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Abstract Maturing distributed generation (DG) technologies have promoted inter-
est in alternative sources of energy for commercial building applications due to their
potential to supply on-site heat and power at a lower cost and emissions rate com-
pared to centralized generation. Accordingly, we present an optimization model that
determines the mix, capacity, and operational schedule of DG technologies that min-
imize economic and environmental costs subject to the heat and power demands of a
building and to the performance characteristics of the technologies. The technologies
available to design the system include lead-acid batteries, photovoltaic cells, solid ox-
ide fuel cells, heat exchangers, and a hot water storage tank. Modeling the acquisition
and operation of discrete technologies requires integer restrictions, and modeling the
variable electric efficiency of the fuel cells and the variable temperature of the tank
water introduces nonlinear equality constraints. Thus, our optimization model is a
nonconvex, mixed-integer nonlinear programming (MINLP) problem. Given the dif-
ficulties associated with solving large, nonconvex MINLPs to global optimality, we
present convex underestimation and linearization techniques to bound and solve the
problem. The solutions provided by our techniques are close to those provided by ex-
isting MINLP solvers for small problem instances. However, our methodology offers
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the possibility to solve large problem instances that exceed the capacity of existing
solvers and that are critical to the real-world application of the model.

Keywords Global optimization · Mixed-integer nonlinear programming ·
Distributed generation · Combined heat and power

1 Introduction

Distributed generation (DG) has gained interest as an alternative source of power
for new and existing buildings in the residential, commercial, and industrial sectors.
Rather than solely purchasing electricity from a centralized utility, a building owner
can invest in an on-site system to supply power using non-renewable technologies
such as reciprocating engines, microturbines, and fuel cells, and renewable technolo-
gies such as photovoltaic (PV) cells and wind turbines. When integrated with heat
exchangers, solar thermal collectors, and absorption chillers, on-site systems can also
meet some of the building heating and cooling demands. In addition to generation,
DG systems can include electric and thermal storage technologies to address the un-
certainty in the supply available from renewable generators or to take advantage of
time periods in which utility prices are low. Our research considers the integration of
technologies such as these with existing commercial buildings.

There are a number of reasons why DG systems should be considered for commer-
cial building applications. Between 2005 and 2009, the commercial sector accounted
for 36 % of electricity consumption across all sectors, which resulted in an average
annual cost of roughly $127 billion (see EIA 2011b). Gumerman et al. (2003) list
benefits to the owner of DG systems, which have the potential to reduce this eco-
nomic burden. These benefits include a lower cost of electricity (in some markets),
protection from utility price volatility, more reliable power, and greater energy effi-
ciency. The authors further describe potential benefits of DG to the local community.
When composed of “clean” natural gas-fed or renewable technologies, DG systems
emit less carbon dioxide than most centralized power plants. Smaller, on-site gener-
ation also addresses much of the opposition in local communities to the construction
of large power plants and transmission lines. Yet, based on Department of Energy
projections for electricity consumption and DG market penetration, on-site systems
will supply a mere 2 % of commercial sector electricity demand in 2035 (see EIA
2011a).

This disparity between the noted operational benefits of DG systems and the mod-
est prediction for future market penetration exists for a variety of reasons. From a
purely economic standpoint, many power utilities maintain low prices for electricity
while the capital costs for DG technologies remain high. This discrepancy has dis-
couraged building owners from investing in DG systems. However, due to their lower
emissions rates compared to centralized power plants, some DG technologies afford
lower environmental costs which building owners often have no economic incentive
to internalize. Properly considering all of the costs associated with generation, which
include environmental costs and other externalities, effectively increases the price
of electricity from the utility and may make DG more economically viable. Finally,
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DG has experienced limited implementation simply due to a lack of understanding
regarding how to design (i.e., configure and size) and dispatch (i.e., operate) such
mixed-resource systems. The objective of our research is to address this lack of un-
derstanding with an optimization model that determines how to design and dispatch
a DG system at minimum economic and environmental cost.

Previous research regarding DG focuses on various aspects of the optimal system
design and dispatch. Many studies address the optimal performance of an individual
DG technology, but do not resolve the system-level design and dispatch problem of
integrating, sizing, and operating multiple technologies. Other research seeks the op-
timal dispatch of an existing system, but does not consider the optimal system design.
Our research focuses on the optimal design and dispatch of a DG system. Similarly
focused research in the literature applies simulation models, evolutionary algorithms
(EAs), or more traditional mathematical programming algorithms, such as branch-
and-bound, to the design and dispatch problem (e.g., Georgilakis 2006; Burer et al.
2003; Weber et al. 2006; Siddiqui et al. 2005a). In general, studies that apply simu-
lation or EAs cannot guarantee the global optimality of their solutions. The existing
applications of branch-and-bound to the design and dispatch problem provide the
guarantee of global optimality, but fail to consider many of the detailed performance
characteristics of the technologies that are required to realistically model the system
operation. Our research contributes to the literature by providing techniques for deter-
mining the provably globally minimum cost DG system design and dispatch without
sacrificing realistic operation of the technologies.

Modeling the operation of such a complex system requires constraints to control
the operational status (i.e., on or off), capacity, ramping (i.e., increasing or decreas-
ing power output), and variable efficiency of the generators, as well as constraints
to control the state-of-charge (i.e., inventory) of electric storage technologies and the
temperature of thermal storage technologies. These constraints can include integer
variables in each time period, connections between consecutive time periods, and
nonlinear equalities. Given all of these characteristics, the resulting model is a large,
nonseparable, nonconvex, mixed-integer, nonlinear programming (MINLP) problem.
The algorithms suitable for solving large, nonconvex MINLPs are limited and de-
pendent on the problem structure. The application of a nonlinear branch-and-bound
algorithm requires methods to obtain global upper and lower bounds on the objec-
tive value at each node in order to converge to the optimal solution. However, these
bounds can be difficult to obtain for large, nonconvex problems. Thus, we develop
problem-specific convex underestimation techniques, motivated by our engineering
insight, to obtain global lower bounds on the objective value of our MINLP. We also
develop a linearization heuristic to obtain integer-feasible solutions, and thus global
upper bounds, for our MINLP. These bounding techniques can be applied as part of
a nonlinear branch-and-bound algorithm to solve large instances of the DG system
design and dispatch problem to global optimality.

The remainder of this paper is organized as follows: Sect. 2 presents the formu-
lation of the MINLP. In Sect. 3, we discuss the problem structure, the convex un-
derestimation of the MINLP, and our linearization heuristic. Section 4 compares the
solutions provided by our techniques with those provided by existing solvers. Finally,
Sect. 5 concludes.
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Fig. 1 Combined heat and power (CHP), distributed generation (DG) system consisting of photovoltaic
(PV) cells, power-only and CHP solid-oxide fuel cells (SOFCs), lead-acid batteries, and a hot water storage
tank

2 Model

The specific system addressed in this research is depicted in Fig. 1. We consider the
retrofit of an existing commercial building with a combined heat and power (CHP),
DG system. Prior to DG acquisition, the building receives electricity from the power
utility (i.e., macrogrid) and heat from a natural gas-fired boiler. The cooling demand
is met by existing vapor-compression air conditioning units and is included as part
of the power demand. The heat demand includes space and water heating, both of
which are met with hot water (i.e., space heat is provided by hot water radiators).
The DG system being considered for acquisition generates power with fixed-tilt PV
cells and/or natural gas-fed solid oxide fuel cells (SOFCs) which, according to Greene
and Hammerschlag (2000), provide lower carbon emissions than other DG-scale gen-
erators. The CHP SOFCs are integrated with heat exchangers and a water tank, which
allow for the storage of thermal energy in the form of hot water. The system also in-
cludes the option for electric storage using lead-acid batteries. We do not consider
other non-renewable generators, wind turbines, solar thermal, or absorption chillers.
However, our model can be adapted to include these technologies. Next, we provide
a general description of the system model, followed by the detailed mathematical
formulation.

2.1 Model description

Our model includes parameters for the time fidelity and horizon being considered,
the heat and power demands of the building, the pricing and carbon emissions rates
of the utilities, and the capital and operational costs, carbon emissions rates, and per-
formance characteristics of all the technologies in the system. All of these parameters
are treated as deterministic.

The model includes two types of variables: design and dispatch. The design vari-
ables establish the configuration and capacity of the DG system. In other words, these
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variables determine how many of each DG technology in Fig. 1 to acquire. Since gen-
erators and batteries can only be purchased in discrete sizes, their associated design
variables are restricted to integer values. However, the acquisition of CHP SOFCs
includes a hot water storage tank, the volume of which can be increased by a contin-
uous number of gallons. If none of the DG technologies is acquired, then the system
is reduced to the existing configuration, which consists of only the macrogrid and the
boiler.

The dispatch variables prescribe the distribution of energy across the system in
each time period. In other words, these variables determine the flow of power, heat,
and natural gas along the arrows depicted in Fig. 1. If none of the DG technologies
is acquired, the system dispatch consists of supplying all of the power demand with
the macrogrid and all of the heat demand with the boiler. However, if some DG tech-
nologies are acquired, then our model determines the share of demand supplied by
these technologies.

The objective of our model is to determine the DG system design and dispatch
which minimizes the total cost incurred by the building owner to meet demand over
the time horizon of interest. We assume the building owner and system owner are
the same entity. The total cost includes the capital and operational costs of the ac-
quired technologies, as well as the operational costs from the macrogrid and boiler.
The operational costs include operations and maintenance (O&M) costs, the cost of
purchased natural gas and electricity, and the taxes paid for the carbon emissions
from both the on-site system and the macrogrid’s centralized generation. The cost of
purchased electricity is a net cost, which considers the sale of electricity (i.e., net-
metering) back to the macrogrid.

Our model includes constraints on the power and heat demands of the building, re-
strictions imposed by the utilities, and limits on the performance of the technologies.
The power demand must be supplied in each time period by the macrogrid and/or by
any acquired DG technologies. According to typical net-generation regulations im-
posed by the utility, the total DG-generated power which is sold to the macrogrid in
each billing period cannot exceed the total power purchased from the macrogrid. The
heat demand must be supplied by the boiler and/or by the water storage tank. In sup-
plying power and heat, the DG system is constrained by the minimum and maximum
capacities of all the acquired technologies. The SOFCs are additionally constrained
by their operating status and by their ability to ramp power output between time pe-
riods. The model also limits increases and decreases to the inventories of electric
and thermal energy for the batteries and water storage tank, respectively. Finally, we
include a number of constraints to control the complex interactions between the tech-
nologies which are acquired and operated within the system.

2.2 Mathematical formulation

We now present the mathematical formulation of our problem, henceforth referred
to as (P). In general, we use lower-case letters for parameters and upper-case letters
for variables. However, we also use lower-case letters for indices and upper-case
script letters for sets. Superscripts and accents distinguish between parameters and
variables that utilize the same base letter, while subscripts identify elements of a set.
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Some parameters and variables are only defined for certain set elements, which are
listed in each definition. The units of each parameter and variable are provided in
brackets after its definition. Throughout the definitions, “technology” is abbreviated
as “tech.”, “average” is abbreviated as “avg.”, and “respectively” is abbreviated as
“resp.”

• Sets
n ∈N : set of all months
t ∈ Tn: set of all hours in month n (T = ⋃

n Tn)
i ∈ I: set of all cost elements
j ∈ J : set of all techs.
Note: To avoid verbosity, we define the elements of J numerically as 1 = Bat-
tery, 2 = PV, 3 = Power SOFC, 4 = CHP SOFC, 5 = Storage Tank, 6 = Boiler.

• Time and demand parameters
δ = demand time increment [hours]
dP
t , dH

t = avg. power and heat demand, resp., in hour t [kW]
• Cost and emissions parameters

cj = amortized capital cost of each tech. j = 1, . . . ,5 [$/kWh, $/kW, or $/gal]
mj = avg. O&M cost of each tech. j = 2,3,4,6 [$/kWh]
pt , gt = price of power and gas, resp., from the utility in hour t [$/kWh]
pmax

n = peak demand price of power from the utility in month n [$/kW/month]
z = tax on carbon emissions [$/kg]
zp, zg = avg. carbon emissions rate for power and gas, resp. [kg/kWh]

• Power generation and storage parameters
kout
j , kin

j = power rating out of and into, resp., each tech. j = 1, . . . ,4 [kW]

smax
j , smin

j = max and min, resp., storage capacity of tech. j = 1 [kWh]
ajt = avg. availability of tech. j = 2 based on weather in hour t [fraction]
μj = max turn-down (i.e., min power output) of each tech. j = 3,4 [fraction]
σj = start-up time for each tech. j = 3,4 to reach μj [hours]
r

up
j , rdown

j = max ramp-up and down rate, resp., for each tech. j = 3,4 [kW/hr]

ηmax
j , ηmin

j = max and min, resp., electric efficiency of each tech. j = 1,3,4
[fraction]

• Heat generation and storage parameters
vmax
j , vmin

j = max and min, resp., storage capacity of tech. j = 5 [gallons]
ηj = avg. thermal efficiency of each tech. j = 5,6 [fraction]
αj = mean ambient heat loss of water stored in tech. j = 5 [fraction]
γj = avg. exhaust gas output from tech. j = 4 per natural gas input [kg/kWh]
hj = specific heat of fluid output from each tech. j = 4,5 [kWh/(kg °C) or
kWh/(gal °C)]
τ out
j , τ in

j = avg. fluid temperature out of and into, resp., each tech. j = 4,5,6
[°C]
τmax, τmin = max and min, resp., temperature of water in the system [°C]

• System design variables
Ci = total cost of cost element i over the time horizon [$]
Aj = number of each tech. j = 1, . . . ,5 acquired [integer]
Vj = water storage capacity of tech. j = 5 [gallons]
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• Power dispatch and storage variables
Uout

t ,U in
t = power purchased from and sold to the utility, resp., in hour t [kW]

Umax
n = max power purchased from the utility in month n [kW]

P out
j t = aggregate power output from each tech. j = 1, . . . ,4 in hour t [kW]

P in
j t = aggregate power input to tech. j = 1 in hour t [kW]

Sjt = aggregate state-of-charge of tech. j = 1 at the start of hour t [kWh]
Njt = number of each tech. j = 3,4 operating in hour t [integer]
Ńjt = increased number of each tech. j = 3,4 operating from t −1 to t [integer]
Ejt = electric efficiency of each tech. j = 3,4 operating in hour t [fraction]

• Heat dispatch and storage variables
Gjt = aggregate natural gas input to each tech. j = 3,4,6 in hour t [kW]
F out

j t = flowrate of water out of tech. j = 5 in hour t [gal/hr]

F in
j t = flowrate of exhaust gas into tech. j = 5 in hour t [kg/hr]

Tjt = temperature of water stored in technology j = 5 in hour t [°C]
B in

j t = 1 if water in tech. j = 5 is above (τ in
5 + ε) in hour t , 0 otherwise [binary]

Bout
j t = 1 if water in tech. j = 5 is above τ out

6 in hour t , 0 otherwise [binary]
• Problem (P)

(see Sect. 2.3.1—Minimum total cost)
Minimize

∑

i∈I
Ci (1)

subject to
(see Sect. 2.3.2—Power and heat demand)

(
ηmax

1 P out
1t − P in

1t

) +
∑

j=2..4

P out
j t + (

Uout
t − U in

t

) = dP
t ∀t ∈ T (2a)

h5
(
τ out

6 − τ in
5

)
F out

5t

[(

1 −
[

1 − τ out
6 − τmin

T5t − τmin

]

Bout
5t

)−1]

= dH
t ∀t ∈ T (2b)

(see Sect. 2.3.3—Utility restrictions)

Umax
n ≥ Uout

t ∀n ∈N , t ∈ Tn (3a)
∑

t∈Tn

U in
t ≤

∑

t∈Tn

Uout
t ∀n ∈N (3b)

(see Sect. 2.3.4—Power capacity)

P out
1t ≤ kout

1 A1 ∀t ∈ T (4a)

P in
1t ≤ kin

1 A1 ∀t ∈ T (4b)

P out
2t ≤ a2t k

out
2 A2 ∀t ∈ T (4c)

μjk
out
j Njt ≤ P out

j t ≤ kout
j Njt ∀j = 3,4, t ∈ T (4d)

Njt ≤ Aj ∀j = 3,4, t ∈ T (4e)
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(see Sect. 2.3.5—Electric efficiency)

Ejt =
(

ηmax
j − μjη

min
j

1 − μj

)

−
(

ηmax
j − ηmin

j

kout
j (1 − μj )

)(
P out

j t

Njt

)

∀j = 3,4, t ∈ T (5a)

(see Sect. 2.3.6—Natural gas consumption)

Gjt = P out
j t

Ejt

∀j = 3,4, t ∈ T (6a)

G6t = h5F
out
5t (τ out

6 − T5t )(1 − Bout
5t )

η6
∀t ∈ T (6b)

(see Sect. 2.3.7—Start up and ramping)

Nj,t+1 − Njt ≤ Ńj,t+1 ∀j = 3,4, t < |T | (7a)

−δrdown
j Njt ≤ P out

j,t+1 − P out
j t ≤ δr

up
j Nj,t+1 ∀j = 3,4, t < |T | (7b)

(see Sect. 2.3.8—Power storage)

S1,t+1 − S1t = δ
(
ηmax

1 P in
1t − P out

1t

) ∀t < |T | (8a)

smin
1 A1 ≤ S1t ≤ smax

1 A1 ∀t ∈ T (8b)

S1,1 = S1,|T | (8c)

(see Sect. 2.3.9—Heat capacity)

F in
5t ≤ γ4G4t ∀t ∈ T (9a)

(see Sect. 2.3.10—Heat storage)

T5,t+1 − (
1 − α5B

in
5t

)
T5t

= δη5h4F
in
5t (τ

out
4 − T5t ) − δh5F

out
5t (T5t − τ in

5 )

h5V5
∀t < |T | (10a)

T5t − τ in
5 ≤ (

τmax − τ in
5

)
A5 ∀t ∈ T (10b)

εB in
5t ≤ T5t − τ in

5 ≤ ε + (
τmax − τ in

5 − ε
)
B in

5t ∀t ∈ T (10c)
(
τ in

5 − τ out
6

)(
1 − Bout

5t

) ≤ T5t − τ out
6 ≤ (

τmax − τ out
6

)
Bout

5t ∀t ∈ T (10d)

T5,1 = T5,|T | (10e)

(see Sect. 2.3.11—Heat storage acquisition)

A5 ≤ A4 ≤
⌈

maxt∈T {dP
t }

kout
4

⌉

A5 (11a)

vmin
5 ≤ V5 ≤ vmax

5 (11b)
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(see Sect. 2.3.12—Non-negativity and integrality)

P out
j t ,P in

j t , Sjt , Ńj t ,Ejt ,Gjt ,F
out
j t ,F in

j t , Tjt , Vj ≥ 0 ∀j ∈ J , t ∈ T (12a)

Uout
t ,U in

t ,Umax
n ≥ 0 ∀n ∈N , t ∈ T (12b)

Aj ,Njt ≥ 0, integer ∀j �= 5, t ∈ T (12c)

Aj ,B
in
j t ,B

out
j t , binary, ∀j = 5, t ∈ T (12d)

2.3 Detailed discussion of formulation

Next, we discuss the objective function and constraints of (P) in more detail.

2.3.1 Minimum total cost

The objective is to minimize the total cost over the entire time horizon. The total
cost expressed in the objective function (1) includes the capital and operational costs
of the acquired technologies, as well as the existing operational costs resulting from
demand met by the macrogrid and boiler.

The fixed capital cost, C1, consists of the total amortized cost of all the DG tech-
nologies that are acquired:

C1 = c1s
max
1 A1 +

∑

j=2..4

cj k
out
j Aj + c5

(
V5 − vmin

5

)
.

The capital cost of the CHP SOFCs is greater than that of the power-only SOFCs in
order to account for the acquisition of the water storage tank and heat exchangers.
The water tank’s initial size (vmin

5 ) is based on the building heating load. However,
the tank size can be increased for an additional cost per gallon.

The initial capital cost for each of the technologies can be amortized in a number of
different ways. One method of amortization uses the parameters and general equation
that follow:

ρ = interest rate [% (fraction) per time horizon]
λj = average lifetime of technology j [number of time horizons]
κj = initial capital cost of technology j [$/kWh, $ /kW, or $/gal]

cj = κj e
ρλj

λj

. (13)

The numerator of Eq. (13) calculates what κj is eventually worth after investment at
interest rate ρ over the average lifetime λj of technology j (see Nicholson and Snyder
2008). Thus, the numerator represents the lifetime opportunity cost of acquiring the
technology rather than investing the initial capital cost at the current rate of return.
The lifetime opportunity cost is then divided by λj to determine the opportunity cost
per time horizon, which we call the amortized capital cost cj . Ultimately, the primary
focus of this research is not on the method of amortization. Rather, the final amortized
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cost (cj ) is the value of interest. Equation (13) is just one method for calculating that
cost, without loss of generality.

The variable operational costs of the DG system consist of O&M costs for the PV
cells and SOFCs, the cost of natural gas to fuel the SOFCs, the cost of the carbon
emissions associated with the combustion of natural gas, and the negative cost (i.e.,
revenue) from the sale of power to the macrogrid. The O&M costs, C2, for the PV
cells and SOFCs increase with the energy output:

C2 =
∑

j=2..4,t

mj δP
out
j t .

The O&M cost for the CHP SOFCs is greater than that for the power-only SOFCs
to account for the additional operational costs of the water tank and heat exchangers.
Due to the limited need for variable maintenance on lead-acid battery systems, the
O&M costs for the batteries are assumed fixed and are treated as part of the capital
cost. The parameter δ is included to appropriately convert units of power (kW) to
units of energy (kWh).

Fuel and emissions costs, C3, are incurred both to start up the SOFCs (i.e., to
reach operating temperature) and to operate them within their performance limits.
These costs depend on the price (gt ) of natural gas from the local utility, the price
(zzg) of carbon emissions, as determined by the tax rate and the emissions rate, and
the total amount of gas required for start up and operation:

C3 =
∑

j=3..4,t

(
gt + zzg

)
[
σjμjkj

2ηmin
j

Ńj t + δGjt

]

.

Our formulation assumes a carbon tax exists where the building is located and that
the tax is paid by the building owner. We further assume that the SOFCs consume
natural gas with the same fixed electric efficiency during start up as at maximum
power output. Thus, the amount of gas required for a single SOFC to reach operating
temperature is treated as a fixed value. The variable Ńjt determines how many SOFCs
start up in a given time period, which allows for the calculation of the total amount of
gas required. Once an SOFC reaches operating temperature, the amount of natural gas
(Gjt ) consumed depends on the power output and the electric efficiency as defined
in constraint (6a).

The final operational cost for the DG technologies is the negative cost, C4, associ-
ated with the sale of power to the macrogrid:

C4 = −
∑

t

pt δU
in
t .

We assume that net-metering is available with the local power utility and that the
utility can purchase power from the building owner in any hour at the prevailing
market rate. However, the total power purchased by the utility in each billing cycle is
subject to the restrictions imposed by constraint (3b).

In addition to the capital and operational costs of the acquired DG technologies,
the system incurs the cost of electricity purchased from the macrogrid and the opera-
tional costs for the boiler. If DG technologies are not acquired, then the macrogrid and
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boiler costs are the only costs. The macrogrid charges both hourly and peak monthly
rates, which determine the total electricity cost, C5:

C5 =
∑

t

(
pt + zzp

)
δUout

t +
∑

n

pmax
n Umax

n .

Depending on the rate schedule dictated by the power utility for the building and
location of interest, the charges pt and pmax

n could vary by time-of-day and/or sea-
son. We must also consider the cost of the carbon emitted by the generation sources
employed by the macrogrid. Our formulation applies an average carbon emissions
rate (zp) for all of the macrogrid’s generation sources and assumes that the building
owner is taxed for the emissions associated with the purchased electricity. For both
natural gas and power utilities, the fixed monthly customer charge for service is not
included in the formulation since this cost is constant and therefore does not impact
the optimal solution.

Finally, the total cost includes the O&M, fuel, and emissions costs, C6, for the
existing boiler:

C6 =
∑

t

(
η6m6 + gt + zzg

)
δG6t .

Similar to the SOFCs, the fuel and emissions costs depend on the price of natural
gas and the price of carbon emissions. In contrast to the SOFCs, the average ther-
mal efficiency (η6) of the boiler is treated as fixed. The amount of natural gas (G6t )
consumed depends on whether the temperature of the water flowing to the boiler is
above or below the required delivery temperature. The relationship between the wa-
ter temperature and the amount of natural gas consumed by the boiler is defined in
constraint (6b).

2.3.2 Power and heat demand

Constraint (2a) ensures that the hourly demand for power is met by the net discharge
of the batteries (after accounting for the discharge efficiency ηmax

1 ), the PV cells, the
power-only and CHP SOFCs, and the net supply from the macrogrid. Constraint (2b)
dictates that the hourly demand for heat must be met by a mix of hot and cold water
flow. The demanded hot water, which is heated by the CHP SOFC exhaust and/or by
the boiler, must be delivered at a fixed temperature (τ out

6 ). If the temperature of the hot
water is above delivery temperature (i.e., Bout

5t = 1), then the hot water must be mixed
with cold water at the minimum system temperature (τmin). As the temperature of
the tank water increases, the required flow of cold water for mixing increases, and
the required flow of hot water from the tank decreases.

2.3.3 Utility restrictions

Constraint (3a) establishes the peak power load supplied by the macrogrid in each
monthly billing cycle as the largest hourly load supplied by the macrogrid each
month. Constraint (3b) dictates that the DG system cannot be a “net-generator” of
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power in each monthly billing cycle. Accordingly, the total power sold to the macro-
grid each month cannot exceed the total power purchased from the macrogrid each
month.

2.3.4 Power capacity

Constraints (4a) and (4b) limit the rate at which power is discharged from and charged
to, respectively, all of the acquired batteries. If batteries are not acquired, then the
charge and discharge rates are set equal to zero. Constraint (4c) ensures that only a
fraction (a2t ) of the nameplate power capacity of the acquired PV cells is available
in each hour, based on the prevailing weather conditions. Because the solar radiation
is often low enough that the available power from PV cells is zero (e.g., during the
night), there is no minimum power output enforced for PV cells. Constraint (4d)
limits the maximum and minimum power output of all operating SOFCs in a given
hour. The maximum turn-down (μj ) results from the minimum operating temperature
necessary for the SOFCs to produce power. Constraint (4e) dictates that the number of
SOFCs operating in a given hour cannot exceed the number acquired. Power supplied
by the macrogrid in each hour is unconstrained in this formulation.

2.3.5 Electric efficiency

Constraint (5a) demonstrates that the average electric efficiency across all SOFCs is
a function of the number (Njt ) of SOFCs operating and the total power (P out

j t ) they
produce. Our formulation assumes that each operating SOFC provides an equal share
of the total power produced in a given hour. Using the maximum (ηmax

j ) and minimum

(ηmin
j ) electric efficiencies as endpoints, we treat the average electric efficiency of all

SOFCs as a decreasing linear function of the share of total power provided by a single
SOFC.

2.3.6 Natural gas consumption

Constraint (6a) dictates that the total amount of natural gas consumed by all of the
operating power-only or CHP SOFCs in each hour is the quotient of their total power
output and their average electric efficiency. Constraint (6b) calculates the amount of
natural gas consumed by the boiler in each hour as the quotient of its heat output and
its average thermal efficiency. The amount of heat the boiler must provide depends
on the temperature (T5t ) of the water from the storage tank, if one is acquired. We
assume the hot water must be delivered to the building’s faucets and radiators at
a fixed temperature (τ out

6 ). If the temperature of the water from the storage tank is
below τ out

6 in a given hour (i.e., Bout
5t = 0), then the boiler must provide the additional

heat to increase the water temperature to τ out
6 . In this case, the amount of heat is

calculated as the product of the specific heat of the tank water (h5), the flowrate of
the tank water (F out

5t ), and the difference (τ out
6 −T5t ) between the delivery temperature

and the tank water temperature. If the temperature of the water from the storage tank
is at or above τ out

6 in a given hour (i.e., Bout
5t = 1), then no additional heating from

the boiler is required. If a storage tank is not acquired, then the boiler must provide
all of the heat demand, which entails heating all of the water from the average return
temperature (τ in

5 ) up to delivery temperature (τ out
6 ).
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2.3.7 Start up and ramping

Constraint (7a) establishes the number of SOFCs that start up between time periods
t and t + 1. If there is an increase in the number of operating SOFCs between time
periods (i.e., Nj,t+1 > Njt ), then a positive number (Ńj,t+1) of SOFCs incur the
cost of fuel for start up. The cost-minimizing objective induces any solution to set
Ńj,t+1 to the smallest value allowable, given the constraints. Thus, in each hour t ,
Ńj,t+1 is set equal to Nj,t+1 − Njt when Nj,t+1 > Njt and zero otherwise (i.e.,
Ńj,t+1 = max{Nj,t+1 − Njt ,0}). Given this equality and the integrality restrictions
on Njt , we obtain integer values for Ńjt without including such a constraint in the
model.

According to constraint (7b), if SOFC power output increases from hour t to hour
t + 1 (i.e., P out

j,t+1 > P out
j t ), then it cannot increase by more than the total ramp-up

capacity of all the SOFCs that are operating in hour t + 1. Similarly, if SOFC power
output decreases between consecutive hours (i.e., P out

j,t+1 < P out
j t ), then it cannot de-

crease by more than the total ramp-down capacity of the SOFCs operating in hour t .
The parameter δ is included to properly convert units from kW/h to kW.

2.3.8 Power storage

Constraint (8a) demonstrates that the change in the inventory of energy in the ac-
quired batteries from the start of hour t to the start of hour t + 1 is determined by the
net power added to the batteries in hour t (after accounting for the charge efficiency
ηmax

1 ). The parameter δ is included to convert units from kW to kWh. According to
constraint (8b), the energy in all of the acquired batteries at the start of any hour must
remain within the total minimum and maximum state-of-charge. If batteries are not
acquired, then the total state-of-charge is set equal to zero in all hours. Constraint (8c)
requires the batteries to attain the same state-of-charge in the final time period as in
the initial time period.

2.3.9 Heat capacity

The water in the storage tank is heated with the exhaust gas from the CHP SOFCs.
Thus, constraint (9a) limits the maximum flowrate of hot exhaust gas into the water
tank in each hour to the exhaust gas output by the CHP SOFCs. The exhaust gas out-
put depends on the flow of natural gas into the CHP SOFCs, which is calculated in
constraint (6a). For time periods in which the use of all of the available exhaust gas
would cause the tank water temperature to exceed its maximum, we assume the ex-
cess exhaust gas is vented. We further assume that the boiler is sized to meet the peak
heat load of the building. Thus, the maximum capacity of the boiler is unconstrained
in our formulation.

2.3.10 Heat storage

Constraint (10a) demonstrates that the change in the temperature of the tank water
from the start of hour t to the start of hour t + 1 (after accounting for heat loss to the
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ambient) is determined by the net thermal energy added to the water in hour t and
the heat capacity of the water. Though in reality the ambient heat loss is a function
of the temperature difference between the tank water and the ambient, we apply a
fixed heat loss factor (α5) for simplicity. However, the ambient heat loss factor only
applies if the tank water temperature is above the average temperature of the water
upon return to the tank (i.e., B in

5t = 1). The thermal energy added to the tank is the
product of the time increment (δ), the heat exchanger efficiency (η5), the specific heat
(h4) and flowrate (F in

5t ) of the CHP SOFC exhaust gas, and the temperature difference
(τ out

4 −T5t ) between the exhaust gas and the tank water. The thermal energy removed
from the tank is the product of the time increment (δ), the specific heat (h5) and
flowrate (F out

5t ) of the tank water, and the temperature difference (T5t − τ in
5 ) between

the tank water and the return water. The net thermal energy added to the water is
divided by the heat capacity (h5V5) of the volume of water to determine the net
temperature change.

Constraint (10b) demonstrates the impact of not acquiring a storage tank. If a tank
is not acquired (i.e., A5 = 0), then the “tank” water is reduced to the temperature of
the return water in every hour. As a result, all of the water must be heated to delivery
temperature by the boiler. If a tank is acquired, then the water in the tank is limited to
the maximum temperature (τmax) in all hours. Constraint (10c) determines whether
the tank water temperature is arbitrarily close (within ε) to the return water tempera-
ture. This constraint establishes the value of the binary variable (B in

5t ) which controls
the temperature decay due to heat loss to the ambient. Constraint (10d) determines
whether the tank water is above or below the hot water delivery temperature. This
constraint establishes the value of the binary variable (Bout

5t ) which controls the need
for additional heating from the boiler or for mixing with cold water. Constraint (10e)
requires the tank water to attain the same temperature in the final time period as in
the initial time period.

2.3.11 Heat storage acquisition

Constraint (11a) ensures that a water tank is acquired if and only if at least one CHP
SOFC is acquired. We use a conservative upper bound on the number of CHP SOFCs
acquired to control this if-and-only-if relationship between the binary variable A5 and
the integer variable A4. Constraint (11b) bounds the selected capacity for the water
storage tank based on the heat demands of the building of interest. The lower bound
on the tank size is the initial capacity, the cost of which is included in the acquisition
of CHP SOFCs.

2.3.12 Non-negativity and integrality

Finally, constraints (12a)–(12d) ensure all of the variables in our formulation assume
non-negative values. In addition to non-negativity restrictions, constraints (12c) and
(12d) establish the integrality of the appropriate variables.
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Table 1 Size of (P) instances for time horizons of interest

Time horizon
(hours)

Number of
variables
(integer/binary)

Number of
constraints
(nonlinear)

One day (24) 533 (52/49) 791 (167)

Two days (48) 1,061 (100/97) 1,583 (335)

Four days (96) 2,117 (196/193) 3,167 (671)

One week (168) 3,701 (340/337) 5,543 (1,175)

One month (744) 16,373 (1,492/1,489) 24,551 (5,207)

One year (8,760) 192,736 (17,524/17,521) 289,090 (61,319)

3 Solving the MINLP

In this section, we discuss the mathematical structure of (P), as well as the lower and
upper bounding techniques we develop to solve instances of (P).

3.1 Mathematical structure

(P) has a linear objective, 22|T | + |N | + 4 variables (2|T | + 4 general integer,
2|T | + 1 binary), and 33|T | + |N | − 2 constraints (7|T | − 1 nonlinear), not includ-
ing non-negativity and integrality restrictions. Table 1 lists the number of variables
and constraints contained in (P) for various time horizons at the hourly level of fi-
delity.

Upon expanding and rearranging nonlinear constraints (2b), (5a), (6a), (6b), and
(10a), and suppressing the linear terms, we find that all of the nonlinearities in (P)

consist of bilinear and trilinear terms in equality constraints (see below). Thus, the
constraint set is nonconvex.

Linear + h5
(
τ out

6 − τ in
5

)
F out

5t T5t + dH
t T5tB

out
5t = 0

Linear + NjtEjt = 0

Linear + GjtEjt = 0

Linear + (h5/η6)
(
τ out

6 F out
5t Bout

5t + F out
5t T5t − F out

5t T5tB
out
5t

) = 0

Linear + h5
(
V5T5,t+1 − V5T5t + α5V5T5tB

in
5t + δF out

5t T5t

) + δη5h4F
in
5t T5t = 0

Ultimately, in order to support long-term capital investment decisions, we wish
to determine a DG system design and dispatch that meets the demands of a build-
ing for a typical year at the globally minimum total cost. However, the application
of a nonlinear branch-and-bound algorithm to solve such a problem requires meth-
ods for determining global upper and lower bounds on the objective value. When
applied to an integer-restricted minimization problem, branch-and-bound generates
a non-increasing sequence of global upper bounds on the objective value and a non-
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decreasing sequence of global lower bounds on the objective value which eventually
converge (within some tolerance) to provide the optimal solution. In general, global
upper bounds are provided by integer-feasible solutions obtained with local solvers
and global lower bounds are provided by solutions to continuous relaxations of the
integer problem. Both types of bounds can be difficult to obtain for large, nonconvex
MINLPs. Our testing indicates few existing MINLP solvers are capable of finding
solutions to one-day instances of (P), and none of those tested can provide solutions
for time horizons greater than one week. Additionally, the nonconvex nature of (P)

dictates that solutions to continuous relaxations do not necessarily provide global
lower bounds. Accordingly, the next two sections discuss our techniques to obtain
lower and upper bounds which can be applied in a nonlinear branch-and-bound algo-
rithm.

3.2 Lower bounding: convex underestimation

A lower bound for a mixed-integer linear programming (MILP) minimization prob-
lem is obtained by relaxing the integrality restrictions and solving the resulting con-
tinuous problem. A lower bound for an MINLP minimization problem can also be
obtained in this manner as long as the problem is convex. However, nonconvex prob-
lems provide no guarantee of obtaining a global lower bound when solving the NLP
relaxation. Thus, we formulate a convex underestimation problem, henceforth re-
ferred to as (U), to obtain a global lower bound on (P).

Convex underestimation methods similar to those suggested by McCormick
(1976) are still applied in the literature today. Indeed, this classical idea has been
adapted for use in some state-of-the-art software (Sahinidis 1996), and results have
been reported in Tawarmalani and Sahinidis (2003) and Bao et al. (2009). Accord-
ing to Eqs. (3) and (4) of Adjiman and Floudas (2008), bilinear and trilinear terms,
respectively, are underestimated by their convex envelope. The convex envelopes
are constructed by replacing each of the nonlinear terms with a new variable and
adding linear inequality constraints that bound the new variable. Bilinear terms re-
quire four constraints on the new variable while trilinear terms require eight con-
straints. Considering some of our nonlinear terms are repeated across constraints,
(P) contains 9|T | − 1 distinct bilinear terms and 2|T | − 1 distinct trilinear terms
that must be replaced with new variables. Accordingly, the (U) formulation is iden-
tical to (P) with the exceptions of adding 11|T | − 2 new continuous variables,
replacing each of the bilinear and trilinear terms with the appropriate new con-
tinuous variable, and adding 52|T | − 12 new linear constraints. Hence, (U) is an
MILP, the solution to which provides a global lower bound on the optimal solution
to (P).

The formulation of the convex envelopes in (U) requires the following upper
and lower bounds on each of the original variables in the bilinear and trilinear
terms:
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• Variable bounds applied in (U)

0 ≤ Njt ≤
⌈

maxt∈T {dP
t }

kout
j

⌉

0 ≤ Gjt ≤
(

kout
j

ηmin
j

)⌈
maxt∈T {dP

t }
kout
j

⌉

0 ≤ F in
5t ≤ γ4

(
kout

4

ηmin
4

)⌈
maxt∈T {dP

t }
kout

4

⌉

ηmin
j ≤ Ejt ≤ ηmax

j

(
τ out

6 − τmin

τmax − τmin

)(
dH
t

h5(τ
out
6 − τ in

5 )

)

≤ F out
5t ≤

(
dH
t

h5(τ
out
6 − τ in

5 )

)

τ in
5 ≤ T5t ≤ τmax

0 ≤ B in
5t ≤ 1

0 ≤ Bout
5t ≤ 1

vmin
5 ≤ V5 ≤ vmax

5 .

(14)

The number of SOFCs operating (Njt ) in any hour is bounded above by the num-
ber of SOFCs acquired, according to constraint (4e). We apply a conservative up-
per bound on the number of SOFCs acquired by assuming the building owner never
buys more SOFCs than what is required to supply the peak power load without as-
sistance from the macrogrid. This upper bound on the number of SOFCs acquired
also limits the maximum amount of natural gas (Gjt ) fed to the SOFCs in any hour,
according to constraints (4d), (5a), and (6a), and the maximum flowrate (F in

5t ) of
CHP SOFC exhaust heat into the water tank, according to constraint (9a). The elec-
tric efficiency (Ejt ) of the SOFCs is bounded above and below by the maximum
and minimum efficiencies, respectively, according to constraint (5a). The flowrate
(F out

5t ) of heated water out of the tank is bounded above by the demand flowrate
with no cold water mixing and bounded below by the demand flowrate with the
maximum cold water mixing, according to constraints (2b) and (10d). The temper-
ature (T5t ) of the water in the tank is bounded above and below by the maximum
and return temperatures, respectively, according to constraint (10d), while the bi-
nary temperature variables (B in

5t and Bout
5t ) are bounded by zero and one. Finally,

the capacity (V5) of the water tank is bounded by the limits dictated in constraint
(11b).

We next attempt to tighten the variable bounds in (14) using an optimization-
based approach. With this approach, each of the variables in (14) is maximized or
minimized subject to the constraints in (U) in order to obtain tighter upper or lower
bounds, respectively. After executing bound tightening on all of the variable bounds
in (14) for various small (i.e., one-day) instances of the problem, we find that only the
upper bound on T5t , the upper bound on Bout

5t , and the lower bound on F out
5t benefit
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from the bound tightening. The fact that these three bounds can be tightened logically
follows from the relationships dictated by constraints (2b), (10a), and (10d). In certain
time periods, the maximum possible inflow of heat from the CHP SOFCs and the
minimum required outflow of heat to meet demand could make it impossible for
the tank water temperature (T5t ) to reach its upper bound (τmax), or even delivery
temperature (τ out

6 ), in the following time period, according to constraint (10a). If the
tank water temperature is below the delivery temperature, then the indicator variable
(Bout

5t ) must be set to its lower bound (zero), according to constraint (10d), and the
flow of hot water (F out

5t ) must be set to its upper bound, according to constraint (2b).
Based on this information, we expedite the bound tightening procedure for larger (i.e.,
two-day and greater) instances of the problem by only applying the optimization to
the upper bound on T5t (referred to as T̂5t ) and subsequently directly calculating the
new upper bound on Bout

5t (referred to as B̂out
5t ) and the new lower bound on F out

5t

(referred to as F̌ out
5t ). To further speed the bound tightening, we relax integrality in

(U) as part of the following algorithm:

• Bound tightening algorithm

1. Set T̂5t = τmax, B̂out
5t = 1, F̌ out

5t = (
τ out

6 −τmin

τmax−τmin )(
dH
t

h5(τ
out
6 −τ in

5 )
) ∀t .

2. Loop ∀t ∈ T .
(a) Maximize T5t subject to (U) with integrality relaxed.
(b) Set T̂5t equal to the objective value resulting from (a).
(c) Set B̂out

5t = 1 if T̂5t > τ out
6 and 0 otherwise.

(d) Set F̌ out
5t = (1 − [1 − τ out

6 −τmin

T̂5t−τmin ]B̂out
5t )(

dH
t

h5(τ
out
6 −τ in

5 )
).

This algorithm can be repeated multiple times to try and achieve even tighter
bounds. However, empirical evidence suggests the majority of the improvement in
the bounds occurs within the first two to three repetitions. We also find that the algo-
rithm results in the greatest improvement in the bounds on T5t ,B

out
5t , and F out

5t in hours
that follow large spikes in the heat demand. These tighter bounds are then applied in
(U), with the original objective function and integrality once again enforced, to ob-
tain an improved (i.e., greater) global lower bound on the optimal objective value for
(P). For the instances presented in Sect. 4, the bound tightening algorithm increases
the global lower bound on (P) by an average of 1.6 %. We next present techniques
for obtaining a global upper bound on the optimal objective value for (P).

3.3 Upper bounding: linearization heuristic

An upper bound for an MI(N)LP minimization problem is provided by any integer-
feasible solution. One integer-feasible solution to (P) is to acquire no DG technolo-
gies and meet all of the building’s demand with the macrogrid and boiler. The cost
of this “no DG” solution can be directly calculated, without solving (P), using the
C5 and C6 portions of the objective function and setting Uout

t = dP
t ∀t,Umax

n =
maxt∈Tn

{dP
t } ∀n, and G6t = dH

t /η6 ∀t . However, the “no DG” solution provides
a weak upper bound on the total cost for the optimal solution to (P) if DG technolo-
gies are economically viable. Thus, we wish to find an integer-feasible solution, if
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one exists, that includes some DG technologies and provides a lower total cost, and
thus a tighter upper bound, than the “no DG” solution. Integer-feasible solutions can
be obtained by solving (P) with existing MINLP solvers for small problem instances.
However, based on our testing, larger problem instances (i.e., greater than one week)
cannot be solved with the currently available solvers. Accordingly, we next present a
linearization heuristic, henceforth referred to as (H), for determining integer-feasible
solutions to (P) that can be applied to the large instances.

The intuition behind (H) is the observation that fixing the electric efficiency of the
SOFCs (E3t ,E4t ) and the tank water temperature (T5t ) renders (P) linear. Simpler
models in the literature similarly fix the efficiencies of generators and fix, or ignore,
the temperature of thermal storage devices to avoid nonlinearity (e.g., Siddiqui et al.
2005b). When E3t and E4t are fixed, constraint (5a) is linearized by clearing the de-
nominator on the right-hand side of the equation and constraint (6a) is linear without
modification. When T5t is fixed, constraints (10c) and (10d) fix the values of B in

5t

and Bout
5t , respectively. With T5t ,B

in
5t , and Bout

5t all fixed, constraints (2b) and (6b) are
linear without modification and constraint (10a) is linearized by clearing the denomi-
nator on the right-hand side of the equation. Thus, the (H) formulation is identical to
(P) with the exception of fixing 3|T | continuous variable values (E3t ,E4t , and T5t )
and 2|T | binary variable values (B in

5t and Bout
5t ). Consequently, any feasible solution

to the MILP (H) is feasible for the MINLP (P).
Although we obtain (P)-feasible solutions from (H)-feasible solutions, the fixed

values for E3t ,E4t , T5t ,B
in
5t , and Bout

5t must be carefully selected in order to achieve
(H)-feasibility. Additionally, not every (P)-feasible solution produces a total cost less
than the “no DG” solution. In general, the fixed variable values used in (H) will pro-
duce lower cost (P)-feasible solutions if those fixed values are tailored to the power
and heat demands of the building of interest. Hence, we next present techniques for
selecting the fixed variable values used in (H) with the goal of obtaining (P)-feasible
solutions that incur a lower total cost than the “no DG” solution. In presenting these
techniques, we distinguish between two types of system design solutions: DG sys-
tems with only power generation and storage (referred to as “power DG”) and DG
systems with both power and heat generation and storage (referred to as “CHP DG”).
Depending on the particular problem instance, one of these system design types may
produce a lower cost solution than the other.

For a “power DG” system, the selection of fixed values for E4t , T5t ,B
in
5t , and Bout

5t

is trivial. Because there is no SOFC exhaust heat capture in this case, CHP SOFCs
are never acquired and the associated electric efficiency can simply be set to its min-
imum. Also, because there is no water storage tank, the water enters the boiler at
return temperature in every hour and must be fully heated to delivery temperature.
Less trivial, however, is the selection of the fixed values for the power-only SOFC
electric efficiency (E3t ). One might ignore the specific power demands of the build-
ing and simply fix the efficiency to the same value (e.g., the minimum, average, or
maximum efficiency) in all hours. However, this approach forces the SOFCs to oper-
ate at the same power output for all hours in which they are utilized (see constraint
(5a)) and, therefore, is unlikely to produce a (P)-feasible solution with a total cost as
low as that produced by efficiency values which are tailored to the power demands.
We can obtain these tailored fixed values for E3t from the solution to (U ). Given the
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underestimation of constraint (5a) in (U ), we cannot directly apply the values for E3t

from the solution to (U ). However, the solution to (U ) provides valid values for P out
3t

and N3t , referred to as P̆ out
3t and N̆3t , that we use along with constraint (5a) to derive

Ĕ3t . These tailored values are applied in (H) as part of the following algorithm to
obtain a (P)-feasible solution:

• “Power DG” (P)-feasible solution algorithm

1. Solve (U) and store resulting values for P̆ out
3t and N̆3t ∀t .

2. Set T5t = τ in
5 , B in

5t = 0, Bout
5t = 0, and E4t = ηmin

4 ∀t .

3. Set E3t = Ĕ3t = (
ηmax

3 −μ3η
min
3

1−μ3
) − (

ηmax
3 −ηmin

3
kout

3 (1−μ3)
)(P̆ out

3t /N̆3t ) if N̆3t > 0, ηmin
3 other-

wise ∀t .
4. Solve (H) and return its solution.

For “CHP DG” systems, the tailored fixed values for E3t and E4t are both deter-
mined from the solution to (U ), as previously demonstrated for Ĕ3t with “Power DG”
systems. However, it may no longer be advisable to trivially fix the values for T5t ,B

in
5t ,

and Bout
5t to their minima. Fixing these variables to their minimum values prevents the

storage of heat across time periods (see constraint (10a)) and likely wastes a large por-
tion of the available exhaust heat from the CHP SOFCs. We would prefer to use as
much of the exhaust heat as possible to keep the tank water as hot as possible and to
reduce the heat provided by the boiler. Hence, the fixed values for T5t ,B

in
5t , and Bout

5t

should be tailored to the heat supplied to the water tank by the CHP SOFCs and the
heat demanded from the water tank by the building.

Any fixed values selected for T5t ,B
in
5t , and Bout

5t must satisfy constraints (10a)
through (10e) to be (H)-feasible. In order to derive fixed values for T5t that satisfy
constraint (10a), we require values for the flowrate of heat from the CHP SOFCs
(F in

5t ), the flowrate of hot water from the tank (F out
5t ), and the tank size (V5). The

values for F in
5t and V5 are determined from the solution to (U ). Given P̆ out

4t and Ĕ4t ,
along with constraints (6a) and (9a), we calculate the maximum flowrate of exhaust
gas from the CHP SOFCs in each hour and use this as the value for F in

5t . The value for
V5 is taken directly from the solution to (U ). With a fixed inflow of heat and fixed tank
size, we can iteratively calculate values for T5t that satisfy constraint (10a), values for
B in

5t that satisfy constraint (10c), and values for Bout
5t that satisfy constraint (10d). As

part of the algorithm, we also calculate values for F out
5t that satisfy constraint (2b);

however, these values are not fixed in (H). Finally, in order to ensure the satisfaction
of constraint (10e), we set the tank temperature in the initial time period (T5,1) equal
to the temperature in the terminal time period (T5,|T |) after the first execution of the
algorithm. We then continue executing the algorithm until the terminal tank temper-
ature is equal to the initial tank temperature. Empirically, we find that the terminal
temperature is so insensitive to the initial temperature that only two repetitions total
of the algorithm are necessary. These tailored temperature values are applied in (H)

as part of the following algorithm to obtain a “CHP DG” (P)-feasible solution:

• “CHP DG” (P)-feasible solution algorithm

1. Solve (U) and store resulting values for P̆ out
j t , N̆j t ∀j, t , and V̆5.
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2. Set Ejt = Ĕj t ∀j, t , F in
5t = γ4(P̆

out
4t /Ĕ4t ) ∀t, V5 = V̆5, and T5,1 = τmax.

3. Loop ∀t ∈ T .
(a) Set B in

5t = 1 if T5t > (τ in
5 + ε), 0 otherwise.

(b) Set Bout
5t = 1 if T5t > τ out

6 , 0 otherwise.

(c) Let F out
5t = (1 − [1 − τ out

6 −τmin

T5t−τmin ]Bout
5t )(

dH
t

h5(τ
out
6 −τ in

5 )
).

(d) Set

T5,t+1 = max

{

τ in
5 ,min

{

τmax,
(
1 − α5B

in
5t

)
T5t

+ δη5h4F
in
5t (τ

out
4 − T5t ) − δh5F

out
5t (T5t − τ in

5 )

h5V5

}}

.

4. If T5,|T | = T5,1 then go to Step 5. Otherwise, set T5,1 = T5,|T | and return to
Step 3.

5. Solve (H) and return its solution.

Upon obtaining the “no DG,” “power DG,” and “CHP DG” (P)-feasible solutions
for a given problem instance, we choose the solution with the lowest cost to provide
the tightest upper bound on the optimal solution to (P).

4 Case studies

In this section, we provide solutions from (U) and (H) for a six-story, 122,000 square
foot hotel located in Los Angeles, California. We then compare our solutions to those
provided by existing solvers.

4.1 Building, utility, and technology data

The hourly electricity and heating demands for the hotel are simulated using a bench-
mark building model in EnergyPlus (see DOE 2010). The electricity demand includes
lighting, equipment, and cooling, while the heating demand includes both space and
water heating.

We use simulated data in our numerical experiments because full-year hourly elec-
tricity, cooling, and heating data for a given building are generally very difficult to
obtain. However, justification for using the simulated data from EnergyPlus is based
on the following reasons: (i) EnergyPlus reflects an industry standard in building
energy simulation models that yield reasonable data, and the software has been ex-
tensively benchmarked against real building energy performance data; (ii) our model
is intended to be used for any building type in any geographic location and with any
utility pricing combination. Having a “model” of a building allows us to examine the
applicability of the solutions for different geographic zones and utility price struc-
tures, regardless of how specific electricity and heating demands are obtained; and
(iii) the data only need be broadly reflective of the building type and occupancy pat-
tern. Actual hourly data are not required as “real” data and “simulated” data cannot
be distinguished from one another, even by an informed observer. The hotel’s hourly
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Fig. 2 Power and heat demand for a large hotel located in Los Angeles, California

Fig. 3 Electricity and natural gas prices for commercial customers in Los Angeles, California

power and heat demands on a summer weekday and winter weekday are depicted in
Fig. 2.

Electricity prices are based on Southern California Edison’s rate schedule for com-
mercial customers (see SCE 2010), while natural gas prices are based on Southern
California Gas Company’s rate schedule for core commercial service (see SCGC
2010). The energy prices from each utility on a summer weekday and winter weekday
are provided in Fig. 3. According to Kaffine et al. (Kaffine et al. 2011), the average
carbon emissions rate for power plants in the California Independent System Operator
(CAISO) territory, which serves Los Angeles, is 0.15 kg/kWh (≈ 0.16 tons/MWh).
This relatively low rate is due to the lack of coal-fired plants and the prevalence
of wind power and natural gas-fired plants. We use a carbon tax of $0.02 per kg
(≈ $20 per ton) and assume that the building owner is taxed for the generation of the
purchased power.
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Table 2 Generator cost and performance parameter values

Parameter Power SOFC CHP SOFC PV Cell

Initial capital cost [$/kW] 2,800 3,360 2,800

O&M cost [$/kWh] 0.02 0.024 0.04

Nameplate power rating [kW] 10 10 10

Avg. availability [%] 100 100 PVWATTS

Max turn-down [%] 20 20 0

Start-up time [hours] 2 2 N/A

Max ramp rate [kW/h] 4 4 N/A

Max (min) electric efficiency [%] 57 (41) 57 (41) N/A

Exhaust output per fuel input [kg/kWh] N/A 2.05 N/A

Avg. exhaust temperature [°C] N/A 365 N/A

Avg. lifetime [years] 15 15 15

For our DG system, the generators available for acquisition are power-only
SOFCs, CHP SOFCs, and fixed-tilt PV cells with the costs and performance char-
acteristics provided in Table 2. The average hourly availability of the PV cells, given
the prevailing weather, is determined by the PVWATTS Performance Calculator de-
veloped by the National Renewable Energy Laboratory (see NREL 2011). The amor-
tized capital costs of all of the technologies are calculated according to Eq. (13) based
on the initial capital costs and average lifetimes in Table 2, along with a 5 % annual
interest rate. The initial capital costs we use represent a fraction (about 70 %) of to-
day’s pre-commercial costs typically quoted in the literature. Our optimization runs
using present costs generally result in the “no DG” solution in business-as-usual anal-
yses (i.e., without incorporating externalities such as carbon taxes). However, future
fuel cell system costs based on high-volume manufacturing and a mature technology
are estimated to fall by a factor of 2–3 (Wachsman et al. 2012). Therefore, in order
to present interesting, forward-looking results, and without any loss of generality re-
garding our solution procedure, we use (conservative) projected future costs, rather
than current costs.

The storage technologies available for acquisition are lead-acid batteries (electric)
and a hot water tank (thermal), with the costs and performance characteristics listed in
Table 3. For simplicity, we assume that there is no additional capital cost to increase
the size of the water tank beyond its minimum. Thus, the increased capital cost for
the CHP SOFC option is assumed to account for the cost of the water tank, regardless
of its size. The temperature of the water in the tank is assumed to decrease by 1 %
per hour due to ambient heat loss. The values for the specific heat of SOFC exhaust
and tank water are 0.0003 kWh/(kg °C) and 0.0044 kWh/(gal °C), respectively. The
average return and maximum temperatures for the water in the tank are 16 °C and
85 °C, respectively, and we assume that the hot water must be delivered to all faucets
and radiators at 60 °C.

The boiler has an average thermal efficiency of 75 % and O&M costs of $0.01
per kWh of heat supplied. We use a carbon emissions rate of 0.18 kg/kWh for the
combustion of natural gas (see NaturalGas.org 2011). Thus, the carbon emissions
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Table 3 Storage cost and performance parameter values

Parameter Lead-acid battery Water tank

Initial capital and O&M cost $140/kWh $0/gal

Nameplate capacity 10 kWh 1,000–4,000 gal

Min state-of-charge or temperature 30 % 15 °C

Max charge (discharge) rate 1 (2.5) kW N/A

Charge-discharge or thermal efficiency 90 % 80 %

Avg. lifetime 5 years 15 years

from the SOFCs and boiler are determined by multiplying this emissions rate by the
amount of natural gas consumed.

4.2 Comparison of solutions with existing solvers

We next solve (U) and (H) for instances with time horizons ranging from one
day to one year (see Table 1), and compare our solutions with those provided by
solving (P) directly using existing MINLP solvers. MINLP solvers which accept
models coded in AMPL (AMPL 2009) include MINOTAUR-BnB (Mahajan et al.
2011), MINOTAUR-QPD (Mahajan et al. 2012), and MINLP-B&B (Leyffer 1998).
A prominent MINLP solver that only accepts GAMS (Brooke et al. 1992) input is
BARON (Sahinidis 1996). Couenne (Belotti 2009) and BONMIN (Bonami et al.
2008) accept both AMPL and GAMS input, and we use GAMS input in both these
cases. All runs involving solving (P) directly via these six state-of-the-art optimiz-
ers are carried out on a 64-bit Linux box with a Xeon E5430 processor running at
2.66 GHz with 6 Mb of memory. All codes are compiled with gcc/gfortran version
4.4.3 under Linux-Ubuntu 10.04. In all instances, we use the solvers’ default opti-
mality gap, and we enforce a time limit of 36,000 seconds.

Both global solvers, BARON and Couenne, reach the time limit of 10 hours on all
runs. BARON is able to find a reasonably good upper bound for the one- to seven-day
data sets, while Couenne does not find an upper bound for data sets with more than
two days. These solvers are, however, constructing underestimators to prove global
optimality, so we expect the solve times to be longer than those of the local solvers.
Note that the global solver, BARON, uses the well known underestimation procedure
that forms the basis for our problem (U). In fact, BARON even incorporates an effi-
cient technique that generates selected facets of multilinear functions which may not
only be tighter than the underestimators we use, but which may also include fewer
needless cuts (i.e., cuts that do not strengthen the relaxation). However, as we discuss
below, we find that our tailored techniques for solving (U) and (H) produce bounds
and solutions faster than the more generalized methods employed by BARON.

Of the local solvers, MINLP-B&B generally finds the best solution, and the local
solvers usually find better upper bounds (putative solutions) than the global solvers
in less time. MINOTAUR’s solution times are the fastest. We also remark on the
small number of nodes searched by MINOTAUR, which can be explained by the
fact that the solver performs a heuristic search first, and terminates its tree search
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Table 4 Objective function values (given as the percent of the “no DG” solution), solution times (in
seconds), and the number of nodes processed for the one- to seven-day instances of (P) using the global
solvers BARON and Couenne, and the local solvers MINOTAUR-BnB, MINOTAUR-QPD, Bonmin, and
MINLPBB

BARON Couenne MINOTAUR-BnB MINOTAUR-QPD Bonmin MINLP-B& B

24-Hour horizon

Objective function
value

86.78 87.22 86.33 100 86.34 86.32

CPU time (s) 36000∗ 36000∗ 117.87 2.59 174.50 147.98

Nodes processed 363358 932400 204 5 61 129

48-Hour horizon

Objective function
value

99.12 100 99.12 97.75 97.91 97.91

CPU time (s) 36000∗ 36000∗ 30.34 9.31 1734.79 1057.29

Nodes processed 60471 349667 3 5 109 545

96-Hour horizon

Objective function
value

98.80 † 100 100 98.80 97.66

CPU time (s) 36000∗ 36000∗ 11.45 23.87 7522.89 26293.08

Nodes processed 17875 88454 1 1 9 3062

168-Hour horizon

Objective function
value

93.04 † 100 100 † 92.68

CPU time (se) 36000∗ 36000∗ 168.38 54.55 36000∗ 36000∗
Nodes processed 13231 38693 1 3 350 827

∗Indicates that the CPU time limit of 36,000 seconds is reached

†Indicates that no upper bound, i.e., integer-feasible solution, is found

when the root node relaxation is within a small tolerance of the solution found by the
heuristic search. None of the solvers produce a meaningful solution for instances with
more than 31 days. That is, no solver’s performance scales well with the size of our
instances. BONMIN, Couenne, and MINLP-B&B all terminate with segmentation
faults from their respective nonlinear solvers for the 31-day instances, indicating the
difficulty of solving the nonlinear optimization problems. We report the results in
Table 4 for time horizons of up to seven days.

Because of existing solvers’ inability to solve large, or even medium-sized, in-
stances of (P), we use our lower bounding and heuristic techniques described in
Sect. 3.2 and Sect. 3.3, respectively, to enhance performance. (U) and (H) are both
coded in AMPL Version 20090327 and are solved with CPLEX 12.3 (IBM 2011) on
a 64-bit workstation under the Linux operating system with four Intel processors run-
ning at 2.27 GHz and with 12 GB of RAM. (U) represents the nonconvex constraints
in the original problem, (P), replaced by their convex underestimators. In this sense,
(U) provides global lower bounds for (P) instances. Similarly, (H) provides integer
solutions. Solving these two linear problems, which yield conservative lower and up-
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Table 5 Average improvement in the bounds on T5t , F
out
5t

, and Bout
5t

resulting from five iterations of the
bound tightening algorithm described in Sect. 3.2

Time horizon
(hours)

Solve time
(sec)

Avg. decrease
in upper bound
on T5t (%)

Avg. increase
in lower bound
on F out

5t
(%)

Upper bounds
on Bout

5t
fixed to

0 (%)

24 5 13.4 22.5 8.3

48 18 12.5 21.0 8.3

96 77 12.5 21.0 7.3

168 202 12.6 21.1 6.0

744 5,230 12.0 20.0 4.6

8,760 1,982,210 16.6 28.3 14.8

per bounds, respectively, for (P), quickly produces solutions for instances of up to
one year; the quality of these solutions can be bounded, albeit more slowly than using
the existing solvers.

Prior to solving instances of (U), we execute the bound tightening algorithm de-
scribed in Sect. 3.2 on the continuous variables for water temperature (T5t ) and
flowrate (F out

5t ), as well as on the binary variable (Bout
5t ) that indicates the delivery

temperature of the water. Table 5 presents the bound improvement achieved by five
iterations of bound tightening on each of the three variables for the six time hori-
zons of interest. In general, the bound improvement decreases as the time horizon
increases. However, we witness a relatively large increase in bound improvement be-
tween the one-month and one-year instances of the problem. This is due to the fact
that the one-day through one-month instances of the problem all comprise summer
time periods when the heating demand is relatively low (see Fig. 2). As we discussed
at the end of Sect. 3.2, the bound improvement on the water temperature and flowrate
variables tends to be greater during periods of high heating demand. Thus, for the
one-year instance, which includes winter time periods with relatively high heating
demand, the bound improvement is greater. Figures 4 and 5 depict the distribution of
bound improvement for the water temperature (T5t ) and flowrate (F out

5t ) variables for
the one-year instance of the problem. The histograms demonstrate the high frequency
of hours for which the bound improvement is very low (primarily summer hours) and
the high frequency of hours for which the bound improvement is very high (primarily
winter hours).

After executing bound tightening, we solve the instances of (U) and (H), with the
tightened bounds, and compare the solutions with those provided by MINOTAUR-
BnB. MINOTAUR-BnB finds integer-feasible solutions to larger problems than the
other solvers, though it is a local solver. We provide the solutions, solve times (which
do not include the time for bound tightening), and optimality gaps for each instance
in Table 6. In all instances, we express the solutions as a fraction of the total cost of
the “no DG” solution.

For each of the six instances with varying time horizons, we solve (U) to obtain a
global lower bound on (P). We then use variable values from the solution of (U) to
solve (H) and obtain an integer solution (upper bound) for (P). For the two largest in-
stances, (U) terminates at the 36,000 second time limit prior to achieving the specified
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Fig. 4 Histogram of the percentage decrease in the upper bound on T5t for the one-year instance

Fig. 5 Histogram of the percentage increase in the lower bound on F out
5t

for the one-year instance

optimality gap of 1 %. In these instances, we use the best lower bound on (U) at the
point of termination as the global lower bound on (P). Thus, the optimality gaps re-
ported in the table are based on the difference between the optimal objective function
value of (H) and the appropriate global lower bound provided by (U). By contrast,
given the nonconvex nature of (P), the optimality gaps reported for MINOTAUR-
BnB may not provide valid global lower bounds, and therefore do not necessarily
indicate proximity of the integer solutions to global optimality. Correspondingly, we
do not report the bounds in the table.

Our techniques and MINOTAUR-BnB are both capable of obtaining (P)-feasible
solutions for instances with time horizons of up to 31 days (744 hours). For these
instances, our solutions are better than those obtained by MINOTAUR, and re-
quire a significantly shorter solve time. Additionally, only (U) and (H) provide the
possibility of solving instances with time horizons of one year. For that instance,
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Table 6 (P)-feasible solutions provided by our techniques and by MINOTAUR-BnB for time horizons
of one day to one year. ∗In these instances, (U) reaches the 36,000 second time limit prior to achieving a
1 % optimality gap. The time beyond 36,000 seconds is the solve time for (H)

Time
horizon
(hours)

(U) and (H) MINOTAUR-BnB

Best integer
solution
(% of “no DG”)

Solve time
(sec)

Opt. gap
(%)

Best integer
solution
(% of “no DG”)

Solve
time (s)

24 86.86 6 10.01 86.33 118

48 98.78 40 9.72 99.12 30

96 97.95 318 8.49 100 11

168 93.62 2,536 9.10 100 168

744 94.56 36,013∗ 11.86† 100 613

8,760 100.00 36,069∗ 7.72† � 36,000

†In these instances, we use the best lower bound on (U) at the point of termination as the global lower
bound on (P)

�In this instance, MINOTAUR-BnB finds no solution within the time limit

MINOTAUR-BnB terminates at the time limit without an integer-feasible solution.
Though (U) terminates at the time limit without full convergence for the one-month
and one-year instances, we still obtain a global lower bound on (P) and information
that can be used in solving (H) to obtain an integer solution to (P). Therefore, our
bounding techniques provide two critical advantages over existing MINLP solvers:
the capacity to solve large instances of (P) and an indication of the proximity of
those solutions to global optimality.

Although we solve only instances containing at most 8,760 hourly time periods,
it would be possible using our techniques to solve instances with even longer time
horizons. Our techniques rely on solving mixed integer linear programming prob-
lems with the branch-and-bound algorithm, an algorithm which exhibits exponential
behavior. On one hand, despite the exponential performance of branch-and-bound,
the heuristic we use to obtain good feasible solutions, (H), solves even the largest
instance quickly because of the relatively uncomplicated structure of the model. On
the other hand, the lower bounding procedure requires weeks to run for the longest
instance, in part, because the more iterations we run to tighten the variable bounds
before running (U), the longer the solution time (but the better the bound). That the
bound tightening can consume significant run time suggests that a two-year or longer
instance may have an easily obtainable integer solution but that proving its qual-
ity would require weeks of computation time. However, at any rate, our techniques
produce good solutions and valid bounds for instances in which state-of-the-art opti-
mizers cannot.

Regarding the attributes of the solutions themselves, for each instance other than
the one-year time horizon, we obtain solutions that incorporate DG technologies and
result in total costs ranging from about 87 % to 99 % relative to the corresponding
cost of the “no DG” solution. The primary reason that the smaller-time-horizon so-
lutions include DG acquisition, while the one-year-time-horizon solution does not,
is the combination of building power demand and utility electricity pricing over the
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time horizon of interest. The one-month and shorter time horizons comprise only
summer time periods. Based on the demand and pricing data depicted in Figs. 2 and
3, respectively, the building power demand and utility electricity pricing are both rel-
atively high in the summer. Thus, the savings provided by operating a DG system
to meet the building’s power demands, versus purchasing all of the electricity from
the utility, are relatively high during the summer. As a result, DG acquisition is more
economically attractive when only summer time periods are considered. By contrast,
when we consider the entire year, which includes winter time periods with relatively
lower power demand and electricity pricing, the savings provided by DG are rela-
tively lower and the technologies are less economically attractive.

Another reason that the lowest-cost solution we obtain for the one-year instance is
no better than the “no DG” solution is that the capital costs are 70 % of today’s pre-
commercial costs, a percentage that is still relatively high compared with purchasing
power from the grid at costs current at the time of this writing. Were we to reduce this
percentage, we would see investments in the DG technologies. Indeed, these capital
costs are likely to decrease over time, making future capital installation costs 30 %
of today’s costs realistic. All of our computational procedures (i.e., the heuristic and
the lower bounding techniques) are generalizable so, indeed, it would be possible to
create other scenarios with lower capital costs, solving them using our procedures.

5 Conclusions

In this paper, we present an optimization model which determines the configuration,
capacity, and operational schedule of a DG system capable of meeting the power
and heat demands of a commercial building at the globally minimum total cost. The
model includes aspects of the system operation that are not considered in other re-
search. In particular, we model the operational status, ramping capacity, and variable
electric efficiency of power generation technologies. Additionally, we model thermal
storage as a function of the temperature at which hot water is stored. These modeling
innovations allow us to capture detailed system performance characteristics and to
obtain realistic solutions. However, those same innovations require additional integer
variables in every time period and nonlinearities that dictate our system be modeled
as a large, nonconvex MINLP.

The algorithms capable of solving large, nonconvex MINLPs to global optimal-
ity are limited. In order to execute a nonlinear branch-and-bound algorithm that is
capable of solving such problems to global optimality, we require methods for deter-
mining global lower and upper bounds on the optimal objective function value at each
node of the branch-and-bound tree. Yet, solving the continuous relaxation of a non-
convex MINLP may not lead to a global lower bound and currently available solvers
are not capable of solving large instances of nonconvex MINLPs to obtain a global
upper bound. As a result, we formulate a convex underestimation of our MINLP to
obtain a global lower bound and develop a linearization heuristic to obtain a global
upper bound.

We demonstrate our bounding techniques for model instances ranging in size from
one day to one year using a large hotel located in Los Angeles, CA as a case study.
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We then compare our solutions with those provided by existing solvers. Few exist-
ing solvers are capable of obtaining solutions for instances of our MINLP with time
horizons of longer than one week. Those that can solve these instances offer little to
no improvement over the solutions provided by our techniques and require a longer
run time. Furthermore, our techniques present the possibility to solve larger instances
of the problem that exceed the capacity of existing solvers. The ability to solve these
larger instances is critical to the real-world application of the model to inform long-
term capital investment decisions. Specifically, our ability to capture an entire year’s
worth of data to produce a solution provides us with a better representation of the
cost-minimizing operation of a system and the corresponding optimal design. Were
we to capture only a representative day for each season in our scenario, we would
be omitting the day-to-day fluctuations that occur, and we would be assuming that
we could employ a method (in terms of the variables for which our model determines
values) for addressing these fluctuations. Such a method would rely upon the assump-
tion that there is only a finite number of seasons within a year, each of which could be
characterized by a representative day. While this may be a reasonable approximation,
it is certainly not realistic; there are transitions between days, or seasons, character-
ized by, for example, a slow increase in the heating demand. Such a trend could not
be adequately captured nor optimally accounted for in the design and operation of a
DG system without the explicit incorporation of the hours, or days, that exhibit the
trend.

The solutions obtained from our model provide valuable insights into the acquisi-
tion and operation of commercial sector DG systems. Additionally, sensitivity analy-
ses have the potential to influence future energy policy measures. The parameters for
utility pricing, carbon taxation, building demand, DG capital and operational costs,
and DG technological performance can all be analyzed within the context of our
model to determine the conditions for which DG is most economically and environ-
mentally viable. Further research could also include uncertainty in building demand,
system output, and utility pricing to test the robustness of the system design solu-
tions. With such computational tools providing both critical information and quan-
titative assessments of the energetic and economic benefits of DG-based solutions,
CHP and other distributed energy resources might finally achieve substantial market
penetration.
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