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Abstract Trip distribution is one of the important stages in transportation planning
model, by which decision-makers can estimate the number of trips among zones. As
a basis, the gravity model is commonly used. To cope with complicated situations,
a multiple objective mathematical model was developed to attain a set of conflict
goals. In this paper, a goal programming model is proposed to enhance the developed
multiple objective model to optimize three objectives simultaneously, i.e. (1) maxi-
mization of the interactivity of the system, (2) minimization of the generalized costs
and (3) minimization of the deviation from the observed year. A genetic algorithm
(GA) is developed to solve the proposed non-linear goal programming model. As
with other genetic algorithms applied to real-world problems, the GA procedure con-
tains representation, initialization, evaluation, selection, crossover, and mutation. The
modification of crossover and mutation to satisfy the doubly constraints is described.
A set of Hong Kong data has been used to test the effectiveness and efficiency of the
proposed mode. Results demonstrate that decision-makers can find the flexibility and
robustness of the proposed model by adjusting the weighting factors with respect to
the importance of each objective.

Keywords Transportation systems · Trip distribution · Multiple criteria decision
making · Genetic algorithm

1 Introduction

Over the past years, a number of models are developed to distribute commuter’s trips,
freight or information among origins and destinations (Mozolin et al. 2000). The es-
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timation of trips distributed among origins and destinations is very important in the
real world. For instance, safety organizations analyze work-related traffic accidents
based on trip distribution data (Salminen 2000). In Finland, 50% of accidental deaths
were associated with traffic accidents between 1975–1994. In addition, transporta-
tion agencies use the number of trips distributed among areas to estimate emissions
produced by vehicles (Lin and Niemeier 1998).

In the strategic transport planning, it was studied that better transport systems
will facilitate the better environmental performance for intra-city and inter-city com-
munication (Bruton 1985). Transportation planning studies have been conducted
in major metropolitan areas for 40 years and have been used to analyze com-
muter demand and to forecast transport system inventories. An important prob-
lem in transportation planning studies is predicting the number of commuters in
each given origin-destination (OD) pair. This is a pure trip distribution problem,
and can be defined as follows: when the information about the number of trips
generated from origin zone i, Oi , i = 1,2, . . . , n, and attracted to destination
zone j , Dj , j = 1,2, . . . , n is available, the distribution process links up the gen-
erations and attractions to form a trip matrix, Tij , which represent the trips started
from origin zone i to destination zone j . The summation of trips from zone i

is equal to Oi and the summation of trips to zone j is equal to Dj . These are
called doubly constraints and mathematically expressed as (Ortuzar and Willumsen
1994):

n∑

j=1

Tij = Oi, i = 1,2, . . . , n, (1)

n∑

i=1

Tij = Dj, j = 1,2, . . . , n. (2)

Modeling trip distribution problems were initially derived from an analogy with
Newton’s law of gravitational force between two masses separated by a dis-
tance (Casey 1955). Applied to transportation planning, the formulation of the
gravity model can be explained as follows. The number of trips between two
zones is directly proportional to the number of trips generated from the origin
zone and the number of trips attracted to the destination zone, and the number
of interchanges is inversely proportional to the spatial separation between two
zones. In general, decision-makers always consider a decreasing function called
the generalized cost function, f (cij ) where cij is a generalized cost with one or
more components (e.g. travel cost, waiting time, parking cost, etc.) which rep-
resents the effect of spatial separation between two zones. The common grav-
ity model subjected to the doubly constraints (1) and (2) is derived as fol-
lows:

Tij = AiOiBjDjf (cij ) (3)

where Ai and Bj are the balancing factors to ensure that (1) and (2) are satisfied, and
expressed as:
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Ai = 1
/ n∑

j=1

BjDjf (cij ) (4)

and

Bj = 1
/ n∑

i=1

AiOif (cij ). (5)

It is noted that Ai and Bj can be found using an iterative process (Ortuzar and
Willumsen 1994).

Over the past three decades, various OR/MS techniques are employed to deal
with trip distribution problems such as mathematical programming (Hallefjord and
Jornsten 1986; Fang and Tsao 1995), heuristic searching methods (Mozolin et al.
2000), and fuzzy sets theory (Teodorovic 1994, 1999). Many studies have been car-
ried out to calibrate and validate appropriate parameters in the gravity model. Easa
(1993a) reviewed the state-of-the-art of trip distribution problem in large and small
areas. Arasan et al. (1996) developed gravity models with travel deterrence for trips
made for different purposes and using different modes of transport. Vaughan (1985)
examined the effect of travel and non-linear crowding costs with three criteria on
journey-to-work trip distributions. Duffus et al. (1987) investigated the reliability of
the gravity model to predict future travel patterns. Easa (1993b) developed a simpli-
fied technique based on transferable parameters to estimate OD matrices from traffic
counts and other available information; other miscellaneous simplified methods in-
cluding self-calibrating gravity model, partial matrix techniques, heuristic methods,
and facility forecasting techniques. Dinkel and Wong (1984) studied the impact of
external trips which are from and to outside the study area on local trips. Toth et
al. (1990) investigated the distribution pattern of shopping trips, and stated that the
difficulties of estimating the distribution of shopping trips are associated with: (1) a
proportion of trips made are a part of a series of linked trips, and (2) the trips have a
variety of origins and destinations before and after the shopping center site. Mozolin
et al. (2000) compared the performance of neural network formulation to tradition
gravity model for trip distribution problem, and concluded that the predictive abil-
ity of neural network is worsen than that of maximum-likelihood doubly-constrained
gravity model.

Alternatively, a mathematical model was developed by Wilson (1970) based on the
principle of maximum entropy to trip distribution problem, in which the interactivity
in the system represented by an entropy function is maximized subject to a set of
constraints. The difference in the model structure between the entropy-maximization
model and the gravity model is that right-hand-side values in the constraints are spec-
ified in the former and parameter values in generalized cost function are calibrated in
the latter. Nevertheless, the optimal solution to the entropy-maximization model has
the same form as that to the gravity model. However, a single-objective mathemati-
cal model seems to be insufficient in solving complicated real-world problems such
as economic crises, alternative traffic management and policy, unforeseeable travel
behavior and so on, although it is found that the mathematical model can reproduce
the solutions from the gravity model. Multiple criteria decision making (MCDM) is
adopted in the gravity model because, by calibration, parameters are estimated to
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achieve the “best-fit” matrix replicating the observed values and/or representing the
same degree of accessibility/interactivity. Recently, multi-objective decision making
has been acknowledged as a useful tool in solving real world problems and is re-
garded as one of the most important decision making methodologies. Hallefjord and
Jornsten (1986) presented a theoretical framework of a multi-objective model for the
trip distribution problem with target values and applied this to the problem in Swe-
den. An entropy function was used to measure deviations from target values. Under
this framework, new target values will be reassigned if decision-makers discover that
the solution is generally far away from observed real-life situation. However, the lim-
itation of this approach is the difficulty of choosing appropriate and “realistic” target
values. Leung and Lai (2002) proposed a goal programming model to solve a multi-
objective mode choice problem, by which decision-makers can estimate the number
of commuters using each specified model of transport in each given origin-destination
pair. Instead of changing the target values, by adjusting the weights with respect to
the importance of each objective, decision-makers and transport planners will find
the flexibility and robustness of the proposed model.

In this paper, an effective and robust approach, goal programming, is proposed for
application to the trip distribution problem with multiple objectives, in which a priori
information representing an optimistic guess or estimation of the outcome is given as
a set of target values. The objective is to minimize deviations of optimal solution from
the target value. Goal programming, one of the powerful mathematical models which
deals with multiple objective problems, is an extension of linear programming and
used particularly to optimize the problems with a priori set of information given by
decision-makers. The advantages of goal programming are that first, decision-makers
can vary weighing factors instead of target values according to the importance of ob-
jectives. Second, the model can be easily understood and manipulated by specialists
or non-experienced planners, and many developed software and meta-heuristic algo-
rithms can successfully solve linear and non-linear goal programming formulations
in reasonable computational time (Gen and Cheng 1997). Moreover, due to the com-
plexity of the proposed model, a genetic algorithm is developed to solve the proposed
non-linear goal programming model.

After this introductory section, three mathematical programming models pre-
sented by Hallefjord and Jornsten (1986) are described fully in the next section. The
general idea and the flexibility of goal programming in solving multi-objective prob-
lems are described and the application of this approach to the trip distribution problem
with multiple objectives is developed in Sect. 3. In Sect. 4, a genetic algorithm is ex-
pressed to solve the developed non-linear mathematical model. A set of Hong Kong
data is used to test the effectiveness and efficiency of the goal programming model in
Sect. 5. Conclusions are given in last section.

2 Model formulation

Hallefjord and Jornsten (1986) presented three single objective mathematical pro-
gramming (SOMP) models for the trip distribution problem. In this section, these
models are described briefly and the integrated MP model with three objectives,
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which are formulated in three individual models, is discussed. All models are con-
strained by doubly constraints (1) and (2), and non-negativity constraint, Tij ≥ 0, to
ensure that Tij are non-negative for all i, j .

2.1 SOMP trip distribution model 1: maximum entropy

In the 1970s, Wilson (1970) developed a SOMP model based on entropy maximiza-
tion to solve the trip distribution problem, in which the most probable set of Tij ’s
maximizes the total number of system states, called entropy. Wilson (1970) showed
that the solution to an optimization model based on the principle of maximum en-
tropy is identical to that based on the gravity model in (3). The entropy-maximization
model maximizes the interactivity in the system formulated in the entropy function
and has the following form:

Max z1(Tij ) = −
n∑

i=1

n∑

j=1

Tij lnTij . (6)

Apart from doubly constraints, this model is also constrained by a cost constraint:

n∑

i=1

n∑

j=1

cij Tij = C0, (7)

where C0 is the total generalized cost among all OD pairs in the system.
The advantage of the entropy-maximization method is its ability to help in con-

structing models to represent complex phenomena and, to a lesser extent, its use in the
interpretation of the equation. Applying entropy-maximization to the transport field,
the mathematical model is flexible and robust in anticipating future trips. Although
the conditions change over time, the transfer and possible change of the right-hand-
side values may be handled and understood more easily by the decision-makers than
a transfer of and changes in the parameter values, since right-hand-side values have a
physical interpretation. Decision-makers can also conveniently take their own expe-
rience into account in the planning process.

2.2 SOMP trip distribution model 2: transportation problem

As well as adopting Newton’s law of gravitational force and principle of maximum
entropy in developing the trip distribution model, other formulations will be modeled
(Wilson 1970; Erlander 1981). The classical transportation problem is concerned with
the delivery of goods or products from source supplies to customers so as to meet the
ordered demand (Hitchcock 1941). Decision-makers have to find the cheapest path to
transport the goods in terms of minimal transportation cost. As long as the transporta-
tion cost is linear, the problem can be easily solved using the simplex method. To be
applied to trip distribution problem, source supplies can be considered to be gener-
ation trips, customer demands attraction trips, and transportation costs generalized
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costs. The objective of this model is to minimize total generalized costs.

Min z2(Tij ) =
n∑

i=1

n∑

j=1

cij Tij . (8)

Since the objective in the transportation problem is to minimize total transporta-
tion costs, the cheapest pair among source-destination pairs will be fully assigned
with the amounts of goods as large as possible, whilst the expensive pair will be con-
sidered later. Hence, the resultant matrix is a all-or-nothing matrix. In order to spread
the trips evenly and smoothly without changing the objective, an entropy function is
added to measure the accessibility in the system.

−
n∑

i=1

n∑

j=1

Tij lnTij ≥ H0. (9)

2.3 SOMP trip distribution model 3: information theory

In all kind of forecasting models, observed past data plays an important role.
Decision-makers always intend to reproduce similar patterns in the future by min-
imizing the deviation between the past data and the obtained future solution. Econo-
metric experts, who are given a set of past data, construct a linear regression model
based on the concept of ordinary least squares to forecast the impact of a dependent
variable on the change of other independent variables. Information theory has been
developed to measure the variable with regard to the deviation from observed data.
This is as easy as to incorporate the available data in the entropy function into the
objective function. The third SOMP for trip distribution, supposing that the observed
past data, T 0

ij are given, has the form:

Min z3(Tij ) =
n∑

i=1

n∑

j=1

Tij ln
Tij

T 0
ij

. (10)

The set of constraints of model 3 is identical to that of model 1. The objective
function in (10) is a kind of entropy function but with a different expression from that
given in (6).

2.4 Multi-objective mathematical programming (MOMP) trip distribution model

Three mathematical programming models have been developed separately and seem
to be able to determine the distribution trips in the system. A single-objective model
only considers one objective at a time. However, model builders always want to de-
velop a model which can consider the real-life situation with multiple aspects. To
achieve this, a multi-objective model has been considered, with three objectives as
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discussed previously are:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Objective (1): Max z1(Tij ) = −
n∑

i=1

n∑

j=1

Tij lnTij ,

Objective (2): Min z2(Tij ) =
n∑

i=1

n∑

j=1

cij Tij ,

Objective (3): Min z3(Tij ) =
n∑

i=1

n∑

j=1

Tij ln
Tij

T 0
ij

(11)

subject to doubly constraints (1) and (2) and non-negativity constraints.
It is clearly noted that objective (1), which serves to optimize total efficiency ob-

jective of society, and (2), which serves to optimize total accessibility objective of
the individuals, are conflict. Moreover, two entropy functions, objective functions (1)
and (3), present in the objective to measure the interactivity in the system because,
sometimes, the source of base year observations are missing or uncertain. It is nec-
essary for Tij to take the smallest value possible due to the maximization of entropy,
while Tij to take the closest value to T 0

ij possible due to the minimization of devia-
tions from observation data. Finally, objectives (1) and (3) are also conflict.

3 Goal programming approach

3.1 The structure of goal programming

To generate some “good” efficient solutions instead of all efficient points, Halle-
fjord and Jornsten (1986) used a set of weights to measure the objectives. They
used an entropy target point approach to manage a large number of objectives. An
alternative approach to managing the deviations between target value and realized
solution is to use goal programming (GP) with weights. The explicit definition of
GP was given by Charnes and Cooper (1961) and is commonly used to achieve a
set of conflict objectives as closely as possible (Rifai 1994). Tamiz et al. (1998)
reviewed the state-of-the-art of current development of GP. Many researchers and
practitioners are increasingly aware of the presence of multiple objectives in real-
life problems (Vincke 1992). With fast computational growth, both linear and non-
linear GP can be solved using well-developed software or artificial intelligent such
as simulated annealing, genetic algorithms and so on. Moreover, GP is more direct
and flexible in manipulating different scenarios by adjusting either target values or
weights.

As opposed to linear programming, which directly optimizes objectives, GP at-
tempts to minimize the deviations between target values and the optimal solution.
The original objective is re-formulated as a goal constraint with a target value (goal)
of the objective and two auxiliary variables. Two auxiliary variables are called pos-
itive deviation d+ and negative deviation d− , which measure the over-achievement
and under-achievement with respect to this target value respectively. It is noted that, in
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optimization formulation, we have d+
i · d−

i = 0 for all i. The weighted goal program-
ming (WGP) assigns weights to the unwanted deviations according to their relative
importance indicated by decision-maker’s preference, and the sum of all of the de-
viations between the goals and their aspired level are minimized as an Archimedean
sum. The mathematical formulation of a WGP with p objectives has the following
form:

Min z =
p∑

i=1

(w+
i d+

i + w−
i d−

i ) (12)

s.t.

fi(x) − d+
i + d−

i = bi, i = 1,2, . . . , p, (13)

gj (x) ≤ 0, j = 1,2, . . . , q, (14)

d+
i , d−

i ≥ 0, i = 1,2, . . . , p (15)

where

fi(x): goal constraint i.

gj (x): system constraint j .

d+
i =

{
fi(x) − bi , if fi(x) > bi ,

0, otherwise.
: positive deviation i.

d−
i =

{
bi − fi(x), if fi(x) < bi ,

0, otherwise.
: negative deviation i.

bi : target value for objective i.

w+
i = the weight attached to positive deviation i from goal i.

w−
i = the weight attached to negative deviation i from goal i.

3.2 Goal programming model for the trip distribution problems

The GP approach to the multi-objective trip distribution problem is explained as fol-
lows. The first step is to formulate all objectives to goal constraints with deviations
and target values. The goal constraint (1) re-transformed from the objective (1) will
become:

−
n∑

i=1

n∑

j=1

Tij lnTij − d+
1 + d−

1 = H0 (16)

where H0 is the target value of maximum entropy with respect to constraint (9).
The goal constraint (2) re-transformed from the objective (2) will become:

n∑

i=1

n∑

j=1

cij Tij − d+
2 + d−

2 = C0 (17)

where C0 is the target value of total generalized costs with respect to constraint (7).
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The goal constraint (3) re-transformed from the objective (3) will become:

n∑

i=1

n∑

j=1

Tij ln
Tij

T 0
ij

− d+
3 + d−

3 = E0 (18)

where E0 is the target value of minimum deviations from observation data, and ide-
ally is equal to zero.

For all constraints (16–18), we have d+
i , d−

i ≥ 0 for all i. (19)

The objective function in GP for a multi-objective trip distribution problem con-
sidering all three objectives will become:

3∑

k=1

(w+
k d+

k + w−
k d−

k ) (20)

s.t.
n∑

j=1

Tij = Oi, i = 1,2, . . . , n, (21)

n∑

i=1

Tij = Dj, j = 1,2, . . . , n, (22)

−
n∑

i=1

n∑

j=1

Tij lnTij − d+
1 + d−

1 = H0, (23)

n∑

i=1

n∑

j=1

cij Tij − d+
2 + d−

2 = C0, (24)

n∑

i=1

n∑

j=1

Tij ln
Tij

T 0
ij

− d+
3 + d−

3 = E0, (25)

Tij ≥ 0, i = 1,2, . . . , n, j = 1,2, . . . , n, (26)

d+
k , d−

k ≥ 0, k = 1,2,3. (27)

4 Genetic algorithm

It can be seen that the proposed goal programming model contains a non-linear
constraint, involves a numerous amount of variables and is not as simple as the
traveling salesman problem with 0-1 integer interpretation. Reeves (1995) stated
that the genetic algorithm (GA) is a versatile approach to solving hard optimiza-
tion problems. Genetic algorithms have been receiving great attention and have also
been successfully applied in many research fields in the last decade (Fogel 1995;
Michalewicz 1994). In this study, let {tij } be the chromosome to solution of the goal
programming model. Choosing an appropriate chromosome representation of candi-
date solutions for the problem is the foundation for applying a GA to the optimization
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problems here. To obtain the complete solution, it is firstly necessary to run several
GA iterations with the following input data and parameters.

/* Input data and parameters */

Oi = number of trips generated from zone i, i ∈ I = {1,2, . . . , n};
Dj = number of trips attracted to zone j, j ∈ J = {1,2, . . . , n};
pop_size = number of chromosomes;
a = value used in evaluation function;
Pc = parameter used in crossover operation; and
Pm = parameter used in mutation operation.

Similar to most genetic algorithms, the proposed GA approach incorporates the
following procedures listed in the main module.

/* Main Module */

Procedure 0. Representation.
Procedure 1. Initialize pop_size chromosomes.
Procedure 2. Evaluate the function for selection.
Procedure 3. Select the chromosomes based on fitness value and record the best

solution.
Procedure 4. Update the chromosomes using crossover operations.
Procedure 5. Update the chromosomes using mutation operations.
Procedure 6. Repeat the 3rd to 5th procedures for given iterations.

/* Procedure 0 Representation */

The objective in the model is to determine the matrix with minimal objective value
with respect to three deviations subject to a set of constraints. The matrix T corre-
sponding to the k chromosome can be represented as follows:

Tk =

⎡

⎢⎢⎢⎢⎣

tk11 tk12 · · · tk1n

tk21 tk22 · · · tk2n

· · · · · · tkij · · ·
tkn1 tkn2 · · · tknn

⎤

⎥⎥⎥⎥⎦
= {tkij }, i ∈ I = {1,2, . . . , n}, j ∈ J = {1,2, . . . , n}

and optimal solution T ∗ with optimal value.

/* Procedure 1 Initialization Population */

The feasible solution {tij } can be found by the following formulation:

tij = OiDj

/∑

i∈I

Oi

(
or tij = OiDj

/∑

j∈J

Dj

)
.

Proof:
Because

∑

i∈I

Oi =
∑

j=J

Dj ,
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we get
∑

j∈J

tij = Oi, ∀i ∈ I

and
∑

i∈I

tij = Dj, ∀j ∈ J.

Although {tij } satisfies the doubly constraints, it may not be an optimal solution.
So, for randomly generated initial matrices {tkij }, k = 1,2, . . . ,pop_size, the following
steps are carried out.

Input: Oi, i ∈ I ;Dj, j ∈ J .
Step 1. Set k ← 0.
Step 2. Initialize tij ← 0, i ∈ I, j ∈ J .
Step 3. Set all numbers from 1 to n · n as unvisited.
Step 4. Select an unvisited random number u from 1 to n · n and set it as

visited.
Step 5. Calculate corresponding row and column.

i ← �(u − 1)/n	 + 1,
j ← (u − 1) mod n + 1.

Step 6. Assign available trips to tij as follows:
tij ← min{Oi,Dj }.

Step 7. Update data.

Oi ← Oi − tij ,
Dj ← Dj − tij .

Step 8. If all numbers are not visited, then go to Step 4.
Step 9. If k < pop_size, then set k ← k + 1 and go to Step 3.
Output: Matrices Tk = {tkij }, k = 1,2, . . . ,pop_size.

/* Procedure 2 Evaluation Function */

Let f (Tk), k = 1,2, . . . ,pop_size, denote the fitness value at the current generation
which will be assigned a probability of reproducing to each chromosome. The chro-
mosomes that have a higher fitness value will have a higher chance of producing
children. This process is presented in Procedure 2 and 3.

Input: Parameter a.
Step 1. Calculate evaluation function as follows:

evalk = a(1 − a)k−1, k = 1,2, . . . ,pop_size.

Step 2. Set g0 ← 0,

gk ← ∑k
i=1 evali , k = 1,2, . . . ,pop_size.

Output: gk , k = 0,1,2, . . . ,pop_size.
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/* Procedure 3 Selection Process */

The objective of selection process is to select chromosome to be new population.
The selection process proceeds by spinning the roulette wheel pop_size times.

Input: Matrices Tk = {tkij }, k = 1,2, . . . ,pop_size.

Step 1. Calculate the objective value as fitness value for each chromosome.
Fitness value f (Tk) = ∑3

l=1(w
+
l d+

l + w−
l d−

l )

where

d+
1 =

{−∑
i∈I

∑
j∈J tij ln tij − H0, if −∑

i∈I

∑
j∈J tij ln tij > H0,

0, otherwise.

d−
1 =

{
H0 + ∑

i∈I

∑
j∈J tij ln tij , if −∑

i∈I

∑
j∈J tij ln tij < H0,

0, otherwise.

d+
2 =

{∑
i∈I

∑
j∈J cij tij − C0, if

∑
i∈I

∑
j∈J cij tij > C0,

0, otherwise.

d−
2 =

{
C0 − ∑

i∈I

∑
j∈J cij tij , if

∑
i∈I

∑
j∈J cij tij < C0,

0, otherwise.

d+
3 =

{∑
i∈I

∑
j∈J tij

tij

t0
ij

− E0, if
∑

i∈I

∑
j∈J tij

tij

t0
ij

> E0,

0, otherwise.

d−
3 =

{
E0 − ∑

i∈I

∑
j∈J tij

tij

t0
ij

, if
∑

i∈I

∑
j∈J tij

tij

t0
ij

< E0,

0, otherwise

where H0,C0 and E0 are the target value of −∑
i∈I

∑
j∈J tij ln tij ,

∑
i∈I

∑
j∈J cij tij and

∑
i∈I

∑
j∈J tij ln

tij

t0
ij

respectively.

Step 2. Sort the fitness value in ascending order such that

f (T ′
1) < f (T ′

2) < · · · < f (T ′
pop_size).

Step 3. Record the optimal solution.
If f (T ′

1) < optimal value,
then optimal value ← f (T ′

1) and T ∗ ← T ′
1.

Step 4. Spin roulette wheel.
The chromosomes are generally selected on a fitness basis (the better the
fitness value, the higher the chance of it being chosen).

Step I. k = 1.
Step II. Generate a random number u ∈ (0, gpop_size].
Step III. Select T ′

k if gk−1 < u < gk .
Step IV. If k < pop_size, then go to Step II.

Step 5. Preserve the optimal solution.
Replace the worse chromosome by T ∗ as follows:

Tpop_size = T ∗.

Output: Matrices T
′′
k = {tkij }, k = 1,2, . . . ,pop_size.
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/* Procedure 4 Crossover Operation */

A parameter Pc is defined as the probability of crossover among chromosomes. This
probability gives the expected number Pc · pop_size of chromosomes during the
crossover operation.

Input: Matrices T
′′
k = {tkij }, k = 1,2, . . . ,pop_size and Pc.

The crossover is performed in three steps:

Step 1. Select matrices as parents for crossover operation.

Input: Matrices T
′′
k = {tkij },Pc.

Step I. k = 1.
Step II. Generate a random number u ∈ [0,1].
Step III. Select T

′′
k if u ≤ Pc.

Step IV. If k < pop_size, then go to Step II.
Output: Matrices T

′′′
k = {tkij }, k = 1,2, . . . ,pop_size.

Remark: If the total selected matrices is odd, then unselect the last selected
matrix.

Step 2. Operate crossover.

Step I. Select two matrices, e.g. T
′′′
1 and T

′′′
2 , from selected matrices set.

Step II. Create two temporary matrices D = {dij } and R = {rij } as follows:

dij = �(t1
ij + t2

ij )/2	,

rij = (t1
ij + t2

ij ) mod 2.

Step III. Divide matrix R into two matrices R1 = {r1
ij } and R2 = {r2

ij } such
that R = R1 + R2
∑

j∈J

rij =
∑

j∈J

r1
ij +

∑

j∈J

r2
ij , ∀i ∈ I .

∑

i∈I

rij =
∑

i∈I

r1
ij +

∑

i∈I

r2
ij , ∀j ∈ J .

It can be seen that there are too many possible ways to divide R

into R1 and R2 while satisfying the above conditions.
It is noted that rij , r

1
ij and r2

ij are either 0 or 1, where i ∈ I, j ∈ J .
R1 and R2 can be probably found by the following steps:

Step i. O ′
i =

∑

j∈J

r1
ij =

⌊
1

2

∑

j∈J

rij

⌋
, ∀i ∈ I .

D′
j =

∑

i∈I

r1
ij =

⌊
1

2

∑

i∈I

rij

⌋
, ∀j ∈ J .

Step ii. Initialize r1
ij ← 0, i ∈ I, j ∈ J .

Step iii. Set all numbers from 1 to n · n as unvisited.
Step iv. Select an unvisited random number u from 1 to n · n and

set it as visited.
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Step v. Calculate corresponding row and column.

i ← �(u − 1)/n	 + 1,
j ← (u − 1) mod n + 1.

Step vi. If O ′
i > 0,D′

j > 0 and rij �= 0, then r1
ij ← 1.

Step vii. Update data.

O ′
i ← O ′

i − r1
ij ,

D′
j ← D′

j − r1
ij ,

r2
ij ← rij − r1

ij .

Step viii. If all numbers are not visited, then go to Step iv;
However, one should be careful since experience shows
that the final matrices R1 and R2 may not satisfy the
doubly constraints. Step ii is required to reproduce R1
and R2 until the doubly constraints are satisfied.

Step 3. Replace two selected parents by two offspring.
Two selected parents are replaced by two new offspring T

′′′
1 and T

′′′
2 as

follows:

T
′′′
1 ← D + R1,

T
′′′
2 ← D + R2.

If all selected matrices for the crossover operation are not operated, then go
to Step 2.

Output: Matrices T
′′′
k = {tkij }, k = 1,2, . . . ,pop_size.

/* Procedure 5 Mutation Operation */

A parameter Pm is defined as the probability of mutation operation. This probabil-
ity gives the expected number Pm · pop_size of chromosomes during the mutation
operation.

Input: Matrices T
′′′
k = {tkij }, k = 1,2, . . . ,pop_size and Pm.

The mutation is performed in three steps:

Step 1. Select matrices as parents for mutation operation.

Input: Matrices T
′′′
k = {tkij },Pm.

Step I. k = 1.
Step II. Generate a random number u ∈ [0,1].
Step III. Select T

′′′
k if u ≤ Pm.

Step IV. If k < pop_size, then go to Step II.
Output: Matrices T

′′′′
k = {tkij }, k = 1,2, . . . ,pop_size.

Step 2. Operate mutation.

Step I. Select a matrix, e.g. T
′′′′
1 , from selected matrices set.

Step II. Randomly select rows and columns to create a p × q sub-matrix
Y = {yαβ} where α ∈ {i1, i2, . . . , ip} ⊆ I and 2 ≤ p ≤ n, and β ∈
{j1, j2, . . . , jq} ⊆ J and 2 ≤ q ≤ n.
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Step III. O
′′
α =

∑

∀β

yαβ ,

D
′′
β =

∑

∀α

yαβ .

Step IV. As an initialization matrix.

Step i. Initialize yαβ ← 0,

α ∈ {i1, i2, . . . , ip},
β ∈ {j1, j2, . . . , jq}.

Step ii. Set all numbers from 1 to p · q as unvisited.
Step iii. Select an unvisited random number u from 1 to p · q and

set it as visited.
Step iv. Calculate the corresponding row and column;

α ← �(u − 1)/n	 + 1,

β ← (u − 1) mod n + 1.

Step v. Assign available trips to tαβ as follows:

tαβ ← min{O ′′
α,D

′′
β}.

Step vi. Update data.

O
′′
α ← O

′′
α − tαβ ,

D
′′
β ← D

′′
β − tαβ .

Step vii. If all numbers are not visited, then go to Step iii.

Output: Matrices T
′′′′
k = {tkij }, k = 1,2, . . . ,pop_size.

5 Application to Hong Kong

The proposed GP model for multi-objective trip distribution discussed in the previ-
ous sections has been tested on Hong Kong data, and we report the test results in this
section. A rather small set of data is used to illustrate the model, in which the study
area was aggregated into 12 major districts and trips were made by workers with
similar economic backgrounds. The trip matrix in the observed year contains 12 dis-
tricts, D1 to D12, which primarily cover a part of Hong Kong. Decision-makers often
concentrate on travel between work and place of residence, since this is believed to
constitute a large part of private travel. Moreover, work journeys are easier to predict
than, for instance, shopping tours or leisure trips.

The observed data for the past year are given in Table 1. It is noted that D1 and D2
shared a large proportion of trips, whilst D11 and D12 produced a smaller number
of inter-district trips. This is because D1 and D2 are in the central business district
(CBD) area which generate a large amount of working trips. D11 and D12 are located
in more remote areas.
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Table 1 Observed data in the past year

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

D1 1543 1579 841 935 584 2112 268 710 59 56 32 6

D2 1937 3587 1054 1007 879 2211 287 732 60 256 33 8

D3 346 305 202 327 123 495 104 268 22 10 11 7

D4 769 698 675 946 302 1255 391 1037 78 28 26 8

D5 1245 1646 766 791 545 1370 267 678 55 48 24 10

D6 396 361 206 275 113 494 84 222 16 15 10 2

D7 474 600 429 769 194 906 1008 1745 127 13 97 24

D8 549 615 520 1029 227 983 859 1802 135 11 61 17

D9 350 450 293 548 143 661 572 1106 211 9 45 20

D10 361 860 180 229 146 376 99 221 21 136 7 4

D11 643 801 451 791 272 1028 888 1567 140 20 2885 1023

D12 144 203 122 189 61 297 201 374 33 2 749 479

Total entropy = −∑n
i=1

∑n
j=1 Tij lnTij = −491 916; total generalized cost = ∑n

i=1
∑n

j=1 cij Tij =
635 640

Table 2 Generalized cost (HK$; US$ = HK$7.8)

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

D1 5 6 7 7 6 8 10 9 9 10 16 16

D2 7 5 9 9 6 9 11 10 11 8 17 18

D3 6 7 5 6 6 7 8 7 7 10 14 15

D4 7 8 7 5 7 8 8 7 7 11 14 14

D5 6 6 8 8 4 9 10 9 10 9 16 17

D6 6 7 7 7 7 6 9 8 8 10 15 15

D7 11 13 11 10 11 12 4 6 7 15 10 11

D8 10 11 9 8 9 10 6 5 6 13 12 13

D9 11 13 11 10 11 12 7 7 4 15 13 13

D10 11 9 13 13 10 13 15 14 15 7 21 22

D11 19 20 19 18 19 20 12 15 13 23 6 8

D12 20 22 20 19 20 21 14 17 15 25 9 4

The generalized cost is given in Table 2. Since D11 and D12 are in rural areas,
the generalized costs from and to these areas are relatively high compared with other
districts. This is consistent with the trip matrix in the observed year.

It is noted that there exists trips and generalized cost from one origin to itself
because some commuters make trips start from and end at the same district, and that
travel cost, waiting cost, etc. are incurred to make such trips.

Table 3 shows the total number of trips produced from and attracted to 12 districts
in future year. These trips can be estimated by regression analysis model or cross-
classification model (Ortuzar and Willumsen 1994).
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Table 3 Estimated trips in
future year Future year

From (Oi) To (Dj )

D1 11485 8040

D2 12866 15177

D3 1965 6299

D4 8948 11532

D5 11532 4459

D6 3369 17474

D7 5925 6484

D8 7938 9950

D9 2993 2281

D10 5614 3977

D11 14879 4936

D12 4572 1477

Total 92086 92086

Table 4 Maximization of entropy

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

D1 1018 1862 785 1453 552 2197 799 1221 284 507 619 188

D2 1128 2146 876 1611 634 2408 910 1395 314 562 675 207

D3 169 328 133 250 89 388 132 212 49 82 103 30

D4 782 1495 612 1130 429 1699 620 949 224 382 480 146

D5 1000 1904 797 1448 564 2168 826 1239 285 506 611 184

D6 301 552 232 428 158 639 238 364 83 142 181 51

D7 511 984 399 747 290 1109 425 653 143 250 321 93

D8 693 1313 534 969 385 1523 555 869 196 345 428 128

D9 258 492 202 375 144 569 211 332 72 131 161 46

D10 488 932 380 704 269 1077 395 607 139 232 300 91

D11 1298 2416 1039 1842 724 2818 1059 1613 377 644 809 240

D12 394 753 310 575 221 879 314 496 115 194 248 73

Total entropy = −626 128; total generalized cost = 996 300

For future years, optimal trip matrices are compared to three “extreme mod-
els”, which are extreme model (1)—the maximum entropy solution (Table 4); ex-
treme model (2)—the minimum cost solution (Table 5); and extreme model (3)—the
minimum deviations from the observed year (Table 6). The extreme model (1),
maximization of entropy, is to maximize −∑∑

Tij lnTij . The extreme model
(2), minimization of generalized cost, is to minimize

∑∑
cij Tij . The extreme

model (3), minimization of deviations from observation data, is to minimize∑∑
Tij ln(Tij /T 0

ij ). It is noted that all these three extreme models are subject to
doubly constraints (1) and (2), and non-negativity constraints only. Hence, the set of
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Table 5 Minimization of generalized cost

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

D1 6488 0 1121 0 0 3876 0 0 0 0 0 0

D2 0 12866 0 0 0 0 0 0 0 0 0 0

D3 0 0 1965 0 0 0 0 0 0 0 0 0

D4 0 0 0 8948 0 0 0 0 0 0 0 0

D5 1552 674 917 0 4459 3930 0 0 0 0 0 0

D6 0 0 0 0 0 3369 0 0 0 0 0 0

D7 0 0 0 0 0 0 0 5925 0 0 0 0

D8 0 0 1206 214 0 3373 0 3145 0 0 0 0

D9 0 0 159 312 0 117 0 124 2281 0 0 0

D10 0 1637 0 0 0 0 0 0 0 3977 0 0

D11 0 0 236 794 0 1673 6484 756 0 0 4936 0

D12 0 0 695 1264 0 1136 0 0 0 0 0 1477

Total entropy = −769 942; total generalized cost = 679 390

Table 6 Minimization of deviations from observed data

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

D1 1460 2095 950 1440 756 3148 363 717 153 369 30 4

D2 1392 3637 915 1182 863 2543 306 569 124 1308 23 4

D3 222 272 155 343 101 500 96 185 38 43 7 3

D4 801 1039 836 1597 428 2036 597 1150 230 201 27 6

D5 1373 2645 1030 1430 835 2388 433 817 174 373 26 8

D6 440 564 269 495 167 860 139 260 49 113 11 2

D7 325 583 351 849 178 982 997 1278 243 62 65 12

D8 465 751 535 1439 262 1300 1073 1663 326 62 52 10

D9 171 307 167 427 94 504 405 576 287 28 21 6

D10 465 1574 278 472 247 758 185 304 75 1243 9 4

D11 735 1329 617 1448 419 1828 1495 1897 460 157 3579 915

D12 191 381 196 410 109 627 395 534 122 18 1086 503

Total entropy = −643 316; total generalized cost = 841 802

constraints for each of extreme models is different from that of each single objective
model introduced in Sect. 2.

Owing to the non-linearity of the models, a genetic algorithm (GA) is developed
to solve this hard optimization problem efficiently. To obtain the complete solution, it
is necessary to run several GA iterations with the parameters consisting of the num-
ber of chromosomes, the probability used in crossover operations and the probability
used in mutation operations (Gen and Cheng 1997). The solutions of the three ex-
treme models run by C++ on Pentium III 600 MHz personal computers are shown in
Tables 4–6. The total entropy obtained in the extreme model (1) is −626 128 which
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Table 7 Two-objective model

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

D1 3783 1823 1370 1043 287 3149 1 15 1 13 0 0

D2 870 8726 319 242 502 2034 0 9 0 164 0 0

D3 112 53 817 232 24 716 0 9 1 1 0 0

D4 342 167 918 5233 71 2132 2 76 4 3 0 0

D5 2109 2851 760 591 3342 1799 1 23 1 55 0 0

D6 161 78 161 125 12 2825 0 5 0 2 0 0

D7 83 15 226 472 17 523 1744 2786 58 1 0 0

D8 103 49 748 1589 59 1783 106 3426 72 3 0 0

D9 69 12 179 384 14 431 71 856 976 1 0 0

D10 129 1295 47 36 73 301 0 1 0 3732 0 0

D11 187 92 503 1057 39 1192 3843 2320 992 2 4633 19

D12 92 16 251 528 19 589 716 424 176 0 303 1458

Total entropy = −703 988; total generalized cost = 711 809

is the highest value of total entropy in a given set of numerical data. Total general-
ized cost obtained in the extreme model (2) is 679390 which is the lowest value of
generalized cost in a given set of numerical data. It can be checked that total entropy
obtained from extreme model (3) is smaller than −626 128 (the highest value of total
entropy obtained from extreme model (1)), and total generalized cost is greater than
679 390 (the lowest value of total generalized cost obtained from extreme (2)).

In Table 7, the simple two-objective model, using objectives (1) and (2) pre-
sented in (11), with the target values obtained from the extreme models (1) and (2),
(H0,C0) = (−626 128,679 390), is chosen. This trip matrix, excluding the minimiza-
tion of deviations from observed data, is used for comparison with the matrix from
three-objective model.

In a given set of numerical data, the highest value of total entropy from extreme
model (1) is −626 128, and the lowest value of total generalized cost from extreme
model (2) is 679 390. As discussed in Sect. 3, w+

1 and w−
2 will be zero when the

highest target value of objective 1 and the lowest target value of objective 2 are cho-
sen. Moreover, it is assumed that w+

3 = w−
3 in this stage. The three-objective model

with target values (H0,C0,E0) = (−626 128,679 390,0) is listed in Table 8. Ini-
tially, equal weighting factors are assigned to each of the three objectives, indicating
that the importance of all three objectives is equal.

It is noted that in D12 the degree of dispersion is smaller than that generally ob-
served in past year. Instead of changing the target values of E0 or other target values
preformed by Hallefjord and Jornsten (1986) in the proposed goal programming, it
is simply to re-assign a new set of weight factors through the consideration of dif-
ferent parties from transport agencies and decision-makers to make a new solution
with more dispersion. The suggested weighting factors are (w−

1 ,w+
2 ,w+

3 ,w−
3 ) =

(0.6,0.1,0.3,0.3), indicating the importance of interactivity in the system. The re-
sults are shown in Table 9.
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Table 8 Three-objective model with (w−
1 ,w+

2 ,w+
3 ,w−

3 ) = (1/3,1/3,1/3,1/3)

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

D1 2560 2249 1214 1353 582 3251 20 140 18 98 0 0

D2 1232 6501 577 602 835 2333 15 100 8 663 0 0

D3 192 157 424 348 70 684 9 62 8 11 0 0

D4 631 524 1027 3572 240 2357 63 442 53 39 0 0

D5 1868 3122 936 1013 2066 2105 27 181 14 200 0 0

D6 357 294 268 335 70 1950 8 58 7 22 0 0

D7 155 92 254 603 60 633 1761 2200 158 8 1 0

D8 225 207 626 1567 146 1472 493 2963 222 17 0 0

D9 103 62 164 400 41 423 234 837 724 5 0 0

D10 254 1557 114 137 165 464 4 26 2 2891 0 0

D11 345 339 508 1188 138 1297 3178 2424 882 20 4350 210

D12 118 73 187 414 46 505 672 517 185 3 585 1267

Total entropy = −667 289; total generalized cost = 746 914

Table 9 Three-objective model with (w−
1 ,w+

2 ,w+
3 ,w−

3 ) = (0.6,0.1,0.3,0.3)

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

D1 1452 2310 934 1535 664 2653 416 821 181 436 68 15

D2 1321 3507 873 1314 814 2623 401 789 154 988 67 15

D3 196 295 186 299 99 487 94 187 39 64 15 4

D4 801 1200 760 1667 413 1999 516 1017 211 274 72 18

D5 1326 2498 913 1440 904 2305 463 890 171 536 69 17

D6 363 552 267 456 153 949 138 285 56 122 23 5

D7 376 568 364 782 195 990 964 1166 220 114 154 32

D8 516 816 576 1247 299 1481 838 1562 293 162 121 27

D9 206 319 193 410 106 544 339 535 214 61 51 15

D10 495 1462 317 535 291 956 186 354 71 913 26 8

D11 761 1285 697 1403 401 1863 1681 1820 528 255 3395 790

D12 227 365 219 444 120 624 448 524 143 52 875 531

Total entropy = −638 885; total generalized cost = 857 493

6 Conclusion

In this paper, a GP model was presented to solve a multi-objective trip distribution
problem in which three objectives with target values are optimized simultaneously.
The three objectives are the maximization of interactivity in the system, the mini-
mization of generalized costs, and the minimization of deviations from the observed
year. Decision-makers can pre-specify target values for goal constraints to ensure that
the trip matrix is more realistic. The example shows that, by adjusting weighting fac-
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tors in the objective function corresponding to deviations from the goals, the goals’
priority can be quantified. Decision-makers may find the proposed GP model is more
flexible and comprehensive than the standard gravity model or entropy-maximization
model in terms of multiple decision-making given the trade-off of a degree of disper-
sion with respect to the importance of goals.

The proposed model is a hard combinatorial problem and is not solved as easily as
linear programming or even integer programming. A genetic algorithm is proposed
to solve the problem and is seen to be quite successful and effective. The robustness
of the model is illustrated by a set of Hong Kong data, and the genetic algorithm’s ef-
ficacy is also demonstrated by the way in which the solution changes in adjusting the
importance of the objectives. The modification of the genetic operation is successful
because the doubly constraints are still satisfied. It is obvious that not only transporta-
tion problems, which are widely used to demonstrate how genetic algorithm operate
can be successfully solved, but also other real-world problems, denoted by a matrix
form, can be found by following this modified genetic algorithm.
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