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Abstract We propose an algorithm for the global optimization of expensive and
noisy black box functions using a surrogate model based on radial basis functions
(RBFs). A method for RBF-based approximation is introduced in order to handle
noise. New points are selected to minimize the total model uncertainty weighted
against the surrogate function value. The algorithm is extended to multiple objective
functions by instead weighting against the distance to the surrogate Pareto front; it
therefore constitutes the first algorithm for expensive, noisy and multiobjective prob-
lems in the literature. Numerical results on analytical test functions show promise in
comparison to other (commercial) algorithms, as well as results from a simulation
based optimization problem.
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1 Introduction

1.1 Background

This paper introduces a new algorithm for simulation based optimization. The algo-
rithm was developed as part of a project to optimize combustion engine simulations
at Volvo Car Corporation and Volvo Powertrain. The purpose of performing com-
bustion engine simulations is to find an optimal engine design with respect to fuel
consumption while at the same time keeping the emissions of soot and nitrogen at an
acceptable level. The performance of a combustion engine varies between load cases;
therefore, a design should be found that performs well on several load cases. The
problem described is a multiobjective simulation based optimization problem view-
ing the fuel consumption at the different load cases as the objective functions and
the emission bounds as constraints. The problem is characterized by the following
aspects. There are no analytic derivatives of the objective function available (usually
known as a black box function); a simulation takes 42 hours to complete and the re-
sulting output may contain different types of disturbances (such as numerical noise).

As the engine optimization illustrates, an interest in simulation based optimization
for industrial applications exists. Research and development departments often model
a new product as a computer simulation before constructing the initial (physical) pro-
totype. A common way in the industry to make a good choice of design variable
values for a given simulation model is to generate a set of sample points (set of de-
sign variable values) in the variable space, run the simulation for this set and create
a surrogate model1 of the resulting values. The surrogate model may for instance be
an interpolation based on radial basis functions (RBFs), neural network models or
moving least squares. This approach is usually called design of experiments, and is
followed by letting an optimization algorithm find an approximate optimum of the
surrogate model. As the surrogate model contains inaccuracies the surrogate opti-
mum may correspond poorly to the simulation optimum. The surrogate model can
be improved by evaluating points in areas far away from previously evaluated points
and areas with interesting surrogate model values. The model is updated with the
evaluated points and again optimized. The procedure is iterated until an acceptable
accuracy is obtained. The algorithm proposed in this paper automates the procedure
just outlined.

1.2 Simulation based optimization

In this paper, we restrict ourselves to treating simulations as expensive black-box
functions. Let x be the decision variables, f the objective function. Assuming a d-
dimensional parameter domain � = {x ∈ R

d : xL,j ≤ xj ≤ xU,j , j = 1, . . . , d}, the
optimization problem considered is to

minimize f (x), (1a)

subject to xL,j ≤ xj ≤ xU,j j = 1, . . . , d, (1b)

1The term was first used in Booker et al. (1999).
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where (1b) are referred to as the box constraints. The objective function f is the black
box function evaluated by simulation.

Another important aspect of simulations is that the response obtained often con-
tains noise, i.e. it differs from the phenomenon being simulated. Mainly two types
of noise are present in simulations. The first type is ordinary numerical noise which
may for example be a product of rounding errors in the simulation process. The sec-
ond type of noise arises from certain types of simulations, particularly Finite Element
Method (FEM) and Computational Fluid Dynamics (CFD) based simulations where
geometrical structures are described by unions of simpler objects (such as triangles
and tetrahedrons), forming a mesh. When the geometry of the object simulated is
modified, some mesh objects are removed and others are introduced. This may give
rise to discontinuous changes in the simulation output, whereas the phenomenon be-
ing simulated often is a continuous function. When dealing with noisy problems, we
will call the function being simulated the true function and denote it by f . The output
of the simulation will be denoted by f̃ and called the noisy function. We are interested
in minimizing f , but we have only access to f̃ . When noise is not present, f = f̃ .

More specifically, we are considering simulation based problems with the follow-
ing features:

1. f is continuous;
2. f̃ is expensive to evaluate;
3. no analytical derivatives of f̃ are available (f̃ is a black box function);
4. box constraints (1b);
5. noise may be present (f̃ perturbed from f );
6. the parameter space is of low dimension;
7. there are possibly several objective functions.

The continuity assumption is made in order to motivate the use of interpola-
tion/approximation as surrogate models. Of course, an algorithm based on surrogate
models can be applied to any function but to be successful the quality of these ap-
proximations are crucial and this is hard to obtain if the underlying function is discon-
tinuous. Since we do not make any convexity assumptions, a method for solving the
above problem should be globally convergent; the method must also keep function
evaluations at a minimum, and be derivative-free.2 We limit the class of problems to
ones having a low number of decision variables (up to about 6). This is necessary
to obtain acceptable running times for the algorithm presented in this paper. Further-
more, industrial applications often have more than one objective function (among
others, consisting of outputs of several simulations or different outputs from a single
simulation). In this scenario, methods for single objective optimization will not work;
instead methods for so called multiobjective optimization must be used.

1.3 Previous research

Several properties of simulation based optimization make most conventional opti-
mization algorithms unsuitable. The absence of analytic derivatives narrows the field

2Also with regard to finite-difference approximations of the gradient, since such approximations cost too
many function evaluations.
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to algorithms using no first or second order information about the function. The
biggest problem, however, is that objective functions obtained by simulations are
expensive to evaluate. Therefore the use of algorithms inspired by physics and nat-
ural selection (simulated annealing and genetic algorithms for instance), which use
many thousand function evaluations, is not an option. Direct search methods (such
as pattern search methods for example, see Lewis et al. 2000), also require a lot of
function evaluations. Derivative free and global algorithms not falling into any of the
above categories include trust-region methods (such as DFO from Conn et al. 1997 or
NEWUOA from Powell 2006), Shor’s r-algorithm (Shor 1985), DIRECT3 (DIviding
RECTangles) (Jones et al. 1993) and MCS (Multilevel Coordinate Search) (Huyer
and Neumaier 1999). These algorithms generally converge to a global minimum in a
smaller number of function evaluations than those mentioned previously, according
to numerical experiments on reference functions. They could therefore be considered
for use directly on expensive problems.

Most algorithms developed for solving simulation based optimization problems
fall into the category of Response Surface Methods (RSMs). An RSM provides a
surrogate model (or a response surface) of the expensive function (simulation); this
surrogate model is then used for optimizing the simulation. Examples of surrogate
models are linear or quadratic approximations, or some sort of interpolation. A widely
used form of interpolation consists of linear combinations of basis functions. There
are different choices of these basis functions, the most popular ones being kriging,
thin plate splines, cubic splines and multiquadratics. Common to all surrogate-based
optimization methods is the concept of using the surrogate for iteratively selecting
new points to evaluate. These points are then used to further refine the surrogate
model. A common approach among the RSMs, called the two stage approach by
Jones, can be described by the following steps:

0. create and evaluate an initial set of points
1. create a surrogate model using the evaluated points
2. select a new point using the surrogate model and evaluate it
3. go to step 1, unless a stopping criterion is met.

The initial sample in step 0 has to be created without any à priori knowledge of the
function. Usually the set is created using some design of experiments, such as latin
hypercubes.

Step 2 is the most critical step of any algorithm of this class, since this is where
function evaluations may be saved. The algorithm must balance local and global
searches. A local search entails trusting the surrogate model, and selecting points at
the (global) minimum of the model. A global search selects points in areas where few
evaluations have been performed and thus improves the accuracy of the model there.
If the search strategy is very local, the algorithm will only evaluate points close to the
current surrogate minimum, possibly missing minima in regions with low surrogate
accuracy. If it, on the other hand, is very global and the current surrogate minimum is
already close to a global minimum, function evaluations will be wasted. The stopping

3DIRECT was used as an external solver in the implementation of the algorithm presented here.
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criterion in step 3 is usually defined by the number of function evaluations, which in
turn is bounded by some allotted running time for the entire optimization procedure.

The proposed algorithm in this paper is a two-stage RSM. Below follows a short
summary of previous research on RMS-based algorithms; for an in-depth study, see
Jones (2001).

A common approach is to combine conventional algorithms such as genetic algo-
rithms or pattern search together with surrogate models in order to solve expensive
problems (see for instance Booker et al. 1998). This is usually done by selecting the
point for evaluation as the minimizer of the surrogate.

Jones et al. (1998) propose a method based on kriging basis functions, called Ef-
ficient Global Optimization (EGO), and uses expected improvement of the surrogate
to select new points. This algorithm is among the first to use RSMs and is frequently
cited in recent publications.

Gutmann (2001) constructs the response surface with RBFs. New points are se-
lected for evaluation by using a target-value f ∗ (a guess of the minimal objective
value) which is varied in cycles during the course of iterations to achieve a balance
between local and global searches. In short, the point selected for evaluation is that
which maximizes the smoothness of the interpolation, using some external global
optimization algorithm.

Regis and Shoemaker (2005) proposes the Constrained Optimization using Re-
sponse Surfaces (CORS) algorithm. CORS evaluates new points by minimizing the
surrogate value under a constraint on the distance to the previously evaluated points.
The constraint is cycled during the optimization procedure. Regis and Shoemaker
(2007) propose the Stochastic Response Surface (SRS) algorithm. The next point to
evaluate is chosen by randomly spreading a large number of points over the parame-
ter domain and selecting the point with the minimal weight. The weight of a point is
defined by one part decreasing as the distance to the closest evaluated point increases
and one part decreasing with the surrogate value at the point. The balance between
these weights is cycled. These two methods have some similarities with the strategy
proposed in this paper for deterministic single objective problems (see Sect. 2.2). The
main difference is that we select the next point to evaluate by considering decrease
of weight over the whole domain (by integrating over it) in contrast to the pointwise
approach used in SRS and CORS.

Huang et al. (2006) provide the first RSM-based algorithm that considers noisy
objective functions, called Sequential Kriging Optimization (SKO). The algorithm is
an extension of Jones’ EGO algorithm to handling noisy objective functions.

Algorithms for solving multiobjective problems is a vast research area. A common
approach is to use genetic algorithms (such as MATLAB’s gamultiobj), but alterna-
tive methods exist (such as the NBI method presented in Das and Dennis 1998). The
literature on algorithms for expensive multiobjective problems however is less exten-
sive. Some of the response surface methods may be extended to multiple objectives.
Knowles (2006) for instance developed ParEGO, an adaptation of Jones’ EGO al-
gorithm, for multiobjective optimization. In Audet et al. (2008) problems with two
objectives are solved by using the mesh adaptive direct search (MADS) method on
several single objective problems. An algorithm developed directly for multiobjective
problems is presented in Messac and Mullur (2008) where the Normal Constraint
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(NC) method is extended to handle expensive functions by creating local RBF ap-
proximations of the objectives. However, the article focuses more on creating a good
final surrogate model given evaluated points close to the Pareto front.

To the authors’ knowledge, the literature does not contain any previous algorithms
designed for noisy, expensive multiobjective optimization problems. Furthermore the
focus of the response surface algorithms is on pointwise uncertainty which tend to be
large at domain boundaries. This may result, as in Sect. 3.1, Fig. 6C, in selecting many
points at the boundaries. Another issue that we have observed, also present in Fig. 6C,
is the tendency of some algorithms4 to “cluster” points, that is, to select new points for
evaluation close to already evaluated points, by emphasizing local search too much.
This can be a good strategy for reaching below the 1% target fast on test functions.
In real simulation based problems however, the decision maker is seldom interested
in simulating many very similar designs, as the accuracy of the simulation model
is limited. Instead it is important to find the region containing a global minimum.
Furthermore, when the objective function contains noise, interpolating densely placed
points may result in a strongly oscillating surrogate model (see Sect. 2.1.2, Fig. 1A).

1.4 Motivation for the proposed algorithm

As discussed in Sect. 1.3, the existing algorithms may display unwanted characteris-
tics in real-life situations. The algorithm proposed is therefore designed to solve the
type of problems described in Sect. 1.2, as well as to be able to accommodate the
following additional features:

1. avoid clustering of points
2. avoid over-emphasis of border regions
3. reduce overall uncertainty.

In order to achieve these goals the proposed algorithm, henceforth referred to as qual-
Solve, implements a novel way of selecting new points and a way of handling noise
in the objective function.

This article is composed by the following parts. Section 2 describes the inner
workings of the algorithm proposed: how the interpolation is constructed, how new
points for evaluation are chosen and how the algorithm is adapted to multiobjective
optimization. Section 3 reports on numerical results on some reference functions,
as well as on a simulation based problem. Finally, Sect. 4 contains conclusions and
suggests improvements to the proposed algorithm and areas of future research.

2 The optimization algorithm

The algorithm qualSolve presented in this article can be characterized as a two-stage
approach (see Sect. 1.3). This means that sampled data is used to create a surrogate
model (an approximation or interpolation of the real objective function) which then
is used to find the best point for the next expensive function evaluation.

4The design of SRS and CORS however also prevents “clustering”.
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Section 2.1 shows how surrogate models are constructed with RBF interpolation.
However, interpolating data from the noisy function f̃ may result in an oscillating
surrogate model corresponding poorly to the true function f (see Sect. 1.2). Therefore
an approach for approximation using RBFs is proposed. The approximation allows
deviations from the noisy data, enabling the surrogate model to, in a sense, more
accurately represent the true function f .

Section 2.2 presents the strategy for choosing new points. The idea is to evaluate
points such that the surrogate model will be improved in areas close to the optimum.
This is measured by the quality function, which is an integration over an approx-
imation of the uncertainty decrease in the model multiplied by a weight function
depending on the surrogate model’s value. The next evaluated point is then selected
as the maximizer of the quality function.

In Sect. 2.3 the algorithm is extended to multiobjective optimization. This is done
by creating a surrogate model for each of the objective functions, and modifying the
weight function so that it uses a measure of distance to the surrogates’ Pareto front in-
stead of the surrogate function value. Finally, Sect. 2.4 presents some implementation
details.

2.1 Creating a surrogate model of the objective function

2.1.1 Interpolation as a surrogate model

If no noise is present in the objective function, an interpolation is a good choice for
a surrogate model. The following definitions will prove useful when creating inter-
polations based on radial basis functions (RBFs). For more details on RBFs and the
theory behind them see Wendland (2005).

Let πn(R
d) denote the space of all polynomials of order less or equal to n in R

d .

Definition 1 (Conditionally positive definite function) A continuous function �:
R

d × R
d → R is called conditionally positive definite of order m if, for all n ∈ N

any n pairwise different points x1, . . . ,xn and all c ∈ Vm\{0n} it holds that

n∑

j=1

n∑

k=1

cj ci�(xj ,xi ) > 0,

where

Vm =
{

c ∈ R
n :

n∑

j=1

cjp(xj ) = 0, ∀p ∈ πm−1(R
d)

}
.

The radial function φ: [0,∞) → R is called conditionally positive definite of order
m in R

d if �(x,y) := φ(‖x − y‖) is conditionally positive definite of order m.

Note that a conditionally positive definite function of order l is also conditionally
positive definite of order m > l as Vm ⊆ Vl .
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Table 1 List of common RBFs
Name φ(r) Order

Linear −r 1

Cubic r3 2

Thin plate spline r2 log r 2

Multiquadratic −
√

r2 + 1 1

Inverse multiquadratic 1/
√

r2 + 1 0

Gaussian exp(−r2) 0

Definition 2 The points X = {x1, . . . ,xn} ⊂ R
d with n ≥ dimπm(Rd) are called

πm(Rd) unisolvent if the zero polynomial is the only polynomial from πm(Rd) that
vanishes at all of the points in X.

The construction of an RBF-based interpolation is then done as follows. Given the
πl(R

d) unisolvent points X = {x1, . . . ,xn} and corresponding function values f =
(f1, . . . , fn)

T, choose a radial conditionally positive definite function φ (for instance
from Table 1) of order m ≤ l + 1. Let Q = dim(πm−1(R

d)) and {pk}Qk=1 be the basis
of πm−1(R

d). Now define the matrices

Aij = φ(‖xi − xj‖), i, j = 1, . . . , n,

Pik = pk(xi ), i = 1, . . . , n, k = 1, . . . ,Q.

Then the linear system
(

A P

P T 0Q×Q

)(
α

β

)
=

(
f

0Q

)
, (2)

has a unique solution (see below). By solving it the coefficients for the RBF-inter-
polations are obtained. The interpolation is the function

S : R
d → R, S(x) :=

n∑

j=1

αjφ(‖x − xj‖) +
Q∑

k=1

βkpk(x). (3)

The following proposition guarantees the unique solution. For a proof see Wendland
(2005, Theorem 8.21).

Proposition 1 Suppose φ is conditionally positive definite of order m and X is
πm−1(R

d) unisolvent. Then (2) is uniquely solvable.

In this article we have restricted ourselves to using linear tails (Q = 2) in the
interpolation (3). Hence conditionally positive functions of order less or equal 2 must
be used. Expressing the matrix P rowwise, we then obtain

Pk· = (1, x1,k, . . . , xj,k), k = 1, . . . , d. (4)

By demanding that the points X are π1(R
d) unisolvent (i.e., they do not belong to a

common hyperplane) a unique solution to the linear system (2) is guaranteed. Solving
the system using the matrix defined in (4) gives the coefficients to the interpolation
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in (3). This is the surrogate model to be used in the next step of the algorithm, which
is to decide where to perform the next evaluation of the function f .

2.1.2 Approximation as a surrogate model

When the objective function f is noisy, interpolating the responses of the noisy func-
tion f̃ may lead to an oscillating surrogate model that corresponds poorly to the
true5 objective function f (see Fig. 1A). To prevent this type of behavior a surrogate
model that deviates from the data points (that is an approximation) will be introduced.
In order to present a method for RBF approximation some definitions and theoretical
results are necessary. The function space containing all sums of RBFs of the form (3)
is called the native space Nφ . This space is equipped with the following semi norm.6

Definition 3 (Semi norm) Let S be an interpolation (that is functions on the form (3))
with coefficients α and data points x1, . . . ,xn. The squared semi norm in the native
space is defined as

|S|2Nφ
=

n∑

i=1

n∑

j=1

αiαiφ(‖xi − xj‖).

The semi norm will be useful when generalizing the interpolation to an approxima-
tion, as it can be seen as a measure of function complexity. The following theorem
shows that the interpolation S obtained by solving (2) is the function from Nφ that
interpolates the data {X, f̃ } with the smallest semi norm | · |Nφ

(for a proof, see
Wendland 2005, Theorem 13.2):

Theorem 1 Suppose � ∈ C(� × �) is a conditionally positive definite function of
order m. Suppose further that X is πm−1 unisolvent. Let S be the interpolant obtained
by solving (2). Then

|S|N�
= minimum{|S̃|N�

: S̃ ∈ N� with S̃(xj ) = f̃j , j = 1, . . . , n}. (5)

We will restrict ourselves to utilizing RBFs as our conditionally positive definite
functions �(x,y) := φ(‖x − y‖). A new contribution by this article is the following
method for constructing RBF approximations by generalizing the minimization prob-
lem (5) to allow deviations from data. The new minimization problem is constructed
so that the size of the deviation introduced is balanced against that of the surrogate
norm. The problem is to

minimize η|S|2Nφ
+ (1 − η)‖e‖2

l2
,

subject to S(xi ) = f̃i + ei, i = 1, . . . , n,

S ∈ Nφ,

e ∈ R
n.

(6)

5See Sect. 1.2 for a discussion of the true and noisy function.
6Wendland (2005, Chap. 10) gives a detailed definition of the native space Nφ , and establishes the semi
norm properties of Definition 3.
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Fig. 1 (A) interpolation of a noisy function response, (B) approximation of the same data. The noisy
function was obtained by adding normally distributed noise to the smooth true function

The fixed parameter η ∈ (0,1) controls the balance between reducing the error and
reducing the surrogate semi norm. One extreme case is η → 1, where minimizing
the semi norm is prioritized much higher than minimizing the error, leading to an
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approximation with zero semi norm (which is a polynomial in the case of condition-
ally positive definite RBFs). The other extreme is η → 0 which in turn prioritizes
the error much higher than the semi norm leading to an interpolation. By choosing
η somewhere in between a balance is obtained where some error is allowed, but the
characteristics of the data points are still present.

Having formulated the approximation as a solution to the problem (6), the question
of how to solve this problem and obtain the function S remains. Denote the matrix
in (2) by

Ã =
(

A P

P T 0Q×Q

)
, Ã ∈ R

(n+Q)×(n+Q).

Proposition 2 Let φ be a conditionally positive definite function of order m and
X ⊂ R

d be πm−1(R
d) unisolvent. Let B ∈ R

n×n, Bij = (Ã−1)ij for i, j = 1, . . . , n.
The optimal value of e in the problem (6) is obtained by solving the linear system

(
η − 1

η
In×n − BTAB

)
e = BTABf̃ . (7)

Proof Theorem 1 implies that, given an error vector e, the function S ∈ Nφ satisfying
the constraints in (6) with least norm is the interpolation. Its coefficients are obtained
by solving:

(
A P

P T 0Q×Q

)(
α

β

)
=

(
f̃ + e

0Q

)
. (8)

According to Proposition 1 there exists a unique solution. Hence, α = B(f̃ + e) and
β = C(f̃ + e), where C ∈ R

d×n, Ci−nj = (Ã−1)ij for i = n + 1, . . . , n + d and j =
1, . . . , n. Using Definition 3, the relation |S|2Nφ

= ∑n
i=1

∑n
j=1 αiαjφ(‖xi − xj‖) =

αTAα is obtained, and the problem (6) reduces to a quadratic programming problem
of the following form:

minimize
e∈Rn

q(e) = η(f̃ + e)TBTAB(f̃ + e) + (1 − η)eTe.

For functions g ∈ C2 the convexity of g is equivalent to it having a positive semidef-
inite Hessian. Since A is a symmetric matrix,

∇2q(e) = 2ηBTABT + 2(1 − η)In×n. (9)

Next the positive definiteness of this Hessian is proven. Letting x ∈ R
n be arbitrary,

by using the definitions of B and C,

(
A P

P T 0Q×Q

)−1 (
x

0Q

)
=

(
Bx

Cx

)

holds. Multiplying this relation by
(

A P

P T 0Q×Q

)
from the left the following is obtained:

(
x

0Q

)
=

(
A P

P T 0Q×Q

)(
Bx

Cx

)
.
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Considering the lower row of this equation yields:

P TBx = 0Q.

Because φ is conditionally positive and P TBx = 0Q, definition 1 implies:

xTBTABx > 0, ∀x ∈ R
n\{0n}.

This proves that BTAB is a positive definite matrix, and hence the Hessian defined
in (9) is positive definite, which in turn implies that q is a (strictly) convex func-
tion. For convex functions q in unconstrained domains the minimum is given by the
solution to the linear equation

∇q(e) = 0n.

Inserting, differentiating, and using the symmetry of A gives:

η(2BTABe + 2BTABf̃ ) + 2(1 − η)e = 0n,

and the vector e is obtained by solving the linear system (7). As BTAB is positive
definite and (η − 1)/η < 0 the system has a unique solution. �

Having obtained the optimal errors e, the surrogate is obtained by solving the
system (8), as claimed.

In Fig. 1B a surrogate model is constructed for the same set of points as in Fig. 1A
but by using the approximative method with η = 0.2. We observe that the approx-
imation becomes less oscillating than the interpolation and also resembles the true
function more than the interpolation does. Furthermore, because of the less oscil-
lating behavior, locating the minimum of the approximation is often easier than for
the interpolation. When we consider a multiobjective optimization problem, reduc-
ing oscillations created by noise becomes even more important, as a Pareto front of
oscillating functions becomes discontinuous. Such a property would make it difficult
for multiobjective solvers to correctly locate the surrogate’s Pareto front.

The downside to using approximation as a surrogate model is the introduction of
a new parameter that has to be chosen with care: the approximation parameter η. The
next section describes cross-validation, a method for estimating the approximation
parameter η from data. The method was used when generating the data shown in
Fig. 1B.

2.1.3 Estimating the approximation parameter η

A method for estimating η is the subject of this section. The method is called cross-
validation and has its roots in statistics, see e.g. Kohavi (1999). The method is also
used in Jones et al. (1998) for another type of parameter estimation. The implemen-
tation in this article uses the so-called Leave-one-out cross-validation, the idea of
which is the following. Consider a set of points X = {x1, . . . ,xn} and corresponding
noisy function values f̃ = (f̃1, . . . , f̃n). The noisy function values are assumed to be
the sum f̃i = f (xi ) + εi . The first term is the value of the true objective function f
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Fig. 2 Surrogate models obtained by removing one data point; in (A) the point at 0.12 was removed
whereas in (B) it was the point at 0.43. The noisy function used was produced by adding normal distributed
noise to a smooth true function

at xi . The second corresponds to the noise and consists of independent and identically
distributed random variables εi with zero mean: E[εi] = 0. Remove the data point i,
choose a value of the approximation parameter η and construct a surrogate model
Sη{X\xi } of all the remaining points. Evaluate Sη{X\xi } at the removed point. Figure 2
shows surrogate models obtained by removing one point and using the others to cre-
ate a surrogate, and doing so for two different points. The best choice of η should be
that which allows the approximation to predict the value of a missing point with as
small an error as possible. Formally, the approximation parameter η that solves the
following optimization problem is chosen:

minimize
n∑

i=1

(Sη{X\xi }(xi ) − f̃i )
2,

subject to η ∈ (0,1).

(10)

If removing the point xi yields a set of points that are not π(Rd) unisolvent, then
the term is left out from the sum. In order to decrease computational time, a list of η

values was evaluated, and the one with the lowest objective value was chosen. This
procedure is repeated after every newly evaluated point.

The success of this estimation method relies on the assumption that a surrogate
with a value of η that can enable good predictions for previously chosen points will
also provide good predictions for yet unsampled points. Since the noise is assumed
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to be a random and independent quantity, it can not be predicted. Hence the surrogate
Sη{X\xi }, where η has been obtained by cross-validation, can at best predict the true
function.

2.2 A strategy for choosing the next evaluation point

All algorithms that handle expensive functions have to keep the number of function
evaluations at a minimum. The key issue for algorithms based on surrogate models
is to find a balance between local and global searches (see Sect. 1.3, step 2 of a two-
stage approach). We will obtain this balance by maximizing an auxiliary function that
measures the improvement in certainty gained weighted against surrogate function
value.

As uncertainty increases with distance to evaluated points X, the measure of un-
certainty7 at a point y is defined as:

UX(y) = minimum
x∈X

‖x − y‖. (11)

The goal of selecting new points is not to minimize the overall uncertainty, since
the accuracy of the surrogate in areas with high function values is not important.
Therefore a measure of the form

∫
�

UX(x)ω(S(x))dV (x) of the total uncertainty
weighted against function value is introduced. The weight function ω(S(x)) (the de-
tailed construction is described below) gives points with high surrogate function value
S a low weight and points with low surrogate value a high weight. When choosing a
new point to evaluate, the point is chosen such that the overall decrease in weighted
uncertainty is maximized.

Definition 4 (Quality function) Let � ⊆ R
d be the parameter space, ω : R → R

+
be the weight function that prioritizes regions of interest for the optimization, and
UX : R

d → R
+ be a measure of uncertainty given by (11). The quality function is

then given by:

Q : R
d → R, Q(y) =

∫

�

(UX(x) − UX∪y(x))ω(S(x))dV (x). (12)

An important property of the function Q in (12), which partly motivates its con-
struction, is that the integrand vanishes outside of the domain

�y =
{
x ∈ � : ‖x − y‖ ≤ min

w∈X
‖x − w‖

}
.

It is therefore sufficient to perform an integration over �y , which saves computa-
tional time. Finally, the point to evaluate next is obtained by solving the following

7Regis and Shoemaker (2005) and Regis and Shoemaker (2007) use the distance to closest evaluated point
in a similar way.
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Fig. 3 A sequence of points chosen by maximizing the quality function, treating the whole domain as
equally important

optimization problem8 using conventional optimization algorithms:

maximize
y∈�

Q(y). (13)

Figure 3 illustrates the process of choosing the next point to evaluate. For illustration
purposes the weight function ω ≡ 1 was used, hence treating all parts of the domain
as equally important.

Returning to the construction of the weight function, recall that the weight function
should be constructed to give small weights to high surrogate function values and
large weights to low surrogate function values. Furthermore, considering that we are
optimizing a black box function, all parts of the parameter domain have to be regarded
as potentially containing a minimum. This is the motivation for placing the following
demands on the weight function ω:

– no areas are completely disregarded: ω(z) > 0, ∀z ∈ R;
– areas with low surrogate function values are weighted higher than areas with high

surrogate function values: ω is strictly decreasing.

A choice of weight function that satisfies these conditions is

ω(z) = exp

(
−γ

z − minx∈� SX(x)

maxx∈� SX(x) − minx∈� SX(x)

)
, (14)

8This is in itself a challenging problem in general; a simplification compared to the original problem,
however, is that it is not expensive or noisy.
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where γ ≥ 0. The function is constructed so that ω(minSX(x)) = 1 and
ω(maxSX(x)) = exp(−γ ). The parameter γ ≥ 0 controls the balance between local
and global search. It has a purpose similar to that of the parameter β in the algorithm
of Regis and Shoemaker (2005). If γ = 0, we completely ignore the surrogate model
and aim to minimize the total uncertainty (i.e. space filling), whereas γ → ∞ corre-
sponds to simply choosing arg minSX(x) as the new point to evaluate, hence trusting
the model completely.

Although one choice of the value of the parameter γ is sufficient to induce both
local and global searches, in practice we have noted that cycling9 between the evalua-
tions generally provides the best results. Cycling a parameter controlling the global–
local search is common practice among response surface algorithms.10

2.3 Multiobjective optimization

The purpose of this section is to extend the algorithm previously described to multiob-
jective optimization. First a surrogate model Si is created for each objective function
as described in Sect. 2.1. The second and major modification is to adapt the weight
function ω (see Definition 4) so that it becomes relevant for multiobjective optimiza-
tion. In order to do so, we first introduce some theory.

The general multiobjective optimization problem, to

minimize f (x) = (f1(x), f2(x), . . . , fm(x))T,

subject to x ∈ �,

can be solved using different approaches, depending on information known about the
preferences of the decision maker (see Miettinen 1999 for a thorough treatment). Let
first Zf = {f (x) : x ∈ �} denote the feasible objective set. The focus of this article
is to find the Pareto front P(Zf ) ⊂ R

m.

Definition 5 (Pareto optimality) An objective vector z∗ ∈ Zf is Pareto optimal if
there does not exist another vector z ∈ Zf such that zi ≤ z∗

i for all i = 1, . . . ,m and
zj < z∗

j for at least one index j ∈ {1, . . . ,m}.
The objective vector z∗ is weakly Pareto optimal if there does not exist another

vector z ∈ Zf such that zi < z∗
i for all i = 1, . . . ,m.

Definition 6 (Pareto optimal set) The Pareto optimal objective set (or, Pareto front)
P(Zf ) ⊆ Zf is defined as the set consisting of all Pareto optimal objective vectors
in Zf .

The weakly Pareto optimal objective set Pw(Zf ) ⊆ Zf is defined as the set con-
sisting of all weakly Pareto optimal objective vectors in Zf .

When the objective is to find the Pareto front, an objective vector closer to or
at the surrogate models’ Pareto front is naturally considered more important than a

9Cycling refers to changing the parameter according to a given finite sequence and restarting the sequence
when the last element is reached.
10Cycling is used in Gutmann (2001), Regis and Shoemaker (2005) and Regis and Shoemaker (2007).
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vector further away. Further, as the objectives are black box functions, all points not
evaluated may prove to be Pareto optimal. The demands on the weight function ω

hence are the following:

– no areas are completely disregarded: ω(z) > 0; ∀z ∈ Zf ;
– if z1 ∈ Zf is closer to the Pareto front P(Zf ) than z2 ∈ Zf , then ω(z1) > ω(z2)

should hold.

Unfortunately we do not have access to the set Zf , so instead we have to utilize the
surrogate feasible set ZS . Define the extended Pareto front as

Pe(ZS) = Pw(ZS + R
m+). (15)

If a point is close to Pe(ZS) it is good candidate being close to the P(Zf ) and the
model uncertainty at that point should be low. The weight function is therefore con-
structed so that it decreases with the distance to the extended front Pe(ZS) and is
greater than zero for all areas:

ω(z) = exp

(
−γ

distS(z)

distS(z̃)

)
. (16)

The vector z̃ is used for scaling and is defined by z̃ = maxz∈ZS distS(z). The distance
function distS : R

m → R+ is defined as the smallest Euclidean distance between the
point z and a point at the extended Pareto front Pe(ZS) of the surrogate functions in a
domain scaled to unity. Figure 4 gives a graphical representation of the distance func-
tion and the extended Pareto front for two objective functions. The distance function
is defined as

distS(z) = min
z∗∈Pe(ZS)

√√√√
m∑

j=1

(
z∗
j − zj

zj,max − zj,min

)2

, (17)

where zj,max = maxx∈� Sj (x) and zj,min = minx∈� Sj (x). Analogous to the case of a
single objective optimization the weight ω is constructed such that it varies between
1 and e−γ . Indeed, objective vectors belonging to the Pareto front of the surrogate
z ∈ P(ZS) (which implies that they belong to the extended front z ∈ Pe(ZS)) obtain

Fig. 4 Illustration of the
distance function to the
extended Pareto front. The
dashed line symbolizes the part
that the Pareto front is extended
with to obtain the extended
Pareto front. The value of the
distance function at three
different points (including z̃) is
illustrated by the double arrows
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Algorithm 1 Solver for single objective optimization
generate initial points X � initial points
evaluate objective function f at X to obtain f

while maximal number of evaluations not exceeded do
if interpolation then � create surrogate model

f̂ = f

else if approximation then
cross-validate to obtain η

obtain e by solving linear system (7)
f̂ = f + e

end if
obtain α, β by solving linear system (2)
use α, β to create surrogate S by (3)
minimize S

choose next γ from cycle
obtain y by solving (13) � find point to evaluate
evaluate function f at y

add f (y) to f and y to X

end while
k = arg mini=1,...,n{fi}
fmin = fk

xmin = xk

return xmin, fmin, S

the weight ω(z) = 1, while the feasible point farthest away, z̃, fulfills ω(z̃) = e−γ .
As in single objective optimization, the parameter γ ≥ 0 balances global and local
searches. The extremal choice γ = 0 corresponds to a global search and γ → ∞
corresponds to minimizing the uncertainty at the Pareto front (hence a local search).

The Pareto front of the surrogate models can be found by using a multiobjective
solver that is adapted to solving the original problem without considering noise and
expensiveness. This is often in itself a challenging problem as the surrogates may be
highly nonlinear and multi modal. To compute the vectors zmax and zmin an exter-
nal solver for single objective optimization must be used. The main implementation
difficulty lies in constructing the distance function distS together with the extended
Pareto front Pe(ZS); see Sect. 4 for a further discussion on this.

2.4 Implementation

Below follows a short overview of the implementation; for more details, see Rudholm
and Wojciechowski (2007).

The complete11 single objective algorithm is presented in Algorithm 1, using no-
tation from previous parts of this section. The goal of the single objective algorithm
is to solve the problem defined in (1). The task is to find the minimum of f , that is

11Transformations and other implementation details are left for presentation transparency.
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Algorithm 2 Solver for multiobjective optimization
generate initial points X in � � initial points
for j = 1 : m do

evaluate objective function j at X to obtain fj

create surrogate model Sj

end for
solve multiobjective problem for surrogate functions S = (S1, . . . , Sm)

while maximal number of evaluations not exceeded do
chose next γ from cycle
obtain y by solving (13) � find point to evaluate
add y to X

for j = 1 : m do
evaluate function fj at y

update surrogate model Sj

end for
solve multiobjective problem for surrogate functions S = (S1, . . . , Sm)

end while
return P(ZS), P�(ZS), S

fmin, and the point where it is obtained, that is xmin. The different parts of the two-
stage approach (see Sect. 1.3) can be identified according to the comments. As ex-
ternal solver TOMLAB’s12 implementation of DIRECT followed by SNOPT13 was
used. During all test runs the RBFs used were thin plate splines. It should also be
mentioned that the implementation performs a unit transformation of the parameter
domain � → [0,1]d . Furthermore, similar to the median cut strategy performed in
Gutmann (2001) and Regis and Shoemaker (2005), a logarithmic transformation of
the objective functions is performed. The transformation is adapted to have a small
impact close to the current surrogate minima and reducing larger function values.

In Algorithm 2, the algorithm for multiobjective optimization is described. The
method for creating the surrogate models is the same as in the single objective case,
and is hence not described in detail. The output of the multiobjective algorithm (the
genetic solver MultiOb was used, see Hanne 2006) is the Pareto optimal objective
set P(ZS) of the final surrogate models and the corresponding Pareto optimal pa-
rameter set P�(ZS) := {x ∈ � : S(x) ∈ P(ZS)}. As external single objective solver
TOMLAB’s implementation of DIRECT followed by SNOPT was used.

3 Results and comparisons

The purpose with this section is to evaluate the performance of the algorithm on ana-
lytical test functions found in the literature. The algorithm is evaluated on determinis-
tic functions, functions disturbed by noise and deterministic functions with multiple

12Commercial optimization software developed by Tomlab Optimization Inc.
13Commercial software package for nonlinear problems included in TOMLAB.
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Table 2 The Dixon–Szegö test
bed. Each function has one
global minimum except for
Branin, which has three

Function d # local min Domain

Branin 2 3 [−5,10] × [0,15]
Goldstein–Price 2 4 [−2,2]2
Hartman 3 3 4 [0,1]3
Shekel 5 4 5 [0,10]4
Shekel 7 4 7 [0,10]4
Shekel 10 4 10 [0,10]4
Hartman 6 6 4 [0,1]6

objectives. The impact on the final result of the initial point strategy is also examined.
To test the algorithm on a real simulation problem, a multiobjective optimization of
the simulation of a heater element was also performed.

3.1 Results for deterministic functions

The suite of deterministic functions is part of the well-known test bed of Dixon and
Szegö (see Dixon and Szegö 1978), summarized in Table 2. The test functions are
subject to box constraints only.

The algorithm qualSolve was compared with EGO (originally presented in Jones
et al. 1998, here using TOMLAB’s14 implementation by Björkman and Holmström
2000), Gutmann’s algorithm (originally presented in Gutmann 2001), CORS (origi-
nally presented in Regis and Shoemaker 2005) and rbfSolve (TOMLAB’s improve-
ment of Gutmann’s algorithm by Björkman and Holmström 2000) on the seven test
functions. All algorithms are designed to handle expensive objective functions and
hence are suited for comparison. During the run of qualSolve the parameter γ was
cycled over the values (0,10,20,20,50,50,∞), where ‘∞’ simply means evaluating
the surrogate minimum without taking the uncertainty under consideration. Similarly
as for the CORS algorithm the performance and behavior of the algorithm is depen-
dent on the cycle used. As the functions are deterministic the surrogate model chosen
was an interpolation. As measure of progress, following Gutmann (2001), the relative
error

ei = |fi − f ∗|
|f ∗| ,

was used. Here, fi denotes the current evaluated function value and f ∗ denotes the
global minimum objective value. The functions belonging to the Dixon–Szegö test
bed all have non-zero optimal values, making this termination criterion feasible. The
algorithms were terminated when the relative error ei reached below 1%, or when the
number of function evaluations exceeded 150, whichever came first.

Two choices of initial points were used. The first was to use all corner points of the
domain, resulting in 2d initial points (following Gutmann 2001). To see how much of
an impact the initial points have on the outcome, a second run was performed using

14Commercial optimization software developed by Tomlab Optimization Inc.
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Table 3 Dixon–Szegö test functions evaluated using the 2d corners of the domain as initial points. Shown
is the number of function evaluations until the relative error reached below 1%. The best values are shown
in bold. ‘–’ denotes that the relative error never reached below 1% during the 150 functions evaluations

Function qualSolve Gutmann rbfSolve EGO CORS

Branin 32 44 59 21 34

Goldstein–Price 60 63 84 125 49

Hartman 3 46 43 18 17 25

Shekel 5 70 76 – – 41

Shekel 7 85 76 – – 46

Shekel 10 71 51 – – 51

Hartman 6 99 112 109 92 108

Table 4 Dixon–Szegö test functions evaluated using LHD of size d + 1 as initial points. Shown for each
algorithm are the percentage of runs that reached 1% relative error in less than 150 function evaluations,
the mean number of evaluations to reach the target and the standard deviation. Runs that did not reach the
target within 150 function evaluations are not included in the mean. The lowest mean is indicated in bold.
The total number of runs for each function and algorithm was 20

Function qualSolve rbfSolve EGO

Branin 100% 26.9 (4.5) 100% 62.7 (1.3) 100% 23.0 (0.0)

Goldstein–Price 100% 30.4 (11.0) 100% 63.0 (0.0) 0%

Hartman 3 100% 38.8 (16.9) 100% 28.0 (0.0) 100% 31.0 (0.0)

Shekel 5 30% 61.0 (10.9) 0% 0%

Shekel 7 60% 66.0 (7.6) 0% 0%

Shekel 10 60% 78.0 (39.8) 0% 0%

Hartman 6 95% 50.7 (14.7) 100% 122.0 (0.0) 0%

d + 1 initial points by randomly generating Latin Hypercube Designs (LHDs, see Ye
et al. 2000 for further information) and choosing the design with the largest minimal
distance between two neighboring points from the designs satisfying π1 unisolvence.
20 runs were performed for each test function and algorithm. The results are shown
in Tables 3 and 4; it is apparent that initial points do play a big role in the speed of
convergence. Note further that some runs did not finish in less than 150 iterations.

To give a graphical illustration of the differences between the algorithms we ran
qualSolve, EGO, Gutmann’s algorithm (as implemented in TOMLAB) and rbfSolve
on the ‘Tilted’ Branin15 test function (see Fig. 5). Each algorithm was allowed to per-
form 30 function evaluations. Figure 6 shows the points evaluated by the algorithms
and interpolations created from them using a thin plate spline as RBF. It should be
pointed out that EGO does not use RBFs to construct the response surface (it uses
kriging) and rbfSolve uses a cubic RBF. Still, interpolating using thin plate splines
gives a hint on how response surfaces based on these points will appear.

15The Branin test function was tilted to obtain only one global minimum instead of three; see Huang et al.
(2006).



522 S. Jakobsson et al.

Fig. 5 ‘Tilted’ Branin test
function

Fig. 6 Interpolations created from points evaluated by different methods, when solving the ‘Tilted’ Branin
test function

Comparing Figs. 6A and D shows that qualSolve increases the density of evaluated
points in a continuous manner when approaching the minimum, whereas Gutmann’s
algorithm tends to mix very global searches with a very local clustering of evalu-
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ated points (consider the points inside the box, where it is impossible to distinguish
individual points). This behavior is not shared by rbfSolve. Instead, many evaluated
points seem to be placed in areas with high function values without any focus on
local search. For both algorithms the result is a very low number of points in the area
around the global minimum of the function. EGO, on the other hand, succeeds in
locating the global minimum. Still, it could be argued that the transition between the
globally spread points and the locally spread points around the minimum is worse
than that of qualSolve.

3.2 Results for non-deterministic functions

In order to investigate the performance of qualSolve on non-deterministic test func-
tions (test functions containing noise), the test bed presented in Table 5 was used as
the true16 functions. The noisy functions were created by adding a normally distrib-
uted random value. For details on the test functions see Huang et al. (2006).

The qualSolve algorithm was compared with SKO (see Sect. 1.3), which is an
extension of EGO designed to handle expensive and noisy objective functions. To
stress the importance of handling noise, comparisons with the TOMLAB solver rbf-
Solve were also performed, although this algorithm was not developed to handle
noisy functions.

Following Huang et al. (2006), a measure of convergence is defined:

Gi = f (xin) − f (xi )

f (xin) − f ∗ , (18)

where xi is the minimum proposed by the algorithm at the i:th iteration and f is the
true function. The point xin is the median initial point xin = arg medianx∈Xinf (x),
where Xin is the set of initial points. The measure is constructed such that Gi ≤ 1 for
all i. Reaching Gi = 1 means that the global minimum has been found.

The parameter γ was cycled between (0,10,20,20,50,50). The reason for omit-
ting the ‘∞’ term in contrast to the deterministic cycle from Sect. 3.1 is that we wish
to find the minimum of the true function f and evaluating the noisy function f̃ at a
suspected minimum does not (in contrast to the deterministic case) provide us with

Table 5 Test functions used as true functions for non-deterministic algorithm evaluation. The Branin
function has been tilted so that only one local minimum is global. The test function Ackley 5 contains an
oscillating term, and is therefore littered with local minima

Function d # local minima Domain

Six-hump camel back 2 6 [−1.6,2.4] × [−0.8,1.2]
‘Tilted’ Branin 2 3 [−5,10] × [0,15]
Hartman 3 3 4 [0,1]3
Ackley 5 5 – [−1.6,2.4]5

16See Sect. 1.2 for a discussion of true and noisy functions.



524 S. Jakobsson et al.

Table 6 Various test functions with LHD of size 11d as initial points. Noise distributed with N(0, σ 2) was
added. Shown are the means and standard deviations (in parentheses) of the number of function evaluations
necessary for reaching Gi ≥ 0.99. The lowest mean is indicated in bold. The percentage is the number of
runs that reached this target. The maximal amount of evaluations was 200 for all functions, except for the
two Six-hump camel back ones which were only allotted 100 evaluations. The total number of runs for
each function and algorithm was 50. Data for SKO is taken from Huang et al. (2006), whereas data for
rbfSolve was obtained by performing runs with TOMLAB’s implementation

Function σ qualSolve SKO rbfSolve

S.-h. c. b. 0.12 100% 31.4 (11.2) 100% 29.2 (5.7) 94% 30.1 (6.4)

S.-h. c. b. 0.24 92% 34.7 (12.2) 94% 29.4 (6.6) 86% 37.4 (15.4)

‘Tilted’ B. 2.0 100% 58.4 (25.1) 98% 28.4 (5.3) 80% 60.7 (19.2)

Hartman 3 0.08 100% 61.2 (22.9) 96% 45.4 (7.9) 100% 71.3 (12.0)

Ackley 5 0.06 100% 100.5 (16.9) 94% 98.9 (5.6) 12% 148.3 (31.1)

Table 7 Various test functions with Latin Hypercube Design of size d + 1 as initial points. See caption of
Table 6

Function σ qualSolve rbfSolve

Six-hump camel back 0.12 100% 17.2 (10.9) 96% 33.0 (13.1)

Six-hump camel back 0.24 98% 21.9 (16.0) 84% 35.2 (18.2)

‘Tilted’ Branin 2.0 98% 47.3 (22.5) 42% 71.8 (26.3)

Hartman 3 0.08 100% 37.1 (25.7) 100% 32.9 (15.5)

Ackley 5 0.06 100% 59.6 (18.4) 10% 103.0 (23.9)

a certain value of f at that point. The approximation parameter η was chosen by
cross-validation among the values (10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 0.1,
0.2).

Two choices of initial points were used. The first was 11d LHD initial points, as in
Huang et al. (2006). This strategy of course yields many more than the d +1 required
by qualSolve. Hence, the second choice was to use d + 1 LHD initial points. The
algorithms were run until Gi ≥ 0.99 or a maximal number of function evaluations
was reached. If the value of Gi did not reach 0.99 the run was considered as not
converged. Table 6 shows the results obtained when 11d initial points were used. SKO
attained the lowest mean value, but qualSolve had a higher convergence percentage
on all test functions except on the Six-hump camel back. The poor performance of
rbfSolve illustrates the necessity of handling noise explicitly. In Table 7 the number of
initial points was decreased to d +1. The performance of qualSolve was considerably
improved yielding the best results overall.

3.3 Results for vector-valued functions

The success of a multiobjective optimization algorithm for expensive function evalu-
ations is somewhat harder to quantify than that of a single objective algorithm. One of
the few algorithms designed for these problems is ParEGO Knowles (2006). Knowles
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also compares the performance of ParEGO to that of NSGA-II, a genetic algorithm,
showing promising results. Unfortunately only relative figures of merit were used.

In light of this, what follows is a simple comparison of the performance of
qualSolve and MATLABs genetic algorithm for multiobjective problems gamulti-
obj. The algorithms were run twice on each test function, the runs were terminated
after 100 and 250 function evaluations respectively. For qualSolve the γ parameter
was cycled between the values (0, 10, 10, 10, 20, 20, 20, 20, 20, 20, 50, 50, 50, 50, 50,
50, 50, ∞, ∞, ∞). The ∞ symbol here indicates choosing a point on the surrogate’s
Pareto front with the largest uncertainty. The cycle may be recognized as a prolonged
version of the cycle used on single objectives in Sect. 3.1, motivated by the fact that
finding a whole set (the Pareto front) generally requires more function evaluations
than finding a point (the minimum). Most multiobjective test problems, including
the widely used DTLZ test suite in Deb et al. (2001), have been developed for the
evaluation of algorithms for inexpensive functions and are hence extremely challeng-
ing when only a limited number of function evaluations is allowed. To the authors’
knowledge, there is no test suite developed for expensive problem algorithms; hence
we have chosen to use only three test functions of mixed difficulty; this is therefore
by no means an extensive study. OKA1 was used as an example of a challenging test
function, Kursawe was of medium difficulty whereas the modified Deb bimodal was
chosen as an example of a smooth test function. The parametric domain for OKA1
and Modified Deb bimodal is two dimensional while Kursawe is three dimensional.
The test functions selected all supply two objective functions, and have not been sub-
jected to any noise. Here follows the analytical expressions of the test functions used;
3D plots of the two-dimensional functions can be seen in Figs. 7–8.

Kursawe taken from Kursawe (1991):

f1(x) =
n−1∑

i=1

(−10 exp
(−0.2

√
x2
i + x2

i+1

))
,

Fig. 7 The objective functions of the OKA1 test function. The bottom of the valley in (B) is strongly
oscillating
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Fig. 8 The objective functions of the modified Deb bimodal test function

f2(x) =
n∑

i=1

(|xi |0.8 + 5 sin(xi)
3),

x ∈ [−5,5]3.

OKA1 taken from Knowles (2006) (Fig. 7):

f1(x) = x′
1,

f2(x) = √
2π −

√
|x′

1| + 2|x′
2 − 3 cos(x′

1) − 3| 1
3 ,

x′
1 = cos

(
π

12

)
x1 − sin

(
π

12

)
x2,

x′
2 = sin

(
π

12

)
x1 + cos

(
π

12

)
x2,

x1 ∈
[

6 sin

(
π

12

)
,6 sin

(
π

12

)
+ 2π cos

(
π

12

)]
,

x2 ∈
[
−2π sin

(
π

12

)
,6 cos

(
π

12

)]
.

Deb bimodal taken from Deb (1999) (Fig. 8):

f1(x) = x1,

f2(x) = g(x)

x1
,

g(x) = 2 − exp

(
−

(
x2 − 0.2

a

)2)
− 0.8 exp

(
−

(
x2 − 0.6

0.4

)2)
,

x ∈ [0.1,1]2;
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Fig. 9 The Pareto fronts of the test function OKA1. The gray dots represent the reference Pareto front
and the black dots the non-dominated points returned by qualSolve. The rings represent points returned by
gamultiobj. Figures (A) and (B) represent the results after 100 and 250 function evaluations respectively,
with 6 respectively 13 non-dominated points returned by qualSolve

Fig. 10 The Pareto fronts of the test function Kursawe. The number of non-dominated points produced
by qualSolve was 18 after 100 evaluations and 32 after 250 evaluations. See caption of Fig. 9

where the original value a = 0.004 has been modified to a = 0.1 in order to widen the
“valley” created by the exponential function and obtain a very smooth test function.
Figures 9–11 depict the resulting non-dominated points returned by the algorithms
after 100 and 250 function evaluations, respectively. MultiOb (see Hanne 2006) was
used to produce a reference Pareto front; multiple runs were performed on each test
function and the results merged into a single Pareto front. This procedure amounted
to a total of 250,000 function evaluations for each test function. In each figure the
number of non-dominated points returned by qualSolve is reported. QualSolve per-
forms well on Kursawe and modified Deb bimodal, whereas it fails to provide the
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Fig. 11 The Pareto fronts of the test function modified Deb bimodal. The number of non-dominated points
produced by qualSolve was 30 after 100 evaluations and 70 after 250 evaluations. See caption of Fig. 9

correct front for OKA1. The reason is that OKA1 is a test function that has a very
strong nonlinear behavior close to the minima (see Fig. 7); the algorithm locates the
valley but fails to find the bottom of the oscillations. MATLAB’s gamultiobj performs
generally worse on all test functions. Note that the results of gamultiobj in Fig. 11A
are better than in Fig. 11B. The reason is that genetic algorithms have a stochastic
component and may very well yield different results in consecutive runs.

3.4 Optimization of a heater element

In order to evaluate the algorithm on a real simulation, a comparably fast and simple
simulation was constructed: The simulation models a straight pipe through which a
fluid is forced, and in the pipe a heater element is mounted, see Fig. 12. The heater
element has the form of an ellipsoid whose equatorial and polar radii are variable.
When a fluid is forced through the pipe, two things occur: (a) the pressure will be
lower at the end of the pipe than at the beginning; and (b) the temperature will be
higher at the end of the pipe than at the beginning. The direction of the flow deter-
mines the meaning of the words “end” and “beginning” as used in this context.

A good design of a heater is one that gives a large rise in temperature and at the
same time has a low pressure increase (higher pressure increase requires a stronger
pump, when pumping water through the heater). The heater element design problem
therefore has the following form:

minimize (p,−T )T,

subject to 0.003 ≤ ra ≤ 0.020,

0.003 ≤ rb ≤ 0.020,

where p is the pressure drop and T is the increase in temperature, both are depen-
dent on the design variable ra and rb through simulation. The simulation was con-
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Fig. 12 The pipe with the heater element. Fluid is forced from the left to the right, the temperature of the
fluid rises and the pressure drops as it passes the heater

Fig. 13 Result of the heater simulation. 200 evaluations performed by MultiOb and qualSolve each

structed in COMSOL multiphysics17 and one simulation run took about two minutes.
In this setting, the performance of qualSolve was compared to that of MultiOb. Para-
meter settings for qualSolve were identical to those used in Sect. 3.3. Both algorithms
were run for a maximum of 200 function evaluations. The results can be seen in
Fig. 13. What is notable is that qualSolve covers a larger part of the Pareto front than
MultiOb, while they perform more or less equally well in the enlarged part (to the
right in Fig. 13). In all fairness it should also be stated that 200 function evaluations
is far too small a number for MultiOb (it normally requires around 20000 evalua-
tions). For qualSolve, 200 evaluations is often sufficient when optimizing smooth
lower dimensional functions (see the results in Sect. 3.3).

4 Conclusions and future research

We have presented an algorithm that is designed to handle both single and multiple
objective functions defined by simulations. It addresses problems in existing single
objective algorithms, such as the clustering of points and the overemphasizing of
border regions (see Sect. 1.4), and handles single objective functions with or without

17COMSOL multiphysics is a commercial software for FEM simulations, see www.comsol.se.

http://www.comsol.se
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noise. On the deterministic single objective test functions considered, the proposed
algorithm has a comparable performance to existing algorithms. On noisy determin-
istic single objective test functions, it performs best among the algorithms compared.
The algorithm qualSolve is one of few algorithms that also handles expensive multi-
objective optimization; to the authors’ knowledge it is the first developed specifically
for noisy expensive multiobjective problems. This is relevant since there is no lack
of noisy multiobjective problems arising from simulations in industry. The results
demonstrate that the multiobjective version of the algorithm performs well on deter-
ministic smooth test functions, although more rigorous tests and comparisons of the
performance with other algorithms as well as tests on noisy functions should be car-
ried through. The optimization of the heater simulation shows that the algorithm can
perform well on a real life simulation based optimization.

There are many aspects of the proposed algorithm that should be subjected to
more numerical tests in order to improve the performance. These include the cycle
of the γ parameter and the choice of η in presence of different types of noise. The
dependence of different choices of RBFs, initial points and external solvers should
be investigated. The method should also be evaluated on more complex simulation
based problems.

The main downside to the algorithm presented is the current execution time. As the
quality function (Definition 4) contains an integral, the evaluation time of this auxil-
iary function increases exponentially with the dimension of the parameter domain �.
If the simulations are assumed to be very expensive (about 40 hours, as combustion
engine simulations are) the current implementation becomes unsuitable for problems
of parameter domain larger than about six. In order to decrease the execution time
and hence increase the competitiveness of the algorithm in problems with more de-
sign parameters, the implementation of the numerical integration would have to be
improved. This could be done in various ways such as exchanging the trapezoidal
rule currently implemented for Monte Carlo integration or Gaussian integration.

Another major difficulty concerns the construction of the extended Pareto front,
defined in (15), and the distance function, defined in (17), when the number of objec-
tives increases. The construction of the extended Pareto front is easily accomplished
when only two objectives are present, but becomes harder when the objective feasi-
ble region has a higher dimension. After constructing the extended front the distance
function must be constructed in a way that enables fast evaluations, since the inte-
grand in (12) is evaluated thousands of times. We have implemented it by measuring
the distance to evenly distributed points on a grid in the objective function space,
and creating an RBF interpolation of these points. This interpolation was then used
in place of the distance function. Unfortunately, the number of grid points increases
exponentially with the number of objectives making the interpolation computation-
ally slow. Ideas for solving these problems include to better exploit the appearance
of a Pareto front when constructing the distance function and to use the fact that the
distance increases linearly in most of the domain.

We have not addressed nonlinear constraints. A straightforward way of handling
them would be to pass them on to the external solvers used for solving the non ex-
pensive optimization problems. However, as the integration in the quality function
is done over the domain inside the box constraints, it would lead to measuring the
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uncertainty decrease outside of the domain. This in turn would make it attractive to
choose points on the border of the domain defined by the non-linear constraints. The
problem could possibly be overcome by adding a penalty function inside the weight
function ω.

The method presented in this article was developed in a project on simulation
based multiobjective optimization of the Volvo D5 diesel engine (see Jakobsson et
al. 2008; Saif-Ul-Hasnain 2008). The number of design parameters was five and the
number of objectives three, including emissions of soot, NOx , and Indicated Mean
Effective Pressure (IMEP), which is a measure of the work output from the engine.
Some minor modifications of the method were made. For example, to reduce over-
all computational time by allowing parallel simulations, it was necessary to generate
several evaluation points in each iteration. Moreover, since only reasonable efficient
engines were of interest, it was necessary to handle constraints depending on the sur-
rogate models in the computation of the Pareto front. To test the reliability of the
result, the Pareto fronts of the surrogate models after different number of evaluations
were computed and compared both with interpolation and the approximation tech-
nique.
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