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Abstract We present an approach to uncertainty propagation in dynamic systems, ex-

ploiting information provided by related experimental results along with their models.

The approach relies on a solution mapping technique to approximate mathematical

models by polynomial surrogate models. We use these surrogate models to formulate

prediction bounds in terms of polynomial optimizations. Recent results on polynomial

optimizations are then applied to solve the prediction problem. Two examples which

illustrate the key aspects of the proposed algorithm are given. The proposed algorithm

offers a framework for collaborative data processing among researchers.

Keywords Model validation . Prediction . Sums-of-squares polynomials .

Semidefinite programming

1 Introduction

The goal of many scientific fields is to understand a complex physical process. A

common mode of investigation is for individual researchers to study semi-isolated

aspects of this complicated process. The community then faces the problem of sys-

tematically combining data from many researchers. Optimization techniques for this

data processing problem will be discussed in this paper.

In our previous work (Frenklach et al., 2002, 2004), we addressed the data process-

ing problem in the context of a “real-world” example: chemical kinetics of pollutant

formation in combustion of natural gas. This example was drawn from the latest GRI-
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Mech release (Smith et al., http://www.me.berkeley.edu/gri mech/) which includes

a process model consisting of 325 reversible reactions among 53 chemical species,

trained on 77 well-documented and expert-evaluated experimental observations. Each

experimental result, when coupled with a model, implicitly contains information that

could reduce the uncertainty in the process model (e.g., uncertainty in some of the

thermochemical parameters). The extent of reduction depends on the specific data

processing method. We introduced a collaborative data processing algorithm and used

the GRI-Mech dataset to compare it to alternative forms of data processing. A col-

laborative data processing algorithm is one which makes predictions using data from

many researchers within a given scientific community. We concluded that the pro-

posed collaborative algorithm extracts more information from experimental data and

prevents false “controversies” arising between researchers.

This paper generalizes the algorithm presented in our previous work. This algorithm

can be used to predict the range of possible outcomes of a modeled physical process,

knowing to some accuracy the outcomes of several related, but different processes. We

take a deterministic approach to prediction that only requires knowledge of an upper

bound on the experimental error.

This paper differs from (Frenklach et al., 2004) mainly in two respects. First, this

paper provides full details on the numerical implementation of the proposed algorithm.

This leads to a more general algorithm which is applicable to data processing problems

outside the field of chemical kinetics. Second, this paper utilizes simple examples to

illustrate aspects of the algorithm which are not readily apparent in the large-scale

chemical kinetics problem.

The paper has the following outline. In the next section, we formulate the model

validation and prediction problems. In Section 3, we use a solution mapping technique

to approximate the mathematical models by polynomial surrogate models. We use

these surrogate models to recast the problems as polynomial optimizations. Recent

results on polynomial optimizations (Parrilo, 2000, 2003; Lasserre, 2001) are discussed

in Section 4 and then applied to the collaborative data processing problem in Section 5.

Two examples of the proposed algorithm are given in Section 6.

2 Formulation of the model validation and prediction problems

In this section, we describe a mathematical formalism for model validation and predic-

tion using experimental data. First, we introduce some basic terminology concerning

models and experimental data. Then we pose the validation and prediction problems

within a deterministic framework.

Let P denote a physical process and Y a variable of interest related to this process.

An experiment, denoted E , is a realization of P where y, the value of Y , is measured

with some uncertainty. Associated with each experiment is a dataset unit, (d, u, M),

which consists of the measured value, reported uncertainty, and a mathematical model.

The reported uncertainty, u ∈ R, is a hard bound on the experimental error, so the

measured value d and actual value y are related by |d − y| ≤ u. In addition to d and u,

an unambiguous description of the experiment is necessary to complete the analysis.

In our work this takes the form of a mathematical model of the process. This function,

M : Rn → R, models the influence of the parameter vector, x ∈ Rn , on the variable

of interest Y .
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In most practical problems, we have prior information concerning the parameter

vector. For example, we may know that a particular parameter, based on physical

considerations, must be positive. We define the prior information to be a set, H ⊂
Rn , known to contain all meaningful values of the parameter vector. We make the

mild assumption that the prior information can be specified by a set of c polynomial

inequalities:H .= {x ∈ Rn : gk(x) ≤ 0, 1 ≤ k ≤ c}, e.g., the prior information −1 ≤
x1 ≤ 1 and x2 ≤ x1 written as −1 − x1 ≤ 0, x1 − 1 ≤ 0, x2 − x1 ≤ 0.

Each x ∈ H yields a possible outcome for the quantity of interest Y , namely M(x).

If |M(x) − d| ≤ u then the outcome, uncertainty and model (i.e., the dataset unit)

are consistent at x . On the other hand, if |M(x) − d| > u then the dataset unit is

inconsistent at x . The model validation problem is to determine if a single parameter

vector can make a set of dataset units consistent. Two key assumptions are made in the

proposed approach. First, the physical processes have models with known structure,

i.e. all the uncertainty lies in the values of a finite set of parameters. Second, the models

are interrelated through their dependence on a common set of uncertain parameters.

Problem 1 (Model validation). Let {Pk}m
k=1 denote physical processes, {Ek}m

k=1 the as-

sociated experiments, and {(dk, uk, Mk)}m
k=1 the dataset units. Assume that the math-

ematical models, {Mk}m
k=1, are all defined on the common domain, H. The model

validation problem is to find x̄ ∈ H such that |Mk(x̄) − dk | ≤ uk for all k, or prove

that no such vector exists.

The set of parameter vectors that are consistent with all of the current information

is defined as F .= ∩m
k=1{x ∈ H : |Mk(x) − dk | ≤ uk}. Each set in the intersection

represents the parameters that are consistent with one dataset unit. The model vali-

dation problem is just a feasibility problem: Find x̄ ∈ F or prove F = ∅. Therefore

F is referred to as the feasible set of parameters. If F = ∅, then an inconsistency

exists among the available information. However, the existence of x̄ ∈ F provides

some confidence in the fidelity of the models/data.

We can then use the available experimental results to make a prediction about an

arbitrary process P0, for which no measured outcome exists. We refer to P0 as the

predicted process and denote its quantity of interest and mathematical model by y0

and M0, respectively. Any x ∈ F is consistent with all the current information and

hence it yields a meaningful prediction, M0(x). The prediction problem posed below

is to find the range of possible outcomes of the predicted process that are consistent

with all available information.

Problem 2 (Prediction). The prediction problem is to find the range of possible out-

comes of the predicted process: R
.= [L , U ] where:

L
.= min

x∈F
M0(x), U

.= max
x∈F

M0(x). (1)

In the next section, we make the validation and prediction problems more concrete,

and address issues involving approximation and nonconvexity.
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3 An approach to solve the validation and prediction problems

Our approach to the validation and prediction problem involves two steps. First, we

create polynomial approximations to the actual models. Then we use these polynomial

approximations to ascertain emptiness and/or compute bounds on L and U . The poly-

nomial approximations reduce the cost in evaluating the mathematical models and we

can exploit the algebraic properties of polynomials to formulate convex relaxations.

3.1 Solution mapping

We use a solution mapping technique (Frenklach, 1984; Miller and Frenklach, 1983;

Frenklach and Miller, 1985) to approximate a mathematical model with a polynomial.

As a brief explanation of this technique, consider a mathematical model, y = M(x),

specified by a parametrized differential equation model, parametrized initial condi-

tions, and an output functional:

ż(t) = f (t, z(t), x), z(0) = �(x)

y = h(z)

Here, z is the state vector, t is time, and x is a parameter vector, taking values in a known

setH, which parametrizes the differential equations model and/or the initial conditions.

f and � are known functions. h is a known functional evaluated on the state trajectory,

(e.g. the value of a state at a given time; the peak value of a given state; the peak location,

tpeak of a certain state). In general, such equations do not possess a closed-form solution

(i.e., y as a function of x , which we denoted y = M(x)). The essence of the solution

mapping technique is twofold: over H, determine which subset of parameters in x
have measurable influence on M(x), referred to as the active parameters, and again

over H, approximate M by a simple algebraic expression depending only on these

parameters.

Usually, the active parameters are a small subset of the model parameters. Only

these parameters need to be considered in the analysis since M has extremely low sen-

sitivity to the remaining (nonactive) parameters. The active parameters are identified

by ranking the absolute values of response sensitivities computed from a modest num-

ber of simulation runs. Parameters whose sensitivities are an order of magnitude less

than the highest ranked parameter are candidates to be neglected. While this cut-off

criterion is problem dependent and hence somewhat arbitrary in nature, past expe-

rience in methane combustion chemistry reaction modeling (Frenklach et al., 1992)

indicates that taking the top-ranking 9 to 13 variables for each response is more than

sufficient for accurate representation of an individual response.

The approximating functions for the responses are then obtained using the general

methodology of the response surface technique (Box et al., 1978; Box and Draper,

1987). A relatively small number of computer simulations, referred to as computer
experiments, are performed at combinations of pre-selected active parameter values

and the entire set of these combinations is called a design of computer experiments.

The computer experiments are performed using the mathematical model, M(x). Fi-

nally, a simple function is selected from a prespecified class of functions (e.g., linear,
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quadratic, exponential) to closely approximate M . The function obtained in this man-

ner is referred to as a surrogate model, denoted S(x). Once developed, the surrogate

model replaces the solution of the original dynamic model whenever evaluation of

the latter is required, decreasing the computational cost of evaluating the objective

function by orders of magnitude.

While there is, in principle, no restriction on the mathematical form of the surrogate

model, we will make extensive use of low order polynomial surrogate models, whose

coefficients are determined via computer experiments arranged in a special order,

called a factorial design (Box and Draper, 1987; Myers and Montgomery, 2002).

These designs originate from a rigorous analysis of variance, with the objective of

minimizing the number of computer experiments to be performed to gain the required

information.

In the following, we assume that an upper bound on the surrogate modeling error is

known: for each k, there exists ek such that maxx∈H |Mk(x) − Sk(x)| ≤ ek . In practice,

it is not possible to know such a bound with certainty. However, this bound can be

approximated by sampling the parameter space and measuring the error between the

mathematical model and surrogate model. Sampling and statistical assumptions can

give some estimates of the error bounds.

The fitting error is controlled by the size of H, the domain over which the surrogate

model should approximate M , and the chosen polynomial order. The prior informa-

tion H plays an important role at this stage. For a given polynomial degree, the fit

of the response surface tends to improve as the size of the parameter domain (i.e. H)

decreases. Thus better prior information allows us to either use lower degree polyno-

mials for surrogate models and/or reduce the fitting error. Both of these improvements

ultimately lead to better predictions by the algorithms which follow.1

In Section 6, we use solution mapping to develop surrogate models for toy systems

with a few parameters. However, the techniques can be applied to large systems with

many parameters. In Frenklach et al. (2004), we developed surrogate models for a

combustion process involving 102 active parameters.

3.2 Bounds for the validation problem

The surrogate models can be used to obtain bounds for the validation and prediction

problems. Define two approximations of the feasible set using the surrogate models:

FI
.= {x ∈ H : |Sk(x) − dk | ≤ uk − ek ∀k}

FO
.= {x ∈ H : |Sk(x) − dk | ≤ uk + ek ∀k}

The subscripts emphasize inner and outer approximations, FI ⊆ F ⊆ FO , which can

be easily verified. Since H is described by c polynomial inequalities, both FI and FO

are sets described by 2m + c polynomial inequalities.

1 The Stone-Weierstrass Theorem (Folland, 1999) ensures that a continuous, multivariate function can be

uniformly approximated to any degree of accuracy by a polynomial if H is closed and bounded. If prior

information is not available, the response surface technique can still be applied but there are no guarantees

that the model can be uniformly approximated by a polynomial over the entire parameter space.
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Inner Bounds:

Constrained Nonlinear Optimization

Outer Bounds:

Convex Relaxations for Polynomial Optimizations

LI UI

LO UO

L U

Fig. 1 A summary of the

approach to the prediction

problem: L and U are the

min/max values of M0 which are

consistent with all available

data. The proposed algorithm is

to compute inner/outer bounds

on L and U

The model validation problem is to find x̄ ∈ F or prove F = ∅. In the next section,

we describe a sufficient condition to prove that a set described by polynomial inequal-

ities is empty. We use this condition to try to prove that FO is empty. The containment

F ⊆ FO , ensures that F = ∅ would follow from FO = ∅. Verifying the condition can

be done with modest computational cost. In the model validation problem, if F = ∅,

there is an inconsistency among all dataset units. On the other hand, in order to not

invalidate, a constrained nonlinear optimization routine can be used to search for x̄ in

FI . The containment FI ⊆ F ensures that x̄ ∈ FI implies x̄ ∈ F .

3.3 Bounds for the prediction problem

The prediction problem is to compute

L
.= min

x∈F
M0(x), U

.= max
x∈F

M0(x) (2)

Figure 1 summarizes our approach. We compute four numbers (L O , L I , UI , UO )

which bound (L , U ): L O ≤ L ≤ L I and UI ≤ U ≤ UO . The bounds with subscript

I are referred to as inner bounds because they yield an inner approximation to the

prediction interval. Similarly, the bounds with subscript O are referred to as outer

bounds. If the inner and outer bounds are close, then we have approximately solved

the original prediction problem. The numerical methods used to obtain the bounds are

described in the remainder of the paper. Briefly, the bounds are obtained by using the

surrogate models to convert the optimizations in Eq. (2) into polynomial optimiza-

tions. The inner bounds are computed by attempting to solve the resulting polynomial

optimizations with constrained nonlinear optimization routines. The outer bounds

are computed by solving related optimizations which are proven to bound the given

polynomial optimizations.

The surrogate models, and their error bounds, along with the inner and outer bounds

to F naturally lead to optimization expressions that bound L (and in an analogous

manner, U ). We have

min
x∈FO

(S0(x) − e0) ≤ min
x∈F

M0(x)︸ ︷︷ ︸
L

≤ min
x∈FI

(S0(x) + e0) (3)

which follows from FI ⊆ F ⊆ FO and the bound on the surrogate modeling error.
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Recall that the function S0 is polynomial, and the sets FO and FI are described

by polynomial inequalities. Thus the two optimizations which bound L in Eq. (3)

have a polynomial objective function and polynomial constraints. It is important to

note that polynomial functions can have local minima which are not global minima.

As a result, constrained nonlinear optimization routines may find a solution to the

polynomial minimization which is a local but not global minima. Let L I be “defined”

as the result obtained using a nonlinear minimization routine on the function S0(x) + e0

constrained to x ∈ FI . Since L I may only be a local minima, we can only conclude

that minx∈FI (S0(x) + e0) ≤ L I . But this still guarantees that L I is an upper bound on

L .

The situation with the lower bound on L is more difficult. Suppose we “defined”

α∗ to be the result obtained using a nonlinear minimization routine on the function

S0(x) − e0 constrained to x ∈ FO . We can only conclude that minx∈FO (S0(x) − e0) ≤
α∗ and hence there is no guarantee that this provides a lower bound on L . In the

next section, we describe a convex relaxation that yields global lower bounds on

polynomial minimization problems. A well-chosen convex relaxation yields a convex

optimization problem whose solution is guaranteed to yield a lower bound on the

original polynomial minimization. Convex optimization problems have the property

that there are no local optima which are not global optima (i.e. the algorithm should

converge to the global minimizer). The technique described in the next section is used

to compute a number L O which is guaranteed to satisfy L O ≤ minx∈FO (S0(x) − e0).

More importantly, this guarantees that L O is a lower bound on L .

4 Convex relaxations for polynomial optimizations

In this section we discuss computational methods for polynomial optimizations. Let

{pk}r
k=0 be a collection of polynomials. In what follows, p0 is an objective function, and

p1, . . . , pr describe constraints. Define P .= {x ∈ Rn : pk(x) ≤ 0, k = 1, . . . , r}.
Throughout this section, we focus on the following problems:

Feasibility: Attempt to prove P = ∅. (4)

Optimization: Find L such that min
x∈P

p0(x) ≥ L. (5)

The approach presented in this section relies heavily on connections between semidefi-

nite programming and polynomial optimizations (Parrilo, 2000, 2003; Lasserre, 2001).

After presenting some background material, we restrict {pk}r
k=0 to be quadratic func-

tions and discuss a well-known technique for the feasibility and optimization problems.

Then we generalize this technique to handle polynomials of any degree.

4.1 Background

4.1.1 Polynomial notation

N denotes the set of nonnegative integers, {0, 1, . . .}, and Nn is the set of n-dimensional

vectors with entries in N. For α ∈ Nn , a monomial in variables {x1, . . . , xn} is given
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by xα .= xα1

1 xα2

2 · · · xαn
n . The degree of a monomial is defined as deg xα .= ∑n

i=1 αi . A

polynomial in variables {x1, . . . , xn} is a finite linear combination of monomials:

p
.=

∑
α∈A

cαxα =
∑
α∈A

cαxα1

1 xα2

2 · · · xαn
n (6)

where cα ∈ R and A is a finite collection of vectors in Nn . Using the definition of deg

for a monomial, the degree of p is defined as deg p
.= maxα∈A [deg xα]. The set of all

polynomials in variables {x1, . . . , xn} with real coefficients is denoted R[x1, . . . , xn].

Unless specified otherwise, a polynomial is assumed to be in R[x1, . . . , xn]. A dis-

tinction is typically made between the polynomial as an object in R[x1, . . . , xn] and

the associated function from Rn to R. The only relevant point to this distinction is that

if p is a polynomial in R[x1, . . . , xn], then p(x0) will denote the polynomial function

evaluated at a specific point x0 ∈ Rn .

4.1.2 Semidefinite programming

This brief review of semidefinite programming (SDP) is based on a survey by

Vandenberghe and Boyd (1996) and a monograph by Boyd et al. (1994). A sym-

metric matrix F ∈ Rn×n is positive semidefinite if xT Fx ≥ 0 for all x ∈ Rn . Positive

semidefinite matrices are denoted by F  0. A semidefinite program is an optimization

problem of the following form:

min
λ

cT λ

subject to : F0 +
r∑

k=1

λk Fk  0
(7)

The symmetric matrices F0, . . . , Fr ∈ Rn×n and the vector c ∈ Rr are given data. The

vector λ ∈ Rr is the decision variable and the constraint, F0 + ∑r
k=1 λk Fk  0, is

called a linear matrix inequality (LMI). We refer to Eq. (7) as the primal problem. The

dual associated with this primal problem is:

max
Z

−Tr [F0 Z ]

subject to : Tr [Fk Z ] = ck k = 1, . . . , r
Z  0

(8)

where Z = Z T ∈ Rn×n is the decision variable for the dual problem. Tr [·] denotes

the trace of a matrix. This dual problem can be recast in the form of Eq. (7) and

thus it is also a semidefinite program. While the primal and dual forms may look

restrictive, these formulations are quite versatile and SDPs find applications in many

problems of interest. Moreover, SDPs are convex and quality software exists to solve

these problems. In particular, SeDuMi (Sturm, 2001) is a freely available MATLAB

toolbox that simultaneously solves both the primal and dual forms of a semidefinite

program. The asymptotic computational complexity to solve a semidefinite program

with SeDuMi is O(v2d2.5 + d3.5) where v is the number of variables and d is the

dimension of the LMI (Labit et al., 2002).

In some cases, our only goal is to find a decision variable that satisfies the con-

straints. These are semidefinite programming feasibility problems. The following is
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an example:

Find λ1, . . . , λr ∈ R such that F0 +
r∑

k=1

λk Fk  0 (9)

4.2 Relaxations for quadratic optimizations

If all {pk}r
k=0 are affine, then the feasibility and optimization problems (Eqs. (4) and (5))

are linear programs. A natural, nontrivial, and useful extension is to consider quadratic

surrogate models. Consider the case where {pk}r
k=0 are all quadratic functions. For

any quadratic function p in n real variables, there is a unique symmetric matrix F ∈
R(1+n)×(1+n) such that p(x) = [1

x]
T F[1

x] for all x . Let R+ denote the set of nonnegative

real numbers. The following theorem, a simple consequence of the S-procedure (Boyd

et al., 1994), gives deceptively simple conditions that can be applied to the quadratic

feasibility and optimization problems:

Theorem 1. Assume pk(x)
.= [1

x]
T Fk[1

x] where F T
k = Fk ∈ R(1+n)×(1+n) (k = 0, . . . , r).

Define P .= {x ∈ Rn : pk(x) ≤ 0, k = 1, . . . , r}.
(A) If there exists {λk}r

k=1 ∈ R+ such that −I + ∑r
k=1 λk Fk  0 then P = ∅.

(B) If there exists {λk}r
k=1 ∈ R+ such that F0 − [ γ

0

0

0n
] + ∑r

k=1 λk Fk  0 then
minx∈P p0(x) ≥ γ .

Proof: (A): If there exists x̄ ∈ P , then we obtain an immediate contradiction:

0
(a)≤ [1

x̄]
T

[
−I +

r∑
k=1

λk Fk

]
[1

x̄] = −1 − x̄ T x̄ +
r∑

k=1

λk[1

x̄]
T Fk[1

x̄]
(b)
< 0

Inequality (a) follows because −I + ∑r
k=1 λk Fk  0. Inequality (b) follows because

x̄ ∈ P and each λk ≥ 0.

(B): For any x̄ ∈ P ,

0 ≤ [1

x̄]
T

[
F0 − [ γ 0

0 0n] +
r∑

k=1

λk Fk

]
[1

x̄] ≤ [1

x̄]
T F0[1

x̄] − γ (10)

Since Eq. (10) holds for all x̄ ∈ P , we conclude that minx∈P p0(x) ≥ γ . �

Conditions (A) and (B) in Theorem 1 are applications of the S-procedure (Boyd

et al., 1994). The use of the S-procedure in control theory dates back to Lur’e and

Postnikov in the 1940’s (see (Boyd et al., 1994) for a brief historical account). The

nonnegative scalars, {λk}r
k=1, are often referred to as multipliers. The two conditions

in Theorem 1 can be implemented and efficiently solved as SDPs. In (A), the search
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for λk ≥ 0 such that −I + ∑r
k=1 λk Fk  0 can be placed in the form of an SDP feasi-

bility problem (Eq. (9)). 2 Similarly, condition (B) yields a lower bound on quadratic

optimizations and we can find the “best” lower bound by solving an SDP:

min
x∈P

p0(x) ≥ max
λk∈R+,γ

γ

subject to: F0 − γ [ 1 0

0 0n] +
r∑

k=1

λk Fk  0 (11)

The lower bound has a useful statistical interpretation (Vandenberghe and Boyd,

1996; Frazzoli et al., 2001). This interpretation is based on the dual of lower bound

SDP in Eq. (11):

min
�,x̄

Tr
[

F0[ 1 x̄T

x̄ � ]
]

subject to:

{
Tr

[
Fk[1 x̄T

x̄ � ]
] ≤ 0 k = 1, . . . , r

[1 x̄T

x̄ � ]  0.
(12)

Under weak technical conditions, strong duality holds and the SDPs in Eqs. (11)

and (12) yield the same lower bound. We can reinterpret the dual SDP by considering

a random variable X of dimension n × 1 with E [X ] = x̄ and E
[
X X T

] = �. Since

E[[1

X]
T Fk[1

X]] = Tr[Fk[1 x̄T

x̄ � ]], Eq. (12) is equivalent to:

min
X

E
[
[1

X]
T F0[1

X]
]

s.t. :

{
E

[
[1

X]
T Fk[1

X]
] ≤ 0 k = 1, . . . , r

X is a rand. var. with E [X ] = x̄, E
[
X X T

] = �
(13)

The constraint [1 x̄T

x̄ � ]  0 can be dropped because it is satisfied by all random vari-

ables. The optimization in Eq. (13) is similar to minx∈P p0(x) except that the optimiza-

tion variable is a random variable, X , rather than a deterministic vector, x . Moreover,

the constraints in Eq. (13) are only required to be satisfied on average. Let (x̄0, �0)

denote the optimal values found in the dual SDP. In our experience, vectors drawn

from a Gaussian distribution with mean x̄0 and second moment �0 can provide good

initial conditions to start the nonlinear optimization for computing an upper bound.

4.3 Relaxations for polynomial optimizations

In this section, we return to the general case where {pk}r
k=0 is a collection of polynomi-

als which are not necessarily quadratic. One additional concept is needed to generalize

the S-procedure. A polynomial p is a sum of squares (SOS) if there exist polynomials

2 There is one detail to place this problem in the form of Eq. (9). A single LMI constraint is obtained by

diagonally augmenting the additional constraints, λk ≥ 0, to the main semidefiniteness constraint, −I +∑r
k=1 λk Fk  0 (Vandenberghe and Boyd, 1996).
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{ fi }m
i=1 such that p = ∑m

i=1 f 2
i . We note that if p is a sum of squares then p(x) ≥ 0

∀x ∈ Rn . In general, the existence of a sum of squares decomposition is sufficient

but not necessary for global nonnegativity. This is related to a famous problem in

mathematics, first posed by Hilbert in 1900 (Reznick, 2000). Let S denote the set of

SOS polynomials, i.e. write p ∈ S if p is a sum of squares. The restriction of S to

polynomials of degree ≤d is denoted Sd . The following theorem generalizes the the

results in Theorem 1:

Theorem 2. Assume {pk}r
k=0 are polynomials and define P .= {x ∈ Rn : pk(x) ≤

0, k = 1, . . . , r}.
(A) If there exists {λk}r

k=1 ∈ S such that −1 + ∑r
k=1 λk pk ∈ S then P = ∅.

(B) If there exists {λk}r
k=1 ∈ S such that p0 − γ + ∑r

k=1 λk pk ∈ S then
minx∈P p0(x) ≥ γ .

The proof of this theorem essentially involves notational changes to the proof of

Theorem 1 and hence it is omitted. The multipliers, {λk}r
k=1, are now polynomials

which are constrained to be sums of squares. In principle, conditions (A) and (B)

in Theorem 2 can be directly applied to the feasibility and optimization problems

(Eqs. (4) and (5)). For example, if we restrict the multipliers to have degree ≤ d, then

the analogue of Eq. (11) is:

min
x∈P

p0(x) ≥ max
λk∈Sd ,γ

γ

subject to: p0 − γ +
r∑

k=1

λk pk ∈ S (14)

The maximization on the right involves the search for polynomial multipliers subject

to various SOS constraints. This type of problem is called an SOS optimization (Prajna

et al., 2002). The decision variables in the SOS optimization are γ and the coefficients

of the multipliers. Since a polynomial with n variables and degree d has (
n+d

d ) terms,

there are r (
n+d

d ) + 1 decision variables. The only issue at this point is to write the

SOS constraints in a meaningful form. This is done by exploiting ties between SOS

polynomials and semidefinite matrices. In the remainder of this section, we review

the elementary aspects of recent work by Parrilo (2000, 2003) that can be used to

implement conditions (A) and (B) as SDPs. Connections to algebraic geometry are

omitted in this review. For instance, if some additional technical conditions are satisfied

and we search for multipliers of arbitrary degree, then the ≥ in Eq. (14) can be

strengthened to = by applying Putinar’s theorem (Lemma 4.1 in Putinar (1993)).

Theorem 3 below gives a concrete statement of the ties between sums of squares

and positive semidefinite matrices. We require two facts that follow from Theorem 1

and its preceding Lemma in Reznick (1978):

1. If p is a sum of squares then p must have even degree.

2. If p is degree 2d (d ∈ N) and p = ∑m
i=1 f 2

i then deg fi ≤ d ∀i .
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Next, we define z as the column vector of all monomials in variables {x1, . . . , xn} of

degree ≤d: 3

z
.= [

1, x1, x2, . . . , xn, x2
1 , x1x2, . . . , x2

n , . . . , xd
n

]T
(15)

There are (
k+n−1

k ) monomials in n variables of degree k. Thus z is a column vec-

tor of length lz
.= ∑d

k=0(
k+n−1

k ) = (
n+d

d ). If f is a polynomial in n variables with

degree ≤ d , then f is a finite linear combination of monomials of degree ≤ d.

Consequently, there exists a ∈ Rlz such that f = aT z. The proof of the following

theorem, introduced as a “Gram Matrix” method by Choi et al. (1995), is enlight-

ening and is included for completeness. This result can be found more recently in

Powers and Wörmann (1998).

Theorem 3. Suppose p ∈ R[x1, . . . , xn] is a polynomial of degree 2d and z is the
lz × 1 vector of monomials defined above. Then p is a SOS if and only if there exists
a symmetric matrix Q ∈ Rlz×lz such that Q  0 and p = zT Qz.

Proof:

(⇒) If p is a SOS, then there exists polynomials { fi }m
i=1 such that p = ∑m

i=1 f 2
i . As

noted above, deg fi ≤ d for all i . Thus, for each fi there exists a vector, ai ∈ Rlz ,

such that fi = aT
i z. Define the matrix, A ∈ Rlz×m , whose i th column is ai and define

Q
.= AAT  0. Then p = zT Qz.

(⇐) Assume there exists Q = QT ∈ Rlz×lz such that Q  0 and p = zT Qz. Define

m
.= rank(Q). There exists a matrix A ∈ Rlz×m such that Q = AAT . Let ai denote

the i th column of A and define the polynomials fi
.= zT ai . By definition of fi ,

p = zT (AAT )z = ∑m
i=1 f 2

i .

�

Theorem 3 provides the bridge to convert an SOS optimization, such as the maxi-

mization in Eq. (14), into an SDP. For example, the constraint p0 − γ + ∑r
k=1 λk pk ∈

S can be equivalently written as:

p0 − γ +
r∑

k=1

λk pk = zT Qz (16)

Q  0 (17)

Q is a new matrix of decision variables that is introduced when we convert an SOS

constraint to an LMI constraint. Equating the coefficients of zT Qz and p0 − γ +∑r
k=1 λk pk imposes linear equality constraints on the decision variables. Thus, Eq. (16)

3 Any ordering of the monomials can be used to form z. In Eq. (15), xα precedes xβ in the definition of z if:

deg xα < deg xβ or deg xα = deg xβ and the first nonzero entry of α − β is > 0.

Springer



Numerical approaches for collaborative data processing 471

can be rewritten as a set of linear equality constraints on the decision variables. All SOS

constraints in Eq. (14) can be replaced in this fashion with linear equality constraints

and LMI constraints. As a result, the maximization in Eq. (14) can be written in the

SDP dual form (Eq. (8)). While this may appear cumbersome, it is elementary, and

software can perform the conversion. For example, SOSTOOLS (Prajna et al., 2002)

is a freely available MATLAB toolbox for solving SOS optimizations. Currently,

this package allows the user to specify the polynomial constraints using a symbolic

toolbox. SOSTOOLS then converts the SOS optimization into an SDP which is then

solved with SeDuMi (Sturm, 2001). SOSTOOLS then converts the solution of the SDP

back to a polynomial solution. A drawback is that the size of the resulting SDP grows

rapidly if the SOS optimization involves polynomials with many variables and/or

high degree. While various techniques can be used to exploit the problem structure

(Gatermann and Parrilo, 2004) this computational growth is a generic trend in SOS

optimizations.

5 Computational aspects of the validation/prediction problems

In this section, we apply the results of the previous sections to the validation and

prediction problems. First consider model validation: find x̄ ∈ F or prove F is empty.

The inner and outer approximations, FI and FO , are described by 2m + c polynomial

inequalities and satisfy FI ⊆ F ⊆ FO . We use a constrained nonlinear optimization

in an attempt to find x̄ in FI . Alternatively, we apply Theorem 2 in an attempt to

prove that FO is empty. Let {pk}2m+c
k=1 denote the polynomials that describe the outer

approximation: FO
.= {x ∈ Rn : pk(x) ≤ 0, k = 1, . . . , 2m + c}. By Theorem 2, if

there exists sum of squares polynomials, {λk}2m+c
k=0 , such that −1 + ∑2m+c

k=1 λk pk ∈ S
then FO is empty. If we restrict the multipliers to have degree ≤ d, then the search

for multipliers that prove P = ∅ can be performed as an SDP feasibility problem. In

the special case where FO is described by quadratic inequalities, and we restrict the

multipliers to be nonnegative constants (degree=0), then the conversion to an SDP

feasibility problem is immediate by applying the S-procedure (Theorem 1).

There are three scenarios in which the convex relaxation fails to prove FO = ∅
and the nonlinear optimization fails to find x̄ ∈ FI , hence no conclusions regarding

model validation can be drawn. In each case, there are partial remedies to resolve

the difficulty at the expense of additional computation. One possibility is that FO

is not empty, though F is. In this situation, the approximation of F is the culprit,

due to errors in fitting the surrogate models to the mathematical models. The fitting

errors can be reduced by increasing the polynomial degree of the surrogate models and

refitting the mathematical models. A second possibility is that FI is nonempty, but the

constrained nonlinear optimization routine may fail to find x̄ ∈ FI . The only remedy

is to restart the feasibility search at a new initial point(s). Finally, FO may be empty,

but the convex relaxation is unable to prove emptiness. A partial remedy is to increase

the degree of the multipliers and re-solve the SDP. The condition in Theorem 2 is

only sufficient and hence we may fail to find multipliers even if we allow the degree

to be arbitrarily large. However, Theorem 2 can be generalized to yield a necessary

and sufficient condition. This result, known as the Positivstellensatz, is due to Stengle

(1974) and a recent presentation can be found in Section 4 of Parrilo (2003). The
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generalization of Theorem 2 to yield necessary and sufficient conditions is certainly

of theoretical interest. However, the utility for moderate to large sized problems (10’s

of parameters and constraints) is currently limited by computation.

Next, we consider the prediction problem: compute R = [L , U ] as defined in (1).

As in Section 3, we focus on L . The inner bound, L ≤ L I , is found using nonlinear

optimization. The outer bound, Ld
O (≤ L) is obtained applying Theorem 2,

Ld
O

.= max
λk∈Sd ,γ

γ

subject to: p0 − γ +
2m+c∑
k=1

λk pk ∈ S (18)

The superscript, d, denotes the restriction on the degree of the multipliers. Since

the multipliers, λk , are sums of squares, d should be an even integer. We now have

inner and outer bounds that satisfy Ld
O ≤ L ≤ L I . If L I and Ld

O are “close”, then

we have approximately solved the original minimization for L . As in the validation

problem, there are three reasons these bounds may fail to be close. Remedies are

analogous to those discussed for the validation problem. For example, we can attempt

to improve both bounds by refitting the mathematical models. Alternatively, we can

try to reduce the inner bound by restarting the optimization from a different initial

condition. Finally, we can try to improve the outer bound by increasing the degree of the

multipliers from d to d + 2. Since Ld
O ≤ Ld+2

O ≤ L , we have a hierarchy of relaxations

to obtain outer bounds. At the lowest (d = 0) the multipliers are just positive constants

and this corresponds to a standard Lagrangian relaxation.4

Finally, we comment on the optimization tools which can be employed for large

scale problems. We have used two nonlinear optimization routines to solve for the

inner bounds on the combustion problem (Frenklach et al., 2002, 2004): fmincon
which is the routine included in MATLAB’s optimization toolbox and the commercial

software NPSOL running within MATLAB. Both solvers perform reasonably but

NPSOL tends to produce “better” inner bounds with less computation time. The outer

bounds, as noted above, reduce to an SOS optimization problem. The solution of

SOS optimization is an area of active research and the currently available tools can

only solve problems with a few parameters and constraints. Small problems can be

solved with SOSTOOLS (Prajna et al., 2002) in conjunction with the freely available

SDP solver SeDuMi (Sturm, 2001). For the special case where the polynomials are

quadratic, the S-procedure (Theorem 1) can be applied to obtain an SDP. SeDuMi is

more efficient at solving this SDP than the solver contained in MATLAB’s LMILAB

toolbox because it exploits sparsity in the matrices. We have used SeDuMi to solve

for outer bounds on the combustion problem (Frenklach et al., 2002, 2004).

4 If the technical conditions in Putinar’s theorem (Putinar, 1993) are satisfied, then these outer bounds

converge to the correct answer, Ld
O → minx∈FO (S0(x) − e0), as d → ∞. But since there is still a gap

between L and minx∈FO (S0(x) − e0), this convergence property is not crucial for the prediction problem.
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Fig. 2 A mass-spring-damper

system

6 Examples

We recently demonstrated the viability of the proposed algorithm on a combustion

process involving 77 experiments and 102 active parameters (Frenklach et al., 2002,

Submitted). In this section, we illustrate the steps of the proposed algorithm through

two examples. Due to their simplicity, we can describe and visualize certain aspects

of the proposed algorithm.

6.1 Mass-spring-damper

In this example, we consider a mass-spring-damper system with a unit of force applied

to the mass (Fig. 2). The goal is to use a single dataset unit containing an uncertain

measurement and model of the integrated error (IE) to predict the peak velocity (PV).

Using the techniques discussed in this paper we will calculate a prediction interval that

contains PV . The constraints imposed by the dataset unit allow us to form a smaller

prediction interval than would be otherwise possible.

The damper applies a force proportional to the velocity of the mass while the

spring applies a force proportional to the position. Thus, Newton’s second law for the

mass-spring-damper is:

mz̈ = −bż − kz + f (19)

The differential equation model is parameterized by the mass m, the spring constant

k, and the damping coefficient b. We assume the m = 1, but k and b are unknown.

Therefore the parameter vector x = (b, k) reflects the uncertainty in the differential

equation model. The prior information on this uncertainty is H = {(b, k) : 0.5 ≤ b ≤
1, 1 ≤ k ≤ 2}. Information for the experimental and predicted processes is given in

Tables 1 and 2. We generated dI E by computing the integrated error at x = (0.75, 1.5)

and then adding an error term randomly selected from [−0.2, 0.2]. The feasible set

Table 1 Definitions for MSD

experiment process (PI E ) Quantity of Interest, I E Integrated Error

z̈(t) + bż(t) + kz(t) = 1

Math. Model, MI E z(0) = 0, ż(0) = 0

I E = lim
T →∞

∫ T
0

|z(s) − z(T )|ds

Surrogate Model, SI E SI E ([b
k]) = 8.57 − 6.78b − 4.42k

+2.56b2 + 0.91bk + 0.86k2

Surr. Model Error, eI E 0.082

Meas./Unc., (dI E , uI E ) (1.37, 0.20)
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Table 2 Definitions for MSD

predicted process (PPV ) Quantity of Interest, PV Peak Velocity

z̈(t) + bż(t) + kz(t) = 1

Math. Model, MPV z(0) = 0, ż(0) = 0

PV = maxt≥0 |ż(t)|
Surrogate Model, SPV SPV ([b

k]) = 1.25 − 0.63b − 0.37k
+0.12b2 + 0.12bk + 0.05k2

Surr. Model Error, ePV 0.004

Meas./Unc., (dPV , u PV ) ———

for this measurement is F = {x ∈ H : |MI E (x) − dI E | ≤ uI E }. Hereafter, the true
system refers to the parameterized model evaluated at xtrue = (0.75, 1.5). We note

that in a real problem, (dI E , uI E ) would be obtained from an experiment.

We briefly discuss the computation of the surrogate models. We used a 22 composite

orthogonal design containing 9 points in the parameter space, {xi }9
i=1 ⊂ H. These

points consisted of the 4 corners of H, the midpoints of the 4 sides of H, and the

center of H. At each point in the parameter space, we calculated peak velocity by

evaluating MPV . Specifically, we simulated the mass-spring damper system with the

chosen values for the spring/damping constants and then computed the maximum

velocity obtained during the simulation. We restricted the surrogate model, SPV , to

be a quadratic function and used an unweighted least-squares criterion to determine

the coefficients. The same procedure was used to generate the surrogate model, SI E ,

for I E . To compute the surrogate modeling errors we sampled the parameter space at

an additional 100 points chosen randomly from H. The maximum deviation between

the mathematical models and the corresponding surrogate models is ePV and eI E ,

respectively.

Computing the prediction interval for PV involves specifying four quantities:

L O , L I , UI , and UO . We note that the parameter constraints can be written as quadratic

inequalities, e.g. (b − 0.75)2 ≤ 0.125. Since the surrogate models are also quadratic

the outer bounds were computed by applying Theorem 1(B) and using SeDuMi to

solve the resulting SDP. fmincon, an optimization routine in MATLAB, was used

to find the inner bounds.

These computations led to the following bounds: 0.478 ≤ L ≤ 0.504 and 0.583 ≤
U ≤ 0.602. The inner bounds guarantee that there are parameter values, consistent

with all available information which would generate a peak velocity is as low as 0.504

and as great as 0.583. The outer bounds guarantee that the true peak velocity can be no

less than 0.478 and no greater than 0.602. For comparison, Fig. 3 shows the response

of the true system. The solid lines on this figure are the outer bounds found by applying

Theorem 1. As expected, the peak velocity of the true system lies between the outer

bounds.

For this simple example, we can also visualize the various sets and models involved

in the prediction algorithm (Fig. 4). Figure 4(a) shows that the dataset unit carves a

diagonal swath across the parameter space.FI andFO provide good approximations of

F because the surrogate modeling error, eI E , is small. The labeled points lie within FI

and satisfy MPV (xL ) = L I , MPV (xU ) = UI . Figure 4(b) shows the surface generated

by PV = MPV (x) ∀x ∈ H. The tick marks on the z-axis can be used to compare the

prediction bounds (L O , L I , UI , UO ) with the min/max values of PV on H. If we only
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parameter values achieving the inner bounds (L I /UI ) are blue symbols

know that x ∈ H, then it is possible for the true peak velocity to lie between 0.447

and 0.711. Conceptually, the proposed algorithm uses the dataset unit to constrain the

possible parameter vectors. As a result, the true peak velocity must lie in the gray

shaded region on the surface. The minimum (maximum) value of PV on the gray

region of the surface lies between L O and L I (UI and UO ).

6.2 Cell division

We consider the cell division control system in frog eggs (Novak and Tyson, 1993;

Tyson et al., 2001). Many biochemical processes occur as a cell grows and divides into

two daughter cells. Two molecules, M-phase promoting factor (MPF) and cyclin, play

a key role during cell division. In this example, we pose a model for the interactions of
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Table 3 Definitions for cell division: Dataset units (i = 1, 2) generated at kw,1 = 3.5,

kw,2 = 6.0

Quantity of Interest, yi MPF after 60 minutes

ż1 = 0.01
1.1

−
(

k̄2
10

+ kw,i

)
z1 + (

0.04 + 100z2
2

) ( z2
1.1

− z1

)
Math. Model, Mi ż2 = 0.01 − k̄2

10
z2

(kw,1 = 3.5, kw,2 = 6.0) z1(0) = 0.01, z2(0) = 0.75

yi = z1(60)

Surrogate Model, Si S1(k̄2) = −1.509k̄3
2 + 1.340k̄2

2 − 0.40k̄2 + 0.05

S2(k̄2) = −0.097k̄3
2 + 0.11k̄2

2 − 0.048k̄2 + 0.01

Surr. Model Error, ei e1 = 8.98e−4, e2 = 1.91e−5

Meas./Unc., (di , ui ) (d1, u1) = (9.8e−3, 5e−4), (d2, u2) = (6.5e−3, 5e−4)

MPF and cyclin. Two measurements of MPF are then used to invalidate this model. This

example demonstrates the model validation techniques in a general (i.e. nonquadratic)

setting.

A simple model for the interactions of MPF and cyclin is given by Novak and Tyson

(1993):

ż1 = 0.01

1.1
−

(
k̄2

10
+ kw

)
z1 + (

0.04 + 100z2
2

) ( z2

1.1
− z1

)
ż2 = 0.01 − k̄2

10
z2 (20)

z1(0) = 0.01, z2(0) = 0.75

where z1 and z2 represent (non-dimensional) concentrations of MPF and total cyclin,

respectively. kw depends on the concentration of another molecule, Wee1, and it is

treated as an input to the system. The only uncertainty lies in the rate constant, k̄2. The

prior information for this parameter is H = {k̄2 : 0.1 ≤ k̄2 ≤ 0.4}.5
Measurements of MPF concentration at t = 60 minutes are taken for two values of

kw: kw,1 = 3.5 and kw,2 = 6.0. The information for the two experimental processes

is given in Table 3. The surrogate models were computed using data from 5 points in

H. Note that cubic surrogate models were required to adequately fit the mathematical

models. The two measurements, d1 and d2, were generated by simulating a true system

and then adding an error term randomly selected from [−5e − 4, 5e − 4]. The true

system is obtained by replacing the uncertain constant k̄2 in Eq. (20) with k2(z1)
.=

0.1 + 1000z2
1. This function represents a negative feedback in the production of MPF

and appears to more closely model the cell division process.

The model in Eq. (20) can be invalidated by using Theorem 2(A) to prove that

FO is empty. The outer approximation of the feasible set is given by FO
.= {x ∈ R :

5 To improve numerical conditioning, k̄2 has been rescaled from the model given in Novak and Tyson

(1993).

Springer



Numerical approaches for collaborative data processing 477

pk(x) ≤ 0, k = 1, . . . , 5} where:

p1(x) = S1(x) − d1 − (u1 + e1) p2(x) = −S1(x) + d1 − (u1 + e1)

p3(x) = S2(x) − d2 − (u2 + e2) p4(x) = −S2(x) + d2 − (u2 + e2)

p5(x) = (x − 0.25)2 − 0.0225

Using SOSTOOLS, we found the following multipliers, {λk}5
k=1 ∈ S, such that −1 +∑5

k=1 λk pk ∈ S:

λ1(x) = 4054.8x2 − 36.7x + 4350.2 λ2(x) = 3976.4x2 − 1202.1x + 387.5

λ3(x) = 3853.5x2 − 1068.2x + 785.1 λ4(x) = 5073.7x2 + 6488x + 17675

λ5(x) = 7439.2x2 − 1772.8x + 139.5

By Theorem 2(A), FO is empty and hence F is empty. Thus, the proposed model has

been invalidated using the two dataset units.

7 Conclusions

In this paper, we presented a numerical approach for model validation and prediction.

The proposed algorithm relies on a solution mapping technique as well as recent

results for polynomial optimizations. We then illustrated the approach to prediction

and validation via two simple examples. We believe that this approach provides a

framework for collaborative data processing among researchers and that it can be

successfully applied to other scientific fields.
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