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Abstract This paper presents a Sequential Approximate Optimization (SAO) proce-
dure that uses the Radial Basis Function (RBF) network. If the objective and con-
straints are not known explicitly but can be evaluated through a computationally
intensive numerical simulation, the response surface, which is often called meta-
modeling, is an attractive method for finding an approximate global minimum with
a small number of function evaluations. An RBF network is used to construct the
response surface. The Gaussian function is employed as the basis function in this
paper. In order to obtain the response surface with good approximation, the width
of this Gaussian function should be adjusted. Therefore, we first examine the width.
Through this examination, some sufficient conditions are introduced. Then, a sim-
ple method to determine the width of the Gaussian function is proposed. In addition,
a new technique called the adaptive scaling technique is also proposed. The sufficient
conditions for the width are satisfied by introducing this scaling technique. Second,
the SAO algorithm is developed. The optimum of the response surface is taken as
a new sampling point for local approximation. In addition, it is necessary to add
new sampling points in the sparse region for global approximation. Thus, an impor-
tant issue for SAO is to determine the sparse region among the sampling points. To
achieve this, a new function called the density function is constructed using the RBF
network. The global minimum of the density function is taken as the new sampling
point. Through the sampling strategy proposed in this paper, the approximate global
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minimum can be found with a small number of function evaluations. Through numer-
ical examples, the validities of the width and sampling strategy are examined in this
paper.

Keywords Response surface · Sequential approximate optimization · RBF
network · Density function · Engineering optimization

1 Introduction

In recent years, many commercial software programs for design optimization have
been widely utilized in a variety of industries. Recently, some population-based
global optimization techniques, such as the Genetic Algorithm (GA), the Particle
Swarm Optimization (PSO), and the Differential Evolution (DE), have been devel-
oped in comparison with classical mathematical programming. These global opti-
mization techniques have been applied to practical design optimization. In addition,
these methods are applicable to the multi-objective optimization problems. In gen-
eral, the population-based optimization techniques require a large number of function
evaluations to find the global minimum and a set of Pareto-optimal solutions. This
makes the direct application of these optimization techniques to practical design opti-
mization problems difficult in some cases due to the time-consuming. Since classical
mathematical programming requires the sensitivity of the objective and constraints, it
is not applicable to non-differentiable problems. In addition, function evaluations for
calculating the sensitivity and determining the step-size are required. Nowadays, the
time made available to develop new products is continuously being shortened, mak-
ing it preferable to reduce the computing-time required for optimization. This implies
that one of the most important aspects is reducing the function evaluations in practical
design optimization. It is important to find the global minimum with high accuracy
using global optimization techniques, and these global optimization techniques gen-
erally require a large number of function evaluations. However, it is also important
to find an approximate global minimum for a design problem with a small number of
function evaluations even when the objective and constraints are not known explicitly.

If the objective and constraints are not known explicitly but can be evaluated
through computationally intensive numerical simulation, the response surface, which
is called meta-modeling, is an attractive method for finding an approximate global
minimum with a small number of function evaluations (Wang and Shan 2007). The
Design of Experiment (DOE) is one of the most popular response surface methods
(Myers and Montgomery 1995). The general and classical response surface procedure
is briefly summarized as follows:

Step 1 First, numerous sampling points in the design variable space are set. The or-
thogonal array or Latin Hypercube Design (LHD) is often used to determine these
sampling points.

Step 2 The objective and constraints are evaluated at these sampling points. Thus,
the number of sampling points is equal to the function evaluations.

Step 3 Then, a response surface which approximates the objective and constraints
is constructed. Quadratic polynomials, the Kriging, and the Radial Basis Function
(RBF) network are used to construct the response surface.
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Fig. 1 Effect of width in the Gaussian function

Step 4 Finally, the approximate optimum can be obtained by optimizing the response
surface. The optimum of the response surface is taken as the approximate optimum
of the original design optimization problem.

It is understood that the response surface is one of the approximation techniques.
It is clear from the general flow described above that the number of function eval-
uations is drastically reduced by using the response surface approach. Using the
quadratic polynomials as the response surface, it is possible to approximate the
original function globally. It is possible to use the Kriging (Donald et al. 1998;
Simpson et al. 2001a; Martin and Simpson 2005) and the RBF Network (Muller
and Messac 2005; Hussain et al. 2002; Jin et al. 2001; Nakayama et al. 2002;
Fang and Horstemeyer 2006; McDonald et al. 2007) to approximate the origi-
nal function locally and globally, because these two methods utilize the Gaussian
function as the basis function. Thus, the response surface using the Kriging and
RBF Network is expressed by the linear combination of the weight and Gaussian
function. In addition, the global and local approximations by the Kriging and the
RBF Network imply that the response surface by these methods will be a multi-
modal function. However, an appropriate parameter should be adjusted in order to
approximate the original function locally and globally. Therefore, one key for a
good approximation is to determine the parameter appropriately. Adjusting this pa-
rameter appropriately will allow the global minimum to be found with high accu-
racy. This parameter is the width of the Gaussian function (Nakayama et al. 2002;
Haykin 1994). If this width is small, the response surface will become peaky. Other-
wise, the response surface will become smooth. The effect of the width is shown in
Figs. 1(a) and (b). In Fig. 1, the black dots represent the sampling points, the dashed
line represents the Gaussian function, and the bold line denotes the response sur-
face. The following weights are assigned to the sampling points: w1 = 0.5 at x = 1,
w2 = 1.7 at x = 3, and w3 = 1.3 at x = 5. The difference between Fig. 1(a) and
Fig. 1(b) is the value of the basis function width. The widths in Figs. 1(a) and (b) are
set to 0.5 and 1.0, respectively. It is clear from Fig. 1 that the determination of the
width plays an important role.

In recent years, the Sequential Approximate Optimization (SAO) has been widely
studied (Simpson et al. 2001b; Wang 2003; Rodriguez et al. 2001; Perez et al. 2002;
Sobester et al. 2005; Huang et al. 2006; Simpson and Mistree 2001), compared with



538 S. Kitayama et al.

Fig. 2 General procedure of
SAO

the classical response surface approach described above. The general procedure for
SAO is shown in Fig. 2.

In SAO, the response surface is constructed repeatedly by adding new sampling
points, until the terminal criterion determined by the decision-maker is satisfied. In
comparison with the classical response surface approach described above, it is ex-
pected that an approximate global minimum with high accuracy can be obtained
through the addition of the new sampling points. In order to obtain an approxi-
mate global minimum with high accuracy, it has been reported that the most im-
portant requirement is simultaneously adding the new sampling points around (1) the
optimum of the response surface and (2) the sparse region in the design variable
space (Donald et al. 1998; Nakayama et al. 2002; Simpson et al. 2001b; Wang 2003;
Rodriguez et al. 2001; Perez et al. 2002; Sobester et al. 2005; Huang et al. 2006;
Simpson and Mistree 2001; Sasena 2002a, 2002b; Sharif et al. 2008). Let us con-
sider the first objective, which is to add the optimum of the response surface as the
new sampling point. This will lead to a local approximation with high accuracy. The
zooming method belongs to this category (Kurtaran et al. 2002). However, only the
successive additions of the optimum of the response surface may result in finding
the local minimum. Then, the second objective, which is to add a sampling point in
the sparse region, plays an important role. The addition of a new sampling point in
the sparse region will lead to the global approximation. By this addition, it is possi-
ble to avoid falling into the local minimum. Thus, global and local approximations
will be achieved simultaneously through the above sequential sampling strategy. In
this sequential sampling strategy, it is important to find the sparse region in the design
variable space. This paper will roughly belong to Donald et al. (1998); Sasena (2002a,
2002b). In these references, the expected improvement (EI) algorithm is employed to
find the sparse region. In the EI algorithm, the region with high uncertainty corre-
sponds to the sparse region. By adding the new sampling points to the regions with
high uncertainty, a global approximation can be achieved. However, the Gaussian
function is also employed in the EI algorithm. In order to find the sparse region with
the EI algorithm, the parameter in the Gaussian function should be adjusted. There-
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fore, the common subject is the determination of the width in the Gaussian function
with a simple manner.

In this paper, we use the RBF network to construct the response surface, in which
the Gaussian function is employed as the basis function. In particular, we will con-
sider the determination of the width and the exploration of the sparse region in the
design variable space. First, we discuss the width of the Gaussian function, which
affects the accuracy of the response surface. Two equations for determining the width
have been proposed (Nakayama et al. 2002; Haykin 1994). Among these, the equa-
tion proposed by Nakayama et al. (2002) is effective through the author’s numerical
experiences in the case of one or two design variables. Thus, a good approximation
can be achieved by using the equation proposed by Nakayama in the case of one or
two design variables. However, it may be impossible to find an approximate global
minimum with high accuracy in a case of involving more than three design variables.
Therefore, a new equation for determining the width is necessary. By examining the
equation proposed by Nakayama, some sufficient conditions are introduced. Then,
a new equation for determining the width is proposed. In addition, a new technique
called the adaptive scaling technique is also proposed in this paper. Second, an effec-
tive method for determining the sparse region in the design variable space is consid-
ered. In Nakayama et al. (2002), a simple method for determining the sparse region
was proposed. However, this method basically depends on the randomness. Thus,
a deterministic method for finding the sparse region is preferable from the viewpoint
of efficiency.

The remainder of this paper is organized as follows: In Sect. 2, the RBF network is
described briefly. In this section, the width proposed by Nakayama is also analyzed,
and some sufficient conditions for a good approximation are determined. Then, a new
equation for the width is proposed. In addition, the adaptive scaling technique is also
described. In Sect. 3, the new function to find the sparse region in the design variable
space, which is called the density function, is introduced, and the details of an SAO
algorithm that uses the density function are shown in Sect. 4. The density function
utilizes the RBF network, making its construction easy. In Sect. 5, some benchmark
problems are discussed in order to examine the proposed SAO algorithm.

2 Radial Basis Function network

2.1 Learning of RBF network

An RBF network is a three-layer feed-forward network. The output of the network
fa(x), which corresponds to the response surface, is given by

fa(x) =
m∑

i=1

wihi(x) (1)

where m represents the number of sampling points, hi(x) is the ith basis function, and
wi denotes the weight of the ith basis function. In this paper, the following Gaussian
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function is used as the basis function.

hi(x) = exp

(
− (x − xi )

T (x − xi )

r2
i

)
(2)

In (2), xi represents the ith sampling point, and ri is the width of the ith basis func-
tion. The response yi is calculated at sampling point xi . The learning of the RBF
network is usually accomplished by solving

E =
m∑

i=1

(yi − fa(xi ))
2 +

m∑

i=1

λiw
2
i → min (3)

where the second term is introduced for the purpose of regularization. It is recom-
mended that λi in (3) have a sufficiently small value (e.g. λi = 1.0 × 10−3). Thus, the
learning of the RBF network is equivalent to finding the weight vector w (Orr 1996).
The necessary condition of (3) leads to the following equation:

w = (H T H + Λ)−1H T y (4)

where H , Λ, and y are given as follows:

H =

⎡

⎢⎢⎣

h1(x1) h2(x1) · · · hm(x1)

h1(x2) h2(x2) · · · hm(x2)
...

...
. . .

...

h1(xm) h2(xm) · · · hm(xm)

⎤

⎥⎥⎦ (5)

Λ =

⎡

⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 0 λm

⎤

⎥⎥⎦ (6)

y = (y1, y2, . . . , ym)T (7)

It is clear from (6) that the learning of the RBF network is equivalent to the ma-
trix inversion (H T H + Λ)−1. In the SAO, the new sampling points are added. Using
the RBF network, it is easy to calculate the weight vector w, because the additional
learning is reduced to the incremental calculation of the matrix inversion. The de-
tailed procedure is found in Orr (1996).

2.2 Width of basis function

Determining the width of the basis function is the key factor for good approximation.
The optimization with respect to width may be valid. However, the increment of
the sampling points will cause some difficulties in optimizing the width, such as the
local minimum. Thus, it is preferable to determine the width with a simple method.
To determine the width easily, the following equation was proposed by Nakayama et
al. (2002):

r = dmax
n
√

nm
(8)
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Fig. 3 Sampling points with
two design variables

where dmax denotes the maximum distance among the sampling points. n denotes the
number of design variables, and m is the number of sampling points. Equation (8) is
applied to all basis functions. Thus, r1 = r2 = · · · = rm = r . Equation (8) is consid-
ered to be the generalization of the equation proposed by Simpson et al. (2001b).

Suppose that all of the design variables are equally scaled. This scaling technique,
which is called the adaptive scaling technique, will be described in Sect. 2.3. Let
us consider the K-level full factorial design, in which the regular interval is given
by �d . In this case, dmax is given by

dmax = √
n(K − 1)�d (9)

The black dots in Fig. 3 show the sampling points with two design variables.
In the case of n design variables, the number of sampling points, m, is simply

calculated as follows:

m = Kn (10)

Equations (9) and (10) are substituted into (8). We solve (8) with respect to r/�d ,
and then we can finally obtain the following equation:

r

�d
= n

n−2
2n

(
1 − 1

K

)
(11)

In (11), K → ∞ is considered. This implies an ideal distribution of the sampling
points in the design variable space. Table 1 shows the convergence at K → ∞.

It is clear from Table 1 that the uniform convergence of r/�d can be achieved in
the cases of n = 1 and n = 2. However, r/�d does not converge uniformly in the
case of n ≥ 3. Therefore, r/�d → 1 cannot be achieved at K → ∞. It is assumed
that the key factor for a good approximation is the uniform convergence, which is
r/�d → 1 at K → ∞. Then, on the basis of (8), some sufficient conditions for the
width for a good approximation by the RBF network are summarized as follows:

(W1) It is preferable to consider the number of design variables, n.
(W2) It is also preferable to consider the number of sampling points, m.
(W3) It is preferable to consider the maximum distance among the sampling

points, dmax.
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Table 1 Convergence of r/�d

at K → ∞ The number of design n variables r/�d

1 1.000

2 1.000

3 1.201

4 1.414

5 1.621

6 1.817

7 2.003

8 2.181

(W4) It is preferable to consider the uniform convergence of r/�d through the in-
crement of the number of design variables (r/�d → 1 at K → ∞).

In order to satisfy the above sufficient conditions, the following equation for the
width may be valid:

r1 = r2 = · · · = rm = dmax√
n n
√

m
(12)

Since (12) satisfies the above sufficient conditions at K → ∞, a good approxima-
tion can be expected. However, (12) does not consider the sparseness and density of
the sampling points. In addition, it is clear from (10) that numerous sampling points
are required for a good approximation, using (12). Then, the following equation con-
sidering the sparseness and density of the sampling points is proposed in this paper.

ri = di,max√
n

n
√

m − 1
i = 1,2, . . . ,m (13)

where di,max denotes the maximum distance from the ith sampling point. Equa-
tion (13) is applied to each basis function individually, unlike (8) and (12).

2.3 Adaptive scaling technique

As already described, all of the design variables should be scaled equally in the de-
velopment of (13). A simple scaling technique, called the adaptive scaling technique,
is introduced in this section. The following equation is used to scale all of the design
variables:

XI = xI − xL
I

xU
I − xL

I

× s I = 1,2, . . . , n (14)

where xI is the I th design variable. xU
I and xL

I denote the upper and lower bounds
of the I th design variable, respectively. s (> 0) in (14) denotes the scaling coeffi-
cient. Using (14), all of the design variables are scaled between 0 and s. The scaling
coefficient s plays an important. If the scaling coefficient s is fixed, (W4) described
above may not be satisfied. Thus, scaling coefficient s should be adjusted adaptively.
Then, we develop the adaptive scaling technique to satisfy (W4). The algorithm for
this technique is summarized as follows:
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Step 1 Initial scaling coefficient s (> 0) is set up.
Step 2 All of the design variables are scaled by (14).
Step 3 The width given by (13) is calculated in the scaled space.
Step 4 The minimum width rmin is found.

rmin = min
1≤i≤m

{ri} (15)

Step 5 If rmin ≤ 1, then scaling coefficient s is updated as follows:

s = α × s (α > 1) (16)

Otherwise, the adaptive scaling algorithm will be terminated. On the basis of the
author’s numerical experiences, α = 1.2 is recommended.

The characteristics of this scaling technique are as follows: (1) it can be used to
calculate the width in the scaled space and (2) it can be used to examine (W4), which
is one of the sufficient conditions. Therefore, the sufficient conditions for a good
approximation are always verified.

3 Density function using RBF network

The objective of the density function is to discover a sparse region in the design
variable space. It is expected that the addition of new sampling points in the sparse
region will lead to the global approximation. An important issue is the construction
of a density function using the RBF network. In the SAO, the approximate global
minimum can be found through the addition of new sampling points. From the point
of view of computer-programming code, it is not preferable to construct numerous
subroutines. For simpler computer-programming code, it is preferable to use one or
two subroutines multiple times. Thus, the density function using the RBF network is
developed.

The basic concept of the density function is very simple. The local maxima are
generated at the sampling points. To achieve this objective, every output y of the RBF
network is replaced with +1. Suppose that the number of sampling points is m, and
D(x) denotes the density function. Equation (13) with the adaptive scaling technique
is also used for the density function. The detailed procedure to construct the density
function is summarized as follows:

D-Step 1 The following vector yD is prepared at the sampling points.

yD = (1,1, . . . ,1)Tm×1 (17)

D-Step 2 The weight vector wD of the density function D(x) is calculated as fol-
lows:

wD = (H T H + Λ)H T yD (18)
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Fig. 4 Illustrative example of
density function in one
dimension

D-Step 3 The density function D(x) is minimized to determine the sparse region in
the design variable space.

D(x) =
m∑

i=1

wD
i hi(x) → min (19)

D-Step 4 The point at which the density function D(x) is minimized is taken as the
new sampling point.

Figure 4 shows an illustrative example in one dimension. The black dots denote
the sampling points.

It is clear from Fig. 4 that local minima are generated in the sparse region of the
sampling points and that local maxima are also generated at the sampling points. The
RBF network is basically the interpolation between sampling points: therefore, points
A and B in Fig. 4 are the lower and upper bounds of the density function.

4 Algorithm for SAO using RBF network

Figure 5 shows the detailed algorithm for SAO using the RBF network. In this paper,
the terminal criterion of SAO is determined by the maximum number of sampling
points, mmax.

The proposed SAO algorithm is roughly divided into two phases. The first phase
is used to construct the response surface and add the optimum of response surface as
a new sampling point. Thus, in the first phase, the number of new sampling points is
one that is the optimum of the response surface. The second phase is used to construct
the density function and add the optimum of the density function as a new sampling
point. It should be noted that the density function is constructed until the terminal
criterion, which is described later, is satisfied. As a result, many new sampling points
will be added, according to the number of design variables, n.

Let us consider the first phase. First, the initial sampling points are determined
by using the orthogonal array, the LHD, and so on. The number of sampling points
is m. The initial scaling coefficient is also set up. The objective and constraints are
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Fig. 5 Proposed SAO algorithm

calculated at the sampling points. Then, the adaptive scaling technique is applied.
After the scaling coefficient is determined with the adaptive scaling technique, the
response surface of the objective and constraints is constructed from m sampling
points, by RBF network. The global optimization technique is applied to the response
surface, in order to find the optimum of the response surface. The optimum of the
response surface is directly taken as the new sampling point. In this phase, the number
of sampling points is updated as m = m + 1.

Then, the second phase, in which the density function is constructed, is considered.
In order to construct the density function by the RBF network, the adaptive scaling
technique is also employed. Thus, the scaling coefficient and width are determined
and these values are used to construct the density function. The point at which the
density function is minimized is then found. The optimum of the density function is
taken as the new sampling point, and the number of sampling points is updated as
shown in Fig. 5. In Fig. 5, the parameter count is introduced. This parameter controls
the number of sampling points that can be obtained by the density function. Thus,
in the proposed algorithm, the number of sampling points by the density function
varies according to the number of design variables. If the parameter count is less than
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int(n/2), this parameter is increased as count = count + 1, and the adaptive scaling
techniques is also employed as shown in Fig. 5. The terminal criterion in the second
phase is given by int(n/2), where int() represents the rounding-off. If the terminal
criterion is satisfied, the number of sampling point m is compared with mmax. If the
m is less than mmax, the objective function and constraints are calculated as shown
in Fig. 5. Otherwise, the algorithm is terminated. In the SAO, several optima can be
obtained because the response surface is constructed repeatedly through the addition
of the new sampling points. In this paper, the optimum of the response surface at
mmax is taken as the final optimum.

5 Numerical examples

The validity of the proposed SAO algorithm will now be examined through some
typical numerical examples. The objective and constraints are approximated sepa-
rately by the RBF network. These response surfaces and the density function become
a multi-modal function: Therefore, the global optimization technique is required to
find the global minimum of the response surface. Then, the Particle Swarm Opti-
mization (PSO) is used as the global optimizer. In all of the numerical examples,
the following PSO parameters are used: (1) the number of particles is 30 and (2) the
maximum search iteration is set to 500. The initial scaling coefficient is set to 1 in all
of the numerical examples.

5.1 Illustrative example

Let us consider the following optimization problem.

f (x) = −(x1 − 1)2 − (x2 − 0.5)2 → min (20)

g1(x) = [(x1 − 3)2 + (x2 + 2)2] exp(−x7
2)

12
− 1 ≤ 0 (21)

g2(x) = (10x1 + x2)/7 − 1 ≤ 0 (22)

g3(x) = (x1 − 0.5)2 + (x2 − 0.5)2

0.2
− 1 ≤ 0 (23)

0 ≤ x ≤ 1 (24)

In Fig. 6, the local minimum xL and global minimum xG are shown by the squares.
The objective functions at xL and xG are given as follows:

f (xL) = −0.6867 at xL = (0.2623,0.1223)T (25)

f (xG) = −0.7484 at xG = (0.2016,0.8332)T (26)

Two constraints g1(x) and g3(x) are active at the local and global minima. It is
clear from Fig. 6 that there are two separate feasible regions in this problem and that
the response surface approach is valid.
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Fig. 6 Feasible region, and
local and global minima

Fig. 7 Distribution of sampling
points at mmax

The five initial sampling points represented by the dots • in Fig. 6 are determined
by the LHD, and the maximum number of sampling points mmax is set to 50. The
objective and constraints are approximated separately, and the presented SAO algo-
rithm is applied. The distribution of the sampling points at mmax is shown in Fig. 7,
and the objective and constraints at the optimum of the response surface through the
successive addition of the sampling points are shown in Table 2.

The sampling points are distributed around the global minimum, and are also dis-
tributed in the design variable space. The approximate global minimum is x̃G =
(0.2024,0.8327)T , and the objective at this point is f (x̃G) = −0.7468.

5.2 Application to several benchmark problems

The validity of the proposed SAO algorithm is examined through five typical bench-
mark problems. These problems are listed in Table 3. The initial sampling points are
determined by the LHD. In each of these problems, the initial number of sampling
points is set to five. Twenty trials are performed with different random seeds. In the
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Table 2 Objective and
constraints at the optimum of
the response surface

Number of sampling f (x̃G) g1(x̃G) g2(x̃G) g3(x̃G)

points

5 −0.7818 0.2189 −0.7468 −0.2441

11 −0.6321 0.0966 −0.5380 −0.3510

17 −0.7245 0.0414 −0.5886 −0.0920

23 −0.7257 −0.0159 −0.5686 −0.0309

29 −0.7510 0.0158 −0.6006 −0.0100

35 −0.7468 0.0000 −0.5919 0.0000

41 −0.7468 0.0000 −0.5919 0.0000

47 −0.7468 0.0000 −0.5919 0.0000

Table 3 Benchmark problems considered in this paper

No. Objective and constraints f (xG)

1 f (x = ∑5
i=1 i cos[(i + 1)x1 + i] → min f (xG) = −12.871

0 ≤ x1 ≤ 7.5

2 f (x) = 2 + 0.01(x2 − x2
1 )2 + (1 − x1)2 + 2(2 − x2)2

+ 7 sin(0.5x1) sin(0.7x1x2) → min

f (xG) = −1.4565

0 ≤ x ≤ 5

3 f (x) = ∑2
i=1 |xi sinxi + 0.1xi | → min f (xG) = 0

−10 ≤ x ≤ 10

4 f (x) = x2
1 + x2

2 → min f (xG) = 11.4371

g1(x) = −(x1 + 4)2/3 − (x2 − 0.1)2 + 20 ≤ 10

− 6 ≤ x1 ≤ 4 −4 ≤ x2 ≤ 6

5 f (x) = −(x1 − 1)2 − (x2 − 0.5)2 → min f (xG) = −0.7483

g1(x) = [(x1 − 3)2 + (x2 + 2)2] exp(−x7
2 ) − 12 ≤ 0

g2(x) = 10x1 + x2 − 7 ≤ 0

g3(x) = (x1 − 0.5)2 + (x2 − 0.5)2 − 0.2 ≤ 0

0 ≤ x ≤ 1

constrained problems, the objective and constraints are approximated separately. The
results are shown in Table 4.

It is clear from Table 4 that the proposed SAO algorithm is valid for the benchmark
problems considered here.

5.3 Comparison with other SAO algorithms

It is difficult to examine and evaluate all of the SAO algorithms because they employ
the specific parameters in the algorithm. In addition, various sequential sampling al-
gorithms are developed. One of the important aspects in the SAO is to reduce the
function evaluations. Thus, it may be possible to examine the validity of the pro-
posed algorithm from the view point of function evaluations. In this section, the pro-
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Table 4 Results of benchmark problems

Test 1 Test 2 Test 3 Test 4 Tests

mmax 15 50 50 50 50

Minimum of objective −12.8708 −1.4557 4.3601E–04 11.4426 −0.7486

Maximum of objective −12.3941 −1.3107 9.3849E–03 1 1 .9480 −0.7431

Average of objective −12.7723 −1.4061 3.5725E–03 11.6164 −0.7467

Standard deviation of
objective

1.4444E–01 4.8181E–02 3.1839E–03 1.7970E–01 1.7961E–03

posed SAO algorithm is compared with other SAO algorithms through benchmark
problems. The benchmark problems are taken from Hussain et al. (2002) and Wang
(2003), in which the function evaluations are clearly described. The proposed SAO
algorithm is compared through six benchmark problems. In the proposed algorithm,
initial sampling points are determined by the LHD, and initial number of sampling
points is set to 10. The comparisons of function evaluations and the objective at the
approximate global minimum are listed in Table 5.

5.4 Examination of width

The validity of the width proposed in this paper is examined through the following
problem.

f (x) = 1

2

n∑

i=1

(x4
i − 16x2

i + 5xi) → min (27)

−5 ≤ x ≤ 5 (28)

The global minimum xG is xG = (−2.9035,−2.9035, . . . ,−2.9035)T . The number
of design variables n is set to 10. In this case, the objective function at xG is f (xG) =
−391.661. The PSO is applied to this problem directly. The number of particles is
set to 20, and the maximum search iteration is set to 500. Therefore, 10000 function
evaluations are required to find the global minimum. The PSO results are shown in
Table 6 through 10 trials.

To reduce the function evaluations, we try to find the global minimum with 500
function evaluations. Thus, the maximum number of sampling points is set to 500.
First, 30 sampling points are distributed at random in the design variable space. Ten
trials are performed using (8) and (13). The results are shown in Table 7 and Table 8.

By comparing Table 7 with Table 8, it is clear that better results can be obtained,
by using (13). Through five trials (Trial No. 1–Trial No. 5), the approximate global
minimum could be obtained by (13). In addition, the other trials (Trial No. 6—Trial
No. 10) yield quasi-optimums. However, an approximate global minimum cannot be
obtained with (8). These results imply that it is preferable to apply a different width
to each basis function.
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Table 9 Orthogonal array L9
x1 x2 x3

No. 1 0.05 0.25 2

No. 2 0.05 0.775 8.5

No. 3 0.05 1.3 15

No. 4 1.025 0.25 8.5

No. 5 1.025 0.075 15

No. 6 1.025 1.3 2

No. 7 2 0.25 15

No. 8 2 0.075 2

No. 9 2 1.3 8.5

5.5 Optimum design of tension/compression spring

One of the most popular test problems proposed by Arora can be considered (Arora
1989). Many researchers have used this as benchmark problem in the structural opti-
mization (Coello Coello 2000; Ray and Saini 2001; Hu et al. 2003). The design vari-
ables are (1) the diameter d (= x1), (2) mean coil diameter D (= x2), and (3) number
of active coils N (= x3). The problem can be formulated as follows:

f (x) = (2 + x3)x
2
1x2 → min (29)

g1(x) = 1 − x3
2x3

71785x4
1

≤ 0 (30)

g2(x) = 4x2
2 − x1x2

12566(x2x
3
1 − x4

1)
+ 1

5108x2
1

− 1 ≤ 0 (31)

g3(x) = 1 − 140.45x1

x2
2x3

≤ 0 (32)

g4(x) = x1 + x2

1.5
− 1 ≤ 0 (33)

0.05 ≤ x1 ≤ 2.00 (34)

0.25 ≤ x2 ≤ 1.30 (35)

2.00 ≤ x3 ≤ 15.0 (36)

The orthogonal array L9, which is shown in Table 9, is used to determine the
initial sampling points.

mmax is set to 150, and 11 trials are performed to compare the past researches. The
results obtained by applying the proposed SAO algorithm are shown in Table 10. It is
clear from Table 10 that the function evaluations are drastically reduced in compari-
son with those in the past researches.
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Table 10 Comparison of results on the optimum design of tension/compression spring

Design
variables

Best solutions found

Arora (1989) Coello Coello (2000) Ray and Saini (2001) Hu et al. (2003) This research

x1 0.053396 0.051480 0.050417 0.051466 0.050000

x2 0.399180 0.351661 0.321532 0.351384 0.314777

x3 9.185400 11.632201 13.979915 11.608659 14.650042

g1(x) 0.000019 −0.002080 −0.001926 −0.003336 −0.018820

g2(x) −0.000018 −0.000110 −0.012944 −0.000110 −0.006566

g3(x) −4.123832 −4.026318 −3.899430 −4.026318 −3.837790

g4(x) −0.698283 −0.731239 −0.752034 −0.731324 −0.756815

f (x) 0.012730 0.012705 0.013060 0.012667 0.013103

Function
call

N/A 900000 1291 N/A 66

Average of
f (x)

N/A 0.012769 0.013436 0.012719 0.013273

Worst of
f (x)

N/A 0.012822 0.013580 N/A 0.013643

6 Conclusions

In this paper, the Sequential Approximate Optimization (SAO) algorithm using the
RBF network has been proposed. The Gaussian function is employed as the ba-
sis function. We have examined the width of the Gaussian function, which affects
the accuracy of the response surface. By examining the width equation proposed
by Nakayama, some sufficient conditions for a good approximation are introduced.
Then, a new equation to determine the width has been proposed. In addition, a simple
scaling technique called the adaptive scaling technique has also been proposed. In
this technique, the sufficient conditions for a good approximation are always verified.
Clearly, it is better to optimize the width in these kinds of meta-modeling techniques.
However, optimization of the width is very is time-consuming task. Therefore, it is
preferable to determine the width with a simple manner. Many meta-modeling tech-
niques, such as Kriging, RBF network, and Support Vector Regression (SVR), have
been proposed. The Gaussian function, which is sometimes called the Gaussian ker-
nel, is commonly employed in all these methods. The equivalence between ordinary
Kriging and SVR has been reported under the assumption that the covariance function
is used as the kernel function (An and Sun 2006). The equivalence between SVM and
the regularization neural network has been also reported (Andras 2002). This equiv-
alence can be extended to RBF network, considering the suggestions of Poggio and
Girosi (1990). Thus, it is considered that the equivalence between SVM and RBF net-
work can be established. In the Gaussian kernel, the width plays an important role.
Therefore, one of the important issues is the determination of the width with a simple
manner. It is expected that the proposed width with the adaptive scaling technique is
applicable to Kriging, SVR, and so on, in which the Gaussian function is employed.

Second, the sampling strategy has been examined. In the SAO, the optimum of the
response surface is taken as the new sampling point in order to improve the local ac-
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curacy. In addition, new sampling points in the sparse region are required for a global
approximation. To determine the sparse region, the density function constructed by
the RBF network has been developed. This density function generates local minima
in the sparse region, so that the minimum of this function can be taken as a new
sampling point. In the proposed SAO algorithm, the density function is constructed
repeatedly until the terminal criterion is satisfied. As the result, many new sampling
points can be obtained. Through typical mathematical and engineering optimization
problems, the validity of the proposed SAO algorithm has been examined.
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