numerous possibilities to vary the space energy in the storage element
without losing too much hydrogen (difficult optimization problem). More specifi-
cally, in Fig. 13(a), regarding the use of the fuzzy logic, it appears that using the
Charge-sustaining mode is relevant at the end of mission.



Management of distributed power in hybrid vehicles based on D.P. 1011

The distribution of operating points of the FCS for each proposed approach of
EMS explains the improvements achieved compared to DP. In the case of Urban
profile, 70 % of the points which are characterized by low efficiency when applying
DP have been cancelled by the application of the DPIC or FSFR, this reflects the
60 % improvement by DPIC and the 42 % improvement by FSFR. This observation
leads to the conclusion that these methods proposed steer towards the usage of FCS
at a better efficiency level both in an off-line and anon-line context.

6 Conclusion

As in the literature, the hybridization (the addition of a storage element to a primal
power source leading to a multi-source of power) has a positive effect on the cost
of consumption, regardless of the method or tool used for energy management. To
apply dynamic programming, the energy contained in the storage element has to be
discretized. As a result, this discretization has a negative effect, especially the penalty
incurred by the Fuel Cell System if the energy discretization step is different from the
braking or demanded power. To counter that, Dynamic Programming with Improved
Constraints is able to provide a little more energy than required if the limit of the
required power is lower than a specified power. Moreover an improved mathematical
model was defined to better manage the energy recovery and store only the necessary
quantity to minimize the criterion. Energy Management Strategy in real time based
on fuzzy rules was also applied. This approach has been improved by the methods of
segmentation and a fuzzy switching layer. The energy management strategy based on
Fuzzy Switching of Fuzzy Rules (FSFR) has been tested on different profiles. This
method takes into account the evolution of the state of charge of the storage element at
each time, leading the fuel cell to operate at its best efficiency point. The results show
that if the designed method of fuzzy switching is applied in real time on any unknown
profile, it will deliver near-optimal results, better than the consumption obtained with
the DP. Such controller is not time consuming and physical experiments can now
start. Future works also include extensions on the energy management for more than
two sources.
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