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Abstract The test-drive of an automobile along a given test-course can be mod-
eled by formulating a suitable optimal control problem. However, if the length of the
course is very long or if it has a very complicated structure, the numerical solution
of the optimal control problem becomes very difficult. Therefore a moving horizon
technique is employed, which splits the optimal control problem into a sequence of
local optimal control problems that are combined by suitable continuity conditions.
This approach yields a reference trajectory. A controller and differential GPS are
integrated in a real-world car and allows a reference trajectory to be followed in real-
time. A benefit of this approach is the very high accuracy obtained in reproducing the
reference trajectory. Hence, it can be used for testing different setups of cars under
the same conditions while excluding the comparatively large influence of a real-world
driver. In this article, we will focus on a method for generating the reference trajec-
tory and report our experiences with this algorithm. The method allows an locally
optimal solution to be computed for various handling courses in a robust way.

Keywords Optimal control · Automatic test-driving · Direct discretization method ·
Moving horizon

1 Introduction

A moving horizon approach was implemented at Volkswagen AG, Germany, for
the computation of reference trajectories for an automatically driven prototype car,
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Fig. 1 Test-drive of a car along
a test-course close to the
dynamical limit

Fig. 2 Automatically driven
car: the human driver has no
influence

cf. Fig. 1. Experiments indicate that even professional drivers produce compara-
tively large ranges of dispersion when driving several times close to the dynamical
limit through a given test-course. This unpredictable influence of the human driver
is particularly disadvantageous during an incremental search for an optimal setup of
the car. The methods in this article allow us to fix the influence of the driver, who is
replaced by a closed-loop controller, in order to provide a reproducible testing envi-
ronment for the tuning and calibration of automobiles. The vehicle moves without a
human driver close to its dynamical limit, cf. Fig. 2. Notice that the driver in Fig. 2
does not touch the steering wheel.

The overall procedure for the automatically driven car along a test-course consists
of the following steps:

• exploration of the unknown test-course;
• determination of a locally optimal trajectory through the test-course;
• driving through the test-course tracking the previously determined trajectory using

a closed-loop controller and differential GPS.



Generating locally optimal trajectories for an automatically driven car 441

The first step aims at the exploration of the test-course which is assumed to be un-
known. As the course is not known, this first step will be performed carefully at
low speed. Once the boundaries of the test-course are determined using an infrared
device, the second phase starts. The second phase aims at driving, e.g., as fast as pos-
sible through the test-course. More precisely, an optimal reference trajectory, e.g. in
view of lap time, is sought. This is a key issue in automatic test-driving as there is
no driver in the car. Consequently, the driver has to be substituted by an algorithm
that provides steering and braking inputs to the car. These inputs can be obtained by
solving appropriate control and state constrained optimal control problems in combi-
nation with a moving horizon approach. The numerical methods used for the solution
of the highly nonlinear optimal control problems have to be very robust since it is
essential that the methods are capable of providing results automatically for many
different handling courses. For this reason, we employ a direct discretization method
for numerical solution. The direct discretization method has proved its ability in nu-
merous practical applications originating from different disciplines and turns out to
be robust and easy to use.

Unfortunately, an optimal trajectory currently cannot be provided in real-time ow-
ing to the comparatively high computational costs for solving the optimal control
problems. Therefore, a controller is used to provide the control inputs (steering, brak-
ing) to the car in real-time while tracking the previously computed optimal trajectory.
Details of the controller design can be found in Müller-Beßler et al. (2006).

In this article we will focus mainly on the second step, i.e. the determination of
an optimal trajectory resp. a locally optimal trajectory. The organization of the article
is as follows. In Sect. 2 the mathematical models of the car and the test-course are
discussed. Section 3 addresses the generation of a locally optimal reference trajectory
for the automatically driven car along the test-course. Numerical results for some test-
courses are presented in Sect. 4.

2 Modeling issues

2.1 Car model

In this article the single-track car model is used. It is a simplified car model, which is
commonly used in the automobile industry for basic investigations of the dynamical
behavior of cars, see for example Mayr (1991), Neculau (1992), Moder (1994).

A simplifying assumption made to derive the single-track car model is that the
rolling and pitching behavior of the car body can be neglected, that is, the roll angle
and the pitch angle are small. These assumptions justify the replacement of the two
wheels on the front and rear axle by a virtual wheel located in the center of the respec-
tive axle. Furthermore, due to the simplifying assumptions it can be presumed that the
car’s center of gravity is located on the roadway and therefore, it is sufficient to con-
sider the motion of the car solely in the horizontal plane. The car model includes two
control variables for the driver: the steering angle velocity |wδ| ≤ 0.5 [rad/s] and a
function FB with values in [FBmin,FBmax], FBmin = −5000 [N], FBmax = 15000 [N],
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Fig. 3 Geometrical description
of the single-track car model

which models a combined brake (if FB > 0) and acceleration (if FB < 0) assembly.
The configuration of the car is depicted in Fig. 3.

Herein, (x, y) denotes the center of gravity in a reference coordinate system,
v, vf , vr denote the velocity of the car and the velocities of the front and rear wheel,
respectively, δ,α,ψ denote the steering angle, the side slip angle, and the yaw an-
gle, respectively, αf ,αr denote the slip angles at front and rear wheel, respectively,
Fsf ,Fsr denote the lateral tire forces (side forces) on front and rear wheel, respec-
tively, Flf ,Flr denote the longitudinal tire forces on front and rear wheel, respec-
tively, lf , lr , eSP denote the distances from the center of gravity to the front and rear
wheel, and to the drag mount point, respectively, FAx,FAy denote the drag force on
the car due to air resistance and side wind, respectively, and m denotes the mass of
the car.

The equations of motion are given by the following system of ordinary differential
equations

x′ = vx, (1)

y′ = vy, (2)

ψ ′ = wψ, (3)

v′
x = 1

m

[
Fx cosψ − Fy sinψ

]
, (4)

v′
y = 1

m

[
Fx sinψ + Fy cosψ

]
, (5)

w′
ψ = 1

Izz

[
Fsf · lv · cos δ − Fsr · lh − FAy · eSP + Flf · lv · sin δ

]
, (6)

δ′ = wδ, (7)
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where

Fx = Flr − FAx + Flf cos δ − Fsf sin δ,

Fy = Fsr − FAy + Flf sin δ + Fsf cos δ.

The side slip angle α and the absolute velocity v are given by

α = ψ − arctan

(
y′

x′

)
, v =

√
(x′)2 + (y′)2.

The lateral tire forces are functions of the respective slip angles (and the tire loads,
which are constant in our model). A famous model for the lateral tire forces is the
‘magic formula’ of Pacejka and Bakker (1993):

Fsf (αf ) = Df sin
(
Cf arctan

(
Bf αf − Ef

(
Bf αf − arctan(Bf αf )

)))
,

Fsr (αr) = Dr sin
(
Cr arctan

(
Brαr − Er (Brαr − arctan(Brαr))

))
,

compare Fig. 4. Herein, Bf ,Br,Cf ,Cr,Df ,Dr,Ef ,Er are constants depending on
the tire.

According to Mitschke (1990), p. 23, (notice the opposite sign in the definition
of α) the slip angles are given by

αf = δ − arctan

(
lf ψ ′ − v sinα

v cosα

)
, αr = arctan

(
lrψ

′ + v sinα

v cosα

)
.

The drag due to air resistance is modeled by

FAx = 1

2
· cw · ρ · A · v2,

where cw is the air drag coefficient, ρ is the air density, and A is the effective flow
surface. In this article, it is assumed that there is no side wind, i.e. FAy = 0.

The longitudinal tire forces on front and rear wheel, respectively, are given by

Flf = −FBf − FRf , Flr = −FBr − FRr,

where FBf and FBr are the braking forces and FRf and FRr denote the rolling resis-
tances on the front wheel and the rear wheel, respectively.

In the sequel, we assume that the car has front wheel drive. The force FB con-
trolled by the driver is distributed on the front and rear wheels according to

FBf =
⎧
⎨

⎩

2
3FB, if FB > �,
5
6FB − 1

4�
F 2

B + 1
12�3 F 4

B, if |FB | ≤ �,

FB, otherwise,

FBr =
⎧
⎨

⎩

1
3FB, if FB > �,
2

3�
F 2

B − 1
3�2 F 3

B, if 0 < FB ≤ �,

0, otherwise,

where � = 0.01. Recall that FB > 0 corresponds to a braking force whereas FB < 0
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Fig. 4 Shape of the lateral tire
forces on front (top) and rear
(bottom) axis as functions of the
slip angle computed by the
‘magic formula’ of Pacejka and
Bakker (1993). Notice, that the
tire forces are normalized w.r.t.
the maximum tire force. The
actual curves of the tire forces
without normalization are
subject to proprietary rights of
Volkswagen

is an accelerating force. Finally, the rolling resistance forces are given by

FRf = fR(v) · Fzf , FRr = fR(v) · Fzr ,

where

fR(v) = fR0 + fR1
v

100
+ fR4

( v

100

)4
(v in [km/h]),

is the friction coefficient and

Fzf = m · lr · g
lf + lr

, Fzr = m · lf · g
lf + lr

denote the static tire loads on the front and rear wheel, respectively, cf. Risse (1991).
For the following numerical computations we used realistic data for the various

parameters involved in this model. Unfortunately, these parameter values are propri-
etary and may not be published. For a different parameter set which is quite realistic
please refer to Gerdts (2005).
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2.2 Test-course

The shape of the test-course is defined by an a-priori unknown number of gates. It
is assumed that the starting point and the end point of the test-course are the same,
i.e. the test-course is periodic. Each gate consists of two pylons, one marking the left
boundary and the other marking the right boundary. In a first phase the automati-
cally driven car explores the unknown boundaries (i.e. the gates) of the test-course
by itself using an infrared device. The slowly driving car starts its drive without any
knowledge of the track. While driving, the infrared device detects the positions in the
(x, y)-plane of those gates that are within reaching distance of the infrared device.
Having detected the next gate, the car determines its way through this gate. The local
path through the next gate is defined by an interpolating spline curve of the next gate
and some previous gates. Herein, the exact coordinates (within a tolerance of 2 [cm])
of the gates are computed by differential GPS. Having completed the first phase suc-
cessfully, the positions of all gates defining the shape of the overall test-course are
known. Let these positions be denoted

(x�
0, y�

0), . . . , (x�
N�

, y�
N�

)

for the pylons on the left and

(xr
0, yr

0), . . . , (xr
Nr

, yr
Nr

)

for the pylons on the right. Notice that the case N� �= Nr is not excluded although
the interpretation of gates is not valid anymore in this case. In the sequel, it is just
important that the points defining the boundaries are classified such that they belong
either to the left boundary or to the right boundary. Furthermore, we assume the
periodic conditions

(x�
0, y�

0) = (x�
N�

, y�
N�

), (xr
0, yr

0) = (xr
Nr

, yr
Nr

)

leading to a closed circuit. The left and the right boundaries of the test-course are
modeled by interpolating periodic spline curves

γ � = (x�, y�) : [0, s�
N�

] → R
2, s �→ γ �(s) = (x�(s), y�(s)),

γ r = (xr , yr ) : [0, sr
Nr

] → R
2, s �→ γ r(s) = (xr (s), yr (s)),

which satisfy the interpolating conditions

γ �(s�
i ) = (x�(s�

i ), y
�(s�

i )) = (x�
i , y

�
i ), i = 0, . . . ,N�,

γ r(sr
i ) = (xr (sr

i ), y
r (sr

i )) = (xr
i , y

r
i ), i = 0, . . . ,Nr,

where

s�
0 = sr

0 = 0,

s�
i = s�

i−1 +
√

(x�
i − x�

i−1)
2 + (y�

i − y�
i−1)

2, i = 1, . . . ,N�,

sr
i = sr

i−1 +
√

(xr
i − xr

i−1)
2 + (yr

i − yr
i−1)

2, i = 1, . . . ,Nr .
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Fig. 5 (Color online) Gates of
the test-course (blue), spline
approximation of the boundaries
of the track (black), outer
normals (red), and center of
gravity (x, y) and velocity
vector v of the car

The curves γ �(·) and γ r(·) are twice continuously differentiable by construction. The
outer normals to the right and left boundaries, respectively, at curve parameter s are
given by

n�(s) =
(−(y�)′(s)

(x�)′(s)

)
, nr(s) =

(
(yr )′(s)

−(xr )′(s)

)
.

In view of test-driving it is important to decide whether a given point (x(t), y(t))�,
e.g. the center of gravity of the car at time t , is on the track or off the track, i.e. beyond
the boundaries, cf. Fig. 5.

Let γ r(sr ) = (xr (sr ), yr (sr ))� resp. γ �(s�) = (x�(s�), y�(s�))� denote those
points on the curves γ r and γ �, respectively, with minimal distance to a given point
(x(t), y(t))� at time t . Then, (x(t), y(t))� is on the track if the following state con-
straints are satisfied:

(
x(t) − xr(sr ), y(t) − yr(sr )

) nr(sr )

‖nr(sr )‖ ≤ 0, (8)

(
x(t) − x�(s�), y(t) − y�(s�)

) n�(s�)

‖n�(s�)‖ ≤ 0. (9)

It remains to compute sr resp. s� i.e. those curve parameters that yield the respective
points of minimal distance. We restrict the discussion to the computation of s�.

Consider the squared minimal distance to the curve γ �:

d�(t) := min
0≤s≤s�

N�

{
(x(t) − x�(s))2 + (y(t) − y�(s))2

}
.

The constraint 0 ≤ s ≤ s�
N�

may be neglected as the spline is periodic. Define

s�(t) := arg min
s

{
(x(t) − x�(s))2 + (y(t) − y�(s))2

}
.
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Necessarily, it holds for all t :

0 = 2(x(t) − x�(s�(t)))(−(x�)′(s�(t))) + 2(y(t) − y�(s�(t)))(−(y�)′(s�(t))).

Differentiation of this identity in t w.r.t. t yields a differential equation for s�(t)

(dependence on t is suppressed for brevity):

(s�)′ = x′(x�)′(s�) + y′(y�)′(s�)

(x�)′(s�)2 + (y�)′(s�)2 − (x − x�(s�))(x�)′′(s�) − (y − y�(s�))(y�)′′(s�)
.

(10)
Initially, at t = 0 the curve parameter s�(0) has to be computed. This is particularly
easy for test-courses starting with a straight segment. In this case s�(0) = 0 is suitable.
If the test-course does not start with a straight segment, the computation of s�(0) is
more involved as a nonlinear program has to be solved in order to determine d�(0).

Analogously, we obtain a differential equation for sr :

(sr )′ = x′(xr )′(sr ) + y′(yr )′(sr )

(xr )′(sr )2 + (yr )′(sr )2 − (x − xr(sr ))(xr )′′(sr ) − (y − yr(sr ))(yr )′′(sr )
.

(11)
The following modifications are suggested, if the width b of the car has to be taken

into account.

• The left and the right side of the car body (on the line passing through the center
of gravity and being perpendicular to the longitudinal axis of the car) are given by
the points

z� =
(

x

y

)
+ b

2

(− sinψ

cosψ

)
, zr =

(
x

y

)
+ b

2

(
sinψ

− cosψ

)
,

where ψ denotes the yaw angle of the car and (x, y)� its center of gravity. The
above formulae for (x, y)� have to be derived likewise for both, z� and zr . In
particular, the minimal distances to the curves γ � and γ r have to be computed for
both, z� and zr . Hence, the effort to determine whether both, z� and zr , are on the
track is twice as large as for (x, y)�.

• We neglect the yaw angle in the previous considerations in order to reduce the
computational effort and consider the points

z� =
(

x

y

)
+ b

2

n�

‖n�‖ , zr =
(

x

y

)
+ b

2

nr

‖nr‖ .

The points z� and zr have to satisfy the state constraints

(
zr

1 − xr , zr
2 − yr

) nr(sr )

‖nr(sr )‖ ≤ 0, (12)

(
z�

1 − x�, z�
2 − y�

) n�(s�)

‖n�(s�)‖ ≤ 0. (13)

These formulae depend on the minimal distance to the boundaries of the center of
gravity (x, y)� only and we may use the corresponding formulae from above.
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3 Optimal trajectory generation

As we aim at driving as fast as possible through the test-course, we need an optimal
driver. Such a driver is modeled by a suitable control and state constrained optimal
control problem. A natural objective functional in this problem would be to minimize
the time tf needed to complete one round of the test-course. However, this minimum
time optimal control problem will cause difficulties in the moving horizon algorithm
below as a free final time cannot be handled properly and stopping criterions are dif-
ficult to satisfy. For these reasons, instead of the minimum time optimal control prob-
lem we investigate an alternative (yet not equivalent) objective function on a fixed
time interval [0, tf ] with sufficiently large and fixed final time tf . The alternative ob-
jective function aims at maximizing within a fixed time the distance covered by the
car as it proceeds through the test-course. This progression on the test-course is mea-
sured by adding the respective progression on the right boundary sr (tf ) − sr (0) and
the left boundary s�(tf ) − s�(0). Often, we will add a regularization term to the ob-
jective. Thus, we have to solve the following optimal control problem with weighting
parameters c1, c2 ≥ 0:

Problem 1 Minimize

−c2

(
sr (tf ) − sr (0) + s�(tf ) − s�(0)

)
+ c1

∫ tf

0
wδ(t)

2dt

w.r.t. z = (x, y,ψ, vx, vy,wψ, δ, sr , s�)� ∈ W 1,∞([0, tf ],R
9), u = (wδ,FB)� ∈

L∞([0, tf ],R
2) with tf fixed and sufficiently large subject to the differential equa-

tions (1)–(7), (10)–(11), the initial condition z(0) = Z0, the state constraints (8)–(9)
(resp. (12)–(13)), the control constraints |wδ| ≤ 0.5, −5000 ≤ FB ≤ 15000, and the
boundary conditions sr (tf ) ≥ sr

Nr
and s�(tf ) ≥ s�

N�
.

In the above optimal control problem, the final time tf has to be chosen large
enough in order to allow for a completion of at least one lap of the course. Notice that
the actual value of tf in our application from test-driving is not important.

We briefly discuss the direct solution approach for general optimal control prob-
lems. Notice that Problem 1 can be transformed by standard techniques to the fol-
lowing general form where ϕ,f, c, r are sufficiently smooth functions of appropriate
dimension.

Problem 2 Minimize

ϕ(z(t0), z(tf ))

w.r.t. z ∈ W 1,∞([t0, tf ],R
nz) and u ∈ L∞([t0, tf ],R

nu) subject to the differential
equation

z′(t) = f (t, z(t), u(t)), a.e. in [t0, tf ]
the control-state constraints

c(t, z(t), u(t)) ≤ 0, a.e. in [t0, tf ],
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and the boundary conditions

r(z(t0), z(tf )) = 0.

Problem 2 will be solved numerically by a direct discretization approach as in
Gerdts (2003a). We outline the basic ideas very briefly. Related approaches can be
found in, e.g., Bock and Plitt (1984), Goh and Teo (1988), Hager (1990), Teo et al.
(1991, 1999), Polak et al. (1993), von Stryk (1993), Martin and Teo (1994), Büskens
(1998), Betts (2001), Jennings et al. (2004), Wu and Teo (2006). Please refer to chap-
ter one of Grötschel et al. (2001) and the literature cited therein for an overview on
direct discretization methods.

The control u is discretized on the grid

πN := {t0 + ih | i = 0,1, . . . ,N}, N ∈ N, (14)

with step-size h = (tf − t0)/N by the piecewise constant function

uh(τ) = ui for τ ∈ [ti , ti+1), i = 0, . . . ,N − 1.

The differential equation is discretized on the grid πN by an s-staged Runge-Kutta
method with coefficients bi, ci, aij , 1 ≤ i, j ≤ s, cf. Hairer et al. (1993):

zi+1 = zi + h

s∑

j=1

bj kj , i = 0, . . . ,N − 1, (15)

kj = f

(

ti + cjh, zi + h

s∑

�=1

aj�k�, ui

)

. (16)

Piecewise linear interpolation of the values zi , i = 0, . . . ,N , yields a continuous state
approximation zh : [t0, tf ] → R

nx . A discretization of Problem 2 is thus given by the
subsequent finite dimensional nonlinear programming problem:

Problem 3 (Discretized Optimal Control Problem (DOCP)) Minimize

ϕ(z0, zN )

w.r.t. (z0, . . . , zN ,u0, . . . , uN−1)
� ∈ R

(N+1)nx+Nnu subject to (15)–(16) and

c(ti , zi , ui) ≤ 0, i = 0, . . . ,N,

r(z0, zN) = 0.

DOCP can be solved numerically by the sequential quadratic programming (SQP)
method, cf. Gill et al. (1981) and Schittkowski (1983). Basically there are two
philosophies in doing this. The full discretization approach includes the Runge-Kutta
constraints (15)–(16) explicitly as equality constraints in DOCP. This leads to a large
but sparse nonlinear program which can be solved by a large scale version of SQP,
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cf. Gill et al. (2002). The advantage is that Jacobians of the constraints are easy to
compute.

The reduced approach does not include (15)–(16) as explicit constraints in DOCP
but solves these equation step by step starting at t0. This leads to a small but dense
nonlinear program since the variables zi with exception of z0, do not appear anymore.
Gradients needed for the SQP method may be obtained by a sensitivity analysis of the
Runge-Kutta equations, cf. Gerdts (2003a), or simply by finite difference approxima-
tions. The sensitivity analysis is known as IND (internal numerical differentiation),
cf. Bock (1981).

For the upcoming numerical calculations we used the reduced approach, which
is implemented in the software package OC-ODE, cf. Gerdts (2006). Actually, OC-
ODE allows the use of different discretization methods. For the calculations we used
the classical Runge-Kutta discretization scheme of order 4 given by the Butcher-table

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

Convergence results for the discretized problem (DOCP) can be found in Malanowski
et al. (1997), Dontchev et al. (2000a, 2000b), and Hager (2000). We refer the reader
to these references as it is not within the scope of this article to discuss the various
assumptions needed for convergence.

3.1 A moving horizon technique

With increasing length and more complicated structures of the test-course the com-
putational difficulties in the numerical solution of the optimal control problem grow
rapidly. Firstly, for a long-distance test-course with complicated structure it is very
difficult and time consuming to construct a sufficiently good initial guess needed by
the SQP method in order to converge. Moreover, severe stability problems may occur
within the iterative solution of DOCP owing to the fact that the state may be very
sensitive w.r.t. changes of the control especially at the beginning of the test-course.
Secondly, the number of grid points N has to be adapted to the length of the test-
course for a sufficiently accurate numerical solution and thus the resulting nonlinear
program becomes large scale for long test-courses. These arguments suggest not to
solve the optimal control problem for the complete test-course. Instead, we will em-
ploy a moving horizon approach as in Gerdts (2003b). The idea is to decompose the
global optimal control problem into a sequence of local optimal control problems
which are comparatively easy to solve. The local solutions are combined by appro-
priate continuity conditions, such that a trajectory along the complete test-course is
obtained. The structure of the local optimal control problems is similar to that of the
global problem except, that only a comparatively short time horizon is considered.
Hence, only parts of the overall test-course will be optimized at any one time. This
situation reflects reality quite well as a human driver in general will only know the
test-course within his personal range of vision.

The moving horizon algorithm depends on the following parameters, cf. Fig. 6:
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Fig. 6 Principle of the moving
horizon approach: the process is
considered in a moving time slot
of length �T with discretization
parameter N and step size
h = �T/N . By accepting the
interval [Ti , Ti + Mh] of the
local trajectory zi

h
(·) the

transition to the next time slot
[Ti+1, Ti+1 + �T ] is performed

• length of the local time horizon �T > 0 (range of vision)
• number of (equidistant) time intervals N ≥ 1 used for discretization of the local

optimal control problems (discretization parameter)
• number of (equidistant) time intervals 0 < M ≤ N to be accepted from the current

local solution (shifting parameter)

For simplicity, in our application we have chosen the same parameters for all local
optimal control problems. Of course, these parameters may be chosen individually
for each local optimal control problem according to some adaptive algorithm.

Algorithm 1 (Moving Horizon Algorithm)

(i) Let the range of vision �T > 0, the discretization parameter N ≥ 1, the shifting
parameter 0 < M ≤ N , the initial position Z0, and weighting parameters c1, c2

be given. Let T0 := t0, i := 0.
(ii) Solve the local optimal control problem OCP(Ti,�T ,Zi) by the direct dis-

cretization method on an equidistant grid with step size h = �T/N . Let (zi
h, u

i
h)

denote the numerical solution.
(iii) If the test-course is completed, i.e. if Ti + �T ≥ tf , define

(zh(t), uh(t)) :=
{

(z
j
h(t), u

j
h(t)) for t ∈ [Tj , Tj + Mh) and 0 ≤ j ≤ i − 1,

(zi
h(t), u

i
h(t)) for t ∈ [Ti, tf ]

(17)
and stop.

(iv) Let Ti+1 := Ti + Mh, Zi+1 := zi
h(Ti + Mh), i := i + 1, and go to (ii).

The local optimal control problems OCP(Ti,�T ,Zi) to be solved in step (ii) of
the moving horizon algorithm are given as follows.

Problem 4 (OCP(T ,�T ,Z)) Minimize

−c2

(
sr (T + �T ) − sr (T ) + s�(T + �T ) − s�(T )

)
+ c1

∫ T +�T

T

wδ(t)
2dt
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w.r.t. z = (x, y,ψ, vx, vy,wψ, δ, sr , s�)� ∈ W 1,∞([T ,T + �T ],R
9) and

u = (wδ,FB)� ∈ L∞([T ,T + �T ],R
2) subject to the differential equations (1)–

(7), (10)–(11), the initial condition z(T ) = Z, the state constraints (8)–(9) (resp.
(12)–(13)), and the control constraints |wδ| ≤ 0.5, −5000 ≤ FB ≤ 15000.

Notice, that in (17) only the first part [Tj , Tj + Mh] is accepted from each lo-

cal solution (z
j
h, u

j
h) while the remaining trajectory in (Tj + Mh,Tj + �T ] is ne-

glected. This is done for the following reasons. Firstly, if the interval (Tj + Mh,

Tj + �T ] is chosen large enough, it can be guaranteed that the subsequent prob-
lem OCP(Tj+1,�T ,Zj+1) possesses a solution (at least for our problem from test-
driving). Otherwise it may happen that no solution exists because the set of feasible
trajectories of OCP(Tj+1,�T ,Zj+1) emanating from Zj+1 is empty. To maximize
efficiency, it would be desirable to have Mh = �T , i.e. the whole local trajectory
is accepted, but this requires ‘drive-on-conditions’ to guarantee that the above men-
tioned set of feasible trajectories is non-empty. For general nonlinear test-courses
such conditions are impossible to formulate. Secondly, as the local optimal con-
trol problems OCP(Tj ,�T ,Zj ) and OCP(Tj+1,�T ,Zj+1) overlap each other on

[Tj+1, Tj + �T ], the solution (z
j
h, u

j
h) of OCP(Tj ,�T ,Zj ) may serve as an initial

estimate for the solution (z
j+1
h ,u

j+1
h ) of OCP(Tj+1,�T ,Zj+1).

Remark 5

• In general, the moving horizon algorithm as presented in this article cannot handle
general boundary conditions like periodic conditions.

• As the solution (zh,uh) resulting from the moving horizon algorithm is defined
via solutions of local optimal control problems, it may differ substantially from the
solution of the global optimal control problem. However, it can be conjectured that
(zh,uh) converges towards the global solution with increasing range of vision �T .

• The choice of the range of vision �T and the shifting parameter M is a compro-
mise in the following sense. On the one hand, the larger �T and Mh are, the less
is the number of local optimal control problems to be solved until completion of
the circuit. On the other hand, with increasing �T the numerical difficulties within
the solution of OCP(Ti,�T ,Zi) increase for the same reasons as described at the
beginning of this section. In addition, if Mh is chosen too large, it may happen that
the subsequent problem has no feasible solution.

4 Numerical results

All numerical results were computed on a personal computer with a 2.66 GHz proces-
sor and 512 MB RAM. The following parameters of the moving horizon approach
were used for all computations: discretization parameter N = 50, shifting parameter
M = 2 and weighting parameters c1 = 1, c2 = 0.01.

The SQP method used to solve the discretized optimal control problem uses an
augmented Lagrangian merit function as in Schittkowski (1983) in combination with
a non-monotone Armijo-type linesearch algorithm and the modified BFGS-update
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of Powell (1978). The quadratic programming subproblems are solved by a primal
active-set strategy. Inconsistent linearized constraints of the quadratic subproblem
are treated as in Stoer (1985). The SQP method stops successfully if the first order
necessary KKT conditions are satisfied within some prescribed optimality tolerance
and the constraints are feasible within some prescribed feasibility tolerance. For each
optimal control Problem 4 being solved in the moving horizon algorithm, the opti-
mality tolerance and the feasibility tolerance of the underlying SQP method used to
solve the discretizations of Problem 4 are set to 10−7.

Numerical results are presented for a total of five different test-courses depicted
in Figs. 7–11. The thick lines in the respective (x, y)-plots show the trajectory of the
car’s center of gravity. The respective bottom right plot shows the number of SQP
iterations for each step of the moving horizon algorithm. A starter’s flag indicates the
starting position on the test-courses and points in the starting direction. All numeri-
cally computed reference trajectories (and many more) were integrated in the existing
automatically driven prototype car and have been tested in reality. As expected, the
automatically driven car reproduces the reference trajectories reliably. Experiments
show that the lap time can be reproduced with a deviation of only 0.1 [s] per 1000 [m]
of track length.

The stopping criterion for the moving horizon algorithm has to be specified. A nat-
ural stopping criterion would be to stop the moving horizon algorithm immediately
as soon as exactly one lap is completed. This stopping criterion is difficult to realize
because we are working with fixed time intervals in the moving horizon algorithm.
Consequently, in the present form we are not able to stop exactly at the end of the
test-course. It would be possible to adapt the algorithm to reach this goal, e.g. by
formulating a different optimal control problem with free final time and terminal
boundary conditions for the very final part of the test-course. However, fomulating
terminal constraints is always crucial in the context of moving horizon algorithms as
there is no guarantee that they can be fulfilled due to the local character of the algo-
rithm. We didn’t follow this approach because in our application it is not necessary to
meet the finish line exactly. Moreover, this approach usually leads to a solution which
touches the boundary of the track and does not allow to continue the drive beyond the
final position without violating the constraints. So, instead we continued the moving
horizon algorithm into the second lap until sr (T ) > sr

Nr
+ 100 or s�(T ) > s�

N�
+ 100

hold. This explains the overlap of trajectories in the figures at the beginning of the
test-courses.

The first course is the racing-course of Oschersleben in Sachsen-Anhalt, Ger-
many. For this course having an approximate length of 3650 [m], the state constraints
(12)–(13) are used as the width of the track is large. We used a range of vision of
�T = 10 [s] for this track.

The remaining test-courses are comparatively short. Their lengths range from ap-
proximately 350 [m] to 1300 [m]. For these courses, the width of the track is already
reduced by the width of the car and hence, we used the state constraints (8)–(9) and
a range of vision of �T = 5 [s]. While test-course 1 is comparatively wide, the test-
courses 2 to 4 are very narrow courses. Notice that especially the test-courses 2 and
3 are very narrow and the two pylons of each gate even seem to coincide in Figs. 10
and 11, which is due to the scaling of the figures. For the latter courses, an inexperi-
ence human driver will have difficulties when driving through these courses for the
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first couple of times. With some training however, the human driver will improve and
very good drivers may even outperform the automatically driven car. Nevertheless,
the algorithm has no problems right from the beginning and performs consistently
well.

It is interesting to note, that the control constraints for the steering angle veloc-
ity wδ never become active in all subsequent results and that the steering effort for
the driver is comparatively small. Likewise, the absolute value of the side-slip angle
remains below 0.04 [rad] in all results, which shows that a dramatic sliding of the
car cannot be observed. Nevertheless, a very high lateral acceleration up to approx-
imately 12 [m/s2] occurs in all subsequent results. This value shows that the car is
actually close to the dynamical limit, but it moves rather smoothly without any ag-
itated behavior. The longitudinal acceleration chart shows repeated periods of full
braking, each period being comparatively short. There seems to be a correlation of
SQP iterations and the longitudinal acceleration in Figs. 7–11. A full brake applica-
tion leads to a drastic increase in the SQP iterations. This behavior is reasonable as
a full brake application leads to a different structure of the optimal solution when it
is compared to the previous solution without full braking which served as an initial
guess.

We are now interested in the question of how the trajectories develop when the
moving horizon algorithm is continued over several laps. For the ease of demon-
stration we focus on test-course 1 only and computed 8 consecutive laps. Figure 12
numerically demonstrates that all consecutive laps have the same structure with ex-
ception of the initial and final lap. The structural deviation of the initial and final lap
from the pattern of the intermediate laps is not surprising because the initial lap uses a
prescribed initial state (with small velocity) and the final lap is being stopped accord-
ing to the stopping criterion described at the beginning of this section. It is interesting
to see that already the second lap follows the same pattern as the consecutive laps. At
least numerically, the results suggest that a periodic solution occurs, although there
are small deviations in the control wδ .

Finally, Fig. 13 demonstrates for comparatively simple test-course 3 how the re-
sult of the moving horizon algorithm relates to the optimal solution. Therefore, Prob-
lem 4 was solved for T = 0 and �T = 37 with a discretization parameter N = 400.
We used a homotopy to obtain the optimal solution. Herein, we initially computed
an optimal solution for a time interval of 8 [s]. Using the previous optimal solution
as an initial guess, the length of the time interval was increased successively by one
second until a final length of 37 [s] was reached. The CPU times for the solution of
the optimal control problems increased with increasing final time. It took approxi-
mately 2 CPU hours to solve the final optimal control problem. For this particular
test-course, Fig. 13 demonstrates that the moving horizon algorithm produces a very
good approximation of the optimal solution with only minor deviations. The qualita-
tive structure of both solutions is the same. This coincides with our experiences for
other (simple) test-courses. Of course, the quality of the moving horizon result de-
pends on the choice of the parameters of the algorithm. For instance, if �T is chosen
too small, larger deviations between optimal solution and moving horizon approxi-
mation occur as only a comparatively small fraction of the test-course is considered
in the moving horizon algorithm. Another aspect from which the moving horizon al-
gorithm benefits in this case is the narrow track of test-course 3. This does not allow
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Fig. 7 Test-course of Oschersleben: Nr = 181, N� = 184, sr
Nr

= 3623 [m], s�
N�

= 3687 [m], CPU time
11 min 51.509 s
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Fig. 8 Test-course 1: Nr = 64, N� = 64, sr
Nr

= 1286 [m], s�
N�

= 1305 [m], CPU time 5 min 20.890 s
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Fig. 9 Test-course 2: Nr = 34, N� = 34, sr
Nr

= 350.2 [m], s�
N�

= 350.8 [m], CPU time 5 min 24.780 s
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Fig. 10 Test-course 3: Nr = 95, N� = 95, sr
Nr

= 670 [m], s�
N�

= 666.8 [m], CPU time 4 min 12.632 s
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Fig. 11 Test-course 4: Nr = 289, N� = 289, sr
Nr

= 1154 [m], s�
N�

= 1167 [m], CPU time 8 min 43.943 s
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Fig. 12 Test-course 1: Results of the moving horizon algorithm for 8 consecutive laps. All laps except the
first lap and the final lap show the same structure. The vertical lines indicate the starting time points of a
new lap
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Fig. 13 Test-course 3: Comparison of the optimal solution for the whole test-course with the result of the
moving horizon algorithm for N = 400

large variations in the lateral dynamics. But it still allows variations in the longitudi-
nal dynamics. As a summary, we conclude that the moving horizon algorithm has the
potential of providing a sufficiently good approximation of the optimal solution.

5 Conclusions

The present paper discusses a method which allows to compute locally optimal refer-
ence trajectories for an automatically driven car. In this paper we focused particularly
on trajectories close to the dynamical limit of the car. These were obtained by max-
imising the distance covered in a fixed time. Of course, reference trajectories for other
objectives, e.g. comfort, could be computed easily by changing the objective function
of the optimal control problems. However, trajectories close to the dynamical limit
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are particularly useful for the setup of cars because (small) changes in the setup will
have a comparatively large impact on the motion. In order to study these effects, it is
important that always the same reference trajectory is used without too much influ-
ence by the driver. Of course, one could compute an optimal solution for every setup,
but optimal solutions tend to hide weaknesses in the setup. So, it is reasonable to use
always the same trajectory even for a modified car.

In order to produce even more realistic results, especially close to the dynamical
limit, the simple single track car model could be replaced by a more sophisticated car
model which takes into account the rolling and pitching behavior of the car. Profes-
sional or optimal drivers certainly exploit this behavior. However, such car models
usually lead to large systems of ordinary differential equations or even differential-
algebraic equations with very many degrees of freedom. Our own experiences with
such models show that the computational effort will increase significantly, the robust-
ness of the method will decrease, and the overall computation time for one test-course
will not be acceptable anymore for a daily use in a company. Moreover, the controller
used for tracking is based on a single track model as well. Summarizing, a very so-
phisticated car model may lead to improved results, but the drawbacks relativize the
benefit.
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