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Abstract The continuous network design problem (CNDP) is characterized by a
bilevel programming model, in which the upper level problem is generally to min-
imize the total system cost under limited expenditure, while at the lower level the
network users make choices with regard to route conditions following the user equi-
librium principle. In this paper, the bilevel programming model for CNDP is trans-
formed into a single level convex programming problem by virtue of an optimal-value
function tool and the relationship between System Optimum (SO) and User Equilib-
rium (UE). By exploring the inherent nature of the CNDP, the optimal-value function
for the lower level user equilibrium problem is proved to be continuously differen-
tiable and its derivative in link capacity enhancement can be obtained efficiently by
implementing user equilibrium assignment subroutine. However, the reaction (or re-
sponse) function between the upper and lower level problem is implicit and its gradi-
ent is difficult to obtain. Although, here we approximately express the gradient with
the difference concept at each iteration, based on the method of successive averages
(MSA), we propose a globally convergent algorithm to solve the single level con-
vex programming problem. Comparing with widely used heuristic algorithms, such
as sensitivity analysis based (SAB) method, the proposed algorithm needs not strong
hypothesis conditions and complex computation for the inverse matrix. Finally, a nu-
merical example is presented to compare the proposed method with some existing
algorithms.
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1 Introduction

The network design problem (NDP) involves the optimal decision on the expansion
of a street and highway system in response to a growing demand for travel. It has
emerged as an important area for progress in handling effective transport planning,
because the demand for travel on the roads is growing at a rate faster than our ur-
ban transport systems can ever hope to accommodate, while resources available for
expanding the system capacity remain limited. Historically, this problem has been
roughly classified into two different forms: a discrete form dealing with the additions
of new links or roadway segments to an existing road network, and a continuous form
dealing with the optimal capacity expansion of existing links. In whichever form, the
objective of NDP is to optimize a given system performance measure such as to
minimize total system travel cost, while accounting for the route choice behavior of
network users (Yang and Bell 1998). The decisions made by road planners influence
the route choice behavior of network users, which is normally described by a net-
work user equilibrium model. Mathematically, the bilevel programming is a good
technique to describe this hierarchical property of the NDP with an equilibrium con-
straint. Generally the upper level problem is to minimize the total system cost and the
lower level problem is to characterize the UE traffic flow pattern.

Due to the intrinsic complexity of model formulation, the NDP has been recog-
nized as one of the most difficult yet challenging problems in transport. In fact, a large
number of scholars have investigated the NDP in one way or another over the past two
decades (Magnanti and Wong 1984; Friesz 1985; Boyce 1984; Wong and Yang 1997;
Yang and Bell 1998; Gao et al. 2005).

Up to date, studies have been overwhelmingly focused on the CNDP and substan-
tial achievements in algorithmic development have been made. Abdulaal and LeBlanc
(1979) formulated the CNDP under deterministic user equilibrium (DUE) as a bilevel
programming model and the Hook-Jeeves heuristic algorithm was also introduced.
Generally, bilevel programming problem is difficult to solve, designing efficient al-
gorithms for CNDP is long recognized to be one of the most challenging problems in
transportation.

One class of the existing methods tries to derive a set of equivalent differentiable
equations for the DUE assignment problem. The CNDP is then reformulated as a
constrained differentiable optimization problem, which can be solved by the existing
convergent methods. Tan et al. (1979) expressed the DUE problem by a set of non-
linear and nonconvex, but differentiable constraints in terms of path flow variables.
Friesz (1981) extended this result to the multiclass DUE problem. As an application,
Friesz et al. (1993) used a simulated annealing approach to solve the multiobjective
equilibrium network design problem as a single level minimization problem. Since
the number of paths in the networks of a realistic size is huge, this approach can only
be suitable for small, hypothetical networks. In view of the fact that the DUE problem
can be described by a variational inequality, Dafermos (1980), Marcotte (1983) trans-
ferred the CNDP into a single level equivalent differentiable optimization problem.
The required constraints involve all the extreme points of the closed convex polyhe-
dron for the feasible acyclic multicommodity flow patterns. It is generally difficult to
identify all the extreme points for a polyhedron, and in particular, for a moderately
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large network problem the constraint set might become huge and intractable. Meng
et al. (2001) reformulated the CNDP under the DUE constraints into an equivalent
single level continuously differentiable problem by virtue of a marginal function tool.
The DUE conditions of the lower level problem are represented by a single constraint
in terms of the marginal function, but unfortunately, the single constraint is non-
convex. In their paper, the bilevel model is transformed into a single level nonconvex
programming model from which the globally optimal solution is hard to obtain. Meng
et al. (2001) solve this equivalent problem by the augmented Lagrangian method and
only obtain the locally convergent solution. In this paper, we transform the bilevel
programming model into an equivalent convex programming and an approximately
global optimal solution to the CNDP can be obtained efficiently.

In view of the solution difficulty, various heuristic algorithms for the CNDP are de-
veloped to try to produce acceptable solutions for large problems, without necessarily
guaranteeing optimality. The relation between DUE link flow and link capacity en-
hancement is nonlinear and implicit. The derivative of DUE link flow with respect to
link capacity enhancement can be obtained by using the sensitivity analysis method
under some strong assumptions (Friesz et al. 1990; Cho 1988; Yang 1995, 1997),
which is widely used for solving the CNDP. Various sensitivity analysis-based heuris-
tic algorithms are proposed for the CNDP and relevant problems using the derivative
information (Tobin and Friesz 1988; Kim and Suh 1988; Friesz et al. 1990; Yang and
Yagar 1994; Gao and Song 2002, etc.). Unfortunately, because of the large computa-
tion of the inverse of matrix, SAB method cannot be used to solve the large transporta-
tion network. Moreover, it needs strong assumptions. In addition, the flow-capacity
enhancement relation may not always be differentiable. Another class of heuristic
algorithms is the so-called iterative optimization assignment (IOA) algorithms that
iteratively solve the upper and lower level optimization problems of the CNDP. Mar-
cotte (1986), Friesz and Harker (1985) and Marcotte and Marquis (1992) conducted
detailed performance analyses of this type of algorithm. Furthermore, Suwansirikul
et al. (1987) developed an alternative heuristic method called the equilibrium decom-
posed optimization (EDO) algorithm by approximating the derivative of the objective
function in the upper level problem. This approximation requires that the approxi-
mated derivatives should have the same sign as the original true derivatives, which is
difficult to verify, in particular, for realistically large network problems.

Marcotte and Zhu (1996) and Luo et al. (1996) have obtained some interesting
results in optimality conditions and provided some algorithms for a class of gen-
eral bilevel programming problem in which the lower level problem is described by
variational inequalities. Certain exact penalty functions and the corresponding al-
gorithms are investigated and established using the theory of exact penalization for
mathematical programs with subanalytic constraints under certain regularity condi-
tions. In addition, some non-numerical algorithms are proposed (Friesz et al. 1993;
Cree and Maher 1998).

In this paper, firstly the limitation of the SAB method which is used extensively
in solving CNDP (Yang and Bell 1998) is introduced. Then the bilevel programming
model for CNDP is transformed into a single level convex programming problem by
virtue of a optimal-value function tool and the relationship between SO (the upper
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level objective function) and UE (the lower level objective function). By exploring
the inherent nature of the CNDP, the optimal-value function for the lower level user
equilibrium problem is proved to be continuously differentiable and its derivative in
link capacity enhancement can be obtained efficiently by implementing a user equi-
librium assignment subroutine. However, the reaction (or response) function between
the upper and lower level problem is implicit and its gradient is difficult to obtain, so
here we approximately express the gradient with the difference concept at each iter-
ation. Based on MSA method, we propose a globally convergent algorithm to solve
the single level convex programming problem. Comparing with widely used heuristic
algorithms, such as SAB method, the proposed algorithm needs not strong hypothesis
conditions and complex computation for the inverse matrix, and its key computational
issue is solving the user equilibrium assignment problem with fixed link capacity en-
hancement and a simple linear programming.

This paper is organized as follows: the next section introduces the basic idea to
solve the bilevel programming problems and the bilevel programming model of the
CNDP in the transportation. In Sect. 3, firstly, introduce the concept and properties of
an optimal-value function. By investigating the characteristics of the lower level prob-
lem’s optimal-value function, its gradient can be obtained efficiently, then, the bilevel
model for CNDP is transformed into a single level convex programming problem and
a globally convergent algorithm based on the thought of MSA is proposed. Compu-
tational results on a particular network are presented in Sect. 4, and Sect. 5 contains
conclusion.

2 A bilevel programming model for the CNDP

2.1 The basic idea of the bilevel programming model

The transportation CNDP can be represented as a leader-follower game where the
transportation planning departments are leaders, and the users or travelers who can
freely choose the path are the followers (Boyce 1984; Yang and Bell 1998). It is as-
sumed that the transportation planning managers can influence, but cannot control the
users’ path-choosing behavior. The users make their decision in a user optimal man-
ner under the given service level of transportation networks. This interaction game
can be represented as the following bilevel programming problem.

(U0) min
x

F(x,y)

s.t. G(x,y) ≤ 0

where y = y(x) is implicitly defined by

(L0) min
y

f (x,y)

s.t. g(x,y) ≤ 0.

Obviously, the bilevel programming model consists of two submodels, (U0) which
is defined as an upper level problem and (L0) which is a lower level problem. F and
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x are the objective function and decision vectors of upper level decision-makers or
system managers, G and g are the constraint sets of the upper level and lower level
decision vectors. f and y are the objective function and decision vectors of lower
level decision-makers. y = y(x) is usually called the reaction or response function.

The upper level describes leader or policy problem and the lower level model rep-
resents follower or user’s behavioral problem. In the CNDP, the upper level problem
is to determine an optimal project for improvement link capacities to make the to-
tal cost minimum in the range of investments budget formulated by the government.
The lower level problem represents a user equilibrium assignment problem that de-
scribes users’ path-choosing behavior, and its objective function is to minimize the
users’ travel cost. A successful investment programming will greatly depend on how
to evaluate the reaction function, or in other words, how to predict flow changes in
response to an improvement in urban network capacity.

2.2 The lower level user equilibrium assignment

It is worth emphasizing that the network design problem must be solved with the
network flow pattern constrained to be user equilibrium. In general, improvement of
road network characteristics will definitely induce changes in traffic flow over the net-
work. More importantly, addition of a new road segment, or capacity enhancement to
a congested network, without considering the response of network users may actually
increase network-wide congestion. This well-known phenomenon has been demon-
strated by the ostensible Braess’ paradox. Therefore, prediction of traffic patterns via
a sound behavior model is essential to the network design process.

Traditionally, the CNDP models hypothesize that the demand is given and fixed,
and the users’ route choice is characterized by the user equilibrium assignment prob-
lem. Let A be the set of arcs (links), R and S are the sets of vertices which represent
origins and destinations respectively. The UE problem with fixed demand can be for-
mulated as follows (Sheffi 1985):

(L) min T (x,y) =
∑

a∈A

∫ ya(x)

0
ta(v, xa)dv (2.1)

s.t.
∑

k

hrs
k = qrs, ∀r ∈ R, s ∈ S, (2.2)

hrs
k ≥ 0, ∀r ∈ R, s ∈ S, k ∈ Krs, (2.3)

ya =
∑

r

∑

s

∑

k

hrs
k δrs

a,k, ∀a ∈ A. (2.4)

Notations
ya : the total flow on link a, a ∈ A;
Krs : the set of path between r and s;
r : the origin node, r ∈ R;
s: the destination node, s ∈ S;
ta(·): the link travel time (or cost) function which is continuously differentiable and
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convex for fixed xa . Generally, we use the following form for ta(·)
ta(ya, xa) = Aa + Ba(ya/(ka + xa))

4

where Aa , Ba are parameters, and ka is the capacity of link a (Sheffi 1985).
qrs : the total traffic demand between origin r and destination s;
hrs

k : flows on path k connecting rand s;
xa : the continuous capacity increase of link a;
δrs
a,k : path/link incidence variables;

In this model, the users at the lower level are assumed to follow the user-
equilibrium principle of Wardrop under the given network. Constraints (2.2), (2.3)
and (2.4) are definitional, non-negativity and conservation of the flow constraints.

2.3 The upper level optimization problem

In addition to the aforementioned alternative route choice models, the NDP can be
formulated with different forms of decision variables and objective functions. The
specific decision variables and objective functions would depend on the characteris-
tics of the particular problem of interest. The CNDP deals with the increase of the
link capacities to a transportation network. The upper level for the continuous trans-
portation network design problem can be expressed as follows (Yang and Bell 1998):

(U) min F(x,y) =
∑

a∈A

ta(ya(x), xa)ya(x) (2.5)

s.t.
∑

a∈A

Ga(xa) ≤ B (2.6)

xa ≥ 0, ∀a ∈ A (2.7)

where y is the implicitly function of the x which may be obtained by solving the
lower level problem; Ga(xa)is the investment function of link a ∈ A; B is the total
investment budget. The investment function Ga(xa) is formulated generally to make
the constraint (2.6) convex in practice, such as Ga(xa) = 1.5 · da · (xa)

2, where da is
the parameter of the investment function.

The network planners of the upper level are assumed to make the decisions about
the improvement of links capacities and investments in order to minimize the total
cost. Constraint (2.6) ensures that the total investment cost will not exceed the total
budget. Constraint (2.7) is the non-negativity of the decision variables.

3 Solution algorithm for the bilevel problem

In spite of the various intriguing attempts to solve the CNDP, these algorithms are
unfortunately either incapable of finding the convergent solution or very computa-
tionally intensive and impractical for problems of a realistic size.

The difficulty in solving the bilevel programming problem presented in this pa-
per lies in how to evaluate the equilibrium flow y(x) for the project x, which is the
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implicitly function defined by the lower level user path-choosing equilibrium prob-
lem. Many solution algorithms for the bilevel model with continuous variables have
been developed, such as the sensitivity analysis based algorithm (SAB) (Kim 1990;
Yang and Yagar 1994; Wong and Yang 1997; Chiou 1999; Gao and Song 2002; etc.).
However, the SAB method needs large computation of the inverse of matrix, and is
not suitable to solve the large network and also cannot guarantee the convergence. In
addition, SAB method needs many strong assumptions, for example, it requires that
the lower level functions is second order continuous differentiable and the lower level
problem has a unique solution for any fixed upper level variables. Therefore, a new
efficient algorithm is proposed in the following to solve the CNDP.

3.1 Optimal-value function of general nonlinear programming problem

At first, we consider the following general nonlinear programming problem with
x ∈ X being a parameter as follows:

w(x) = min
y

f (x,y) (3.1a)

s.t. g(x,y) ≤ 0 (3.1b)

where X is a nonempty, convex set, y ∈ Rq is the decision vector and the functions

f : Rn × Rq → R1,

g : Rn × Rq → Rp.

The constraint set defined by (3.1b) is denoted by

S(x) = {y ∈ Rq | g(x,y) ≤ 0}. (3.2)

In general, We call the function w(x) the optimal-value function (Shimizu et al.
1997).

In problem (3.1), the constraint sets of y depend on the parameters. We refer to
such a constraint as parametric constraint.

The optimal solution set of problem (3.1) under the given parameter x is defined
by

P(x) = {y ∈ S(x) | f (x,y) = w(x)}. (3.3)

The set of points y of S(x) that satisfy g(x,y) < 0 is denoted by S−(x), that is

S−(x) = {y ∈ Rq | g(x,y) < 0}. (3.4)

The index set of active inequality constraints is defined as

I (x,y) = {i = 1, . . . , p | gi(x,y) = 0}. (3.5)

Let the following assumptions hold in this paper:

(a) functionsf and g are convex and continuously differentiable in (x,y);
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(b) P(x) and S−(x) is a nonempty set, ∀x ∈ X;
(c) ∀x ∈ X, the vectors {∇ygi(x,y), i ∈ I (x,y)} are linearly independent.

Theorem 1 ∀x ∈ X, P(x) is nonempty, then w(x) is convex on X.

Proof See Mangasarian and Rosen (1964). �

The subgradient denoted by ∂f (x̄) of f at x̄ ∈ X is defined by

∂f (x̄) = {ξ ∈ Rn | f (x) ≥ f (x̄) + ξT (x − x̄)} (3.6)

where ξ is a vector. It is noted that ∂f (x̄) is a set of n-dimensional vector.
Next we give a well-known property of the subgradient of a convex function f .

For details, see (Rockafellar 1970).

Theorem 2 Let f : x → R1 a convex function on X.∂f (x̄) has unique point, then f

is differentiable at x̄ ∈ X and ∂f (x̄) = {∇f (x̄)}.

Theorem 3 Under the assumptions (a)–(b), the subgradient of w(x) at x∗ ∈ X is
nonempty and given by

∂w(x∗) =
{
∇xf (x∗,y∗) +

∑

i∈I (x∗,y∗)
λ∗

i ∇xgi(x∗,y∗)
∣∣∣

∇yf (x∗,y∗) +
∑

i∈I (x∗,y∗)
λ∗

i ∇ygi(x∗,y∗) = 0,

λ∗
i ≥ 0, λ∗

i = 0 if i /∈ I (x∗,y∗)
}

(3.7)

where λ∗ is the Kuhn–Tucker vectors corresponding to an arbitrary element in y∗ ∈
P(x∗).

Proof See Theorem 6.6.2 in (Shimizu et al. 1997). �

Even though w(x) is not necessary differentiable in general (Shimizu et al. 1997),
furthermore, we can obtain a characteristic property for the optimal-value function
w(x) under assumptions (a)–(c).

Theorem 4 Under the assumptions (a)–(c), if ∀x∗ ∈ X and y∗ ∈ P(x∗), then w(x) is
differentiable at x∗, and the gradient of w(x) at x∗ is given by

∇xw(x∗) = ∇xf (x∗,y∗) +
∑

i∈I (x∗,y∗)
λ∗

i ∇xgi(x∗,y∗), (3.8a)

∇yf (x∗,y∗) +
∑

i∈I (x∗,y∗)
λ∗

i ∇ygi(x∗,y∗) = 0, (3.8b)

λ∗
i ≥ 0, λ∗

i = 0 if i /∈ I (x∗,y∗). (3.8c)
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Proof In view of Theorem 2, we only prove that there exists unique point in the set
of ∂w(x).

From Theorem 3, if ξ1 ∈ ∂w(x∗), then

ξ1 = ∇xf (x∗,y∗) +
∑

i∈I (x∗,y∗)
λ∗

i ∇xgi(x∗,y∗), (3.9a)

0 = ∇yf (x∗,y∗) +
∑

i∈I (x∗,y∗)
λ∗

i ∇ygi(x∗,y∗), (3.9b)

λ∗
i ≥ 0, λ∗

i = 0 if i /∈ I (x∗,y∗). (3.9c)

Assume that there exists another point ξ2 ∈ ∂w(x∗) and ξ1 	= ξ2. According to
Theorem 3, we have

ξ2 = ∇xf (x∗,y∗) +
∑

i∈I (x∗,y∗)
λ̄∗

i ∇xgi(x∗,y∗), (3.10a)

0 = ∇yf (x∗,y∗) +
∑

i∈I (x∗,y∗)
λ̄∗

i ∇ygi(x∗,y∗), (3.10b)

λ̄∗
i ≥ 0, λ̄∗

i = 0 if i /∈ I (x∗,y∗). (3.10c)

Obviously, from (3.9) and (3.10), we obtain

∑

i∈I (x∗,y∗)
(λ∗

i − λ̄∗
i )∇ygi(x∗,y∗) = 0. (3.11)

This means λ∗
i = λ̄∗

i , i ∈ I (x∗,y∗) under assumption (c).
Therefore, it yields ξ1 = ξ2.
The conclusion is correct. �

3.2 The algorithm of bilevel programming for CNDP

Define the optimal-value function of the lower level problem as follows:

w(x) = minT (x,y) =
∑

a∈A

∫ ya(x)

0
ta(v, xa)dv (3.12a)

s.t.
∑

k

hrs
k = qrs, ∀r ∈ R, s ∈ S, (3.12b)

hrs
k ≥ 0, ∀r ∈ R, s ∈ S, k ∈ Krs, (3.12c)

ya =
∑

r

∑

s

∑

k

hrs
k δrs

a,k, ∀a ∈ A. (3.12d)

Obviously the lower level user equilibrium problem holds the assumptions (a)
and (b). It can be proved that assumption (c) also holds in problem (3.12) (see Yang
et al. 2004). Observe that the constraints in problem (3.12) do not include the upper
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level variables x, therefore when calculating the gradient ∇w(x) in accordance with
(3.8a) in Theorem 4, the second term,

∑
i∈I (x∗,y∗) λ

∗
i ∇xgi(x∗,y∗), equals to zero. So

we can obtain∇w(x) easily by the following formulation:

∂w(x)

∂xa

=
∑

a∈A

∫ y∗
a (x)

0

∂ta(v, xa)

∂xa

dv, a ∈ A (3.13)

where y∗
a (x)is the user equilibrium link flow for fixed link capacity enhancement

pattern x.

Remark 3.1 The formulation (3.13) is just the same as the formulation in Meng et al.
(2001), but our proof complexity is less than that of Meng et al.’s.

Noted that there exists the following relationship between the upper and lower
level objective functions:

F(x,y∗(x)) = w(x) +
∑

a

∫ y∗
a (x)

0
v
dta(v, xa)

dv
dv (3.14)

where w(x) is the optimal-value function of the lower level model.
Therefore, the bilevel model for CNDP can be equivalently transferred into the

following single level optimization problem:

min
x

F(x,y∗(x)) = w(x) +
∑

a

∫ y∗
a (x)

0
v
dta(v, xa)

dv
dv (3.15a)

s.t.
∑

a∈A

Ga(xa) ≤ B, (3.15b)

xa ≥ 0, ∀a ∈ A. (3.15c)

Obviously, in view of the definition of the convex function, we can obtain the
following theorem.

Theorem 5 If y = y(x) is a convex function, and F(x,y) is convex in (x,y) and
nondecreasing for any y, then F(x,y(x)) is also a convex function in x.

Remark 3.2 In some widely used methods, such as SAB method, y = y(x) is often
expressed by a linearization method, i.e., a first-order Taylor expansion of y(x) at the
iteration, then, of course y(x) is a convex function.

Assume that y = y(x) is a convex function, and F(x,y(x)) is convex in (x,y) and
nondecreasing for any y. Based on Theorem 5, we can conclude that problem (3.15)
is a convex programming problem. However y = y(x) is generally an implicit and
nonlinear function.

Dafermos and Nagurney (1984) pointed out: if the travel cost function is strict
monotone, then ya(x) is a continuous function of the travel demand and link capacity



A globally convergent algorithm 251

improvements. Furthermore, we assume that ya(x) is not only continuous but also
differential. Based on (3.13), the gradient of F(x,y(x)) can be computed straightfor-
wardly as follows:

∂F (x,y∗(x))

∂xa

= ∂ω(x)

∂xa

+
∑

a∈A

y∗
a (x)

dta(ya, xa)

dya

∣∣∣∣
ya=y∗

a (x)

∂ya(x)

∂xa

+
∫ y∗

a (x)

0
v
dta(v, xa)

dvdxa

dv, a ∈ A. (3.16)

As referred above, y = y(x) is an implicit and nonlinear function, thus ∂ya(x)
∂xa

cannot be obtained efficiently. Although in common methods such as SAB (sen-
sitivity analysis based method), the differentiability of y = y(x) can be guar-
anteed under certain strong assumptions and ∂ya(x)

∂xa
can be figured out approxi-

mately, its computational expense becomes unendurable and even impossible as
the problem’s scale increases. For example, it is inescapable to calculate the in-
verse matrix in SAB (Tobin and Friesz 1988; Yang 1995). Moreover, SAB can-
not guarantee the globally convergence (Friesz et al. 1990; Yang and Yagar 1994;

Gao and Song 2002). In this paper, we use the difference �ya(xk)

�xk
a

to approximate

the differential ∂ya(x)
∂xa

at each iteration, thus the aforementioned deficiency can be

avoided. Computational errors may result from the approximate expression of ∂ya(x)
∂xa

,

for example, the auxiliary iteration point z̃k which determines can not be computed
exactly, but the errors can be coped with by exploring the characteristic of MSA
(method of successive average).

There exist many methods to solve problem (3.15). Among these methods, MSA is
one of the efficient and globally convergent methods (Powell and Sheffi 1982). From
the definition, we know that ∂ya(x)

∂xa
= limx′

a−xa

ya(x′)−ya(x)
x′
a−xa

, where other elements of

x′ and x are equal except x′
a 	= xa . In the iteration procedure of MSA (iteration step

α = 1
k
), the difference between iteration points, xk+1 − xk = 1

k
(zk − xk), tends to

zero as the iteration proceeds. Denote the exactly auxiliary iteration point as z̃k , and
the approximately auxiliary iteration point as zk , which is obtained by MSA when

replacing ∂ya(x)
∂xa

with �ya(xk)

�xk
a

. Assume that the error ζ k = z̃k − zk is a stochastic

variables. Observing constraints (3.15a) and (3.15b), it can be concluded that the
approximately auxiliary iteration point zk is bounded. It follows that the variance
of the auxiliary iteration point zk is bounded too. For expression convenience, we
assume that the upper bound of zk is σ 2 < ∞. Obviously,

Var(xk) = 1

(k − 1)2

k−1∑

l=1

Var(zl) <
1

(k − 1)2

k−1∑

l=1

σ 2

holds, therefore Var(xk) approaches zero as k grows, that is, the variance approaches

zero as the iteration proceeds. So the error can be ignored when replacing ∂ya(xk)

∂xk
a

with



252 Z. Gao et al.

�ya(xk)

�xk
a

, and then (3.16) can be rewritten as follows:

∂F (x,y∗(x))

∂xa

= ∂ω(x)

∂xa

+
∑

a∈A

y∗
a (x)

dta(ya, xa)

dya

∣∣∣∣
ya=y∗

a (x)

�ya(x)

�xa

+
∫ y∗

a (x)

0
v
dta(v, xa)

dvdxa

dv, a ∈ A (3.17)

where ∇xw(xk) can be obtained according to (3.13).
Based on this, the near-global optimum to the CNDP can be obtained by our al-

gorithm. The advantage of this algorithm is that part of coefficients is exact and part
of that is approximate and (3.17) is easy to compute, which should be better than the
existing algorithms such as SAB.

Therefore, the gradients of F(x,y(x)) at each trial point can be approximately
computed based on the above results. By solving the lower level user equilibrium
problem at a trial point xk , we can obtain an optimal solution y∗ ∈ P(xk) and figure
out ∇xF(xk,y∗(xk)) from (3.17).

Therefore, we propose the following algorithm for CNDP based on MSA. (This
algorithm can be called MSAB.)

Step 1: Initiation. Give initial points x0 ∈ X, and let k = 1.
Step 2: Calculate ∇xF(xk,y∗(xk)). Fixed the upper level variables x = xk , solve

the following problem by implementing the user equilibrium assignment procedure

w(xk) = min
y

T (xk,y)

s.t.
∑

k

hrs
k = qrs, ∀r ∈ R, s ∈ S,

hrs
k ≥ 0, ∀r ∈ R, s ∈ S, k ∈ Krs,

ya =
∑

r

∑

s

∑

k

hrs
k δrs

a,k, ∀a ∈ A

and obtain the optimal solution y∗(xk), then calculate ∇xw(xk) from (3.13) and then
∇xF(xk,y∗(xk)) can be figured out according to (3.17).

Step 3: Solve linear programming. Solve the transferred upper level problem
(3.15) with MSA method. Obtain the descent direction by solving the following linear
programming:

min
x

∇xF(xk,y∗(xk))T (x − xk)

s.t.
∑

a∈A Ga(xa) ≤ B,

xa ≥ 0, ∀a ∈ A

obtain the optimal zk .
Step 4: Convergence check. If ∇xF(xk,y∗(xk))T (zk −xk) = 0 stop; Otherwise, let

xk+1 = xk + 1
k
(zk − xk), k = k + 1, go to step 2.
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Remark 3.3 In step 2, for any fixed link capacity enhancement x, the corresponding
user equilibrium link flow y∗(xk) can be obtained easily by implementing an effi-
cient DUE traffic assignment procedure (such as Frank–Wolfe method) (Sheffi 1985;
Patriksson 1994). Then the derivative of the optimal-value function w(x)can be ob-
tained straightforwardly through (3.13).

Remark 3.4 In step 3, because the constraints are always linear, we only solve the
linear programming by existing algorithms, such as the simplex method.

From the mathematical analysis, it can be showed that the algorithm we proposed
here has the following advantages compared with the traditional algorithms:

(1) The algorithm is very simple and need not strong hypothesis conditions. How-
ever, other algorithms such as SAB algorithm have to calculate the inverse of the
matrix and only can be used with many assumptions (It requires that the lower
level functions is second order continuous differentiable and the lower level has
a unique solution for fixed upper level variables), which limits the application in
engineering.

(2) Because of the implicit non-convex of the bilevel network design problem, some
algorithms, such as SAB, generally can not ensure the convergence. The main
thought of this paper is to transform the bilevel programming into a convex pro-
gramming problem and then MSA method is used and the near-global optimum
of CNDP can be obtained. The possible shortcoming may occur when the deriv-
ative ∇xF(xk,y∗(xk)) is approximated. However, the error can be ignored by
exploring the characteristics of MSA.

(3) The algorithm is based on the MSA, therefore it is suit to the transportation prob-
lem.

4 Numerical example

As a test, the network shown in Fig. 1 (Suwansirikul et al. 1987) was used as a
basis to compare the results of the algorithm (MSAB) proposed in this paper with
those obtained from other existing algorithms, such as MINOS method (a Modular
In-Core Nonlinear Optimization System, Tan et al. 1979), EDO algorithm (Equilib-
rium Decomposed Optimization, Suwansirikul et al. 1987), BDA (Bilevel Descent
Algorithm, Kim and Suh 1988) and BLABD (Bilevel Linear Approximation Based
on Difference, Gao et al. 2000) etc.

Fig. 1 Test network
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Table 1 Data for test network

Link Aa Ba Ka da

1 4.0 0.60 40.0 2.0

2 6.0 0.90 40.0 2.0

3 2.0 0.30 60.0 1.0

4 5.0 0.75 40.0 2.0

5 3.0 0.45 40.0 2.0

ta(ya, xa) = Aa + Ba(ya/(ka + xa))4, a ∈ A

Z(x) = ∑
a ta(ya, xa)ya , a ∈ A

Ga(xa) = 1.5 · da · (xa)2, a ∈ A

Table 2 Comparison results of different algorithms (1)

Demand Link MINOS EDO BDA BLABG MSAB

y1 1.34 1.31 1.34 1.34 1.34

y2 1.21 1.19 1.21 1.21 1.23

100.00 y3 0.00 0.06 0.00 0.00 0

y4 0.97 0.94 0.97 0.97 0.96

y5 1.10 1.06 1.08 1.10 1.09

Z 1200.58 1200.64 1200.58 1200.58 1200.58

150.00 y1 6.05 5.98 6.04 6.05 6.05

y2 5.47 5.52 5.46 5.47 5.47

y3 0.00 0.02 0.00 0.01 0.02

y4 4.64 4.61 4.64 4.64 4.64

y5 5.27 5.27 5.27 5.27 5.27

Z 3156.38 3156.24 3156.21 3156.21 3156.21

Table 1 presents the functional forms of the travel and investment costs, as well as
the parameter values for each arc, used in this numerical test. We experimented two
different traffic demand levels from node O to node D 100 or 150 respectively. The
corresponding results are shown in Table 2.

The MINOS algorithm is regard as the most precise one and the BDA algorithm
the less computation. Table 2 presents the comparisons of the proposed algorithm
with the four existing algorithms. From the table, we can observe that the solution
obtained by our algorithm is quite close to the solution by MINOS. It is needed to
solve the UE problem in CNDP, moreover, the common method to solve UE is the
Frank–Wolfe method (F-W). Therefore, the iteration number of F-W can be treated
as the measure of the computation for CNDP. Table 3 give comparison results of
different algorithm in terms of the iteration number. From Table 3, we can see that
MSAB method has the smallest number of iteration.
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Table 3 Comparison results of
different algorithms (2) Demand Algorithm Iteration number of Frank–Wolfe

EDO 24

100.00 BDA 17

BLABG 10

MSAB 9

EDO 29

150.00 BDA 19

BLABG 10

MSAB 9

5 Conclusion

The transportation continuous network design problem (CNDP) is characterized by a
bilevel programming model and recognized to be one of the most difficult and chal-
lenging problems in transportation. The main difficulty stems from the fact that the
bilevel formulation for the CNDP is nonconvex and nondifferentialbe, and indeed
only some heuristic methods have been so far proposed. In this paper, the bilevel
programming model for CNDP is transformed into a convex programming problem
by virtue of an optimal-value function tool and the relationship between System Op-
timum (the upper level objective function) and User Equilibrium (the lower level
objective function). By exploring the inherent nature of the CNDP, the optimal-value
function for the lower level user equilibrium problem is proved to be continuously
differentiable and its derivative in capacity enhancement can be obtained efficiently
by implementing a user equilibrium assignment subroutine. However, the reaction (or
response) function between the upper and lower level problem is implicit and its gra-
dient is difficult to obtain. Although, here we approximately express the gradient with
the difference concept at each iteration, based on the method of successive averages
(MSA), we propose a globally convergent algorithm to solve the single level con-
vex programming problem. Comparing with widely used heuristic algorithms, such
as SAB method, the proposed algorithm needs not strong hypothesis conditions and
complex computation for the inverse matrix, and its key computational issue is solv-
ing the user equilibrium assignment problem with fixed link capacity enhancement.
These favorable characteristics indicate the potential of the algorithm to solve large
CNDPs. Numerical results have indicated the efficiency of the technique. However, it
is pity that the proposed method has its intrinsic weakness because it must explore the
relationship between the upper and lower level objective functions to transform the
bilevel model into a single level optimization problem. Thus, the proposed method is
hard to deal with other bilevel optimization problems.
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