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Abstract This paper presents an algorithm to solve a fuzzy transportation problem
in which demand, supply and transportation costs are uncertain. Existing solution
methods convert a fuzzy transportation problem into two or more crisp transportation
problems and solves it. But, the proposed algorithm solves a fuzzy transportation
problem without converting it into a crisp transportation problem. This approach re-
sults in a fuzzy total transportation cost, which is a fuzzy number. Sudhagar score
method is used to rank fuzzy numbers. In comparing results of existing methods with
the proposed method, this algorithm outperforms the previous ones. Two numerical
examples explain working procedure of the proposed algorithm.

Keywords Fuzzy transportation problem · Fuzzy objective · Fuzzy number
ranking · Decision making

1 Introduction

Transportation problem has applications in decision making processes, Logistics and
Supply Chain. Parameters of a transportation problem are unit transportation cost,
demand and supply quantities. When transportation cost, demand and supplies are
deterministic and crisp values, methods are available (Taha 2006) to determine an
optimal solution. But demand and supply of a transportation problem are uncertain
in nature. Transportation cost of a unit is not deterministic but imprecise. A frequent

S. Chandran (B)
Department of Mathematics and Applied Sciences, Middle East College, Muscat, Sultanate of Oman
e-mail: haicsudha@yahoo.com

G. Kandaswamy
Department of Mathematics, SRM University, Chennai, India
e-mail: gansan_k@yahoo.com

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-012-9202-6&domain=pdf
mailto:haicsudha@yahoo.com
mailto:gansan_k@yahoo.com


966 C. Sudhagar, K. Ganesan

mean to express uncertainty or imprecision is fuzzy number. If some or all parame-
ters of a transportation problem are fuzzy numbers then it is a Fuzzy Transportation
Problem (FTP).

To solve a crisp transportation problem Taha (2006) uses tabular methods such
as Northwest Corner Rule, Least Cost Method and Vogel’s Approximation Method
(Reinfeld and Vogel 1958). These methods use techniques of a Linear programming
problem. They differ only in steps of carrying out optimality conditions.

Lai and Hwang (1992) use tabular method for solving FTP by means of a crisp
parametric programming problem. OhEigeartaigh (1982) consider particular cases
where membership function of demand and supplies are triangular fuzzy numbers.
Chanas et al. (Chanas and Kulej 1984; Chanas et al. 1984) provide a parametric
programming approach to solve a FTP where resources have triangular membership
function.

Ringuest and Rink (1987) use a linear programming technique to solve FTP.
Geetha and Nair (1994) formulate a stochastic version of time minimizing transporta-
tion problem. Their method develops an algorithm based on parametric programming
to solve FTP, when transportation time is an independent, positive normal random
variable. Chanas and Kuchta (1996) discuss transportation problem with fuzzy cost
coefficients and transform problem into a bi-criterion transportation problem; never-
theless, produce only crisp solution. Wahed (2001) proposes a fuzzy programming
approach to find a compromise solution of multi objective transportation problem.

Liu and Kao (2004) develop a procedure to solve FTP based on Zadeh’s extension
principle. A pair of two-level mathematical programs are formulated to calculate up-
per and lower bounds of α-level cut of objective value. The membership function of
a fuzzy objective value is derived numerically by enumerating different values of α.
Pandian and Natarajan (2010a, 2010b) propose an algorithm namely, fuzzy zero point
method for finding an optimal solution to a FTP. Fuzzy zero point method consider
optimal solution as a trapezoidal fuzzy number.

In all methods discussed above, solution of a FTP is considered as triangular or
trapezoidal fuzzy number. Also these procedures convert a FTP into one or more crisp
transportation problem at some level and use parametric programming technique or
crisp linear programming technique to arrive at a solution. These approaches lead to
a crisp solution, or a predetermined form of fuzzy number. For taking accurate and
timely decisions, a general fuzzy number with less spread is more realiable.

This paper proposes a new algorithm for solving (FTP) based upon score method
(Sudhagar and Ganesan 2009) of ranking fuzzy numbers. In this approach cost of
unit transportation, demand and supply are general fuzzy numbers, which are not
restricted to triangular or trapezoidal type. This algorithm, aims at a non negative
fuzzy solution with less spread.

Rest of this paper is organized as follows: In Sect. 2, brief review on basics of a
fuzzy number and their arithmetics are given. Section 3, proposes a new algorithm
to solve a FTP. In Sect. 4, the algorithm is demonstrated by numerical examples.
A comparison of solution derived from the proposed algorithm with solutions of ex-
isting methods show the rationale of this method. Section 5 lists conclusions and
acknowledgments.
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2 Preliminaries

Definition 1 A convex normal fuzzy set Ã on real number set R, whose membership
function is piecewise continuous is called Fuzzy Number.

Ã = {(
x,μ

Ã
(x)

)|x ∈ R
}
. (1)

Definition 2 Let F be set of all fuzzy numbers, which are upper semi continuous
and have compact support. Support of a fuzzy number Ã with membership function
f

k̃i
: R → [0,1] is denoted by supp(Ã) = [a1, a4], where

f
k̃i

(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f
k̃l
(t) a1 ≤ t ≤ a2

1 a2 ≤ t ≤ a3

f
k̃r

(t) a3 ≤ t ≤ a4

0 otherwise.

(2)

Definition 3 A fuzzy number Ã is defined as a discrete fuzzy number if Ã has a finite
support x1 < x2 < · · · < xn and there are indices s, t ; 1 ≤ s ≤ t ≤ n such that

(i) Ã(xi) = 1, whenever s ≤ i ≤ t ,
(ii) If h < k < s, then Ã(xh) � Ã(xk) ≺ 1,
(iii) If t < p < q , then 1 � Ã(xp) � Ã(xq).

Definition 4 The height, h(Ã) of a fuzzy number Ã is the largest membership grade
obtained by any element in Ã. That is

h(Ã) = Sup
x∈R

(
μ

Ã
(x)

)
. (3)

Definition 5 Let Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4) be any two trapezoidal
fuzzy numbers with Ã � 0, B̃ � 0, then the fuzzy arithmetic is defined as follows:

(i) Image of B̃ = (−b4,−b3,−b2,−b1).
(ii) Inverse of B̃ is B̃−1 = (1/b4,1/b3,1/b2,1/b1).

(iii) Addition is Ã + B̃ = (a1 + b1, a2 + b2, a3 + b3, a4 + b4).
(iv) Subtraction is Ã − B̃ = (a1 − b4, a2 − b3, a3 − b2, a4 − b1).
(v) Multiplication is ÃB̃ = (a1b1, a2b2, a3b3, a4b4).

(vi) Scalar Multiplication is kÃ = (ka1, ka2, ka3, ka4); where K > 0.

(vii) Division is Ã

B̃
= ( a1

b4
, a2

b3
,

a3
b2

, a4
b1

).

Definition 6 If Ã = [a1, a2] and B̃ = [b1, b2], then equation Ã + X̃ = B̃ has a solu-
tion (Klir and Yuan 1995) if and only if b1 − a1 ≤ b2 − a2. The solution is

X̃ = [b1 − a1, b2 − a2]. (4)

Definition 7 The Score of a fuzzy number (Sudhagar and Ganesan 2009) Ãi is de-
fined as follows:

Score(Ãi) = Si ∗ eUi ∗ hi ∗ α, (5)
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where

Si =
∑r

k=1

∫ a4
a1

xifkidx
∑r

k=1

∫ a4
a1

fkidx
; i = 1,2,3, . . . , n (6)

Ti =
∑r

k=1

∫ a4
a1

fki(xi − Si)
2dx

∑r
k=1

∫ a4
a1

fkidx
; i = 1,2,3, . . . , n (7)

Ui = 1 − Ti exp(−Si); i = 1,2,3, . . . , n. (8)

Here k denotes indices of different polynomials defining membership function in in-
terval [a1, a4], hi is height of fuzzy number Ãi , and α ∈ (0,1] is expert’s coefficient.
The fuzzy number with higher score will rank higher.

Remark 1 If Ãi and Ãj are two fuzzy numbers, then ordering procedure defined by
Sudhagar score method is as follows:

1. Ãi � Ãj if and only if Score(Ãi) > Score(Ãj )

2. Ãi ≺ Ãj if and only if Score(Ãi) < Score(Ãj )

3. Ãi ≈ Ãj if and only if Score(Ãi) = Score(Ãj )

4. Ãi = Ãj if and only if Score(Ãi) = Score(Ãj ) and Ãi(x) = Ãj (x); ∀x ∈ U .

Remark 2 Let M be an ordering method, S be a set of fuzzy quantities for which
method M can be applied. Ã be a finite subset of S. The following axioms are satisfied
(Sudhagar and Ganesan 2012) by ranking method defined in Definition 7.

A1 For an arbitrary finite subset Ã of S and Ã ∈ Ã, Ã� Ã by M on Ã.
A2 For an arbitrary finite subset Ã of S and (Ã, B̃) ∈ Ã2, Ã � B̃ and B̃ � Ã by M

on Ã, we should have Ã ≈ B̃ by M on Ã.
A3 For an arbitrary finite subset A of S and (Ã, B̃, C̃) ∈ Ã3, Ã � B̃ and B̃ � C̃ by

M on Ã, we should have Ã� C̃ by M on Ã.
A4 For an arbitrary finite subset Ã on S and (Ã, B̃) ∈ Ã2, inf Supp(Ã)> sup Supp(B̃),

we should have Ã� B̃ by M on Ã.
A′

4 For an arbitrary finite subset Ã on S and (Ã, B̃) ∈ Ã2, inf Supp(Ã)> sup Supp(B̃),
we should have Ã � B̃ by M on Ã.

A5 Let S and S′ be two arbitrary finite sets of fuzzy quantities in which M can be
applied and Ã, B̃ are in S∩S′. Ã � B̃ by M on S′ if and only if Ã � B̃ by M on S.

A6 Let Ã, B̃ , Ã + C̃ and B̃ + C̃ be elements of S. If Ã � B by M on {Ã, B̃}, then
Ã + C̃ � B̃ + C̃ by M on {Ã + C̃, B̃ + C̃}.

A′
6 Let Ã, B̃ , Ã + C̃ and B̃ + C̃ be elements of S. If Ã � B by M on {Ã, B̃}, then

Ã + C̃ � B̃ + C̃ by M on {Ã + C̃, B̃ + C̃}; when C̃ � ∅.
A7 Let Ã, B̃ , ÃC̃, and B̃C̃, C̃ be elements of S and C̃ � 0. If Ã� B̃ by M on {Ã, B̃},

then ÃC̃ � B̃C̃ by M on {ÃC̃, B̃C̃}.

Remark 3 Even if transportation parameters are fuzzy integers, crisp numbers or dis-
crete fuzzy numbers; nevertheless, they can be ranked by using extension (Sudhagar
and Ganesan 2010) of score method of ranking given in Definition 7.
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3 Main result

The objective of a FTP is to determine optimal amount of quantities to be transported
from supply points to demand points, so that total transportation cost is minimum.
Unit transportation costs, quantity available at supply points and quantity required
at demand points are the parameters of a transportation problem. In practice, these
parameters are not always exactly known. This imprecision arises from lack of data,
high information cost or a consequence of certain flexibility required by a supply
company or demand market. Therefore an able procedure to find an optimal solution
of a transportation problem with fuzzy cost coefficients, fuzzy demand and fuzzy
supply is important.

3.1 Formulation

Consider a transportation problem with p supply nodes and q demand nodes. From
node i, total supply is mi > 0 units and at node j , total demand is dj > 0 units.
Associated with each link (i, j) there is a cost cij ≥ 0, which represents cost of trans-
porting one unit from supply node i to demand node j . Let xij ≥ 0 denote number of
units to be transported from i to j .

The mathematical description of a crisp transportation problem is as follows:

min Z =
p∑

i=1

q∑

j=1

cij xij

subject to
q∑

j=1

xij ≤ mi, i = 1,2,3, . . . , p

p∑

i=1

xij ≥ dj , j = 1,2,3, . . . , q

xij ≥ 0, ∀i, j.

(9)

Suppose cij , mi and dj are approximately known, then they are represented by con-
vex fuzzy numbers, C̃ij , M̃i and D̃j respectively. The Mathematical description of
FTP corresponding to (9) is as follows:

min Z̃ =
p∑

i=1

q∑

j=1

C̃ij X̃ij

subject to
q∑

j=1

X̃ij ≤ M̃i, i = 1,2,3, . . . , p

p∑

i=1

X̃ij ≥ D̃j , j = 1,2,3, . . . , q

X̃ij ≥ 0, ∀i, j

(10)

where

C̃ij = (c1ij , c2ij , c3ij , c4ij ), X̃ij = (x1ij , x2ij , x3ij , x4ij ),

M̃i = (m1i ,m2i ,m3i ,m4i ), and D̃j = (d1j , d2j , d3j , d4j ).
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3.2 Fuzzy transportation algorithm

Step 1. If
∑p

i=1 M̃i = ∑q

j=1 D̃j in a FTP then it is a balanced problem. If an equal-

ity1 is not satisfied then it is an unbalanced problem. Convert an unbalanced FTP
into a balanced FTP by introducing a fictitious supply M̃p+1 = (α,β, γ, δ) and a
fictitious demand D̃q+1 = (θ,ϑ,φ,ψ) satisfying following conditions:

(i) 0 ≤ α ≤ β ≤ γ ≤ δ

(ii) 0 ≤ θ ≤ ϑ ≤ φ ≤ ψ .

Assign fuzzy cost to each fictitious cell as C̃ij = (0,0,0,0).
Step 2. Using (7), calculate the score of all fuzzy costs. Scores of fuzzy cost func-

tion Cij are denoted by Score(Cij ) = χij . Rank cost functions in ascending order
according to the Sudhagar score method. If there is a tie, break it arbitrarily.

Step 3. Start to allocate fuzzy quantities from least cost cell. If the cell (i, j)

has the least score then allocate maximum possible fuzzy quantity X̃ij =
(x1ij , x2ij , x3ij , x4ij ) satisfying all the following conditions:

(i) 0 ≤ m1i − x1ij ≤ m2i − x2ij ≤ m3i − x3ij ≤ m4i − x4ij ,
(ii) 0 ≤ d1j − x1ij ≤ d2j − x2ij ≤ d3j − x3ij ≤ d4j − x4ij ,

(iii) 0 ≤ x1ij ≤ x2ij ≤ x3ij ≤ x4ij .

Step 4. Calculate remaining unsatisfied demand and available supply at all nodes.
Computation of unsatisfied supply and demand are as follows:

M̃1
i = (m1i − x1ij ,m2i − x2ij ,m3i − x3ij ,m4i − x4ij ) and

D̃1
j = (d1j − x1ij , d2j − x2ij , d3j − x3ij , d4j − x4ij ).

If M̃1
i = D̃1

j = (0,0,0,0), ∀i, j then iteration is over. Then the basic feasible

solution is X̃ij = (x1ij , x2ij , x3ij , x4ij ). Otherwise, repeat Step 3 until supply and
demand are completely satisfied. Fuzzy objective value corresponding to basic
feasible solution can be calculated from Eq. (10) and by using fuzzy arithmetic
defined in Definition 5.

Step 5. To find an optimal solution, check for non-degeneracy of a solution. If a basic
feasible solution of FTP contains at least p + q − 1 allocations in independent
positions2 then proceed to next step; else resolve degeneracy by making use of
an infinitesimally small quantity ε̃ almost close to zero, to one or more cells.
Allocation of ε̃ should be assigned to an independent cell.3 In case of more than
one independent cell, ε̃ should preferably be assigned to a cell, which has the
minimum transportation cost. If number of allocation is more than the required
p+q −1 allocations then arbitrarily choose any p+q −1 independent allocation
cells as basic cells.

1Equality is defined according to (iv) of Remark 1.
2Allocations of a transportation problem are said to be in independent positions if it is not possible to alter
any individual allocation without either rearranging the positions of the allocations or violating the supply
and demand constraints.
3An independent cell is one from which a closed path cannot be traced.
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Step 6. Determine crisp values vi and wj in such a way that χij of p + q − 1 basic
cells equal sum of vi and wj . For computational convenience take vi = 0 for a
row, where number of allocation is maximum. Obtain other values vi and wj by
using relation χij = vi +wj , only in selected p +q −1 cells. Then define implied
cost λij of a non basic cell as λij = χij − (vi + wj).

Step 7. If λij ≥ 0, ∀i, j then current feasible solution is optimal. If λij < 0, for some
i, j then current feasible solution is not optimal. To get an optimal solution, choose
a cell with most negative λij value. Now establish a closed path employing only
horizontal and vertical path only, starting from the selected non basic cell. A right
angle turn can be made only at a basic cell, though a path may skip over basic and
non basic cells.

Step 8. Assign signs (+) and (−) alternatively to turning points of the closed path
starting with a (+) in the selected non basic cell. Now compare fuzzy alloca-
tions in all (−) sign cells and determine a fuzzy quantity to be placed into se-
lected (+) signed cell. To determine this fuzzy quantity, form constraint equa-
tions and solve them according to Definition 6. Effect changes and form a new
table.

Step 9. Repeat Steps 6, 7 and 8 for new table until λij ≥ 0, ∀i, j . The resultant
allocation is then optimal.

Step 10. Optimal fuzzy objective value corresponding to an optimal allocation can
be calculated from Eq. (10) and by using fuzzy arithmetic defined in Defini-
tion 5.

Theorem 1 If (x̃∗
11, x̃

∗
12, x̃

∗
13, . . . , x̃

∗
ij , . . . , x̃

∗
pq) is a feasible solution to the FTP,

min z̃ =
p∑

i=1

q∑

j=1

Score(c̃ij )x̃ij

subject to
q∑

j=1

x̃ij ≤ M̃i, i = 1,2,3, . . . , p

p∑

i=1

x̃ij ≥ D̃j , j = 1,2,3, . . . , q

x̃ij ≥ 0, ∀i, j

(11)

and λij = χij − (vi + wj) ≥ 0, ∀i, j then (x̃∗
11, x̃

∗
12, x̃

∗
13, . . . , x̃

∗
ij , . . . , x̃

∗
pq) is an opti-

mal solution to the FTP (11); where χij = Score(c̃ij ), vi and wj are real numbers.

Proof Dual FTP of (11) is given by

max z′ =
∑

i

M̃ivi +
∑

j

D̃jwj

subject to vi + wj ≤ Score(c̃ij )

vi,wj are unrestricted ∀ i, j.

(12)

From Score(Cij ) = χij , constraints of dual FTP (12) becomes
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vi + wj ≤ χij

⇒ χij − (vi + wj) ≥ 0

⇒ χij − (vi + wj) = λij ≥ 0

For a minimization transportation problem, entering variable is one with the largest
negative λij . According to dual simplex method, at optimum iteration λij ≥ 0; ∀i, j .
Here the feasible solution satisfies optimal condition. Therefore any feasible solu-
tion to FTP (11) satisfies constraint λij = χij − (vi + wj) ≥ 0; ∀i, j is an optimal
solution. �

Theorem 2 If (x̃∗
11, x̃

∗
12, x̃

∗
13, . . . , x̃

∗
ij , . . . , x̃

∗
pq) is an optimal solution of modified

FTP (13)

min z̃ =
p∑

i=1

q∑

j=1

Score(c̃ij )x̃ij

subject to
q∑

j=1

x̃ij ≤ M̃i, i = 1,2,3, . . . , p

p∑

i=1

x̃ij ≥ D̃j , j = 1,2,3, . . . , q

x̃ij ≥ 0 ∀i, j.

(13)

then (x̃∗
11, x̃

∗
12, x̃

∗
13, . . . , x̃

∗
pq) is an optimal solution of completely fuzzified FTP (14).

min z̃ =
p∑

i=1

q∑

j=1

c̃ij x̃ij

subject to
q∑

j=1

x̃ij ≤ M̃i, i = 1,2,3, . . . , p

p∑

i=1

x̃ij ≥ D̃j , j = 1,2,3, . . . , q

x̃ij ≥ 0 ∀i, j.

(14)

Proof On the contrary it is assumed that an optimal solution of modified FTP and
solution of the corresponding completely fuzzified FTP are not same.

Let X̃ = (x̃∗
11, x̃

∗
12, x̃

∗
13, . . . , x̃

∗
ij , . . . , x̃

∗
pq) is an optimal solution of modified FTP

and Ỹ = (ỹ∗
11, ỹ

∗
12, ỹ

∗
13, . . . , ỹ

∗
ij , . . . , ỹ

∗
pq) be an optimal solution of the corresponding

completely fuzzified FTP. Since X̃ is an optimal solution of (13), for any linearly
independent feasible solution Ỹ of modified FTP, the following inequality holds true.

∑

i

∑

j

Score(c̃ij )X̃
∗
ij ≤

∑

i

∑

j

Score(c̃ij )Ỹ
∗
ij . (15)
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Similarly if Ỹ ∗
ij is an optimal solution of FTP (14), for any linearly independent fea-

sible solution X̃ of a completely fuzzified FTP results in the following inequality.
∑

i

∑

j

c̃ij Ỹ
∗
ij ≤

∑

i

∑

j

c̃ij X̃
∗
ij . (16)

Finding scores of inequality (16) gives that

Score

(∑

i

∑

j

c̃ij Ỹ
∗
ij

)
≤ Score

(∑

i

∑

j

c̃ij X̃
∗
ij

)
. (17)

Application of ranking properties A5 to A7 from Remark 2 to Eq. (17) results that
∑

i

∑

j

Score(c̃ij )Ỹ
∗
ij ≤

∑

i

∑

j

Score(c̃ij )X̃
∗
ij . (18)

Comparison of Eqs. (15) and (18) concludes
∑

i

∑

j

Score(c̃ij )Ỹ
∗
ij =

∑

i

∑

j

Score(c̃ij )X̃
∗
ij . (19)

Since X̃∗
ij and Ỹ ∗

ij are defined by same type of membership functions (trapezoidal),

according to Remark 1, X̃∗
ij = Ỹ ∗

ij ; ∀i, j . Hence if (x̃∗
11, x̃

∗
12, x̃

∗
13, . . . , x̃

∗
ij , . . . , x̃

∗
pq) is

an optimal solution of modified FTP (13) then (x̃∗
11, x̃

∗
12, x̃

∗
13, . . . , x̃

∗
ij , . . . , x̃

∗
pq) is an

optimal solution of FTP (14). �

4 Numerical example

Example 1 Consider a transportation problem with fuzzy costs as given in Table 1.
Each manufacturer M1 and M2 can deliver 70 units of product. Demands of mar-
ket are D1 = 30, D2 = 30 and D3 = 80. The objective of problem is to minimize
total transportation cost, where all demands are satisfied from maximum available
supplies.

Solution

Step 1 Total demand = 30+30+80 = 140 and total supply = 70+70 = 140. There-
fore problem is balanced.

Step 2 Now use score Definition 7 to assign scores to fuzzy cost functions. Scores
and order (in parenthesis) of fuzzy numbers are given in Table 2.

Table 1 Example from Chanas
and Kuchta D1 D2 D3

M1 (1,2,10,100) (2,4,20,80) (3,6,20,60)

M2 (4,8,10,40) (5,10,20,30) (6,7,7,10)
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Table 2 Sudhagar score values
and rank order D1 D2 D3 Total

M1 94 (1) 81 (2) 66 (3) 70

M2 47 (4) 45 (5) 21 (6) 70

Total 30 30 80 140

Table 3 Initial basic feasible
solution D1 D2 D3 Total

M1 30 30 10 70

M2 70 70

Total 30 30 80 140

Table 4 Calculation of λij , vi ,
and wj values D1 D2 D3 vi

M1 94 81 66 0

M2 47 (−2) 45 (9) 21 −45

wj 94 81 66

Step 3 The cell (2,3) has the least rank. Transport maximum possible units to this
destination. For this cell supply is 70 and demand is 80. So assign x23 = 70. Now
total supply from M2 is exhausted. Hence, rule out the second row and choose
next least rank cell from remaining rows.

Step 4 It happens in the cell (1,3). For D3 remaining demand is 10 and supply from
M1 is 70. Allocate x13 = 10 and proceed to next least rank cell. Continue this pro-
cess till all demands are satisfied and supplies are exhausted. End of this process
results in a basic feasible solution as given in Table 3.
The fuzzy objective value corresponding to the basic feasible solution is given by

z = 30(1,2,10,100) + 30(2,4,20,80) + 10(3,6,20,60)

+ 70(6,7,7,10)

= (540,730,1590,6700).

Score(540,730,1590,6700) = 7338.

Step 5 Here p = 2, q = 3, so p + q − 1 = 2 + 3 − 1 = 4. The basic feasible solution
shown in Table 3 of the given FTP contains 4 allocations in independent positions.
The allocations are non-degenerate.

Step 6 Find the crisp values vi and wj by using the relation χij = vi + wj . The
implied cost of a non basic cell is calculated by using the equation λij = χij −
(vi + wj). For the non basic cell (1,2) the calculation is 47 − (94 + (−45)) =
−2. Similarly for all non basic cells the implied values are calculated and the
respective values are shown in Table 4.

Step 7 Check the λij values for the non basic cells. In the cell (2,1), λij < 0 value
is negative. Establish a closed rectilinear path starting from (2,1) as in Table 5.
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Table 5 Closed path from the
non basic cell D1 D2 D3 vi

M1 30(−)→ 30→ 10(+)↓ 0

M2 47(+)⇑ 45← 21(−)← −45

wj 94 81 66

Table 6 Adjusted
allocation—Iteration 1 D1 D2 D3

M1 30 40

M2 30 40

Table 7 Calculation of λij , vi

and wj values—Iteration 1 D1 D2 D3 vi

M1 94 (2) 81 66 0

M2 47 45 (9) 21 −45

wj 92 81 66

(⇑) denotes origin point of rectilinear path and the closed circuit is illustrated by
using ←, →, ↑ and ↓.

Step 8 From the most negative cell (2,1) signs (+) and (−) are assigned alterna-
tively along the closed circuit, starting with a plus in the (2,1) non basic cell.
Comparing allocations in all (−) sign cells, quantity 30 was chosen to be adjusted
along the closed circuit. Add the quantity 30 to cells with (+) sign and reduce
from cells with (−) sign. The new allocation is given in Table 6.

Step 9 The total number of allocations in Table 6 is 4. So, the number of allocation
is non-degenerate. Determine crisp values vi , wj and finally derive implied cost
λij for non basic cells. The values are shown in Table 7.

Step 10 All λij values (given in parenthesis) in Table 7 are positive. Hence the allo-
cation given in Table 6 is optimal. The optimal fuzzy objective value is

Z = 30(2,4,20,80) + 40(3,6,20,60) + 30(4,8,10,40) + 40(6,7,7,10)

= (540,880,1980,6400).

Score(540,880,1980,6400) = 7291. �

Remark 4 The allocation given by Chanas Method is given in Table 8. The score
value of the fuzzy objective got by the proposed algorithm is 7291 which is less than
the score value 7516 of Chanas method.

Hence solution given by proposed method is better than existing Chanas method.
Moreover, in Chanas method demand and supply are assumed to be crisp; whereas,
the proposed method can be applied for fuzzy demand and supply also.
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Table 8 Allocation given by
Chanas method D1 D2 D3 Score value

M1 30 30 10

M2 70

Z̃ value (540,730,1590,6900) 7516

Table 9 FFTP

D1 D2 D3 D4 Supply

M1 (1,2,3,4) (1,3,4,6) (9,11,12,14) (5,7,8,11) (1,6,7,12)

M2 (0,1,2,4) (−1,0,1,2) (5,6,7,8) (0,1,2,3) (0,1,2,3)

M3 (3,5,6,8) (5,8,9,12) (12,15,16,19) (7,9,10,12) (5,10,12,17)

Demand (5,7,8,10) (1,5,6,10) (1,3,4,6) (1,2,3,4)

Table 10 Score values of the fuzzy cost functions

D1 D2 D3 D4 D5

M1 7 9 31 21 0 (1,6,7,12)

M2 4.3 1 18 3.7 0 (0,1,2,3)

M3 15 23 42 26 0 (5,10,12,17)

M4 0 0 0 0 0 (2,2,2,2)

(5,7,8,10) (1,5,6,10) (1,3,4,6) (1,2,3,4)

Example 2 Consider the following FTP (Pandian and Natarajan 2010a). Here all the
parameters of a FTP demand, supply and unit transport costs are fuzzy numbers. This
is a Fully Fuzzy Transportation Problem (Table 9).

Solution The total supply
∑3

i=1 M̃i = (6,17,21,32) and total demand
∑4

j=1 D̃j = (8,17,21,30). This is an unbalanced problem. Now introduce imag-

inary supply M̃4 = (2,2,2,2) and imaginary demand D̃5 = (0,2,2,4) such that∑4
i=1 M̃i = (8,19,23,34) = ∑5

j=1 D̃j and assign c̃ij = (0,0,0,0); for i = 4, j = 5.
The next step is to calculate the Score value of all cost functions. The score value

of the cost functions are given in Table 10.
Now allocations are made according to Step 3 of the Fuzzy Transportation Al-

gorithm (FTA). The Initial basic feasible solution constructed by using the proposed
algorithm is given in Table 11.

Therefore fuzzy objective value corresponding to solution given in Table 11 is

Z = (1,3,4,6)(1,2,3,4) + (0,1,1,2)(1,3,4,6) + (0,2,2,4)(0,0,0,0)

+ (0,1,2,3)(−1,0,1,2) + (2,2,2,2)(3,5,6,8) + (1,3,3,5)(5,8,9,12)

+ (1,3,4,6)(12,15,16,19) + (1,2,3,4)(7,9,10,12)

= (28,106,151,280).

Score(28,106,151,280) = 392.
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Table 11 Initial basic feasible solution

D1 D2 D3 D4 D5

M1 (1,3,4,6) (0,1,1,2) (0,2,2,4)

M2 (0,1,2,3)

M3 (2,2,2,2) (1,3,3,5) (1,3,4,6) (1,2,3,4)

M4 (2,2,2,2)

Table 12 λij , vi and wj values—Iteration 1

D1 D2 D3 D4 D5 vi

M1 7 9 (−6) 31 (−3) 21 (3) 0 −8

M2 4.3 (11.3) 1 18 (−2) 3.7 (−0.3) 0 −22

M3 15 23 42 26 0 0

M4 0 0 (−23) 0 (−42) 0 (−26) 0 (−8) 0

wj 15 23 42 26 8

Table 13 Closed path and alternate signs assigned—Iteration 1

D1 D2 D3 D4 D5 vi

M1 7 9 (−6) 31 (−3) 21 (3) 0 −8

M2 4.3 (11.3) 1 18 (−2) 3.7 (−0.3) 0 −22

M3 15↓ (+) 23← ←42(−) 26 0 0

M4 0→ (−) 0 (−23)→ 0 (−42)(+) ⇑ 0 (−26) 0 (−8) 0

wj 15 23 42 26 8

Table 14 Improved Initial basic feasible solution—Iteration 2

D1 D2 D3 D4 D5

M1 (1,3,4,6) (0,1,1,2) (0,2,2,4)

M2 (0,1,2,3)

M3 (3,3,3,3) (1,3,3,5) (0,2,3,5) (1,2,3,4)

M4 (1,1,1,1) (1,1,1,1)

To improve this solution, use Steps 6, 7 and 8 given in FTA.
Calculate vi and wj values. The values are given in Table 12. The closed rectilinear

path and the alternate signs assigned are indicated in Table 13.
Here maximum possible reallocation satisfying conditions of Step 3 of FTA is

(1,1,1,1). Reallocation was done according to Definition 6. After adjusting fuzzy
quantity along closed path, new allocation is given in Table 14.
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Table 15 Closed path and alternate signs assigned—Iteration 2

D1 D2 D3 D4 D5 vi

M1 7 9 (−6)(+)→ 31 (−3)→ 21 (3)→ 0 (−)↓ −8

M2 4.3 (11.3) 1↑ 18 (−2) 3.7 (−0.3) 0↓ −22

M3 15 23 (−)↑ 42← 26← ⇐0 (−8)(+) 0

M4 0 0 (−23) 0() 0 0

wj 15 23 42 26 8

Table 16 Improved Initial basic feasible solution—Iteration 3

D1 D2 D3 D4 D5

M1 (1,3,4,6) (0,3,3,6)

M2 (0,1,2,3)

M3 (3,3,3,3) (1,1,1,1) (0,2,3,5) (1,2,3,4) (0,2,2,4)

M4 (1,1,1,1) (1,1,1,1)

Table 17 Closed path and alternate signs assigned—Iteration 3

D1 D2 D3 D4 D5 vi

M1 7 (6)(−)↓ 9(+)← 31 (3) 21 (9) 0 (14) −14

M2 4.3 (11.3)↓ 1(−)↑ 18 (−2)(+)← 3.7 (−0.3) 0 (22) −22

M3 15(+)→ 23→ 42(−)⇑ 26 0 0

M4 0 (27) 0 (19) 0 0 (16) 0 (42) −42

wj 15 23 42 26 0

Table 18 Improved Initial basic feasible solution—Iteration 4

D1 D2 D3 D4 D5

M1 (1,2,2,3) (0,4,5,9)

M2 (0,1,2,3)

M3 (3,4,5,6) (1,1,1,1) (0,1,1,2) (1,2,3,4) (0,2,2,4)

M4 (1,1,1,1) (1,1,1,1)

Again repeating the Steps 6, 7 and 8. The closed rectilinear path and alternative
signs assigned are illustrated in Table 15. Here maximum possible reallocation is
(0,2,2,4). Table 16 gives reallocated fuzzy quantities.

Redoing the Steps 6, 7 and 8, the assigned closed path and alternative signs are
illustrated in Table 17.

The reallocation possible here is (0,1,2,3). The new allocation is given in Ta-
ble 18.
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Table 19 λij , vi and wj values—Iteration 4

D1 D2 D3 D4 D5 vi

M1 7 (6) 9 31 (3) 21 (9) 0 (14) −14

M2 4.3 (13.3) 1 (2) 18 3.7 (1.7) 0 (24) −24

M3 15 23 42 26 0 0

M4 0 (27) 0 (19) 0 0 (16) 0 (42) −42

wj 15 23 42 26 0

Table 20 Comparison of the
fuzzy objective values in each
iteration

Iteration Fuzzy objective value Score(z̃) Rank

1 (28,106,151,280) 392 1

2 (19,96,141,269) 364 2

3 (19,86,131,245) 334 3

4 (22,83,125,236) 324 4

To check the possibility of improving the solution, calculate the λij , vi and wj

values. The calculated values are listed in Table 19.
Since all λij ≥ 0, the allocation shown in Table 18 is optimal. The fuzzy objective

value at various iterations are listed in Table 20. This comparison clearly indicates
the improvement in the solution.

�

Remark 5 Allocations obtained by Pandian and Natarajan (Pandian and Natarajan
2010a) for Example 2 are x̃12 = (1,5,6,10), x̃13 = (−9,0,2,11), x̃23 = (0,1,2,3),
x̃31 = (5,7,8,10), x̃23 = (−9,−1,3,11), x̃34 = (1,2,3,4). The fuzzy objective
value is z̃ = (−274,58,188,575). This solution is more wide in range, comparing
to the solution (22,83,125,236) obtained by the proposed method. Hence solution
got by proposed method is more effective.

5 Conclusion

This paper proposed an algorithm to find an optimal solution of a fuzzy transportation
problem, where supply, demand and cost coefficients all are fuzzy numbers. It pro-
vides decision maker with an effective solution in comparison to existing methods.
Since objective value and allocations are fuzzy numbers, more flexibility was given
to decision maker. Most of existing procedures convert a transportation problem into
a finite number of crisp linear programming problems and use linear programming
techniques to solve it. The derived crisp solution gives a very less flexibility to the
decision maker. Some methods get a negative allocation (whose membership value
is positive) which is not possible in real situations. The solution derived by proposed
method is more flexible and optimal in nature. The allocations are always non nega-
tive. Hence there is no information loss and the solution derived can be directly used
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to take decisions. Examples are used from papers Chanas and Kuchta (1996), Pandian
and Natarajan (2010a). Comparison of results shows that proposed method derives an
optimal solution which is cost efficient.
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