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Abstract In the area of computer simulation, Latin hypercube designs play an im-
portant role. In this paper the classes of maximin and Audze-Eglais Latin hyper-
cube designs are considered. Up to now only several two-dimensional designs and a
few higher dimensional designs for these classes have been published. Using pe-
riodic designs and the Enhanced Stochastic Evolutionary algorithm of Jin et al.
(J. Stat. Plan. Interference 134(1):268–687, 2005), we obtain new results which
we compare to existing results. We thus construct a database of approximate max-
imin and Audze-Eglais Latin hypercube designs for up to ten dimensions and for
up to 300 design points. All these designs can be downloaded from the website
http://www.spacefillingdesigns.nl.
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1 Introduction

A k-dimensional Latin hypercube design (LHD) of n points, is a set of n points
xi = (xi1, xi2, . . . , xik) ∈ {0, . . . , n − 1}k such that for each dimension j all xij are
distinct. In this definition, we assume that our design space is equal to the [0;n − 1]k
hypercube. However by scaling, we can use LHDs for any rectangular design space.
Alternative definitions of LHDs also occur in the literature. One alternative definition
is to divide each axis into n equally sized bins and randomly select points such that
each bin contains exactly one point. However, we refer to this technique as Latin
hypercube sampling (LHS). In this paper the term ‘LHD’ thus only refers to the first
definition.

An LHD is called maximin when the separation distance mini �=j d(xi, xj ) is max-
imal among all LHDs of given size n, where d is a certain distance measure. In this
paper, we concentrate on the Euclidean (or �2) distance measure, i.e.,

d(xi, xj ) =
√
√
√
√

k
∑

l=1

(xil − xjl)2, (1)

since this measure is often the first choice in practice.
Besides maximin LHDs, we also treat Audze-Eglais LHDs. These LHDs minimize

the following objective:
n

∑

i=1

n
∑

j=i+1

1

d(xi, xj )2
, (2)

where d(xi, xj ) is again the Euclidean distance between points xi and xj . By mini-
mizing this objective, we can also obtain LHDs with “evenly spread” points (Bates et
al. 2004).

For both classes of LHDs, we aim to construct a database of the best designs
known in literature. We do this by generating new designs and comparing them with
existing results. These designs are often approximate maximin or Audze-Eglais de-
signs in the sense that optimality of the objective is not guaranteed. The reason for
this is that optimization over the total set of LHDs can be very time-consuming for
larger values of k and n. Therefore, in order to find good designs, optimization is
often done over a certain class of LHDs or heuristics are used which do not guar-
antee optimality. The periodic LHDs described in this paper are a good example of
the first case. Examples of the second case are simulated annealing used by Morris
and Mitchell (1995), the permutation genetic algorithm of Bates et al. (2004) and the
Enhanced Stochastic Evolutionary (ESE) algorithm of Jin et al. (2005).

The designs which are best according to the comparison in this paper are added
to the website http://www.spacefillingdesigns.nl where they can be downloaded for
free. As far as we know this is the first extensive online catalogue of maximin and
Audze-Eglais LHDs, although there are several catalogues for classical design of
experiments, see e.g., the WebDOE™ website of Crary (2008). Crary et al. (2000)
developed I-OPT™ to generate designs with minimal integrated mean squared error
(IMSE). They found that IMSE-optimal designs can have proximate design points,
which they call “twin points”; see also Crary (2002).

http://www.spacefillingdesigns.nl
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Our main motivation for investigating this subject is that maximin and Audze-
Eglais Latin hypercube designs are very useful in the area of computer simulation.
One important area where computer simulation is used a lot is engineering. Engi-
neers are confronted with the task of designing products and processes. Since physi-
cal experimentation is often expensive and difficult, computer models are frequently
used for simulating physical characteristics. The engineer often needs to optimize the
product or process design, i.e., to find the best settings for a number of design pa-
rameters that influence the critical quality characteristics of the product or process.
A computer simulation run is usually time-consuming and there is a great variety of
possible input combinations. For these reasons, meta-models that model the quality
characteristics as explicit functions of the design parameters are constructed. Such a
meta-model, also called a (global) approximation model or surrogate model, is ob-
tained by simulating a number of design points. Well-known meta-model types are
polynomials and Kriging models. Since a meta-model evaluation is much faster than
a simulation run, in practice such a meta-model is used, instead of the simulation
model, to gain insight into the characteristics of the product or process and to op-
timize it. A review of meta-modeling applications in structural optimization can be
found in Barthelemy and Haftka (1993), and in multidisciplinary design optimization
in Sobieszczanski-Sobieski and Haftka (1997).

As observed by many researchers, there is an important distinction between de-
signs for computer experiments and designs for the more traditional response surface
methods. Physical experiments exhibit random errors and computer experiments are
often deterministic (cf. Simpson et al. 2004). This distinction is crucial and much
research is therefore aimed at obtaining efficient designs for computer experiments.

As is recognized by several authors, such a design for computer experiments
should at least satisfy the following two criteria (see Johnson et al. 1990, Morris
and Mitchell 1995, and Simpson et al. 2001). First of all, the design should be space-
filling in some sense. When no details on the functional behavior of the response
parameters are available, it is important to be able to obtain information from the en-
tire design space. Therefore, design points should be “evenly spread” over the entire
region. One of the measures often used to obtain space-filling designs is the maximin
measure (see p. 148 of Santner et al. 2003 and p. 17 of Forrester et al. 2006). The
Audze-Eglais measure is another measure used for this purpose. Secondly, the de-
sign should be non-collapsing. When one of the design parameters has (almost) no
influence on the function value, two design points that differ only in this parameter
will “collapse”, i.e., they can be considered as the same point that is evaluated twice.
For deterministic simulation models this is not a desirable situation. Therefore, two
design points should not share any coordinate values when it is not known a priori
which dimensions are important. Note that in other fields of research such designs are
referred to as low discrepancy designs. To obtain non-collapsing designs the Latin hy-
percube structure is often enforced. It can be shown that if the function of interest is
independent of one or more of the k parameters then, after removal of the irrelevant
parameters, the projection of the LHD onto the reduced design space retains good
spatial properties; see Koehler and Owen (1996). Maximin LHDs are frequently used
in practical applications, see e.g., the examples given in Driessen et al. (2002), den
Hertog and Stehouwer (2002), Alam et al. (2004), and Rikards and Auzins (2004).
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Only a few authors consider the construction of maximin LHDs. For example,
Morris and Mitchell (1995) used simulated annealing to find approximate maximin
LHDs for up to five dimensions and up to 12 design points, and a few larger values,
with respect to the �1- and �2-distance measure. van Dam et al. (2007) derived gen-
eral formulas for two-dimensional maximin LHDs, when the distance measure is �∞
or �1, while for the �2-distance measure (approximate) maximin LHDs up to 1000
design points were obtained by using a branch-and-bound algorithm and construct-
ing (adapted) periodic designs. Ye et al. (2000) proposed an exchange algorithm for
finding approximate maximin symmetric LHDs. The symmetry property is used as
a compromise between computing effort and design optimality. Jin et al. (2005) de-
scribed an enhanced stochastic evolutionary (ESE) algorithm for finding approximate
maximin LHDs. They also apply their method to other space-filling criteria. The Sta-
tistics Toolbox of Matlab also contains a function lhsdesign to generate approxi-
mate maximin LHDs. This function randomly generates a number of LHDs and picks
the one with the largest separation distance. Although this method is very fast, other
methods generally result in much better space-filling LHDs. To asses the quality of
approximate maximin LHDs, van Dam et al. (2009) generated upper bounds on the
separation distance for certain classes of maximin LHDs. By comparing the separa-
tion distances of LHDs to these bounds, we can get an indication of their quality.

There is much more literature related to maximin designs that are not restricted
to LHDs. Note that a maximin design is certainly space-filling, but not necessarily
non-collapsing.

First of all, the problem of finding the maximal common radius of n circles which
can be packed into a square is equivalent to the maximin design problem in two
dimensions. Melissen (1997) gives a comprehensive overview of the historical de-
velopments and state-of-the-art research in this field. For the �2-distance measure in
the two-dimensional case, optimal solutions are known for n ≤ 30 and n = 36, see
e.g., Kirchner and Wengerodt (1987), Peikert et al. (1991), Nurmela and Östergård
(1999), and Markót and Csendes (2005). Furthermore, many good approximating so-
lutions have been found for n ≥ 31; see the Packomania website of Specht (2008).
Baer (1992) solved the maximum �∞-circle packing problem in a k-dimensional unit
cube. The �1-circle packing problem in a square has been solved for many values
of n; see Fejes Tóth (1971) and Florian (1989).

Secondly, the maximin design problem has been studied in location theory. In this
area of research, the problem is usually referred to as the max-min facility dispersion
problem (see Erkut 1990). Facilities are placed such that the minimal distance to any
other facility is maximal. Again, the resulting solution is certainly space-filling, but
not necessarily non-collapsing. A few papers consider maximin designs in higher
dimensions, e.g., Trosset (1999), Locatelli and Raber (2002), Stinstra et al. (2003),
and Dimnaku et al. (2005). These papers describe nonlinear programming heuristics
to find approximate maximin designs. In most papers, a rectangular design space is
assumed, but Trosset (1999), Stinstra et al. (2003) and Dimnaku et al. (2005) also
specifically consider design spaces with different shapes.

Audze-Eglais LHDs are also constructed by only a few authors. The criterion was
first introduced by Audze and Eglais (1977) and is based on the analogy of minimiz-
ing forces between charged particles. In Bates et al. (2004), the problem of finding
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Audze-Eglais LHDs is formulated and a permutation genetic algorithm is used to
generate them. Liefvendahl and Stocki (2006) compared maximin and Audze-Eglais
LHDs and recommend the Audze-Eglais criterion over the maximin criterion. Exam-
ples of practical applications of Audze-Eglais LHDs can be found in Rikards et al.
(2001), Bulik et al. (2004), Stocki (2005), and Hino et al. (2006).

There are several other measures proposed in the literature besides maximin and
Audze-Eglais, e.g., maximum entropy, minimax, IMSE, and discrepancy. For a good
overview, we refer to Koehler and Owen (1996). In statistical environments, Latin
hypercube sampling (LHS) is often used. In such an approach, points on the grid
are sampled without replacement, thereby deriving a random permutation for each
dimension; see McKay et al. (1979). Giunta et al. (2003) give an overview of pseudo-
and quasi-Monte Carlo sampling, LHS, orthogonal array sampling, and Hammersley
sequence sampling. They notice that the basic LHS technique can lead to designs with
poor space-filling properties. Extensions to the basic LHS technique are therefore
necessary to obtain better designs but these are unfortunately not standard yet in all
software packages. Bates et al. (1996) obtained designs for computer experiments by
exploring so-called lattice points and using results from number theory.

Several papers combine space-filling criteria with the Latin hypercube structure.
Jin et al. (2005) described an enhanced stochastic evolutionary algorithm for finding
maximum entropy and uniform designs. van Dam (2008) derived interesting results
for two-dimensional minimax LHDs. Rennen et al. (2010) consider nested maximin
LHDs which consist of two separate designs, one being a subset of the other.

This paper is organized as follows. Section 2 describes how periodic designs can
be used to obtain good approximate maximin and Audze-Eglais LHDs. In Sect. 3, we
shortly describe some heuristics found in literature used for this same purpose. The
ESE-algorithm of Jin et al. (2005) described in this section and periodic designs are
used to generate new approximate maximin and Audze-Eglais LHDs. Computational
results for up to ten dimensions and for up to 300 design points, as well as a compar-
ison of the new and existing results, are provided in Sect. 4. Finally, Sect. 5 contains
conclusions.

2 Periodic designs

Van Dam et al. (2007) showed that two-dimensional maximin Latin hypercube de-
signs often have a nice, periodic structure. By constructing (adapted) periodic de-
signs, many maximin LHDs and, otherwise, good LHDs, are found for up to 1000
points. Therefore, extending this idea to higher dimensions seems natural.

Let a k-dimensional Latin hypercube design of n points be represented by the se-
quences y1, . . . , yk , with every yi a permutation of the set {0, . . . , n − 1}. As in the
two-dimensional case, a design is constructed by fixing the first dimension, with-
out loss of generality, to the sequence y1 = (0, . . . , n − 1) and assigning (adapted)
periodic sequences to all other dimensions. Two types of periodic sequences are con-
sidered. The first one is the sequence (v0, . . . , vn−1), where

vi = (i + 1)p mod(n + 1) − 1, for i = 0, . . . , n − 1. (3)
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Here, p is the period of the sequence, which is chosen such that n + 1 and p have
no common divisor, i.e., gcd(n + 1,p) = 1, resulting in a permutation of the set
{0, . . . , n − 1}.

Note that the periodic designs obtained in this way resemble lattices; see e.g.,
Bates et al. (1996). The main difference is that lattices are infinite sets of points, which
may collapse, and, hence, to construct a (finite) Latin hypercube design a proper sub-
set of non-collapsing lattice points should be chosen. For given n, the structure of
the lattice will, however, not always lead to a Latin hypercube design with a suffi-
cient number of points. This is in contrast to periodic designs, for which the modulo-
operator insures that for every combination of periods pj , with gcd(n + 1,pj ) = 1,
j = 2, . . . , k, a feasible Latin hypercube design is obtained.

The second type of sequence that is considered is the more general sequence
(w0, . . . ,wn−1), where wi = (s + ip) mod n (note that we changed the modulus),
for i = 0, . . . , n − 1. In this case, all starting points s = 0, . . . , p and all periods
p = 1, . . . , �n

2 � will be considered. Note, however, that the resulting sequence w may
no longer be one-to-one, i.e., some values may occur more than once, and, hence,
the resulting design may no longer be an LHD. Now, let r > 0 be the smallest value
for which wr = w0; it then follows that r = n

gcd(n,p)
. When r < n a way to construct

a one-to-one sequence of length n is by shifting parts of the sequence by, say, q ,
and repeating this when necessary. To formulate this more explicitly, for the updated
sequence w it now holds that

wi = (s + ip + jq) mod n,

for i = jr, . . . , (j + 1)r − 1, and j = 0, . . . ,gcd(n,p) − 1. (4)

Let m represent the modulus and, hence, the type of sequence used, i.e., m = n + 1
corresponds to the first type and m = n to the second. For given n, we now have to
set the parameters (p, q, s,m) for every sequence y2, . . . , yk .

To find the best settings for the parameters it would be best to test all values. How-
ever, when the dimension and the number of points increase the number of possibili-
ties increases rapidly. Hence, computing all possibilities gets very time-consuming or
even impossible. Therefore, three classes of parameter settings (named A, B, and C)
are distinguished. The largest one, class A, consists of checking the following para-
meter values: p = 1, . . . , �n

2 �, q = 1−p, . . . ,p−1, s = 0, . . . , p, and m ∈ {n,n+1}.
Testing in three and four dimensions indicated that almost all adapted periodic max-
imin designs are based on a shift of 1 − p, −1, or 1 (as was the case for two dimen-
sions; see van Dam et al. (2007)). Furthermore, most maximin designs are found to
have a starting point equal to either p−1 or p. Class B is therefore set up to be a sub-
set of class A with the aforementioned restrictions on the parameters q and s. Finally,
for the dimensions 5 to 7 the number of possibilities has to be reduced even further,
leading to parameter class C, which (based on some more test results) restricts class
B to the values q = 1 and s = p, leaving the other parameters unchanged. Table 1
shows the different classes used in the computations of the approximate maximin
LHDs for each dimension. For the approximate Audze-Eglais LHDs only class C is
used.

As an example, consider a three-dimensional adapted periodic LHD of 22
points. For the maximin criterion, a best parameter setting (class A) is found to
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Table 1 Different classes of
periodic sequences are checked
to generate maximin designs for
each dimension

Dimension Class A Class B Class C

3 2 ≤ n ≤ 70 71 ≤ n ≤ 100 –

4 2 ≤ n ≤ 25 26 ≤ n ≤ 100 –

5 – 2 ≤ n ≤ 80 81 ≤ n ≤ 100

6 – 2 ≤ n ≤ 35 36 ≤ n ≤ 100

7 – – 2 ≤ n ≤ 100

Fig. 1 Two-dimensional
projection of the
three-dimensional LHD
(y1, y2, y3) of 22 points

be (p2, q2, s2,m2) = (8,−7,7,22) and (p3, q3, s3,m3) = (3,0,2,23) and, hence,
the corresponding maximin LHD, with separation distance 69, is defined by the se-
quences

y1 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21),

y2 = (7, 15, 1, 9, 17, 3, 11, 19, 5, 13, 21, 0, 8, 16, 2, 10, 18, 4, 12, 20, 6, 14),

y3 = (2, 5, 8, 11, 14, 17, 20, 0, 3, 6, 9, 12, 15, 18, 21, 1, 4, 7, 10, 13, 16, 19).

(5)
Thus, y3 is a periodic sequence, with m = n + 1, and y2 is an adapted periodic
sequence, with m = n and q2 = −7. Note that to obtain a one-to-one sequence,
the second part of y2, i.e., (0,8, . . . ,14), is formed by shifting the first part of y2,
i.e., (7,15, . . . ,21), by −7. The periods and shift are clearly visible in the two-
dimensional projection of the LHD in Fig. 1. In this figure the y3-values are depicted
at the design points.

Like in the two-dimensional case, it may happen that for a given n the corre-
sponding maximin LHD has a separation distance that is smaller than the distance of
a design of n − 1 points. For these n, however, better designs can usually be derived
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by adding an extra “corner point” to the LHD of n−1 points. In this way, a monotone
nondecreasing sequence of separation distances was found for all dimensions.

3 Other methods

3.1 Enhanced stochastic evolutionary algorithm

Besides restricting ourselves to a certain class of LHDs, we can also generate good
maximin or Audze-Eglais LHDs using heuristics. The ESE-algorithm of Jin et al.
(2005) is one of the methods developed for this purpose and is used in this paper to
generate new approximate maximin and Audze-Eglais LHDs.

This method starts with an initial design and tries to find better designs by it-
eratively changing the current design. To determine if a new design is accepted,
a threshold-based acceptance criterion is used. This criterion is controlled in the outer
loop of the algorithm. In the inner loop of the algorithm new designs are explored.

The inner loop explores the design space as follows. At each iteration, the algo-
rithm creates a fixed number of new designs by exchanging two randomly chosen
elements. The new design with the largest separation distance or with the smallest
Audze-Eglais objective value is then compared to the current design with a threshold
criterion. The criterion is such that it ensures that better designs are always accepted
and that worse designs can also be accepted with a certain probability. If the new
design is accepted, it replaces the current design. This process is repeated for a user
defined number of iterations.

The outer loop controls the threshold value. After the inner loop is completed,
the outer loop determines how much improvement is made in the inner loop. If the
amount of improvement is above a certain level, the algorithm starts an improving
process in which it tries to rapidly find a local optimum. It does this by lowering the
threshold value and thus accepting less deteriorations in the inner loop. If too little
improvement is made, an exploration process is started which is intended to escape
from a local optimum. The threshold value is first rapidly increased to move away
from a local optimum and later slowly decreased to find better designs after moving
away. The final design of the algorithm is the best design found during all iterations
of the inner loop.

For a more detailed description of the algorithm, we refer to the original paper
of Jin et al. (2005). To find maximin and Audze-Eglais LHDs, we implemented the
ESE-algorithm in Matlab. The parameters of the algorithm were set to the values
suggested in Jin et al. (2005). The only adjustment we made to the original algorithm
is in the choice of stopping criterion. Instead of stopping after a fixed number of runs
of the outer loop, our criterion is to stop when in the last 1000 runs of the outer loop
no improvement is made.

3.2 Simulated annealing

Another heuristic used to find maximin LHDs is simulated annealing. Morris and
Mitchell (1995) were the first to apply simulated annealing for this purpose. The sim-
ulated annealing method tries to find good designs by iteratively changing a random
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starting design. These changes are chosen randomly from a predefined class of possi-
ble changes. For each design, these possible changes define a set of designs which are
called the neighborhood of the design. Before a change is accepted, the new neighbor
design obtained by applying the selected change is evaluated. If a change improves
the current design, the change is always accepted. A key characteristic of simulated
annealing is however that changes which result in a worse design can also be ac-
cepted. This enables simulated annealing to escape from local optima. A worse design
is accepted with a probability which depends on two factors. Firstly, designs which
are only slightly worse are accepted with a higher probability than design which are
much worse. Secondly, the acceptance probability is changed during the course of
the algorithm. Generally, worse designs are accepted with a higher probability at the
beginning of the algorithm than at the end.

Besides Morris and Mitchell (1995), also Husslage (2006) used simulated anneal-
ing for finding maximin LHDs. One of the main differences between the two methods
is the used objective function. Husslage (2006) directly used the separation distance
of a design, whereas Morris and Mitchell (1995) used a surrogate measure φp . This
measure also takes into account the number of pairs of points with a certain distance
between them. By including this information, it is easier to decide which design is
best if they have the same separation distance. This surrogate measure is also used by
other authors like Jin et al. (2005) and Palmer and Tsui (2001).

Simulated annealing and ESE are similar in many respects. Both algorithms cre-
ate new designs by changing a current design. Furthermore, both algorithms accept
worse designs with a positive probability. The change of this acceptance probability
in simulated annealing is similar to the change of the threshold value in the outer loop
of ESE. The main difference between the two methods is that the ESE-algorithm cre-
ates several new designs and compares the best of these designs to the current design,
whereas simulated annealing only creates one new design. The ESE-algorithm can
thus be regarded as an enhancement of simulated annealing.

3.3 Permutation genetic algorithm

To obtain Audze-Eglais LHDs, Bates et al. (2004) used a permutation genetic algo-
rithm. The genetic algorithm starts with generating a set of LHDs called a “popula-
tion”. The Audze-Eglais distance of each design in this population is then calculated.
Based on these distances, a subset of designs is selected using so-called elitist and
tournament selection. A new population of designs is created by applying mutation
and crossover operations to the selected designs. By repeatedly selecting and creating
designs, the Audze-Eglais distances of the LHDs in the population gradually increase.
Results of this algorithm were reported by Bates et al. (2004) for eight different com-
binations of n and k. In Sect. 4, we make a comparison between these results, the
designs obtained with periodic designs, and the designs obtained with ESE.

4 Computational results

Using (adapted) periodic designs and the ESE-algorithm, approximate maximin and
Audze-Eglais LHDs have been obtained for the cases described in Table 2. All com-
putations have been performed on PCs with a 2.8-GHz Pentium D processor. For the
cases with n > 100, a limit of 6 hours was imposed on the calculation time.
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Table 2 Largest values of n for
which LHDs were generated
using periodic designs (PD) and
using the ESE-algorithm

Dimension 3 4 5 6 7 8 9 10

Maximin PD 300 300 100 100 100

Maximin ESE 300 300 100 100 100 100 100 100

Audze-Eglais PD 100 100 100

Audze-Eglais ESE 100 100 100 100 100 100 100 100

Fig. 2 Ratio between separation distance of ESE and periodic designs

Table 5 shows the squared �2-separation distance of the (approximate) maximin
LHDs that were obtained by applying periodic designs and of those obtained by the
ESE-algorithm. The column for two-dimensional periodic designs contains the re-
sults obtained in van Dam et al. (2007). From this table it can be seen that (adapted)
periodic designs work particularly well for larger values of n and small k.

For dimension 2 to 4, Fig. 2 shows the ratio between the squared separation dis-
tance of ESE and periodic designs. A ratio larger than one indicates that the ESE
design is better than the (adapted) periodic design. A break-even point, i.e., a point
(or, better, an interval) where the preference shifts from the designs found by ESE to
(adapted) periodic designs, is clearly visible in this figure. Furthermore, these break-
even points seem to increase with the dimension of the design and it is to be expected
that break-even points for k-dimensional designs, with k ≥ 5, will occur for larger
values of n, i.e., n > 250. Because all six- and seven-dimensional (adapted) periodic
designs, of 3 to 100 points, are dominated by the designs found by ESE, the former
are not computed for larger dimensions.
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Table 3 Squared �2-separation distance of designs found by Morris and Mitchell (1995) vs. the ESE-
algorithm

n 3 dim 4 dim 5 dim 6 dim 7 dim 8 dim 9 dim

M&M ESE M&M ESE M&M ESE M&M ESE M&M ESE M&M ESE M&M ESE

3 6 6 7 7 8 8
4 6 6 12 12 14 14
5 11 11 15 15 24 24
6 14 14 22 22 32 32 40 40
7 17 17 28 28 40 40 61 61
8 21 21 42 42 50 50 91 89

9 22 22 42 42 61 61 126 126
10 27 27 50 47 82 82
11 29 30 55 55 80 80
12 36 36 63 63 91 91 139 136

13

14 219 215

In Table 3, we compare the LHDs found by Morris and Mitchell (1995) and
the ESE-algorithm. The ESE-algorithm is able to match the results of Morris and
Mitchell (1995) for most combinations of k and n. Only for the cases (k, n) = (4,10),
(6,12), (7,14), and (8,8) are slightly worse designs obtained. Three of these four de-
sign satisfy the property that n = k or n = 2k. According to Morris and Mitchell
(1995), these designs exhibit special symmetric properties; they refer to them as
foldover designs. These special properties are probably the main explanation for the
better results in these cases. For the case (k, n) = (3,11), we obtained an improved
(and optimal) design. Furthermore, using a branch-and-bound algorithm, the three-
dimensional designs of up to 15 points have been verified to be optimal (van Dam
et al. 2009). From the above results, we can conclude that performances of the ESE-
algorithm and the simulated annealing algorithm of Morris and Mitchell (1995) are
closely matched. However, the numerical results of Morris and Mitchell (1995) are
probably too limited to be useful in most practical applications.

We also compared the ESE results with the SA results in Husslage (2006) and saw
that the ESE-algorithm gives better or equally good results for most combination of
k and n. For only nine combinations the results are better of the SA algorithm and
for 7 percent of the compared combinations the results are equally good. However,
especially for larger values of n, the ESE algorithm found many designs with a more
than 15 percent higher separation distance.

The results obtained for the Audze-Eglais measure are given in Table 6. We can
easily see that the results of the ESE-algorithm are better for almost all cases. It is
likely that by running ESE for some more starting solutions, better or equally good
designs can be found for all cases. The ESE algorithm thus outperforms the periodic
designs for the Audze-Eglais measure.

When we compare the results with those found by Bates in Table 4, we see that
the ESE-algorithm gives better or equally good results. This shows that the ESE-
algorithm is quite successful in finding LHDs with a good Audze-Eglais value.
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Table 4 Audze-Eglais values
of designs found by Bates et al.
(2004) vs. the ESE-algorithm

n 2 dim 3 dim 5 dim

PermGA ESE PermGA ESE PermGA ESE

5 1.2982 1.2982 0.7267 0.7267

10 2.0662 2.0662 1.0242 1.0199

50 0.7270 0.7195

120 5.5174 5.4941 1.9613 1.9328 0.7930 0.7840

5 Conclusions

This paper discusses existing and new results in the field of maximin and Audze-
Eglais Latin hypercube designs. Such designs play an important role in the area of
computer simulation. The new results are obtained using two heuristics. The first
heuristic is based on the observation that many optimal LHDs, and two-dimensional
LHDs in particular, exhibit a periodic structure. By considering periodic and adapted
periodic designs, approximate maximin LHDs for up to seven dimensions and for up
to 300 design points are constructed. The second heuristic uses the ESE-algorithm of
Jin et al. (2005) to find approximate maximin LHDs for up to ten dimensions. These
new results are compared to each other and to existing results obtained with simulated
annealing and permutation genetic algorithms. In most cases, the ESE-algorithm re-
sulted in the best maximin and Audze-Eglais LHDs. However when the number of
design points is large with respect to the dimension of the design, the periodic designs
tend to work better. Appendix gives the squared �2-separation distances and Audze-
Eglais values of the designs described in this paper. All corresponding designs can be
downloaded from the website http://www.spacefillingdesigns.nl.
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Appendix: Tables of numerical results

Table 5 Squared �2-separation distance found using periodic designs (PD) vs. the ESE-algorithm (ESE)

n 2 dim 3 dim 4 dim 5 dim 6 dim 7 dim 8 dim 9 dim 10 dim

ESE Per ESE Per ESE Per ESE Per ESE Per ESE Per ESE ESE ESE

2 2 2 3 3 4 4 5 5 6 6 7 7 8 9 10

3 2 2 6 3 7 4 8 5 12 6 13 7 14 18 19

4 5 5 6 6 12 12 14 11 20 15 21 16 26 28 33

5 5 5 11 6 15 12 24 11 27 15 32 16 40 43 50

6 5 5 14 14 22 16 32 23 40 28 47 29 53 61 68

7 8 8 17 14 28 16 40 23 52 28 61 31 70 80 89

http://www.spacefillingdesigns.nl
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Table 5 (Continued)

n 2 dim 3 dim 4 dim 5 dim 6 dim 7 dim 8 dim 9 dim 10 dim

ESE Per ESE Per ESE Per ESE Per ESE Per ESE Per ESE ESE ESE

8 8 8 21 21 42 25 50 32 63 42 79 46 90 101 114

9 8 10 22 21 42 25 61 39 75 45 92 47 112 126 142

10 10 10 27 21 47 36 82 55 91 62 109 68 131 154 171

11 10 10 30 24 55 39 80 55 108 62 129 69 152 178 206

12 10 13 36 30 63 46 91 62 136 91 152 95 177 204 235

13 10 13 41 35 70 51 103 64 138 91 178 95 205 235 268

14 10 17 42 35 77 70 114 86 154 104 215 119 236 268 305

15 13 17 45 42 87 71 129 88 171 111 220 129 273 309 347

16 17 17 50 42 93 85 151 101 190 130 241 155 317 352 393

17 17 18 53 42 99 85 158 113 208 131 266 161 332 396 442

18 17 18 56 50 108 94 170 123 231 155 291 186 361 451 496

19 17 18 59 57 119 94 184 136 256 169 323 195 390 469 554

20 17 18 65 57 130 106 206 139 279 210 349 226 425 506 625

21 18 20 68 65 145 116 223 165 302 210 380 236 463 548 650

22 18 25 72 69 150 117 235 174 325 223 418 270 501 595 691

23 18 26 75 72 159 130 250 178 348 236 448 273 542 640 747

24 20 26 81 76 170 138 266 201 374 258 481 308 585 690 800

25 20 26 86 91 178 156 285 205 400 286 520 350 626 739 857

26 25 26 86 91 188 156 302 226 426 296 548 365 664 791 910

27 25 26 90 91 198 157 310 238 447 310 585 382 712 840 976

28 26 29 94 94 210 174 331 258 479 339 620 406 766 898 1041

29 26 29 101 94 221 174 349 269 507 346 654 417 817 956 1100

30 26 29 105 105 233 194 367 310 531 390 691 458 849 1019 1173

31 26 32 110 107 244 212 405 310 563 390 728 482 900 1104 1241

32 26 32 110 114 253 212 413 341 587 419 778 518 966 1139 1318

33 26 34 117 114 264 215 426 341 622 430 814 537 1010 1201 1396

34 26 37 125 133 273 230 445 358 648 470 851 561 1072 1270 1478

35 26 37 126 133 286 234 467 366 683 495 914 586 1113 1326 1555

36 26 37 131 133 297 250 486 400 719 518 939 636 1181 1405 1647

37 26 37 138 152 309 266 520 408 744 528 976 668 1236 1477 1721

38 26 41 142 152 321 283 541 415 788 561 1028 709 1286 1534 1790

39 26 41 146 152 330 283 566 439 816 561 1084 726 1344 1609 1870

40 26 41 152 155 342 291 575 492 876 632 1122 786 1416 1675 1946

41 26 41 158 162 355 293 596 492 882 632 1156 802 1496 1765 2058

42 29 41 161 168 367 319 626 496 907 670 1209 903 1526 1843 2149

43 29 41 171 168 383 323 666 520 947 670 1256 903 1597 1905 2224

44 29 50 179 186 396 331 680 548 992 696 1336 903 1653 1994 2319

45 37 50 182 186 407 347 698 565 996 737 1366 926 1723 2079 2415

46 37 50 186 189 421 366 723 592 1064 797 1408 985 1794 2155 2507

47 37 50 189 189 438 378 754 611 1088 797 1459 985 1847 2244 2600

48 37 50 201 189 450 413 763 632 1119 857 1531 1054 1924 2336 2732
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Table 5 (Continued)

n 2 dim 3 dim 4 dim 5 dim 6 dim 7 dim 8 dim 9 dim 10 dim

ESE Per ESE Per ESE Per ESE Per ESE Per ESE Per ESE ESE ESE

49 37 50 203 196 464 415 803 634 1167 893 1592 1074 1989 2397 2828

50 37 52 206 213 478 415 830 663 1203 893 1639 1113 2041 2492 2893

51 37 52 206 213 490 421 850 692 1230 917 1662 1161 2132 2566 3006

52 37 58 217 213 504 455 883 709 1274 1003 1734 1231 2203 2686 3134

53 37 58 219 216 515 455 894 716 1340 1003 1808 1241 2234 2713 3261

54 37 58 209 233 534 477 932 760 1359 1019 1856 1288 2356 2805 3339

55 40 58 230 243 546 483 956 760 1421 1082 1896 1325 2429 2935 3452

56 41 58 230 243 558 515 982 784 1431 1104 2003 1358 2444 3021 3551

57 41 58 249 261 574 515 1007 846 1488 1136 2024 1479 2554 3119 3651

58 41 61 245 261 594 539 1035 846 1554 1166 2043 1479 2650 3187 3795

59 41 61 254 266 609 544 1063 849 1564 1223 2136 1509 2733 3297 3889

60 41 65 261 273 618 568 1094 904 1631 1242 2232 1577 2796 3420 4090

61 41 65 266 274 630 620 1128 904 1667 1258 2266 1615 2868 3525 4158

62 41 65 269 283 657 620 1150 934 1715 1306 2345 1680 2977 3636 4313

63 50 65 281 297 670 620 1178 967 1781 1380 2376 1680 3056 3690 4355

64 50 65 278 297 684 625 1206 985 1804 1430 2452 1769 3097 3820 4514

65 50 68 290 314 694 630 1216 997 1868 1430 2492 1786 3219 3932 4581

66 50 68 299 314 718 666 1261 1050 1874 1476 2543 1857 3279 4004 4769

67 50 74 294 314 735 666 1299 1072 1954 1482 2638 1868 3399 4081 4942

68 50 74 306 314 746 685 1330 1087 1983 1538 2693 1940 3453 4212 4995

69 50 74 306 324 765 698 1351 1112 2028 1588 2746 1965 3520 4317 5127

70 50 74 314 325 779 716 1378 1150 2094 1633 2838 2130 3588 4464 5276

71 50 74 314 325 793 716 1413 1150 2141 1644 2871 2130 3749 4548 5437

72 50 74 314 341 810 750 1430 1203 2136 1768 2960 2177 3810 4666 5556

73 50 74 329 350 834 759 1462 1229 2197 1768 3042 2206 3932 4776 5661

74 50 74 341 350 842 767 1512 1229 2291 1774 3120 2244 3941 4915 5817

75 50 80 341 350 867 771 1530 1274 2303 1862 3157 2295 4073 5006 5937

76 50 85 341 363 882 813 1569 1300 2387 1935 3218 2375 4178 5179 6111

77 50 85 341 363 894 823 1591 1308 2433 1947 3323 2403 4266 5222 6272

78 50 85 371 387 910 844 1621 1382 2479 2014 3387 2505 4390 5385 6384

79 50 85 374 387 927 848 1639 1382 2498 2037 3474 2525 4465 5535 6466

80 50 85 374 403 949 873 1691 1395 2554 2037 3550 2590 4565 5577 6653

81 50 85 381 406 963 916 1730 1406 2648 2064 3619 2642 4679 5748 6780

82 50 85 374 406 989 938 1742 1475 2680 2141 3669 2753 4719 5859 6935

83 50 90 374 417 1002 940 1762 1501 2696 2141 3723 2767 4848 5976 7094

84 50 90 406 426 1021 967 1818 1534 2790 2229 3870 2838 4920 6119 7256

85 50 90 413 426 1043 967 1866 1552 2819 2232 3919 2874 5032 6212 7357

86 50 97 413 428 1053 967 1882 1573 2875 2375 3958 3103 5164 6346 7532

87 50 97 413 428 1073 976 1934 1598 2913 2375 4095 3103 5225 6469 7639

88 50 97 434 437 1086 1050 1954 1685 2975 2398 4166 3183 5340 6660 7877

89 50 97 426 443 1102 1050 1990 1690 3067 2400 4176 3183 5450 6750 7950
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Table 5 (Continued)

n 2 dim 3 dim 4 dim 5 dim 6 dim 7 dim 8 dim 9 dim 10 dim

ESE Per ESE Per ESE Per ESE Per ESE Per ESE Per ESE ESE ESE

90 58 98 446 481 1134 1060 2027 1710 3104 2516 4308 3190 5576 6901 8128

91 58 98 434 481 1134 1089 2031 1748 3143 2516 4379 3234 5626 6950 8330

92 58 98 446 481 1149 1089 2100 1805 3216 2599 4428 3277 5758 7067 8442

93 58 100 446 481 1171 1098 2130 1813 3283 2604 4512 3361 5832 7342 8601

94 58 100 470 481 1199 1124 2169 1881 3348 2747 4581 3474 6007 7436 8774

95 65 100 482 481 1219 1135 2206 1901 3335 2747 4703 3531 6064 7469 8877

96 65 101 486 509 1250 1261 2227 1965 3451 2769 4808 3639 6222 7645 9146

97 65 101 474 515 1258 1261 2299 1965 3514 2817 4848 3639 6304 7781 9379

98 65 101 485 531 1283 1261 2299 1965 3560 2850 4936 3690 6376 7896 9381

99 65 101 489 531 1298 1261 2338 2009 3628 2878 4999 3731 6448 8023 9617

100 65 109 494 554 1305 1261 2401 2053 3648 3000 5040 3903 6617 8228 9835

105 521 563 1395 1329

110 566 626 1510 1414

115 594 650 1591 1499

120 629 702 1708 1603

125 629 713 1798 1750

130 693 766 1906 1872

135 729 780 1995 1909

140 758 845 2103 2089

145 779 894 2185 2225

150 825 934 2310 2278

155 842 986 2365 2367

160 854 1002 2486 2548

165 904 1041 2582 2648

170 914 1121 2659 2869

175 965 1132 2771 2902

180 1011 1208 2897 3077

185 1026 1224 2970 3267

190 1061 1298 3094 3325

195 1086 1350 3210 3492

200 1106 1371 3257 3596

205 1166 1425 3273 3708

210 1196 1473 3377 3767

215 1229 1538 3476 3983

220 1259 1544 3543 4159

225 1293 1611 3661 4292

230 1329 1646 3703 4326

235 1305 1706 3815 4532

240 1350 1806 3893 5061

245 1397 1891 3986 5061

250 1412 1901 3990 5075
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Table 5 (Continued)

n 2 dim 3 dim 4 dim 5 dim 6 dim 7 dim 8 dim 9 dim 10 dim

ESE Per ESE Per ESE Per ESE Per ESE Per ESE Per ESE ESE ESE

255 1417 1923 4100 5122

260 1445 1971 4164 5236

265 1449 2021 4182 5519

270 1464 2144 4361 5656

275 1478 2150 4487 5746

280 1493 2184 4388 6023

285 1501 2209 4607 6094

290 1476 2269 4722 6380

295 1526 2354 4726 6590

300 1542 2409 4898 6604

Table 6 Audze-Eglais values found using periodic designs (PD) vs. the ESE-algorithm (ESE)

n 2 dim 3 dim 4 dim 5 dim 6 dim 7 dim 8 dim 9 dim 10 dim

ESE Per ESE Per ESE Per ESE Per ESE ESE ESE ESE ESE

2 0.500 0.500 0.333 0.333 0.250 0.250 0.200 0.200 0.167 0.143 0.125 0.111 0.100

3 0.900 0.900 0.611 0.611 0.386 0.450 0.321 0.362 0.250 0.230 0.193 0.200 0.151

4 1.000 1.000 0.642 0.642 0.454 0.489 0.367 0.382 0.300 0.260 0.225 0.201 0.180

5 1.298 1.390 0.727 0.891 0.509 0.658 0.401 0.527 0.336 0.287 0.250 0.222 0.200

6 1.521 1.521 0.794 0.800 0.561 0.594 0.431 0.476 0.358 0.307 0.268 0.238 0.215

7 1.598 1.598 0.867 0.975 0.599 0.694 0.464 0.532 0.376 0.322 0.282 0.250 0.225

8 1.804 1.879 0.921 0.960 0.619 0.696 0.488 0.538 0.398 0.334 0.292 0.260 0.234

9 1.935 1.935 0.971 1.052 0.660 0.742 0.504 0.567 0.414 0.349 0.301 0.267 0.240

10 2.066 2.066 1.020 1.085 0.686 0.744 0.515 0.556 0.425 0.360 0.311 0.273 0.246

11 2.196 2.279 1.069 1.137 0.709 0.785 0.536 0.612 0.434 0.369 0.319 0.281 0.250

12 2.273 2.273 1.095 1.163 0.724 0.785 0.551 0.589 0.441 0.375 0.326 0.287 0.256

13 2.401 2.487 1.128 1.191 0.746 0.825 0.563 0.632 0.453 0.381 0.331 0.292 0.261

14 2.476 2.476 1.167 1.252 0.762 0.829 0.575 0.635 0.462 0.385 0.335 0.296 0.265

15 2.578 2.643 1.194 1.255 0.775 0.818 0.583 0.636 0.470 0.393 0.339 0.299 0.268

16 2.666 2.683 1.221 1.290 0.791 0.848 0.589 0.642 0.477 0.398 0.341 0.302 0.271

17 2.721 2.721 1.246 1.340 0.805 0.866 0.600 0.656 0.483 0.404 0.347 0.305 0.273

18 2.819 2.848 1.271 1.337 0.816 0.875 0.609 0.655 0.488 0.408 0.350 0.307 0.275

19 2.890 2.984 1.292 1.374 0.827 0.895 0.615 0.667 0.492 0.413 0.354 0.310 0.277

20 2.959 2.962 1.318 1.394 0.835 0.907 0.620 0.681 0.496 0.416 0.358 0.313 0.278

21 3.025 3.033 1.339 1.408 0.847 0.914 0.625 0.671 0.501 0.419 0.361 0.316 0.281

22 3.070 3.070 1.357 1.426 0.856 0.922 0.632 0.687 0.505 0.422 0.363 0.318 0.283

23 3.138 3.159 1.377 1.454 0.868 0.925 0.638 0.693 0.510 0.425 0.366 0.321 0.285

24 3.197 3.201 1.396 1.458 0.875 0.931 0.644 0.677 0.513 0.427 0.368 0.323 0.287

25 3.254 3.293 1.412 1.485 0.884 0.940 0.648 0.701 0.516 0.430 0.370 0.324 0.289
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Table 6 (Continued)

n 2 dim 3 dim 4 dim 5 dim 6 dim 7 dim 8 dim 9 dim 10 dim

ESE Per ESE Per ESE Per ESE Per ESE ESE ESE ESE ESE

26 3.309 3.332 1.428 1.480 0.891 0.947 0.653 0.707 0.518 0.432 0.372 0.326 0.290

27 3.360 3.383 1.442 1.499 0.898 0.957 0.657 0.708 0.521 0.435 0.373 0.328 0.292

28 3.405 3.420 1.454 1.503 0.906 0.961 0.660 0.712 0.524 0.437 0.375 0.329 0.293

29 3.458 3.539 1.468 1.543 0.912 0.978 0.664 0.716 0.527 0.439 0.376 0.330 0.294

30 3.505 3.515 1.481 1.528 0.919 0.974 0.667 0.716 0.530 0.441 0.378 0.331 0.295

31 3.543 3.550 1.493 1.563 0.925 0.976 0.671 0.719 0.533 0.443 0.380 0.333 0.296

32 3.589 3.623 1.505 1.562 0.931 0.996 0.674 0.729 0.535 0.444 0.381 0.334 0.297

33 3.636 3.642 1.517 1.588 0.935 0.990 0.678 0.732 0.537 0.446 0.383 0.335 0.298

34 3.676 3.713 1.528 1.565 0.941 1.005 0.682 0.735 0.540 0.447 0.384 0.336 0.299

35 3.716 3.786 1.539 1.601 0.946 1.003 0.685 0.731 0.542 0.449 0.385 0.337 0.300

36 3.758 3.774 1.549 1.600 0.950 1.005 0.688 0.734 0.543 0.450 0.386 0.338 0.301

37 3.794 3.819 1.558 1.599 0.956 1.019 0.691 0.736 0.545 0.452 0.387 0.339 0.301

38 3.828 3.828 1.568 1.623 0.959 1.023 0.694 0.746 0.547 0.453 0.388 0.340 0.302

39 3.868 3.879 1.578 1.646 0.965 1.025 0.696 0.742 0.548 0.455 0.389 0.341 0.303

40 3.906 3.918 1.587 1.636 0.968 1.019 0.699 0.742 0.550 0.456 0.390 0.341 0.303

41 3.939 4.009 1.596 1.639 0.971 1.033 0.701 0.751 0.551 0.457 0.391 0.342 0.304

42 3.974 3.974 1.604 1.658 0.975 1.031 0.703 0.742 0.552 0.458 0.392 0.343 0.305

43 4.007 4.045 1.612 1.675 0.979 1.042 0.705 0.752 0.554 0.460 0.393 0.344 0.306

44 4.029 4.029 1.621 1.670 0.983 1.040 0.708 0.754 0.555 0.461 0.394 0.344 0.306

45 4.063 4.074 1.628 1.678 0.986 1.044 0.710 0.752 0.557 0.462 0.394 0.345 0.307

46 4.096 4.115 1.636 1.693 0.990 1.044 0.712 0.753 0.559 0.463 0.395 0.346 0.307

47 4.130 4.179 1.643 1.695 0.993 1.055 0.714 0.761 0.560 0.464 0.396 0.346 0.308

48 4.160 4.206 1.650 1.699 0.997 1.052 0.716 0.759 0.561 0.464 0.397 0.347 0.308

49 4.187 4.187 1.657 1.711 1.001 1.059 0.718 0.762 0.563 0.465 0.398 0.347 0.309

50 4.216 4.254 1.665 1.713 1.004 1.058 0.720 0.765 0.564 0.466 0.398 0.348 0.309

51 4.246 4.280 1.671 1.729 1.007 1.063 0.721 0.768 0.566 0.467 0.399 0.348 0.310

52 4.273 4.277 1.678 1.730 1.010 1.062 0.723 0.765 0.567 0.468 0.400 0.349 0.310

53 4.302 4.343 1.685 1.734 1.013 1.072 0.725 0.771 0.568 0.468 0.400 0.349 0.310

54 4.331 4.341 1.690 1.739 1.016 1.070 0.726 0.769 0.569 0.469 0.401 0.350 0.311

55 4.355 4.413 1.697 1.755 1.018 1.073 0.728 0.773 0.570 0.470 0.401 0.350 0.311

56 4.382 4.404 1.703 1.756 1.022 1.071 0.729 0.772 0.571 0.470 0.402 0.351 0.312

57 4.404 4.427 1.708 1.760 1.024 1.079 0.731 0.776 0.572 0.471 0.403 0.351 0.312

58 4.431 4.437 1.714 1.763 1.027 1.076 0.732 0.776 0.573 0.472 0.403 0.352 0.312

59 4.458 4.498 1.719 1.777 1.030 1.087 0.734 0.780 0.574 0.473 0.404 0.352 0.313

60 4.482 4.490 1.725 1.772 1.032 1.079 0.735 0.777 0.575 0.473 0.404 0.353 0.313

61 4.499 4.530 1.731 1.778 1.034 1.087 0.736 0.776 0.576 0.474 0.405 0.353 0.314

62 4.526 4.576 1.736 1.786 1.036 1.087 0.738 0.781 0.576 0.475 0.405 0.354 0.314

63 4.556 4.576 1.742 1.789 1.039 1.094 0.739 0.783 0.577 0.475 0.406 0.354 0.314

64 4.573 4.590 1.746 1.794 1.041 1.087 0.740 0.784 0.578 0.476 0.406 0.354 0.315

65 4.595 4.599 1.751 1.802 1.043 1.095 0.742 0.786 0.579 0.477 0.407 0.355 0.315

66 4.619 4.635 1.757 1.804 1.045 1.093 0.742 0.785 0.580 0.477 0.407 0.355 0.315
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Table 6 (Continued)

n 2 dim 3 dim 4 dim 5 dim 6 dim 7 dim 8 dim 9 dim 10 dim

ESE Per ESE Per ESE Per ESE Per ESE ESE ESE ESE ESE

67 4.636 4.642 1.761 1.812 1.047 1.100 0.744 0.787 0.581 0.478 0.407 0.355 0.315

68 4.661 4.681 1.766 1.819 1.049 1.096 0.745 0.790 0.581 0.478 0.407 0.356 0.316

69 4.683 4.713 1.771 1.818 1.052 1.104 0.746 0.791 0.582 0.479 0.408 0.356 0.316

70 4.703 4.710 1.775 1.818 1.053 1.100 0.747 0.790 0.583 0.480 0.408 0.356 0.316

71 4.727 4.742 1.780 1.831 1.055 1.108 0.747 0.795 0.584 0.480 0.409 0.357 0.317

72 4.743 4.746 1.784 1.829 1.057 1.103 0.749 0.791 0.584 0.481 0.409 0.357 0.317

73 4.763 4.781 1.789 1.836 1.059 1.106 0.749 0.794 0.585 0.481 0.409 0.357 0.317

74 4.781 4.820 1.793 1.842 1.061 1.112 0.751 0.795 0.586 0.482 0.410 0.358 0.317

75 4.803 4.817 1.796 1.847 1.063 1.112 0.752 0.797 0.586 0.482 0.410 0.358 0.318

76 4.823 4.828 1.801 1.850 1.064 1.110 0.753 0.796 0.587 0.483 0.410 0.358 0.318

77 4.838 4.853 1.805 1.851 1.066 1.112 0.755 0.799 0.587 0.483 0.411 0.359 0.318

78 4.863 4.883 1.809 1.847 1.068 1.114 0.755 0.795 0.588 0.484 0.411 0.359 0.318

79 4.882 4.934 1.812 1.863 1.070 1.119 0.756 0.801 0.589 0.484 0.411 0.359 0.318

80 4.895 4.922 1.816 1.864 1.071 1.117 0.757 0.799 0.589 0.484 0.412 0.359 0.319

81 4.920 4.942 1.820 1.869 1.072 1.120 0.758 0.802 0.590 0.485 0.412 0.360 0.319

82 4.936 4.944 1.824 1.862 1.074 1.120 0.759 0.801 0.590 0.485 0.413 0.360 0.319

83 4.949 4.949 1.827 1.879 1.076 1.126 0.760 0.805 0.591 0.486 0.413 0.360 0.319

84 4.968 4.992 1.831 1.876 1.077 1.122 0.761 0.802 0.591 0.486 0.413 0.360 0.320

85 4.985 5.014 1.834 1.879 1.079 1.124 0.761 0.804 0.592 0.486 0.414 0.360 0.320

86 5.003 5.014 1.838 1.882 1.081 1.125 0.762 0.804 0.592 0.487 0.414 0.361 0.320

87 5.019 5.060 1.842 1.891 1.082 1.130 0.763 0.808 0.593 0.487 0.414 0.361 0.320

88 5.034 5.047 1.845 1.885 1.083 1.130 0.764 0.805 0.594 0.487 0.414 0.361 0.320

89 5.056 5.096 1.848 1.895 1.085 1.133 0.765 0.810 0.594 0.488 0.415 0.361 0.321

90 5.070 5.063 1.852 1.885 1.086 1.131 0.766 0.807 0.594 0.488 0.415 0.361 0.321

91 5.086 5.113 1.854 1.890 1.088 1.134 0.766 0.809 0.595 0.489 0.415 0.362 0.321

92 5.104 5.114 1.858 1.902 1.089 1.135 0.767 0.809 0.595 0.489 0.416 0.362 0.321

93 5.119 5.122 1.861 1.903 1.090 1.136 0.768 0.810 0.596 0.489 0.416 0.362 0.321

94 5.130 5.143 1.864 1.900 1.092 1.138 0.769 0.810 0.596 0.490 0.416 0.362 0.321

95 5.151 5.177 1.867 1.909 1.093 1.138 0.769 0.813 0.597 0.490 0.416 0.362 0.322

96 5.163 5.183 1.870 1.910 1.094 1.139 0.770 0.811 0.597 0.490 0.417 0.363 0.322

97 5.177 5.179 1.872 1.915 1.096 1.138 0.771 0.814 0.598 0.490 0.417 0.363 0.322

98 5.198 5.223 1.876 1.915 1.097 1.142 0.771 0.812 0.598 0.491 0.417 0.363 0.322

99 5.211 5.244 1.879 1.923 1.098 1.143 0.772 0.815 0.599 0.491 0.417 0.363 0.322

100 5.223 5.221 1.882 1.921 1.099 1.143 0.773 0.812 0.599 0.491 0.418 0.363 0.322
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