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Abstract This paper focuses on optimal sensor placement for structural health mon-
itoring (SHM), in which the goal is to find an optimal configuration of sensors that
will best predict structural damage. The problem is formulated as a bound constrained
mixed variable programming (MVP) problem, in which the discrete variables are cat-
egorical; i.e., they may only take on values from a pre-defined list. The problem is
particularly challenging because the objective function is computationally expensive
to evaluate and first-order derivatives may not be available. The problem is solved
numerically using the generalized mixed variable pattern search (MVPS) algorithm.
Some new theoretical convergence results are proved, and numerical results are pre-
sented, which show the potential of our approach.

Keywords Mixed variable programming · Optimal sensor placement · Structural
health monitoring

J.M. Beal
Department of Mathematics, Ohio University, Morton 321, Athens, OH 45701, USA

A. Shukla (�)
Department of Mechanical and Manufacturing Engineering, 56 Engineering Building,
School of Engineering & Applied Science, Miami University, Oxford, OH 45056, USA
e-mail: shuklaa@muohio.edu

O.A. Brezhneva
Department of Mathematics and Statistics, Miami University, 123 Bachelor Hall,
Oxford, OH 45056, USA
e-mail: brezhnoa@muohio.edu

M.A. Abramson
Department of Mathematics and Statistics, Air Force Institute of Technology, 2950 Hobson Way,
Wright-Patterson AFB, OH 45433, USA
e-mail: mark.abramson@afit.edu



120 J.M. Beal et al.

1 Introduction

The area of health monitoring and non-destructive evaluation of structures has re-
ceived much attention in the past two decades mainly because of its numerous appli-
cations, ranging from civil to transportation infrastructure. Since structural damage is
a cumulative phenomenon, any local damage can eventually affect overall structural
integrity. This motivates the need for continuous monitoring and tracking of damage,
which is often done by integrating sensing and actuation systems a priori into the
system design to create active and adaptive structural systems. This will hopefully
lead to the development of self-healing systems.

The quality of structural health monitoring (SHM) essentially depends on the
placement of the sensors. For example, if sensors are concentrated primarily in one
area of the structure, then it becomes more likely that damage and other system
changes go dangerously unnoticed in the areas with less sensor coverage. On the
other hand, sensor placement is also guided by cost and data post-processing issues
required for health monitoring decisions.

Sensor placement is typically done either ad hoc, or, at best, by experimentally
testing a few possible combinations and choosing the one that performs the best,
based on a few benchmark examples. In this case, sensor placement relies heavily
on institutional knowledge and specific experience of those who place the sensors.
Although certainly helpful, this approach can overlook more advantageous designs.

If sensor placement can be accurately modeled into an optimization problem that
can be solved numerically, then the optimization process can account for this in find-
ing a suitable design, so that sufficient coverage can be achieved. Given a limited
number of sensors, the problem becomes one of determining the optimal number and
locations of sensors, with respect to a suitable objective function, such as cost or some
measure of sensor coverage.

Complicating the optimization process is that, in many cases (such as those de-
scribed in Doebling et al. 1996), each objective function evaluation requires either a
large finite element analysis or the acquisition of experimental data, both of which can
be computationally expensive and time-consuming. To circumvent this issue, simple
models are developed, which are then utilized to compare various objective function
values to guide the optimization process.

Various researchers have developed highly multi-disciplinary tools and methods
to detect, quantify and eventually predict damage phenomenon. A Los Alamos Na-
tional Laboratory report (Doebling et al. 1996) contains a detailed overview of exist-
ing techniques and methods used to evaluate and monitor the health of structures and
systems. The general optimal sensor placement problem has been studied in many dif-
ferent contexts, including noise attenuation and vibration control (Padula et al. 1998;
Padula and Kincaid 1999), system identification (Kincaid and Padula 2002), radia-
tion source failure detection (Chaudhuri and Ghosh 2000), positioning of actuators
and sensors in a structure (Lopes et al. 2004), and placement of strain sensors on the
flexible supporting structure for long reach manipulators (Mavroidis et al. 1997).

Problems specifically treating optimal sensor placement for damage detection
have also been studied. Staszewski et al. (2000) study the problem of optimal sensor
placement for impact detection and location in composite materials. Papadimitriou et
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al. (2000) also discuss optimal placement strategies for structural damage identifica-
tion. Specifically, the study describes the issues involved in constructing an optimal
instrumentation. Guo et al. (2004) study the global optimization of sensor locations
for SHM. Their work differs from the present one both in the problem formulation
and in the numerical method employed to solve the problem. In Sect. 3 we will pro-
vide proper motivation for our choice of method.

The main goal of the work described here is to develop, implement, and apply a
black box optimization algorithm specifically for optimal design and placement of
sensors that will guide future work in SHM.

The paper is organized as follows. The problem definition and modeling details
are presented in Sect. 2. In Sect. 3, we describe the mixed variable generalized pat-
tern search algorithm and justify its use in numerically solving the sensor placement
problem. This includes a new stronger convergence theory for mixed variable opti-
mization problems having one continuous variable. Numerical results and concluding
remarks are presented in Sects. 4 and 5, respectively.

2 Modeling the optimal sensor placement problem

Modal parameters, such as frequencies, mode shapes, and modal damping, are func-
tions of the physical properties of the structure (e.g., mass, damping, and stiffness).
Therefore, changes in physical properties will cause changes in the modal proper-
ties. Ideally, a robust damage detection scheme will be able to identify that damage
has occurred at a very early stage, locate the damage within the sensor resolution
being used, provide some estimate of the severity of the damage, and predict the re-
maining useful life of the structure. Current damage detection methodologies use an
initial measurement of an undamaged structure as the baseline for future comparisons
of measured response. Another important feature of damage identification methods,
and specifically those methods which use prior models, is their ability to discriminate
between model/data discrepancies caused by modeling errors and discrepancies that
are a result of structural damage.

The observation that changes in structural properties cause changes in vibration
frequencies was the impetus for using modal methods for damage identification and
health monitoring. The somewhat low sensitivity of frequency shifts to damage re-
quires either very precise measurements or large levels of damage.

Also, because modal frequencies are a global property of the structure, it is not
clear that shifts in this parameter can be used to identify more than the mere existence
of damage. In other words, frequencies generally cannot provide spatial informa-
tion about structural changes. Damage detection methods also utilize the mode shape
changes. Mode shapes can be partitioned using various schemes, and the change in
transfer functions across the different partitioning techniques can be used to localize
the structural damage. As observed in Doebling et al. (1996), graphical comparisons
of relative changes in mode shapes proved to be the best way of detecting the damage
location when only resonant frequencies and mode shapes were examined.

In this paper we study an N = 20 degree-of-freedom (DOF) mass-spring-damper
system, illustrated in Fig. 1, that can be modeled by the system of linear second-order
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Fig. 1 Schematic of a 20-DOF
Mass Spring Damper System

differential equations,

Mẍ + Cẋ + Kx = 0, (1)

where x ∈ R
N denotes the vertical positions of the masses, and where the mass M,

spring stiffness K, and damping coefficient C are N ×N matrices of system parame-
ters. Nominal system parameter values are given in Sect. 4. We define damage as any
change in the stiffness parameters associated with the system model.

Our problem involves positioning sensors on a fixed number n < N of masses
(1 DOF each), where N represents the total number of masses. Each mass is con-
nected by a spring and damper, and we restrict the motion of the masses so that they
may only move in the vertical direction.

Let f̄ (t) be the input (force) and ā(t) be the output (acceleration) to a general
linear time-invariant system. We denote the Laplace transforms of f̄ (t) and ā(t) by
F(s) and A(s), respectively. Then the output and input are related by the transfer
function,

H(s) = A(s)

F (s)
. (2)

Thus, in describing how the output varies with the input, the transfer function pro-
vides information about the system dynamics. For the example considered in this
paper, a transfer function can be calculated for each input and output pair located at
any of the N degrees-of-freedom. In other cases where such models are not avail-
able, experimental data acquisition and post-processing can be employed to calculate
the associated transfer function between the input and output locations. Furthermore,
a transfer function can be easily calculated for continuous structures if the finite el-
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ement model is known. However, in both of these cases, the optimization process
would require large computational or experimental resources.

We also define a sensor as any data measurement available at the system under
consideration. A system model could have degrees of freedom, some of which can be
measured and some of which cannot. A measurement degree of freedom is one that
can be measured with a sensor. We classify a model of the system as either full or
reduced. The full model includes measurements available at all the relevant degrees
of freedom. The reduced model includes only those degrees of freedom that can be
measured. The reduced model is generally a subset of the full model guided by the
observability of measured degrees-of-freedom.

2.1 Mixed variable problem formulation

The optimal sensor placement problem is often formulated (e.g., see Lopes et al.
2004) as a binary mixed integer nonlinear programming (MINLP) problem, where
each possible sensor location is represented by a binary variable. Many traditional
optimization methods, as well as heuristics have been employed in an attempt to
solve this class of problems. In fact, a review of these methods as applied to sensor
placement can be found in Guo et al. (2004).

However, one difficulty with the MINLP formulation is that, if the set of possible
sensor locations is large, problem size becomes a serious issue. In this paper, we
instead formulate the problem of interest as a mixed variable programming (MVP)
problem. MVP problems differ from MINLP problems in that the discrete variables
may be categorical, meaning that they must always take their values from a predefined
list or set. Categorical variables can even be nonnumeric, such as color, shape, or
type of material. For a sensor placement problem, rather than using a binary variable
for each possible sensor location (which indicates whether or not a sensor is at that
location), we define for each sensor a categorical variable containing the position of
that sensor.

The objective function f used for SHM is related to the modal properties of the
system under consideration when vibration-based data is used. Two examples, as dis-
cussed above, are changes in natural frequencies and changes in mode shapes. An-
other related measure which could be used is change in the overall transfer functions
(within a frequency band). The evaluation of f (p,M), where p ∈ [0,1] is a measure-
ment of percentage change in the stiffness of the structure and M is the set of sensor
locations, generally requires a finite element analysis or an experimental observation,
and is thus very expensive to compute. Furthermore, percentage change in stiffness
p is a result of damage induction. This is certainly known for damage phenomenon
related to damage of joints and development of cracks in structures. In most cases,
we do not know (or it is very expensive to evaluate) the derivatives of the objective
function. Our approach is guided by real cases in which they would not be available.
We also assume that the objective function is a nonsmooth function in terms of the
damage induced.

It should be noted that, even though the transfer function is not a very sensitive
measure of the change in stiffness, the goal of this work is to demonstrate the role of
pattern search methods in the selection of optimal sensor placement locations. Any
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other measure which is readily available (such as any higher order frequency domain
or time domain metrics) via experimental analysis or numerical simulations can be
incorporated into this framework without any loss of generality.

One feature of successful SHM technology in the future would be the ability to
detect the onset of damage caused by crack initiation and its propagation at the earli-
est possible stage. This should be possible because damage of this kind leads to local
changes in the inherent stiffness of the structure, which can be detected by sensors.
Thus the optimal sensor configuration problem not only requires sensor placement
with the best ability to detect damage, but also with the ability to detect damage at an
early stage.

In this paper, the design variables not only include the sensor placement loca-
tions M , but also the percentage change in the stiffness p. From an engineering per-
spective, stiffness is an intrinsic property of the system, which changes as a result of
damage. Hence, a small value of p corresponds to the small changes in stiffness that
usually occur in the earlier stages of system damage. In modeling p as a variable in
the optimization process, our goal is still to find the sensor locations that best detect
the damage, but solutions with a lower value of p mean that the amount of damage is
less; i.e., it is detected in the early stages.

An optimal solution with a large value of p is not necessarily desirable because it
means that damage may not be detected until it is critical. Nevertheless, the optimal
solution found as minf (p,M) shows us how well we can detect damage with a given
number of sensors, compared to how well we could do it with sensors in all mass
locations. We can use this formulation to then find sensor placements that yield good
but perhaps suboptimal solutions that also have a small value of p, thus allowing us
to detect the damage with good enough quality at an early stage.

From an optimization perspective, we could add a constraint on p to keep it suf-
ficiently small, but we decided not to place any artificial limitations on p, since such
a constraint would be application-specific. Moreover, running numerical simulations
without tight bounds on the variable p allows us to collect statistical data that give
insight into the system characteristics we are trying to analyze. If minf (p,M) is
not small enough, then it means we need more sensors to detect the damage. If
minf (p,M) is small, but p is not, then the number of sensors is not large enough to
detect the damage at an early stage.

Transfer functions are defined for specific combinations of input and output loca-
tions. If the input location is held fixed, then the possible number of transfer functions
is equal to the number of degrees-of-freedom for the discrete system. Thus, a sensor
can be ideally placed at each mass to measure the corresponding transfer function.
Unfortunately, this is not always possible due to lack of resources and/or the contin-
uous nature of the systems under investigation. In the problem of sensor placement,
damage is modeled as a loss of stiffness to the springs. Namely, we will simulate
the damage by changing a particular spring constant j . Since we limit the number
of sensors by n < N , our knowledge of damage to the system will be limited to the
information we gather from n sensors (n transfer functions).

Let M ⊂ {1,2, . . . ,N} be a nonempty proper subset of masses where sensors
could be placed, such that its cardinality is |M| = n. By definition, M cannot contain
duplicate entries, which enforces the constraint that no more than one sensor can be
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placed on a particular mass. Since the variable p ∈ R represents a percentage change,
it follows that p ∈ [0,1].

In formulating the objective function, we wish to place n sensors that elicit the
most information in a “best way”, or equivalently, pick the “best” n transfer func-
tions that contain the most information about the effect of change in stiffness on the
modal properties. It seems appropriate that this “best” placement would minimize the
difference between transfer function information gathered from the full model (which
we assume we have initially) and that gathered from the reduced model.

For the damaged spring j , let k1j and k2j denote the initial and changed
spring constants, respectively, and denote the corresponding ith transfer functions
by (Hi(s;p))k1j

and (Hi(s;p))k2j
, respectively, for i = 1,2, . . . ,N . Aggregate rel-

ative changes are then measured as sums of the relative changes in transfer function
values. The true relative change TV (p) is measured as a sum over all possible output
locations, while the approximate relative change AV (p) is measured as a sum over
only those output locations with sensors placed there; i.e.,

TV (p) =
N∑

i=1

∣∣∣∣
(Hi(s;p))k1j

− (Hi(s;p))k2j

(Hi(s;p))k1j

∣∣∣∣,

AV (p,M) =
∑

i∈M �=∅

∣∣∣∣
(Hi(s;p))k1j

− (Hi(s;p))k2j

(Hi(s;p))k1j

∣∣∣∣.

Hence, the absolute approximation error is |TV (p) − AV (p,M)|.
For the system under consideration, assuming that TV (p) �= 0, we define the objec-

tive function f as the relative approximation error between the true and approximate
relative changes; namely,

f (p,M) = |TV (p) − AV (p,M)|
|TV (p)| . (3)

The motivation for this formulation is in the observation that only a few transfer
functions dominate the net effect of any particular change in stiffness due to damage,
and we optimize the sensor placement to best capture those changes.

Our MVP formulation now becomes

min
p,M

f (p,M) = |TV (p) − AV (p,M)|
|TV (p)| ,

subject to M ⊂ {1,2, . . . ,N},
0 ≤ p ≤ 1.

(4)

3 Mixed variable optimization of the sensor placement problem

Because of the mixed variable nature of our problem, traditional optimization ap-
proaches, such as those reviewed in Guo et al. (2004) are not applicable. Certainly,
commonly used heuristics, such as genetic algorithms, could be applied. In fact, they
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are often quite useful in practice. However, heuristics generally lack any formal con-
vergence theory, which means that, while improvement in the objective function can
be achieved, there are no guarantees of achieving proximity to an optimal point.

Thus, we turn our attention to algorithms specifically designed for this class of
problems. To date, very few algorithms exist for solving MVP problems. In fact,
other than two general frameworks, one derivative-free (Lucidi et al. 2005) and the
other derivative-based (Lucidi and Piccialli 2004), the only current work in this area
makes use of pattern search methods (Audet and Dennis 2000; Abramson 2002, 2004;
Abramson et al. 2004; Kokkolaras et al. 2001; Sriver et al. 2005).

In order to fully describe the pattern search algorithm that we apply to this prob-
lem, we will consider a more general case of mixed variable problem that has more
than one continuous variable and a finite number of bound and linear constraints (with
respect to the continuous variables). Each configuration of sensors is represented as
a trial point x = (xc, xd) ∈ X = Xc × Xd , partitioned into its continuous component
xc ∈ Xc ⊂ R

nc
and discrete component xd ∈ Xd ⊂ Z

nd
, where nc and nd are the

number of continuous and discrete variables, respectively. (Note that, for this section
only, we have redefined the variable x here.) A more general sensor problem can then
be represented mathematically as

min
x∈X

f (x),

subject to � ≤ Axc ≤ u,

(5)

where the objective function f : R
n → R ∪ {+∞} is nonlinear, A ∈ R

m×nc
, � ∈ (R ∪

{−∞})m, and u ∈ (R ∪ {+∞})m, with � < u.

3.1 Discrete neighbor sets and functions

For MVP problems, finding a global minimizer is very often an intractable problem
because it would require exhaustive enumeration of all possible sets of discrete vari-
able values. On the other hand, the concept of a local minimizer in a mixed variable
domain is not well-defined because categorical variables do not necessarily have an
inherent natural ordering. In order to define what we mean by a local minimum, we
need a notion of a local neighborhood. We do this by means of a set-valued function
N : X → 2X , where X is the mixed variable domain defined above and 2X denotes
the power set of X (the set of all subsets of X). Given a point x ∈ X, the point y ∈ X

is a discrete neighbor of x if y ∈ N (x). We assume that, for all x ∈ X, N (x) is
finite, and by convention, x ∈ N (x). We also assume a notion of continuity in the
sets of neighbors in the sense that, for any sequence xk and corresponding sequence
of discrete neighbors yk ∈ N (xk) converging to x̂ and ŷ, respectively, we have that
ŷ ∈N (x̂).

We now define a local minimum as follows (Audet and Dennis 2000; Abramson
2002; Abramson et al. 2004):

Definition 1 A point x = (xc, xd) ∈ X is said to be a local minimizer of f with
respect to the set of neighbors N (x) ⊂ X if there exists an ε > 0 such that f (x) ≤
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f (v) for all v in the set

X ∩
( ⋃

y∈N (x)

(B(yc, ε) × {yd})
)

. (6)

The notation B(yc, ε) refers to an open ball of radius ε > 0 (or ε-neighborhood),
centered at yc . Note that Definition 1 is stated not only in terms of ε-neighborhoods
and discrete neighbors of x, but also in terms of ε-neighborhoods of every discrete
neighbor of x.

As an illustrative example, Kokkolaras et al. (2001) studied the optimization of
a thermal insulation system, consisting of hot and cold surfaces at the ends, with a
series of insulators between them, each pair of which is separated by a heat intercept.
The objective was to minimize the power required to keep one of the surfaces at the
correct temperature. The discrete neighbor function was constructed so that, given a
configuration of insulators and heat intercepts, a discrete neighbor is any design in
which a single insulator is replaced with one of a different type, a single insulator and
adjacent intercept are removed, or a single insulator and adjacent intercept are added
by inserting them at any location in the system.

3.2 GPS algorithm for mixed variable optimization

The derivative-free class of pattern search algorithms was originally introduced by
Torczon (1997) for unconstrained continuous optimization problems and extended
by Lewis and Torczon to bound constrained (1999) and linearly constrained (2000)
problems. In all these cases, convergence to a first-order stationary point was es-
tablished, given sufficient smoothness of the objective function. Audet and Dennis
(2003) applied the Clarke (1983) nonsmooth calculus to establish a hierarchy of con-
vergence results that strengthens the previous theory. A thorough review of this class
of methods is given in Kolda et al. (2003). Generalizations for nonlinearly constrained
problems have been introduced by Lewis and Torczon (2002) and by Audet and Den-
nis (2004, 2006).

The class of pattern search algorithms for bound constrained MVP problems was
introduced by Audet and Dennis (2000) (as an extension of Lewis and Torczon
1999). This algorithm was used to optimize the design of a thermal insulation system
(Kokkolaras et al. 2001). The algorithm has been extended to linear (Abramson 2002)
and nonlinear (Abramson 2002; Abramson et al. 2004) constraints, and was used to
solve a modification of the problem in Kokkolaras et al. (2001), in which constraints
on mass and thermal contraction were added (Abramson 2004). Sriver et al. (2005)
have introduced a pattern search ranking and selection algorithm for linearly con-
strained stochastic MVP problems.

Pattern search algorithms generate a sequence of iterates with nonincreasing func-
tion values. Each iteration k is characterized by two phases: an optional SEARCH

step, and a local POLL step. In both steps, trial points on a mesh are generated in
an attempt to find a point with a lower function value than that of the current iter-
ate xk = (xc

k , x
d
k ). Actually, the algorithm is not applied to f , but to fX , defined by

fX(x) = f (x) if x ∈ X and fX(x) = ∞ for x /∈ X.
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The mesh is constructed as the direct product of the discrete variable space Xd

with the union of a finite number of lattices in the continuous variable space Xc, but
translated from the current iterate; i.e.,

Mk = Xd ×
⋃

xd∈Xd

{xc
k + �kD(xd)z ∈ Xc : z ∈ Z

nD+ }, (7)

where the mesh size parameter �k > 0 controls the fineness of the mesh, and D(xd)

denotes an n × nD matrix, where nD = |D(xd)| > n, whose columns positively span
the continuous variable space. Often, D(xd) is chosen as [I,−I ] or [I,−e], where I

is the identity matrix and e is the vector of ones.
The goal of the SEARCH step is to adequately sample the space in an attempt

to quickly identify a promising region containing a good local minimizer. The only
restriction on this step is that it evaluates a finite number of points on the mesh.
How these points are selected is completely flexible. In fact, the SEARCH step may
range from empty (not evaluating any points) to the construction and optimization
of a less costly surrogate function at every iteration (see Booker et al. 1998, 1999,
for example). Random sampling strategies and heuristics, such as Latin hypercubes,
orthogonal arrays, and a few generations of a genetic algorithm, can also be used.

If the SEARCH step fails to find a better point, the POLL step is performed, in
which the adjacent points on the mesh are evaluated. This step is necessary to ensure
convergence of a subsequence of iterates to a limit point satisfying certain necessary
conditions for optimality. For MVP problems, the POLL step also includes evaluating
the discrete neighbors of the current iterate xk . Thus the POLL step includes evalu-
ation of the points in the union of the continuous mesh neighbors P(xk) of xk with
the user-defined set of discrete neighbor points N (xk) of xk . The continuous mesh
neighbors of a point x ∈ X can be expressed as

Pk(x) = {(xc + �kd,xd) ∈ X : d ∈ Dk(x)}, (8)

where Dk(x) ⊆ D(xd) is the set of poll directions at iteration k, which also positively
spans the continuous space.

In the case of bound or linear constraints, directions D must be chosen so that
they include all possible tangent cone generators, and at each iteration, the choice of
Dk(xk) must be chosen to conform to the geometry of the nearby constraints (Audet
and Dennis 2003). Lewis and Torczon (2000) provide an algorithm for computing
these directions using simple linear algebra tools. However, for problems with only
one continuous variable, these conditions are automatically satisfied by any positive
spanning set.

If neither the SEARCH or POLL succeeds in finding an improved mesh point, then
an EXTENDED POLL step is performed about any discrete neighbor whose objec-
tive function value is sufficiently close to that of the incumbent. Specifically, given a
fixed scalar ξ > 0 and an extended poll trigger ξk ≥ ξ , an EXTENDED POLL is per-
formed with respect to yk ∈N (xk) if the condition, fX(xk) ≤ fX(yk) ≤ fX(xk)+ ξk ,
is met. For any such yk , we begin a sequence of polls about the points {yj

k }Jk

j=1, be-

ginning with y0
k = yk and ending when either f (y

Jk

k + �k(d,0)) < f (xk) for some
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d ∈ Dk(y
Jk

k ), or when fX(y
Jk

k ) ≤ fX(y
Jk

k + �k(d,0)) for all d ∈ Dk(y
Jk

k ). The nota-
tion (d,0) indicates change in the direction d with respect to the continuous variables
while holding the discrete variables constant. The number Jk simply represents how
many EXTENDED POLL steps are executed, and is not known in advance. However,
under very mild assumptions, Jk is always finite (Audet and Dennis 2000).

In practice, the extended poll trigger ξk is typically set as a percentage of the ob-
jective function value, but bounded away from zero (e.g., ξk = max{ξ,0.05|f (x)|}).
A relatively high choice of ξk tends to make the solution more global (since it results
in extended polls around more discrete neighbor points), but at a higher computa-
tional cost.

The set of extended poll points evaluated for a particular discrete neighbor y ∈
N (xk) contains a subset of the points {Pk(y

j
k )}Jk

j=1. More precisely, at iteration k, the
set of points evaluated in the EXTENDED POLL step (or extended poll set) is given by

Xk(ξk) =
⋃

yk∈N ξk
k

(
Jk⋃

j=1

Pk(y
j
k )

)
, (9)

where N ξk

k = {y ∈N (xk) : fX(xk) ≤ fX(yk) ≤ fX(xk) + ξk}.
The algorithm is opportunistic, in that it can move to a new iterate as soon as

improvement in the objective function is found, in which case, the iteration ends and
the mesh is either retained or coarsened. On the other hand, if the SEARCH, POLL,
or EXTENDED POLL steps all fail to find an improved mesh point, then the current
iterate xk is declared to be a mesh local optimizer and retained as the current iterate,
and the mesh is refined.

Rules for updating the mesh are as follows. Given a fixed rational number τ >

1 and two integers w− ≤ 1 and w+ ≥ 0, the mesh size parameter �m
k is updated

according to the rule,

�m
k+1 = τwk�m

k , (10)

where

wk ∈
{

{0,1, . . . ,w+} if improved mesh point is found,

{w−,w− + 1, . . . ,−1} otherwise.
(11)

The MVPS algorithm is presented formally in Fig. 2.

3.3 Convergence analysis

Convergence results for bound constrained MVP problems were established in Audet
and Dennis (2000) under the assumption that the function f is continuously differ-
entiable (with respect to the continuous variables) near limit points of certain subse-
quences of the algorithm. This analysis was extended in Abramson (2002) to linearly
constrained MVP problems in which the local smoothness of f can be relaxed.

In this section, we establish new results for MVP problems with one continuous
variable, which act as corollaries to the theorems of Audet and Dennis (2000) and
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Fig. 2 MVPS Algorithm

Abramson (2002) (and also Abramson 2005), and which apply specifically to the
problem posed in (4). In particular, the first-order and second-order directional opti-
mality results in Audet and Dennis (2000) and Abramson (2005), respectively, apply
to all directions in R because there are only two normalized directions in R, thus
enabling stronger results under the same hypotheses. This theory not only applies to
MVP problems, but also to single variable NLP problems, for which there are plenty
of applications—most notably, line searches.

The analysis in the remainder of this section requires that the following assump-
tions hold:

A1. An initial feasible point x0 ∈ X satisfying f (x0) < ∞ is available.
A2. All MVPS iterates {xk} lie in a compact set.

Audet and Dennis (2000) proved the existence of a convergent refining subse-
quence {xk}k∈K (for some set of indices K), with an associated positive spanning set
of refining directions such that, under assumptions A1–A2, satisfies limk∈K �k = 0
and x̂ = limk∈K xk . Furthermore, under the previously assumed notion of continuity
of N , for each subsequence of discrete neighbors {yk}k∈K satisfying yk ∈ N (xk),
there exist limit points ŷ = limk∈K yk and ẑ = limk∈K zk , where ŷ ∈ N (x̂) and
zk = y

Jk

k is the EXTENDED POLL endpoint corresponding to yk at iteration k. This
notation is used throughout the remainder of this section.

The following result from Abramson (2002) establishes local optimality with re-
spect to the set of discrete neighbors.
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Theorem 2 If f is lower semi-continuous at x̂ and continuous at ŷ with respect to
the continuous variables, then f (x̂) ≤ f (ŷ).

The next two results show that the limit points x̂ and ẑ satisfy a nonsmooth first-
order necessary condition for optimality with respect to the continuous variables.
They are based on the Clarke (1983) generalized directional derivative, which is de-
fined for a Lipschitz continuous function g at x ∈ R

n and in the direction d ∈ R
n

by

g◦(x;d) ≡ lim sup
y→x, t↓0

g(y + td) − g(y)

t
.

We note that Theorem 3 is a corollary to Theorems 3.7 of Audet and Dennis (2003)
and 5.14 of Abramson (2002), while Theorem 4 is a corollary to Theorem 5.15 in
Abramson (2002).

Theorem 3 If f is Lipschitz continuous near x̂ ∈ X with respect to the continuous
variables, then f ◦(x̂; (v,0)) ≥ 0 for all feasible directions v ∈ R.

Proof In R, a set of refining directions must necessarily include a set {d1,−d2 :
d1, d2 > 0}. Let v ∈ R be a feasible direction. If v = 0, then the result holds triv-
ially. Assume that v > 0. Then d1 > 0 is a feasible direction at x̂, which means that
xk +�k(d1,0) is feasible for all sufficiently large k ∈ K . Then by the positive homo-
geneity of f ◦ (Clarke 1983), it follows that

f ◦(x̂; (v,0)) = f ◦
(

x̂; v

d1
(d1,0)

)

= v

d1
f ◦(x̂; (d1,0))

= v

d1
lim sup
y→x̂, t↓0

f (y + t (d1,0)) − f (y)

t

≥ v

d1
lim
k∈K

f (xk + �k(d1,0)) − f (xk)

�k

≥ 0.

The last step holds because k ∈ K means that each term in the numerator of the final
expression must be nonnegative. A similar argument can be made for v < 0 by using
−d2 instead of d1. �

Theorem 4 Suppose that, for ŷ ∈ N (x̂), f (ŷ) < f (x̂) + ξ , where ξ > 0 is a lower
bound on the extended poll trigger ξk for all k. If f is Lipschitz continuous near
ẑ ∈ X with respect to the continuous variables, then f ◦(ẑ; (v,0)) ≥ 0 for all feasible
directions v ∈ R.

Proof The proof is identical to that of Theorem 3, but with xk and x̂ replaced with zk

and ẑ, respectively. �
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The classical second-order necessary condition for optimality requires that the
Hessian be positive semidefinite on the null space of the binding constraints. How-
ever, in one dimension, if any constraint is binding, then the null space of the binding
constraints is the zero subspace, in which case, the second-order necessary condi-
tion holds automatically because the zero vector is specifically excluded from the
definition of positive definiteness. The next two results establish that x̂ and ẑ sat-
isfy a second-order nonsmooth necessary condition for optimality with respect to the
continuous variables when the limit point does not lie on the boundary of a linear con-
straint. These results act as corollaries to Theorem 5.15 in Abramson (2005), from
which we denote by f ◦◦(x; (d1,0), (d2,0)) the Clarke (second-order) generalized di-
rectional derivative in the direction d2 of the directional derivative f ′(x; (d1,0)) of
f at x in the fixed direction d1 with respect to the continuous variables. That is, if
h(x) = f ′(x; (d1,0)), then f ◦◦(x; (d1,0), (d2,0)) = h◦(x; (d2,0)).

Theorem 5 If f is continuously differentiable with Lipschitz continuous derivatives
near x̂ with respect to the continuous variables and either x̂c ∈ int(Xc) or Xc = R,
then f ◦◦(x̂; (v,0), (v,0)) ≥ 0 for all v ∈ R.

Proof First, for λ ≥ 0, the positive homogeneity of f ′(x; ·) yields

f ◦◦(x̂;λ(w1,0), λ(w2,0))

= lim sup
y→x̂, t↓0

f ′(y + λt(w2,0);λ(w1,0)) − f ′(y;λ(w1,0))

t

= λ lim sup
y→x̂, t↓0

f ′(y + λt(w2,0); (w1,0)) − f ′(y; (w1,0))

t

= λ lim sup
y→x̂, t↓0

λ[f ′(y + (λt)(w2,0); (w1,0)) − f ′(y; (w1,0))]
λt

= λ2 lim sup
y→x̂, t↓0

f ′(y + (λt)(w2,0); (w1,0)) − f ′(y; (w1,0))

λt
.

It follows that

f ◦◦(x̂;λ(w1,0), λ(w2,0)) = λ2f ◦◦(x̂; (w1,0), (w2,0)). (12)

Let D ⊇ {d1,−d2 : d1, d2 > 0} and β = d1
d2

> 0. Under the assumptions, all direc-
tions v ∈ R are feasible. Since f ◦◦(x̂; (−v,0), (−v,0)) = f ◦◦(x̂; (v,0), (v,0)), we
only need test the case where v > 0, in which case, v = αd1 for some α > 0. Then it
follows from (12) and the definition of f ◦◦ that

f ◦◦(x̂; (v,0), (v,0))

= f ◦◦(x̂;α(d1,0), α(d1,0))

= α2f ◦◦(x̂; (d1,0), (d1,0))
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= α2 lim sup
y→x̂, t↓0

f ′(y + t (d1,0); (d1,0)) − f ′(y; (d1,0))

t

= α2 lim sup
y→x̂, t↓0

[
lim
s→0

f (y + t (d1,0)) − f (y + t (d1,0) − s(d1,0))

st

− lim
s→0

f (y) − f (y − s(d1,0))

st

]

= α2
[

lim sup
y→x̂, t↓0

[
lim
s→0

f (y + t (d1,0)) − f (y + (t − s)(d1,0))

ts

]

+ β lim sup
y→x̂, t↓0

[
lim
s→0

f (y − (sβ)(d2,0)) − f (y)

t (βs)

]]

= α2
[

lim sup
y→x̂, t↓0

f (y + t (d1,0)) − f (y)

t2

+ β lim sup
y→x̂, t↓0

f (y + t (−d2,0)) − f (y)

t2

]

≥ α2
[

lim
k∈K

f (xk + �k(d1,0)) − f (xk)

�2
k

+ β lim
k∈K

f (xk + �k(−d2,0)) − f (xk)

�2
k

]

≥ 0,

since, for all sufficiently large k ∈ K , the refining directions d1 and −d2 satisfy
f (xk) ≤ f (xk + �k(d1,0)) and f (xk) ≤ f (xk + �k(−d2,0)), respectively. �

Theorem 6 Suppose that, for ŷ ∈ N (x̂), f (ŷ) < f (x̂) + ξ , where ξ > 0 is a lower
bound on the extended poll trigger ξk for all k. If f is continuously differentiable with
Lipschitz continuous derivatives near ẑ with respect to the continuous variables and
either ẑc ∈ int(Xc) or Xc = R, then f ◦◦(ẑ; (v,0), (v,0)) ≥ 0 for all v ∈ R.

Proof The proof is identical to that of Theorem 5, but with xk and x̂ replaced with zk

and ẑ, respectively. �

Finally, we conclude with the following theorem, which establishes reasonable
conditions under which convergence of the algorithm to a local minimizer is ensured.
In this theorem, the notation f ′′

c denotes the second derivative of f with respect to
the continuous variables (while holding discrete variables fixed).

Theorem 7 Suppose that f ′′
c is continuous near, and nonzero at, x̂ and all ẑ and

ŷ ∈ N (x̂) satisfying f (ẑ) = f (x̂) and f (ŷ) = f (x̂), respectively. If the number of
EXTENDED POLL steps is uniformly bounded, then x̂ is a local minimizer of f on X.

Proof We need to show that x̂ is a local minimizer according to Definition 1. First,
Theorem 3 and the smoothness of f ensure that f ′(x̂; (v,0)) = f ◦(x̂; (v,0)) ≥ 0
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for all feasible v ∈ R. Furthermore, Theorem 5 and the assumption that f ′′
c (x̂) �= 0

ensure that f ′′
c (x̂) > 0. These two results mean that x̂ satisfies the classical sufficient

conditions for local optimality with respect to the continuous variables.
Theorems 4 and 6 establish the same result for any ẑ corresponding to a discrete

neighbor ŷ for which f (ŷ) ≤ f (x̂) + ξ , where ξ > 0 is a lower bound on the EX-
TENDED POLL triggers. Thus any such ẑ is also a local minimizer of f with respect
to the continuous variables.

Theorem 2 ensures that f (x̂) ≤ f (ŷ). If f (x̂) < f (ŷ), as is the case when f (ŷ) >

f (x̂) + ξ , then there exists ε > 0 such that f (x̂) < f (w) for all w ∈ X satisfying
wd = ŷd and wc ∈ B(ŷc, ε).

Thus the only case left to show is when f (x̂) = f (ŷ). In this case, the EXTENDED

POLL step yields y
j+1
k = y

j
k +�k(d

j ,0) for some dj ∈ D(yk), and it follows that for

all k ∈ K , zc
k = yc

k +�k

∑Jk

j=1 dj . Since �k → 0 (in K) and Jk is uniformly bounded
(by assumption), it follows that zk − yk → 0 (in K). Thus ŷ = ẑ, and we have that ŷ

is a local minimizer with respect to the continuous variables, and the entire result is
proved. �

4 Numerical results

The MVPS algorithm is implemented in the NOMADm MATLAB® software
(Abramson 2007) and was used to numerically solve several test cases. For each
mass, the associated weight and damping constants were assumed to be 20 and 0.01
(unspecified) units, respectively, while spring constants for each mass are specified
in Table 1.

Recall from (4) and the discussion that precedes it that each trial point is of
the form x = (p,M) ∈ X = Xc × Xd , where p ∈ Xc = [0,1] and M ⊂ Xd =
{1,2, . . . ,N} contains the index numbers of the sensor locations. Thus no elements
of M may repeat. This is equivalent to setting Xd = {[y1, y2, . . . , yn] : yi �= yj for
i �= j , i, j = 1,2, . . . , n}.

Given a current iterate xk = (p,M), the set of discrete neighbors N (xk) consists
of all points obtained by holding p constant while adding or subtracting 1 to any of

Table 1 Spring constant for
each of 20 masses Location Constant Location Constant

1 2000 11 1350

2 1900 12 900

3 1800 13 800

4 2100 14 700

5 1600 15 1675

6 1500 16 500

7 1700 17 400

8 1950 18 1300

9 1200 19 200

10 1100 20 100
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the elements of M (with the restriction that elements of M cannot be repeated); i.e.,
N (x) = {(p,M ± ej ) ∈ X : j = 1,2, . . . , n}, where ej ∈ R

n is the standard unit vec-
tor in the j th coordinate direction, j = 1,2, . . . , n. Any local solution to the problem
given in (4) would then be with respect to this choice of N (x). For example, the
set N (x) of discrete neighbors of x = (0.2, [10,8,2,11]) consists of the following
points in X:

(0.2, [9,8,2,11]), (0.2, [10,7,2,11]), (0.2, [10,9,2,11]),
(0.2, [10,8,1,11]), (0.2, [10,8,3,11]), (0.2, [10,8,2,12]).

We divide our results into two main subsections, one for placing 4 sensors, and
one for 3 and 5 sensors. A third subsection provides some general remarks on the
optimization runs.

Each set of experiments was to optimally place the specified number of sensors,
given that damage occurred at a specified mass j . In each case, the NOMADm soft-
ware (Abramson 2007) was run 100 times, with randomly selected initial sensor lo-
cations and p initially set to 0.01. Constraints on the sensor locations (no more than
one sensor per mass, and none at mass j − 1 or j ) were enforced initially and in the
construction of the set of discrete neighbors.

In presenting our results, we provide two tables for each scenario. The first sum-
marizes the optimal values found for the 100 runs, while the second is a frequency
table for the most commonly found sensor locations; that is, it lists the most com-
monly found sensor locations and, for each one listed, what percentage of the 100
runs found that particular location in the optimal solution.

4.1 Results for 4 sensors

We first considered the optimal placement of 4 sensors with damage occurring, in
turn, at locations j = 10, 2, and 19. It may seem tempting to exhaustively enumer-
ate the different combinations of sensor locations and solve a one-dimensional non-
linear optimization problem during each run. However, this would actually require
(20)(19)(18)(17)/4! = 4845 runs, which is more than 48 times the number of runs
used for these experiments.

Damage at mass 10

The results are summarized below. Table 2 contains information on optimal values
found, while Table 3 is a frequency table for the 5 most commonly found sensor
locations.

Table 2 Numerical results for 4
sensors, damage at mass 10 Final f (p,M) Final p

Mean 0.1218 0.3951

Mode 0.0767 0.31

Minimum 0.0206 0.0002344

St Dev 0.1123 0.2645
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Table 3 Frequency results for 4
sensors, damage at mass 10 Location % Occurrence

19 78

20 50

18 50

1 46

8 43

Table 4 Numerical results for 4
sensors, damage at mass 2 Final f (p,M) Final p

Mean 0.374 0.0125

Mode 0.228 0.0002344

Minimum 0.0636 0.0001123

St Dev 0.1967 0.08277

Table 5 Frequency results for 4
sensors, damage at mass 2 Location % Occurrence

18 98

19 73

4 59

17 48

In 10% of the runs, the optimal solution included the first 4 masses (19,20,18,1)

from Table 3, and in 15% of the runs the 4 optimal masses were included in those
found in Table 3. The optimal solution over all the runs consisted of placing sen-
sors at masses [1,2,4,8] and p = 0.6352, which yielded an objective function value
of 0.0206.

This optimal objective function value is very low, meaning that the four sensors are
able to capture a lot of information on the changes occurring in the system. However,
the optimal solution was achieved when the spring stiffness has changed by 63%.
Hence, the sensor configuration of [1,2,4,8] is not desirable from a practical per-
spective. Moreover, the high median and mode values of p and relatively high stan-
dard deviation of p indicate that finding a good placement of 4 sensors that detects
system damage at early stages is difficult.

On the other hand, the most common solutions found during the 100 runs (i.e.,
those which locate the sensors at masses [20,19,18,1]), yield a much lower value
of p, most being close to the minimum value found of p = 0.0002 (see Table 2), even
though these solutions are sub-optimal with respect to the objective function value.

Damage at mass 2

Next, we investigated the outcome of sensor placement if the damage occurs near
one of the endpoints, instead of mass 10. Tables 4 and 5 summarize the results for
100 runs with damage at mass 2. In addition to the locations specified in Table 5,
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Table 6 Numerical results for 4
sensors, damage at mass 19 Final f (p,M) Final p

Mean 0.1296 0.3458

Mode 0.0048 0.358

Minimum 0.0043 0.01

St Dev 0.2018 0.2079

Table 7 Frequency results for 4
sensors, damage at mass 19 Location % Occurrence

9 63

14 55

3 38

10 37

sensors were optimally placed at other masses 22% of the time or less. Placement at
all four masses (4,17,18,19) together occurred in 6% of the runs, while placements
that included at least 3 of 4 of these locations accounted for 52% of the runs. The best
solution found across all runs consisted of sensors placed at masses [17,18,19,20]
with p = 0.0001123, yielding a minimum objective function value of 0.0636. The
small mean and mode values for p indicate that capturing system damage at an early
stage is much easier than for the previous scenario.

This sensor placement configuration of [17,18,19,20] is excellent because the
objective function value of 0.0636 is optimal and results in a very low value of p =
0.000123. This means that it can capture change in spring stiffness very quickly (after
just a 0.01% change) and accurately (6.36% difference between results for 4 sensors
and 20 sensors).

Damage at mass 19

Finally, if the damage occurs at mass 19, similar results are obtained, as shown in Ta-
bles 6 and 7. In this case, placement of sensors at all four of the masses [3,9,10,14]
simultaneously did not occur, while placement of sensors on at least three of any four
simultaneously occurred in 30% of the trials. Despite the low objective function value
of 0.0043, the result is not good enough in practice because p = 0.358 is quite large.
The relatively high mean, mode, and standard deviation of p mean that it is difficult
to find a suitable sensor placement that can capture damage at mass 19 quickly. Our
recommendation in this case is either to increase the number of sensors, or to look at
suboptimal configurations with a relatively low value of p.

4.2 Results for 3 and 5 sensors

We now present similar results for the 3 and 5 sensor cases, in which damage oc-
curs at mass 10. For the 3-sensor case, Tables 8 and 9 summarize the results un-
der the same experimental conditions as in Sect. 4.1. Optimal placements at masses
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Table 8 Numerical results for 3
sensors, damage at mass 10 Final f (p,M) Final p

Mean 0.3816 0.2911

Mode 0.7869 0.3100

Minimum 0.0217 0.0001123

St Dev 0.3174 0.2426

Table 9 Frequency results for 3
sensors, damage at mass 10 Location % Occurrence

19 61

20 47

18 36

1 35

8 33

Table 10 Numerical results for
5 sensors, damage at mass 10 Final f (p,M) Final p

Mean 0.09001 0.4366

Mode 0.0206 0.31

Minimum 0.0201 0.0001123

St Dev 0.06458 0.2498

[18,19,20] occurred 15% of the time, while any 3 of the 5 masses were attained
35% of the time. The objective function value of 0.0217 was achieved by three dif-
ferent configurations: sensors [1,8,19] with p = 0.6525, sensors [7,19,20] with
p = 0.00023438, and sensors [1,4,8] with p = 0.6346. The most common configu-
ration of [18,19,20] yields an objective function value of 0.1731 with p = 0.000123.
In this case, p is very close to optimal, but f is not (though it is lower than the mean
value over all the runs). Furthermore, the high standard deviation (0.31) indicates that
the probability of getting a value of f close to its minimum value is relatively small.
The low objective function value also suggests that using only three sensors can yield
enough information about system damage, but the mean, mode, and standard devia-
tion for the 4-sensor configuration are all smaller.

For the 5-sensor case, Tables 10 and 11 summarize the results. Over 40% of the
trials yielded optimal configurations with all sensor locations coming from the list
in Table 11. The objective function value of 0.0201 was achieved by three different
configurations: sensors [20,4,1,8,2] with p = 0.6354, sensors [2,8,14,4,1] with
p = 0.6355, and sensors [4,17,1,2,8] with p = 0.6355.

Similar to the other scenarios, various optimal configurations can be found with
low objective function values, but each with a different p-value. The more desirable
configurations in both the 3-sensor and 5-sensor case are again those obtained most
frequently, each of which does not have quite as good an objective function value,
but has a much lower p-value. Not surprisingly, the 5-sensor configuration provides
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Table 11 Frequency results for
5 sensors, damage at mass 10 Location % Occurrence

20 77

17 66

1 55

18 53

8 50

19 40

Fig. 3 Objective function profile for damage at mass 10

a slightly better optimal objective function value than 4-sensors can, and it is able to
detect damage quickly (p = 0.01%).

4.3 Additional remarks

Since the strong results obtained in Sect. 3.3 indicate that convergence to a local
minimizer is almost guaranteed, these results show that the optimal sensor location
problem that we have studied has many local minima. Indeed, this is verified by
Fig. 3, in which plots of the objective function are given for 2 different fixed sets
of four sensor locations when damage occurs at mass 10. The first is with sensor
locations as close as possible to the damage, and the second with the optimal locations
found by the NOMADm algorithm.

Even when based on simple transfer function estimates, the objective function not
only has many local solutions, but is also highly nonlinear. Further complexity is ex-
pected for structural (geometric and material) nonlinearities. The results presented
here were based on the linear system (1) and demonstrate the complex interrelation-
ship between the number of sensors, their locations, and the ability to detect damage
at an early stage (as defined by the percentage change p in stiffness).

In most cases, the most frequently found locally optimal solution is more desirable
than the global one because it generally has a much lower p-value, meaning that
damage is detected sooner. Indeed, this has been the challenge of SHM techniques
so far, as most sensor configurations are not able to detect the onset of damage. The
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most frequently found solution is also the most robust, in that it is less sensitive to
different initial points.

With regard to the actual solutions, ideal sensor placement is not proximal to the
site of damage, but rather, it is a nonlinear function of modal parameters, which often
places sensors near masses adjacent and attached to springs with the least stiffness,
provided that the damage is somewhat removed from that location. Because of this,
we were able to identify some good sensor configurations that are not intuitively
obvious, thus providing deeper insight into the problem.

5 Concluding remarks

We have introduced a new approach to solving sensor placement problems in the area
of structural health monitoring, in which the problem is formulated as a mixed vari-
able optimization problem and numerically solved by applying the mixed variable
generalized pattern search algorithm. Furthermore, we have introduced new conver-
gence results for pattern search algorithms applied to mixed variable problems having
only one continuous variable, but any finite number of discrete variables. These re-
sults are stronger than previous pattern search results, but only valid for problems
with one continuous variable. The approach introduced here is sufficiently general,
so as to be applicable to other classes of sensor placement problems.

Our approach also allows us to evaluate options and tradeoffs in SHM. It would
work best if potential sites for damage onset, such as locations of stress concentra-
tions, are known with some degree of confidence. If we know a priori how many
sensors are available, our optimization runs can be performed a statistically signifi-
cant number of times (100 runs in this paper, using different random starting points),
and the most frequent sensor locations found can be used as the recommended so-
lution, provided that the corresponding percentage damage parameter p lies below a
specified desired level, which is set by the user, based on engineering judgment.

Since we prefer solutions with low values of both f (p,M) and p, the most logical
next step in our study of sensor placement problems is to extend our formulation to
multi-objective optimization, in which we attempt to simultaneously minimize both
of these as objectives. In fact, we would eventually like to minimize a third function—
the number of sensors needed—and consider more realistic problems that have non-
linear interactions between the masses, and noise and uncertainty associated with
both the structure and sensors. Finally, we would like to study what effects multiple
damage sites and varying likelihood of sites for onset damage have on the optimal
sensor configuration.
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