
Open Econ Rev (2016) 27:1–38
DOI 10.1007/s11079-015-9377-5

RESEARCH ARTICLE

Testing Macro Models by Indirect Inference: A Survey
for Users

Vo Phuong Mai Le1 ·David Meenagh1 ·
Patrick Minford1,2 ·Michael Wickens1,2,3 ·
Yongdeng Xu1

Published online: 25 September 2015
© Springer Science+Business Media New York 2015

Abstract With Monte Carlo experiments on models in widespread use we examine
the performance of indirect inference (II) tests of DSGE models in small samples.
We compare these tests with ones based on direct inference (using the Likelihood
Ratio, LR). We find that both tests have power so that a substantially false model will
tend to be rejected by both; but that the power of the II test is substantially greater,
both because the LR is applied after re-estimation of the model error processes and
because the II test uses the false model’s own restricted distribution for the auxiliary
model’s coefficients. This greater power allows users to focus this test more narrowly
on features of interest, trading off power against tractability.
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1 Introduction

An unresolved issue in macroeconomics is how best to evaluate the empirical per-
formance of DSGE models. In this paper we compare a relatively new type of test,
indirect inference, with a standard procedure, the Likelihood Ratio test. Our main
concern is the performance of these tests in small samples, though we will refer to
asymptotic properties where known. Our main finding is that the power of the likeli-
hood ratio test is rather weak relative to that of the indirect inference test. We consider
why we find this. We also show how this new testing procedure enables users such as
policymakers to exploit the ability of the test and its associated estimator to focus on
key features of macro behaviour; this allows them to find tractable models that are
relevant to their purposes and then to discover whether these models can with total
reliability evaluate the policy reforms they are interested in.

The paper is set out as follows. In Section 2 we consider how in recent work
DSGE models have been evaluated empirically. In Section 3 we review the main
features of the indirect inference testing procedure as implemented in this paper. In
Section 4 we compare the small sample properties of tests based on indirect inference
with the Likelihood Ratio test that is used in direct inference. The comparison is
based on Monte Carlo experiments on the widely used DSGE model introduced by
Christiano et al. (2005) and estimated by Smets and Wouters (2003, 2007) on EU
and US data. Initially, we use stationary data. In Section 5 we extend the analysis
to non-stationary data and to the three-equation New Keynesian representation of
the model of Clarida et al. (1999), again on both stationary and non-stationary data.
In Section 6 we consider why the two testing methods have such different power,
drawing on available asymptotic analysis as well as further Monte Carlo experiments.
In Section 7 we show how the testing methods we propose can be used in practice to
reduce model uncertainty for a user with a clear purpose such as policy reform. Our
final section presents our conclusions.

2 The Empirical Evaluation of DSGE Models

DSGE models emerged largely as a response to the perceived shortcomings of previ-
ous formulations of macroeconometric models. The main complaints were that these
macroeconometric models were not structural - despite being referred to as structural
macroeconometric models - and so were subject to Lucas’s critique that they could
not be used for policy evaluation (Lucas 1976), that they were not general equilib-
rium models of the economy but, rather, they comprised a set of partial equilibrium
equations with no necessary coherent structure, that they incorporated ‘incredible’
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identifying restrictions (Sims 1980) and that they over-fitted the data through data-
mining. For all their theoretical advantages, the strong simplifying restrictions on the
structure of DSGE models resulted in a severe deterioration of fit compared to struc-
tural macroeconometric models with their ad hoc supply and demand functions, their
flexible lagged adjustment mechanisms and their serially correlated structural errors.

There have been various reactions to the empirical failures of DSGE models. The
early version of the DSGE model, the RBC model, was perceived to have four main
faults: predicted consumption was too smooth compared with the data, real wages
were too flexible resulting in employment being too stable, the predicted real inter-
est rate was too closely related to output and the model, being real, could not admit
real effects arising from nominal rigidities. In retrospect, however, this empirical
examination was limited and flawed. Typically, the model was driven by a single
real stochastic shock (to productivity); there were no nominal shocks or mechanisms
causing them to affect real variables; and the model’s dynamic structure was derived
solely from budget constraints and the capital accumulation equation. Subsequent
developments of the DSGE model aimed to address these limitations, and other spec-
ification issues, and they had some empirical success. Nevertheless, even this success
has been questioned; for example Le et al. (2011) reject the widely acclaimed model
of Smets and Wouters (2007).

Another reaction, mainly from econometricians, is the criticism that DSGEmodels
have been calibrated (to an economy) rather than estimated and tested using tradi-
tional methods, and when estimated and tested using classical econometric methods,
such as the Likelihood Ratio test, they are usually found to perform poorly and are
rejected. Sargent1, discussing the response of Lucas and Prescott to these rejections,
is quoted as saying that they thought that ‘those tests were rejecting too many good
models’.

Current practice is to try to get around this problem by estimating DSGE models
using Bayesian rather than classical estimation methods. Compared with calibra-
tion, Bayesian methods allow some flexibility in the prior beliefs about the structural
parameters and permit the data to affect the final estimates. Calibrated parameters or,
equivalently, the priors used in Bayesian estimation, often come from other studies
or from micro-data estimates. Hansen and Heckman (1996) point out that the jus-
tification for these is weak: other studies generally come up with a wide variety of
estimates, while micro-estimates may well not survive aggregation. If the priors can-
not be justified and uninformative priors are substituted, then Bayesian estimation
simply amounts to classical ML in which case test statistics are usually based on the
Likelihood Ratio. The frequency of rejection by such classical testing methods is an
issue of concern in this paper.

1In a recent interview Sargent remarked of the early days of testing DSGE models: ‘...my recollection
is that Bob Lucas and Ed Prescott were initially very enthusiastic about rational expectations economet-
rics. After all, it simply involved imposing on ourselves the same high standards we had criticized the
Keynesians for failing to live up to. But after about five years of doing likelihood ratio tests on rational
expectations models, I recall Bob Lucas and Ed Prescott both telling me that those tests were rejecting too
many good models.’ Tom Sargent, interviewed by Evans and Honkapohja (2005).
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A more radical reaction to the empirical failures of DSGE models has been to say
that they are all misspecified and so should not be tested by the usual econometric
methods which would always reject them - see Canova (1994). If all models are false,
instead of testing them in the classical manner under the null hypothesis that they are
true, one should use a descriptive statistic to assess the ‘closeness’ of the model to
the data. Canova (1994), for example, remarks that one should ask “how true is your
false model?” and assess this using a closeness measure. Various econometricians -
for example Watson (1993), Canova (1994, 1995, 2005), Del Negro and Schorfheide
(2004, 2006) - have shown an interest in evaluating DSGE models in this way.

We adopt a somewhat different approach that restores the role of formal statisti-
cal tests of DSGE models and echoes the widely accepted foundations of economic
testing methodology laid down by Friedman (1953). Plainly no DSGE model, or
indeed no model of any sort, can be literally true as the ‘real world’ is too complex
to be represented by a model that is ‘true’ in this literal sense and the ‘real world’
is not a model. In this sense, therefore, all DSGE models are literally false or ‘mis-
specified’. Nevertheless an abstract model plus its implied residuals which represent
other influences as exogenous error processes, may be able to mimic the data; if so,
then according to usual econometric usage, the model would be ‘well specified’. The
criterion by which Friedman judged a theory was its potential explanatory power in
relation to its simplicity. He gave the example of perfect competition which, although
never actually existing, closely predicts the behaviour of industries with a high degree
of competition. According to Friedman, a model should be tested, not for its ‘lit-
eral truth’, but ‘as if it is true’. Thus, even though a macroeconomic model may be
a gross simplification of a more complex reality, it should be tested on its ability to
explain the data it was designed to account for by measuring the probability that the
data could be generated by the model. In this spirit we assess a model using formal
misspecifications tests. The probability of rejection gives a measure of the model’s
‘closeness’ to the facts. This procedure can be extended to a sub-set of the variables
of the model rather than all variables. In this way, it should be possible to isolate
which features of the data the model is able to mimic; different models have different
strengths and weaknesses (‘horses for courses’) and our procedure can tease these
out of the tests.

The test criterion may be formulated in a number of ways. It could, for example,
be interpreted as a comparison of the values of the likelihood function for the DSGE
model, or of a model designed to represent the DSGE model (an auxiliary model), or
it could be based on the mean square prediction error of the raw data or on the impulse
response functions obtained from these models or, as explained in more detail later,
it could be based on a comparison of the coefficients of the auxiliary model being
associated with the DSGE model. These criteria fall into two main groups: on the
one hand, closeness to raw data, size of mean squared errors and ‘likelihood’ and,
on the other hand, closeness to data features, to stylised facts or to coefficients of
VARs or VECMs. Within each of these two categories the criteria can be regarded as
mapping into each other so that there are equivalences between them; for example, a
VAR implies sets of moments/cross-moments and vice versa. We discuss both types
in this paper; we treat the Likelihood Ratio as our representative of the first type and
the coefficients of a VAR as our representative of the second.
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Before DSGE models were proposed as an alternative to structural macroecono-
metric models, in response to the latter’s failings, Sims (1980) suggested modelling
the macroeconomy as a VAR. This is now widely used in macroeconometrics as a
way of representing the data in a theory-free manner in order, for example, to esti-
mate impulse response functions or for forecasting where they perform as well, or
sometimes better, than structural models, including DSGE models, see Wieland and
Wolters (2012) and Wickens (2013). Moreover, it can be shown that the solution to
a (possibly linearized) DSGE model where the exogenous variables are generated by
a VAR is, in general, a VAR with restrictions on its coefficients, Wickens (2013). It
follows that a VAR is the natural auxiliary model to use for evaluating how closely a
DSGE model fits the data whichever of the measures above are chosen for the com-
parison. The data can be represented by an unrestricted VAR and the DSGE model
by the appropriately restricted VAR; the two sets of estimates can then be compared
according to the chosen measure.

The apparent difficulty in implementing this procedure lies in estimating the
restricted VAR. Indirect inference provides a simple solution. Having estimated the
DSGE model by whatever means - the most widely used at present being Bayesian
estimation - the model can be simulated to provide data consistent with the estimated
model using the errors backed out of the model. The auxiliary model is then estimated
unrestrictedly both on these simulated data and on the original data. The properties of
the two sets of VAR estimates can then be compared using the chosen measure. More
precise details of how we carry out this indirect inference procedure in this paper are
given in the next section2.

3 Model Evaluation by Indirect Inference

Indirect inference provides a classical statistical inferential framework for judging
a calibrated or already, but maybe partially, estimated model whilst maintaining the
basic idea employed in the evaluation of the early RBC models of comparing the
moments generated by data simulated from the model with actual data. An exten-
sion of this procedure is to posit a general but simple formal model (an auxiliary
model) — in effect the conditional mean of the distribution of the data — and base
the comparison on features of this model, estimated from simulated and actual data.
If necessary these features can be supplemented with moments and other measures
directly generated by the data and model simulations.

Indirect inference on structural models may be distinguished from indirect estima-
tion of structural models. Indirect estimation has been widely used for some time, see
Smith (1993), Gregory and Smith (1991, 1993), Gourieroux et al. (1993), Gourier-
oux and Monfort (1995) and Canova (2005). In indirect estimation the parameters
of the structural model are chosen so that when this model is simulated it gener-
ates estimates of the auxiliary model similar to those obtained from actual data. The

2In Appendix 1 we review some recent studies of macro models using this method.
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optimal choice of parameters for the structural model are those that minimise the dis-
tance between the two sets of estimated coefficients of the auxiliary model. Common
choices for the auxiliary model are the moments of the data, the score and a VAR.
Indirect estimates are asymptotically normal and consistent, like ML. These proper-
ties do not depend on the precise nature of the auxiliary model provided the function
to be tested is a unique mapping of the parameters of the auxiliary model. Clearly,
the auxiliary model should also capture as closely as possible the data features of the
DSGE model on the hypothesis that it is true.

Using indirect inference for model evaluation does not necessarily involve the
estimation of the parameters of the structural model. These can be taken as given.
They might be calibrated or obtained using Bayesian or some other form of estima-
tion. If the structural model is correct then its predictions about the auxiliary model
estimated from data simulated from the given structural model should match those
based on actual data. These predictions relate to particular properties (functions of
the parameters) of the auxiliary model such as its coefficients, its impulse response
functions or just the data moments. A test of the structural model may be based on
the significance of the difference between estimates of these functions derived from
the two sets of data. On the null hypothesis that the structural model is ‘true’ there
should be no significant difference. In carrying out this test, rather than rely on the
asymptotic distribution of the test statistic, we estimate its small sample distribution
and use this.

Our choice of auxiliary model exploits the fact that the solution to a log-linearised
DSGE model can be represented as a restricted VARMA and also often by a VAR
(or if not then closely represented by a VAR). For further discussion on the use of
a VAR to represent a DSGE model, see for example Canova (2005), Dave et al.
(2007), Del Negro and Schorfheide (2004, 2006) and Del Negro et al (2007a, b)
(together with the comments by Christiano (2007), Gallant (2007), Sims (2007),
Faust (2007) and Kilian (2007)), and Fernandez-Villaverde et al. (2007). A levels
VAR can be used if the shocks are stationary, but a VECM is required, as discussed
below, if there are non-stationary shocks. The structural restrictions of the DSGE
model are reflected in the data simulated from the model and will be consistent with
a restricted version of the VAR3. The model can therefore be tested by comparing
unrestricted VAR estimates (or some function of these estimates such as the value of
the log-likelihood function or the impulse response functions) derived using data sim-
ulated from the DSGE model with unrestricted VAR estimates obtained from actual
data.

The model evaluation criterion we use is based on the difference between the vec-
tor of relevant VAR coefficients from simulated and actual data as represented by a
Wald statistic. If the DSGE model is correct (the null hypothesis) then the simulated
data, and the VAR estimates based on these data, will not be significantly different

3This requires that the model is identified, as assumed here. Le, Minford and Wickens (2013) propose
a numerical test for identification based on indirect inference and show that both the SW and the New
Keynesian 3-equation models are identified according to it.



Testing Macro Models by Indirect Inference: A Survey for Users 7

from those derived from the actual data. The method is in essence extremely simple;
although it is numerically taxing, with modern computer resources, it can be carried
out quickly. The simulated data from the DSGE model are obtained by bootstrapping
the model using the structural shocks implied by the given (or previously estimated)
model and computed from the historical data. The test then compares the VAR coeffi-
cients estimated on the actual data with the distribution of VAR coefficient estimates
derived from multiple independent sets of the simulated data. We then use a Wald
statistic (WS) based on the difference between aT , the estimates of the VAR coeffi-
cients derived from actual data, and aS(θ0), the mean of their distribution based on
the simulated data, which is given by:

WS = (aT − aS(θ0))
′W(θ0)(aT − aS(θ0))

where W(θ0) is the inverse of the variance-covariance matrix of the distribution of
simulated estimates aS , and θ0 is the vector of parameters of the DSGE model on the
null hypothesis that it is true.

As previously noted, we are not compelled to use the VAR coefficients in this
formula: thus one could use other data ‘descriptors’ considered to be key features of
the data that the model should match — these could be particular impulse response
functions (such as to a monetary policy shock) or particular moments (such as the
correlations of various variables with output). However, such measures are functions
of the VAR coefficients and it seems that a parsimonious set of features is these
coefficients themselves. There are still issues about which variables to include in the
VAR (or equivalently whether to focus only on a subset of VAR coefficients related to
these variables) and what order of lags the VAR should be. Also it is usual to include
the variances of the data or of the VAR residuals as a measure of the model’s ability
to match variation. We discuss these issues further below.

We can show where in the Wald statistic’s bootstrap distribution the Wald statis-
tic based on the data lies (the Wald percentile). We can also show the Mahalanobis
Distance based on the same joint distribution, normalised as a t-statistic, and also
the equivalent Wald p-value, as an overall measure of closeness between the model
and the data.4 In Le et al. (2011) we applied this test to a well-known model of the
US, that of Smets and Wouters (2007; qv). We found that the Bayesian estimates of
the Smets and Wouters (SW) model were rejected for both the full post-war sam-
ple and for a more limited post-1984 (Great Moderation) sample. We then modified
the model by adding competitive goods and labour market sectors. Using a power-
ful Simulated Annealing algorithm, we searched for values of the parameters of the
modified model that might improve the Wald statistic and succeeded in finding such
a set of parameters for the post-1984 sample.

A variety of practical issues concerning the use of the bootstrap and the robustness
of these methods more generally are dealt with in Le et al. (2011). A particular con-
cern with the bootstrap has been its consistency under conditions of near-unit roots.

4The Mahalanobis Distance is the square root of the Wald value. As the square root of a chi-squared
distribution, it can be converted into a t-statistic by adjusting the mean and the size. We normalise this here
by ensuring that the resulting t-statistic is 1.645 at the 95 % point of the distribution.
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Several authors (e.g. Basawa et al. (1991), Hansen (1999) and Horowitz (2001a, b))
have noted that asymptotic distribution theory is unlikely to provide a good guide to
the bootstrap distribution of the AR coefficient if the leading root of the process is a
unit root or is close to a unit root. This is also likely to apply to the coefficients of a
VAR when the leading root is close to unity and may therefore affect indirect infer-
ence where a VAR is used as the auxiliary model. In Le et al. (2011) we carried out
a Monte Carlo experiment to check whether this was a problem in models such as
the SW model. We found that the bootstrap was reasonably accurate in small sam-
ples, converged asymptotically on the appropriate chi-squared distribution and, being
asymptotically chi-squared, satisfied the usual requirement for consistency of being
asymptotically pivotal.

4 Comparing Indirect and Direct Inference Testing Methods

It is useful to consider how indirect inference is related to the familiar benchmark
of direct inference. We focus on the Likelihood Ratio as representative of direct
inference. We seek to compare the distribution of the Wald statistic for a test of
certain features of the data with the corresponding distribution for likelihood ratio
tests. We are particularly interested in the behaviour of these distributions on the null
hypothesis and the power of the tests as the model deviates increasingly from its spec-
ification under the null hypothesis. We address these questions using Monte Carlo
experiments.

4.1 Some Preliminary Experiments Comparing Indirect with Direct Inference

We base our comparison on tests of the performance of DSGE models. Our first
comparison is based on the SW model of the US, estimated over the whole post-
war sample (1947Q1 − 2004Q4), and with a VAR as the auxiliary model. We treat
the SW model as true. The focus of the two tests is slightly different: direct infer-
ence asks how closely the model forecasts current data while indirect inference
asks how closely the model replicates properties of the auxiliary model estimated
from the data. For direct inference we use a likelihood ratio (LR) test of the DSGE
model against the unrestricted VAR. In effect, this test shows how well the DSGE
model forecasts the ‘data’ compared with an unrestricted VAR estimated on that
data.

We examine the power of the Wald test by positing a variety of false models,
increasing in their order of falseness. We generate the falseness by introducing a
rising degree of numerical mis-specification for the model parameters. Thus we con-
struct a False DSGE model whose parameters were moved x % away from their true
values in both directions in an alternating manner (even-numbered parameters posi-
tive, odd ones negative); similarly, we alter the higher moments of the error processes
(standard deviation, skewness and kurtosis) by the same +/ − x %. We may think
of this False Model as having been proposed as potentially ‘true’ following previous
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calibration or estimation of the original model but which was at the time thought to
be mis-specified.5

Many of the structural disturbances in the SW model are serially correlated, some
very highly. These autocorrelated errors in a DSGE model are regarded as exogenous
shocks (or combinations of shocks) to the model’s specification, such as preferences,
mark-ups, or technological change, the type of shock depending on which equation
they appear in. Although they are, therefore, effectively the model’s exogenous vari-
ables, they are not observable except as structural residuals in these equations. The
significance of this is that, when the False models are constructed, the autocorrelation
processes of the resulting structural errors are likely to be different. This difference is
a marker of the model’s mis-specification, as is the falseness of the structural coeffi-
cients. In order to give the model the best chance of not being rejected by the LR test,
therefore, it is normal to re-estimate the autocorrelation processes of the structural
errors. For the Wald test we falsify all model elements, structural and autocorrelation
coefficients, and innovation properties, by the same +/ − x %.

In evaluating the power of the test based on indirect inference using our Monte
Carlo procedure we generate 10,000 samples from some True model (where we take
an error distribution with the variance, skewness and kurtosis found in the SW model
errors), and find the distribution of the Wald for these True samples. We then gen-
erate a set of 10,000 samples from the False model with parameters θ and calculate
the Wald distribution for this False Model. We then calculate how many of the actual
samples from the True model would reject the False Model on this calculated distri-
bution with 95 % confidence. This gives us the rejection rate for a given percentage
degree +/ − x of mis-specification, spread evenly across the elements of the model.
We use 10,000 samples because the size of the variance-covariance matrix of the
VAR coefficients is large for VARs with a large number of variables.6

In evaluating the power of the test under direct inference we need to determine
how well the DSGE model forecasts the simulated data generated by the True Model
compared with a VAR model fitted to these data. We use the first 1000 samples;
no more are needed in this case. The DSGE model is given a parameter set θ and

5The ‘falseness’ of the original model specification may arise due to the researcher not allowing the data to
force the estimated parameters beyond some range that has been wrongly imposed by incorrect theoretical
requirements placed on the model. If the researcher specifies a general model that nests the true model
then estimation by indirect inference would necessarily converge on the parameter estimates that are not
rejected by the tests. Accordingly tests would not reject this (well-specified) model. Thus the tests have
power against estimated models that are mis-specified so that the true parameters cannot be recovered.
Any estimation procedure that incorrectly imposes parameter values on a true model will generate such
mis-specification.
In the case of the LR test the same argument applies, except that the estimator in this case is FIML. Thus

again the LR test cannot have power against a well-specified model that is freely estimated by FIML.
6We assume in this the accuracy of the bootstrap itself as an estimate of the distribution; the bootstrap
substitutes repeated drawings from errors in a particular sample for repeated drawings from the underlying
population. Le et al. (2011) evaluate the accuracy of the bootstrap for the Wald distribution and find it to
be fairly high.
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Table 1 Rejection rates for wald and likelihood ratio for 3 variable VAR(1)

Percent Mis-specified Indirect Inference Direct Inference

True 5.0 5.0

1 19.8 6.3

3 52.1 8.8

5 87.3 13.1

7 99.4 21.6

10 100.0 53.4

15 100.0 99.3

20 100.0 99.7

for each sample the residuals and their autoregressive parameters ρ are extracted by
LIML (McCallum 1976; Wickens 1982). The IV procedure is implemented using the
VAR to project the rational expectations in each structural equation; the residual is
then backed out of the resulting equation. In the forecasting test the model is given
at each stage the lagged data, including the lagged errors. We assume that since the
lagged errors are observed in each simulated sample, the researcher can also estimate
the implied ρs for the sample errors and use these in the forecast. We assume the
researcher does this by LIML which is a robust method — clearly the DSGE model’s
forecasting capacity is helped by the presence of these autoregressive error processes.
We find the distribution of the LR when θ is the true model. We then apply the 5 %
critical value from this to the False model LR value for each True sample and obtain
the rejection rate for the False Model. Further False models are obtained by changing
the parameters θ by + or −x %.7

Table 1 shows that the power of the Indirect Inference Wald test is substantially
greater than that of the Direct Inference LR test. With 5 % mis-specification, the
Wald statistic rejects 87 % of the time (at the 95 % confidence level) while the LR

7The two tests are compared for the same degree of falseness of the structural coefficients, with the error
properties determined according to the each test’s own logic. Thus for the Wald test, the error properties
have the same degree of falseness as the structural coefficients so that overall model falseness is the
same, rising steadily to give a smooth power function. For the LR test, the error properties are determined
by re-estimation, the normal test practice; the model’s falseness rises smoothly with the falseness of the
structural coefficients, and their accompanying implied error processes.
Were the LR error properties set at the same degree of falseness as for the Wald, the model’s forecasting

performance would go off track and the test would sharply reject, simply for this reason. Thus it would
not be testing the model but arbitrarily false residuals - hence normal practice.
If, per contra, we were to re-estimate the errors in the Wald test for conformity with the LR test, the

falseness of the error properties would rise sharply due to estimation error, raising overall model falseness
with it, so derailing the smooth rise in falseness for the power function.
To obtain exactly the same overall falseness of both tests, one needs to compare them with the same

(true) error properties; this comparison is done in Section 6, where it again shows much greater power
from the Wald test. Of course in practice neither test would be appropriately carried out this way, nor could
they since the tester is not told the true errors.
The comparisons of the two power functions as done here represents how rejection rates rise as these

two different tests are applied in practice to models of smoothly increasing falseness.
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Fig. 1 Scatter plots of indirect inference (Wald; horizontal scale) v. Direct inference (log LR; vertical
scale) for 1000 samples of true model (3 Variable VAR(1))

test rejects 13 % of the time. At a sufficiently high degree of falseness both reject
100 % of the time. Nonetheless, the LR test also has reasonable power. Figure 1,
which shows the correlation coefficients between the two tests for the true and 3 %
false models, shows that there is little or no correlation between the two tests across
samples. However, Fig. 2, which is a scatter diagram of the correlations between the
two test statistics on the same samples but for increasing degrees of falseness, shows
that as the model becomes more false, both tests increase their rejection rate. Taken
together, these findings suggest that, when one measure is well-fitting, it may be
well-fitting or badly-fitting on the other measure. A possible explanation for these
findings is that the two tests are measuring different things; the LR test is measuring
the forecasting ability of the model while the Wald test is measuring the model’s
ability to explain the sample data behaviour.

4.1.1 Comparison of the Tests with Different VAR Variable Coverage and VAR lag
Order

Tests based on indirect inference that use VARs with a high-order of lags, or VARs
with more than just a few variables, are extremely stringent and they tend to reject
uniformly. In Le et al. (2011) we proposed ‘directed’ Wald tests where the infor-
mation used in evaluating a DSGE model was deliberately reduced to cover only
‘essential features’ of the data; of course, all Wald tests are based on chosen features
of the data and therefore are always to some degree ‘directed’. Our use of the term is
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Fig. 2 Scatter plots of indirect inference (Wald; horizontal scale) v. Direct inference (log LR; vertical
scale) for true and false models (some outliers taken out for clarity of scale)(3 Variable VAR(1))

when the Wald test is focused on only a small subset of variables, or aspects of their
behaviour.

We find in Table 2 that for the indirect inference test the power of theWald statistic
tends to rise as the number of variables in the VAR or its lag order is increased. But
power of direct inference based on a Likelihood Ratio test (using the LIML method

Table 2 Rejection Rates at 95 % level for varying VARs

Indirect inference

VAR — no of coeffs TRUE 1 % 3 % 5 % 7 % 10 % 15 % 20 %

3 variable VAR(1) — 9 5.00 19.76 52.14 87.30 99.38 100.00 100.00 100.00

3 variable VAR(2) — 18 5.00 38.24 68.56 84.10 99.64 100.00 100.00 100.00

3 variable VAR(3) — 27 5.00 38.22 65.56 92.28 99.30 100.00 100.00 100.00

5 variable VAR(1) — 25 5.00 28.40 77.54 97.18 99.78 100.00 100.00 100.00

7 variable VAR(3) — 147 5.00 75.10 99.16 99.96 100.00 100.00 100.00 100.00

Direct inference

VAR — no of coeffs TRUE 1 % 3 % 5 % 7 % 10 % 15 % 20 %

3 variable VAR(1) — 9 5.00 6.30 8.80 13.10 21.60 53.40 99.30 99.70

3 variable VAR(2) — 18 5.00 6.00 8.30 13.40 23.10 55.10 99.40 99.70

3 variable VAR(3) — 27 5.00 6.00 7.90 13.10 21.90 52.30 99.50 99.70

5 variable VAR(1) — 25 5.00 6.00 8.20 11.70 15.90 29.30 93.30 99.70

7 variable VAR(3) — 147 5.00 5.50 7.10 11.40 18.80 49.90 99.60 99.70
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on the residuals) does not appear to vary in any systematic way with the benchmark
VAR used, either in terms of the number of variables included or the order of the
VAR.

Why this is the case is a matter for future research. Our conjecture is that fore-
casting performance across different variables is highly correlated and that the most
recent information provides the dominant input. If so, then adding variables or more
lags would make little difference. With indirect inference the addition of variables or
VAR detail adds to the complexity of behaviour that the DSGE model must match;
the more complexity, the less well can the matching occur when the model is mod-
erately false. Again, this brings out the essential difference in the two measures of
performance.

4.1.2 Estimation and Test Power

In the above power comparisons we took the values of the DSGE model as given -
perhaps by calibration or Bayesian estimation (where the priors may keep them away
from the true values) or by some inefficient estimation process that fails to get close to
the true parameter values. Suppose instead that we use maximum likelihood (FIML)
estimates or indirect inference (II) estimates that minimise the Wald criterion. It is of
interest to ask whether this would affect the previous power comparisons as we would
then expect the model to be rejected only if it was mis-specified. For example, the
model might assume Calvo price/wage setting when there was general competition
or vice versa.

First, we examine the small sample properties of the two estimators. While we
know from earlier work that the estimators have similar asymptotic properties, there
is no work comparing their small sample properties. We assess the small sam-
ple bias of the two estimators using the same Monte Carlo experiment on the SW
model. Thus, we endow the econometrician with the true general specification and
re-estimate the model for each of the 1000 samples of data simulated from the true
specification of the model. The percentage mean biases and the percentage absolute
mean biases are reported in Table 3. We obtain a familiar result that the FIML esti-
mates are heavily biased in small samples. By contrast, we find that the II estimator
has very small bias; on average it is roughly half the FIML bias and the absolute
mean bias is around 4 %.

Second, we now check the power of each test for the re-estimated SW model
against its general mis-specification which we require to be substantial otherwise the
tests would have trivial power.8 The type of mis-specification that we consider relates
to the assumed degree of nominal rigidity in the model. The original SW model is
New Keynesian (NK) with 100 % Calvo contracting. An alternative specification is
a New Classical (NC) version with 100 % competitive markets and a one-quarter

8We can translate our results under re-estimation into terms of the ‘degree of falseness’ of the model as
in the power functions used above. This will not be removed by the re-estimation process. Re-estimation
will take the model’s parameters to the corner solution where the estimates cannot get closer to the data
without violating the model’s general mis-specification.
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Table 4 Power of the test to reject a false model

Percentage Rejected

NK data NC model

NC data NK model

II 99.6 % 77.6 %

LR 0 % 0 %

information lag about prices by households/workers. We then apply the II test of NC
to data generated by NK, allowing full re-estimation by II for each sample and vice
versa with a test of NK on data generated by NC. This is repeated using the LR test
with re-estimation of each sample by FIML - technically we do this by minimising
the LR on each sample.

The results in Table 4 strikingly confirm the relative lack of power of the LR test.
On NK data, the rejection rate of the NC model with 95 % confidence is 0 %, and on
NC data the rejection rate of the NK model is also 0 %. It would seem, therefore, that
with sufficient ingenuity the NC model can be re-estimated so as to forecast the data
generated by the NK model even better than for the NK model itself (and vice versa)
so that it is not rejected at all. By contrast when II is used, the power against general
mis-specification is high. The NC model is rejected (with 95 % confidence) 99.6 %
of the time on NK data and the NK model is rejected 78 % of the time on NC data.
The implication of this exercise is that the II test is indeed also far more powerful as
a detector of general mis-specification than LR.

5 Extending the Test Comparison

We consider two extensions to the above experiments. First, instead of applying
stationary shocks to the Smets-Wouters model as above, we apply non-stationary
shocks. Second, partly in order to investigate whether these findings are model-
specific, we carry out the same analysis, under both stationary and non-stationary
shocks, to another widely-used DSGE model: the 3-equation (forward-looking IS
curve, Phillips Curve and Taylor Rule) New Keynesian model of Clarida et al. (1999).
We find that the previous conclusions do not change in any essential way for either
model.

5.1 Non-stationary Shocks Applied to the SW Model

If the data are non-stationary data then, in order to use the previous tests, we need to
create an auxiliary model whose errors are stationary. We therefore use a VECM as
the auxiliary model. Following Meenagh et al. (2012), and after log-linearisation, a
DSGE model can usually be written in the form

A(L)yt = BEtyt+1 + C(L)xt + D(L)et (1)



16 V. P. M. Le et al.

where yt are p endogenous variables and xt are q exogenous variables which we
assume are driven by

�xt = a(L)�xt−1 + d + c(L)εt . (2)

The exogenous variables may consist of both observable and unobservable variables
such as a technology shock. The disturbances et and εt are both iid variables with zero
means. It follows that both yt and xt are non-stationary. L denotes the lag operator
zt−s = Lszt and A(L), B(L) etc. are polynomial functions with roots outside the
unit circle.

The general solution of yt is

yt = G(L)yt−1 + H(L)xt + f + M(L)et + N(L)εt . (3)

where the polynomial functions have roots outside the unit circle. As yt and xt are
non-stationary, the solution has the p cointegration relations

yt = [I − G(1)]−1[H(1)xt + f ]
= xt + g. (4)

The long-run solution to the model is

yt = xt + g

xt = [1 − a(1)]−1[dt + c(1)ξt ]
ξt = �t−1

i=0εt−s .

Hence the long-run solution to xt , namely, xt = xD
t + xS

t , has a deterministic trend
xD

t = [1 − a(1)]−1dt and a stochastic trend xS
t = [1 − a(1)]−1c(1)ξt .

The solution for yt can therefore be re-written as the VECM

�yt = −[I − G(1)](yt−1 − xt−1) + P(L)�yt−1 + Q(L)�xt + f + M(L)et + N(L)εt

= −[I − G(1)](yt−1 − xt−1) + P(L)�yt−1 + Q(L)�xt + f + ωt (5)

ωt = M(L)et + N(L)εt

implying that, in general, the disturbance ωt is a mixed moving average process.
This suggests that the VECM can be approximated by the VARX

�yt = K(yt−1 − xt−1) + R(L)�yt−1 + S(L)�xt + g + ζt (6)

where ζt is an iid zero-mean process. As

xt = xt−1 + [1 − a(1)]−1[d + εt ]
the VECM can also be written as

�yt = K[(yt−1 −yt−1)−(xt−1 −xt−1)]+R(L)�yt−1 +S(L)�xt +h+ ζt . (7)

Either of Eqs. 6 or 7 can act as the auxiliary model. Here we focus on Eq. 7
which distinguishes between the effect of the trend component of xt and the tempo-
rary deviation of xt from trend. These two components have different effects in our
models and so should be distinguished in the data in order to allow the tests to pro-
vide the fullest discrimination. It is possible to estimate (7) in one stage by OLS.
Using Monte Carlo experiments, Meenagh et al. (2012) show that this procedure is
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Table 5 Rejection rates at 95 % level for varying VARs (non-stationary data)

Indirect inference

VAR — no of coeffs TRUE 1 % 3 % 5 % 7 % 10 % 15 % 20 %

3 variable VAR(1) — 9 5.0 7.9 49.2 97.8 100.0 100.0 100.0 100.0

3 variable VAR(2) — 18 5.0 9.2 45.0 99.2 100.0 100.0 100.0 100.0

3 variable VAR(3) — 27 5.0 7.1 40.5 98.6 100.0 100.0 100.0 100.0

5 variable VAR(1) — 25 5.0 11.1 57.9 99.6 100.0 100.0 100.0 100.0

7 variable VAR(3) — 147 5.0 19.9 77.4 100.0 100.0 100.0 100.0 100.0

Direct inference

VAR — no of coeffs TRUE 1 % 3 % 5 % 7 % 10 % 15 % 20 %

3 variable VAR(1) — 9 5.0 5.2 5.8 6.2 7.4 9.6 15.6 26.5

3 variable VAR(2) — 18 5.0 5.1 5.8 6.0 7.3 9.4 15.1 26.2

3 variable VAR(3) — 27 5.0 5.3 5.8 6.1 7.3 9.5 15.5 26.3

5 variable VAR(1) — 25 5.0 5.7 6.1 7.2 7.9 9.6 12.6 21.6

7 variable VAR(3) — 147 5.0 5.0 6.0 7.1 8.3 10.7 15.0 25.3

extremely accurate. We therefore use this auxiliary model as our benchmark both for
the II test and the LR test.

To generate non-stationary data from the DSGE model we endow it with one or
more non-stationary error processes. These are constructed by generating AR pro-
cesses for differences in the structural errors. For the SW model we add banking and
money and give it a non-stationary productivity shock. Full details of this version of
the SW model are in Le et al. (2012). The rejection probabilities for the Wald and
LR tests are reported respectively in Table 5. Once more the test based on indirect
inference has far more power than the direct LR test.

5.2 Extension to the 3-equation New Keynesian Model

The results for the 3-equation New Keynesian inflation model are reported for sta-
tionary data in Table 6 and for non-stationary data in Table 7 . The results are not
much different from those for the much larger Smets-Wouters model. For stationary
data the power of the indirect inference test rises rapidly with the degree of falseness,
but that of the Likelihood Ratio is much poorer and rises less fast. For non-stationary
data the power of the indirect inference test rises less fas�than for the Smets-Wouters
model, while the power of the LR test is very low and hardly increases with the
degree of falseness.

These findings suggest that, if one is only interested in these three major macro
variables, there is no substantial power penalty in moving to a more aggregative
model of the economy if indirect inference is used. The power of the LR test is also
similar for the two models - but lower than the Wald test - for stationary data and
much lower for non-stationary data.
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Table 6 3-Equation model: Stationary data: Rejection rates at 95% level for varying VARs

Indirect inference

VAR — no of coeffs TRUE 1 % 3 % 5 % 7 % 10 % 15 % 20 %

2 variable VAR(1) — 4 5.0 16.8 82.6 99.6 100.0 100.0 100.0 100.0

3 variable VAR(1) — 9 5.0 25.1 97.7 100.0 100.0 100.0 100.0 100.0

3 variable VAR(2) — 18 5.0 16.1 77.2 98.4 100.0 100.0 100.0 100.0

3 variable VAR(3) — 27 5.0 14.4 73.0 97.5 99.7 100.0 100.0 100.0

Direct inference

VAR — no of coeffs TRUE 1 % 3 % 5 % 7 % 10 % 15 % 20 %

2 variable VAR(1) — 4 5.0 6.0 7.5 9.9 13.2 18.7 29.2 39.3

3 variable VAR(1) — 9 5.0 5.2 6.9 9.0 12.3 18.8 32.3 51.3

3 variable VAR(2) — 18 5.0 5.7 7.2 10.3 13.0 18.8 32.8 51.6

3 variable VAR(3) — 27 5.0 5.4 7.4 9.6 12.3 19.1 33.0 51.6

6 Why Does the Indirect Inference Test have Greater Power than the
Likelihood Ratio Test?

What we have shown so far is that in small samples the direct inference LR test
has far less power than the Indirect Inference Wald test. The LR test is familiar.
Let us review exactly the way the Indirect Inference test is carried out. Notice that
we simulate the DSGE model to find its implied distribution for the VAR coeffi-
cients; the Wald test then checks whether the data-estimated VAR coefficients lie
within the 95 % bounds of this distribution - i.e. whether the DSGE-model-restricted
distribution ‘covers’ the data-based VAR coefficients at the specified significance
level. However, we could have done the test differently, in effect ‘the other way
round’, creating the distribution of the data-estimated VAR coefficients and asking

Table 7 3-Equation model: Stationary data: Rejection rates at 95 % level for varying VARs

Indirect inference

VAR — no of coeffs TRUE 1 % 3 % 5 % 7 % 10 % 15 % 20 %

2 variable VAR(1) — 4 5.0 9.6 35.6 78.6 93.6 100.0 100.0 100.0

3 variable VAR(1) — 9 5.0 2.9 9.4 40.6 63.1 99.4 100.0 100.0

3 variable VAR(2) — 18 5.0 3.7 12.0 34.8 62.8 96.8 100.0 100.0

3 variable VAR(3) — 27 5.0 3.1 10.8 34.7 55.3 96.9 100.0 100.0

Direct inference

VAR — no of coeffs TRUE 1 % 3 % 5 % 7 % 10 % 15 % 20 %

2 variable VAR(1) — 4 5.0 5.3 5.4 5.6 6.3 7.5 9.2 10.7

3 variable VAR(1) — 9 5.0 5.2 5.3 5.5 5.5 5.7 5.7 5.9

3 variable VAR(2) — 18 5.0 5.2 5.3 5.5 5.5 5.7 5.7 5.9

3 variable VAR(3) — 27 5.0 5.2 5.3 5.5 5.5 5.7 5.7 5.9
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whether this data-based distribution covers the DSGE-model-restricted VAR coef-
ficients (which we can obtain as the mean of the model-implied VAR coefficients
distribution). This is the way in which a standard classical Wald test is performed:
thus the data-based distribution (which comes from the true model, unrestricted) is
treated as the null and the alternative hypothesis is tested against it in this way. This
unrestricted Wald is a transformation of the LR test - as is familiar from standard
econometrics. We can also obtain it by bootstrapping the estimated VAR. This dis-
tribution is unrestricted because it uses the estimated VAR without imposing on it
the restrictions of the true (but unknown) model. Thus when bootstrapping the esti-
mated VAR one holds the αT constant, merely bootstrapping the VAR errors (which
are linear combinations of the structural errors); whereas if one bootstrapped the true
structural model, one would be capturing the overall variation in αS across samples
due to both the errors and their interaction with the structure of the DSGE model9.
It turns out that this is an important distinction between the two Walds. We will
see below that the Wald using the restricted distribution - the ‘restricted Wald’ -
creates a more powerful test than the one based on the unrestricted distribution -
the ‘unrestricted Wald’. For now we will simply explore the theoretical differences
between the restricted Wald on the one hand and the LR statistic or the unrestricted
Wald on the other.

Meenagh et al. (2015), whom we follow closely in this section, show that
the three tests are asymptotically equivalent when the DSGE model being tested
is true. However when the DSGE model is false the restricted Wald test is not
asymptotically equivalent to the other two. By using the distribution of the model-
restricted VAR coefficients it generates increased precision of the variance matrix
of the coefficients of the auxiliary model and so improves the power of the
Wald test.

9This can be seen formally by noting that the α coefficients re-estimated from the ith bootstrap of the
unrestricted VAR (found from the T data sample) are:

α̂UNR
i = fOLS{ŷUNR

i = ŷUNR
i [̂αT (θ, εT ), ηi ]}

where θ is the vector of structural model coefficients (including those of the error processes), ε the
vector of structural innovations, η that of VAR innovations, fOLS is the OLS estimator function to obtain
the α from the y.
Now compare the analogous estimates with restricted VAR bootstraps:
α̂RES

i = fOLS{ŷRES
i = ŷRES

i [θ, εi ] = ŷRES
i [̂αi(θ, εi ), ηi ]}

We can see that these α OLS estimates come from y simulated directly from the structural model and
that these in turn have a VAR representation consisting of two elements, the direct effect of η as before
plus the indirect effect of ε, θ on α. It is this last extra element that creates the rich variation in resampled
data behaviour reflecting the DSGE model’s structure interacting with the structural errors.
In terms of the example discussed below in the text where we consider the own-persistence VAR param-

eters of inflation and interest rates, what is happening is that with restricted bootstraps model-simulated
samples in which inflation is not persistent will typically also be those where interest rates are also not
persistent, and vice versa, because the model implies a strong connection between the two variables; thus
estimated covariation in these own-persistence VAR parameters (̂αi(θ, εi )) will show up in the resampled
data. With unrestricted bootstraps this covariation is not included; instead the VAR parameters generating
the data are held constant at those in the data sample, α̂T (θ, εT ). Notice that the variation due to the direct
effect of the innovations, ηi , is the same in both cases
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6.1 Summary: Why the Power is Different

With these introductory remarks we are now in a position to analyse the reasons for
the difference in power we have found between the two small sample tests, LR and
our Indirect Inference Wald, IIW. In summary we find two main reasons: a) they are
carried out with different procedures; b) even when the same procedures are followed,
the two tests differ in power by construction. Let us now discuss these in turn.

6.1.1 Reason a): The Tests Employ Different Procedures so the Comparison is of
Different Models

We have seen above how when re-estimation is permitted using the LR test, power is
reduced. Thus when one is finding the rejection rate when parameter values are fal-
sified, we saw that with the LR test the re-estimation of the error process to bring the
model back on track reduced the rejection rate. This can be illustrated by comparing
the power of the LR test in which the autoregression coefficients are re-estimated,
as above, with an LR test in which the degree of falsification of the autoregressive
coefficients is pre-specified, as for the Wald test above. We employ a 3-equation NK
model for the comparison. As expected, the results in Table 8 below shows that the
LR test with pre-specified autoregressive coefficients has considerably greater power
than the test using re-estimated autoregressive coefficients.

We further found that the power of the LR test against a completely mis-specified
model was virtually nil, because the FIML estimator of the mis-specified model man-
ages to ‘data mine’ highly effectively in fitting the wrong model - see Table 8 below.
The point here is that the power is again eliminated by bringing the model, across all
its parameters and not merely the AR ones, onto track with the data.

6.1.2 Reason b) Comparative Power when the LR and Indirect Inference Wald
Procedures are Like-for-like

In the above comparison of the joint distribution of the two coefficients of interest,
the data simulated from the structural model gave serially correlated structural error
processes. In order to make the estimates of their joint distribution compatible with
the original Smets-Wouters estimation strategy, first-order autoregressive processes
were fitted to these structural errors for each bootstrap sample. In calculating the
power of the tests we proceed a little differently in order that the tests are based
on the same assumptions when the structural model is falsified. We now fix both
θ (the vector of structural coefficients of the DSGE model) and ρ (the vector of
coefficients of the autoregressive error processes). Each is falsified by x %. We do
not, however, falsify the innovations, maintaining them as having the original true
distribution. This is a matter of convenience as we could extract the exact implied
false error innovations, as implied by each data sample, θ and ρ. But this extraction is
a long and computationally-intensive process requiring substantial iteration (because
the model expectations depend on the errors while the errors in turn depend on the
expectations). We simply assume, therefore, that the model is false in all respects
except for the innovations. For our purposes here, which is to determine the relative
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Table 8 Comparing power due to wrong parameter values

3-equation NK model (no lags)

Rejection rate of false models at 95 % confidence: T=200

Re-estimated ρ′s Pre-specified ρ′s

True 5.0 5.0

1 % 5.0 5.0

3 % 5.3 9.6

5 % 6.1 20.2

7 % 8.0 39.1

10 % 15.4 63.7

15 % 48.1 90.7

20 % 75.6 98.9

power of the two tests when faced with exactly the same falsified models, this creates
no problems. We use the SW model as the true model with a sample size of 200
throughout. Our findings are reported in Table 9.

We find that the two test statistics, LR and Wald, generate similar power when the
unrestricted Wald test is used, i.e. based on the observed data (the unrestricted VAR).
This is what we would expect since the unrestricted Wald, as we have seen, is simply
a transformation of the LR test. Focusing on the main case, which is a 3VAR1, and
taking 5 % falseness as our basic comparison, we see that the rejection rate for the
LR test is 38 %. For the unrestricted Wald test, based on the unrestricted VAR, the
rejection rate is 31 %. However, using the restricted Wald (IIW) test the power rises
to 71 %, nearly double that of the two other tests.10

Understanding the Extra Power Provided by using the Restricted rather than
the UnrestrictedWald Tests In our numerical comparison of the two tests our struc-
tural model is the Smets and Wouters model (2007). This is a DSGE model which
has a high degree of over-identification (as established by Le et al. (2013)). It has 12
structural parameters and 8 parameters in the error processes. It implies a reduced-
form VAR of order 4 with seven observable endogenous variables, i.e. a 7VAR4,
(Wright, 2015). This has 196 coefficients. The size of the VAR in a IIW test and the
number of variables is usually lower than a 7VAR4.

We concentrate on the dynamic response to own shocks of inflation and the
short-term nominal interest rate. We focus on the three variables of the above New
Keynesian model: inflation, the output gap and the nominal interest rate. We use
a 3VAR1 in these variables as the auxiliary model. We then examine the own-lag
coefficients for inflation and the short-term interest rate.

10The unrestricted Wald test uses the variance matrix of the auxiliary model. When the VAR has a very
large number of coefficients the variance matrix of the coefficients has a tendency to become unstable;
this occurs even when the number of bootstraps is raised massively (e.g. to 10000). This is due to over-
fitting in small samples (here the sample size is 200); there is then insufficient information to measure the
variance matrix of the VAR coefficients.
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Table 9 Comparison of rejection rates at 95% level for Indirect Inference and Direct Inference

VAR — no of coeffs TRUE 1 % 3 % 5 % 7 % 10 % 15 % 20 %

WALD TEST with unrestricted VAR

2 variable VAR(1) — 4 5.0 6.2 20.3 69.6 61.0 99.8 100.0 100.0

3 variable VAR(1) — 9 5.0 3.4 7.5 30.7 75.0 97.4 100.0 100.0

3 variable VAR(2) — 18 5.0 3.8 5.2 19.1 57.5 84.3 98.4 99.5

3 variable VAR(3) — 27 5.0 3.9 6.4 21.6 54.5 84.0 97.5 98.7

5 variable VAR(1) — 25 5.0 2.8 3.2 2.6 5.4 6.2 4.5 100.0

7 variable VAR(3) — 147 5.0 5.1 3.4 1.4 0.9 0.2 0.0 100.0

IIWALD test (with restricted VAR)

2 variable VAR(1) — 4 5.0 9.8 37.7 80.8 96.8 100.0 100.0 100.0

3 variable VAR(1) — 9 5.0 9.5 36.1 71.0 98.1 100.0 100.0 100.0

3 variable VAR(2) — 18 5.0 8.3 35.5 80.9 96.9 100.0 100.0 100.0

3 variable VAR(3) — 27 5.0 9.2 32.9 78.0 95.1 100.0 100.0 100.0

5 variable VAR(1) — 25 5.0 17.8 85.5 99.8 100.0 100.0 100.0 100.0

7 variable VAR(3) — 147 5.0 77.6 99.2 100.0 100.0 100.0 100.0 100.0

Likelihood Ratio test

2 variable VAR(1) — 4 5.0 12.0 28.3 45.9 63.4 83.2 97.0 99.7

3 variable VAR(1) — 9 5.0 9.4 21.8 37.5 58.9 84.0 99.0 100.0

3 variable VAR(2) — 18 5.0 8.9 20.7 36.8 57.6 82.9 98.7 100.0

3 variable VAR(3) — 27 5.0 8.9 20.4 36.7 56.7 82.2 98.7 100.0

5 variable VAR(1) — 25 5.0 8.9 22.4 44.3 68.6 89.6 99.6 100.0

7 variable VAR(3) — 147 5.0 5.7 10.6 23.6 46.3 83.2 99.6 100.0

We estimate the coefficients of the 3VAR1 using the observed data for these three
variables. We then find the distribution of the estimates of the two coefficients of
interest by bootstrapping the VAR innovations. Next, we estimate the 3VAR1 using
data for these three variables obtained by simulating the full SW model. The dis-
tribution of these estimates of the two coefficients is obtained by bootstrapping the
structural innovations generating that sample.

Figure 3 displays the joint distributions of the two VAR coefficients based on 1)
the observed data (the unrestricted VAR), 2) simulated data from the original esti-
mates of the structural model (the restricted VAR), and 3) false specifications of the
structural models by 5 % and 10 % (the 5 % false and 10 % false restricted VARs).
One can see clearly that 2), the joint distribution based on simulated data from the
original structural model, is both more concentrated and more elliptical (implying
a higher correlation between the coefficients) than 1), that using the observed data.
Increasing the falseness of the model causes 3), the joint distributions from the 5 %
and 10 % false DSGE model, to become a little more dispersed and more elliptical;
they are also located slightly differently but this is not shown as the distribution is
centred on zero in all cases.
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Fig. 3 Restricted VAR and unrestricted VAR coefficient distributions

Figure 4 shows how this affects the power of the Wald test for a model that is 5%
false. The dot on the right of the Figure is the mean of the distribution. The test of
this false model can be carried out in two ways. We have drawn the diagram as if the

Fig. 4 Model- Curve to the left=Unrestricted; Ellipse to the right=Restricted
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joint test of two VAR coefficients chosen have the same power as the overall test of
all VAR coefficients.

The first way is to use the unrestricted Wald, using the observed data to
estimate a 3VAR1 representation and to derive the joint distribution of the two
coefficients by bootstrapping. The 5 % contour of such a bootstrap distribu-
tion is given by the dashed (close to circular) line; the thick curve to the left
of the figure shows the critical frontier at which the 5 % false model is just
rejected.

The second way is to use the restricted Wald, using the distribution implied by
the simulated data. The ellipse to the right of the figure shows the 5 % contour of
the resulting joint distribution. The results show that the second method has nearly
double the power of the first. (Increasing the degree of falseness to 10% raises the
power of both to 100 %.)

We can also look at Fig. 5 to see how the rotation of the ellipse due to the chang-
ing covariance of the two VAR coefficients can raise the power of the restricted
Wald test. As the ellipse rotates, it covers less and less of the True model sample
points. Thus not just the distance of the model’s mean VAR coefficients from the
True mean of the data-based ones but also the shape of the model’s distribution for
these coefficients and its rotation (both due to the model-implied covariance between
the coefficients) with rising falseness determine the power of the test - i.e. how many
of the data sample points it fails to cover. With the standard unrestricted Wald test
the shape and rotation is fixed regardless of Falseness - one is always using the
same distribution based on the data sample - and so only the distance varies with
Falseness.
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Fig. 5 Joint distribution of VAR coefficients rotates with changing false DSGE parameters
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Table 10 Comparing power due to VAR order (3-equation NK model with no lags)

3-equation NK model — no lags (VAR(1) reduced form)

Rejection rates at 95 % confidence: T=200

3 variable VAR(1) 3 variable VAR(2)

True 5.0 5.0

1 % 4.9 4.3

3 % 7.3 7.1

5 % 16.1 21.7

7 % 37.0 40.3

10 % 73.3 76.3

15 % 99.4 99.8

20 % 100.0 100.0

Exploiting the Extra Power of the Wald-type Test with DSGE-model-restricted
VarianceMatrix Thus when we eliminate the difference in procedures and test like-
for-like we found the two tests are reasonably comparable in power when the indirect
inference test is performed using the unrestricted Wald test which uses the variance
of the unrestricted VAR (auxiliary) model. This turns out to be because the tests are
approximately equivalent on a like-for-like basis. However, we showed above that
extra power is delivered by the IIW test set out here, under which the DSGE model
being tested is treated as the null hypothesis: in this case the Wald statistic uses the
variance restricted by the DSGE model under test. This gives this restricted Wald test
still greater power. (Table 10)

It may be possible to raise the power of the Wald test further. We suggest two ways
this might be achieved:

1) extending the Wald test to include elements of the variance matrix of the
coefficients of the auxiliary model;

2) including more of the structural model’s variables in the VAR, increasing the
order of the VAR, or both.

The basic idea here is to extend the features of the structural model that the auxiliary
model seeks to match. The former is likely to increase the power of the restricted
Wald test, but not the LR test, as this last can only ask whether the DSGE model is
forecasting sufficiently accurately; including more variables is likely to increase the
power of both. There is, of course, a limit to the number of features of the DSGE
model that can be included in the test. If, for example, we employ the full model
then we run into the objection raised by Lucas and Prescott against tests of DSGE
models that “too many good models are being rejected by the data”. The point is
that the model may offer a good explanation of features of interest but not of other
features of less interest, and it is the latter that results in the rejection of the model by
conventional hypothesis tests. Focusing on particular features is a major strength of
the Wald test.
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Table 11 Comparing power due to VAR order (3-equation NK model with indexing lag)

3-equation NK model — with lag (VAR(2) reduced form)

Rejection rates at 95% confidence: T=200

3 variable VAR(1) 3 variable VAR(2)

True 5.0 5.0

1 % 10.6 6.0

3 % 20.7 19.5

5 % 47.5 57.9

7 % 65.6 91.2

10 % 89.6 100.0

15 % 98.8 100.0

20 % 99.9 100.0

Consider now including an indexing lag in the Phillips Curve. This increases the
number of structural parameters to 9 and the reduced-form solution is a VAR(2). The
power of the Wald test is reported in Table 11 . Increasing the number of lags in the
auxiliary model has clearly raised the power of the test.

This additional power is related to the identification of the structural model. The
more over-identified the model, the greater the power of the test. Adding an index-
ation lag has increased the number of over-identifying restrictions exploitable by
the reduced form. A DSGE model that is under-identified would produce the same
reduced-form solution for different values of the unidentified parameters and would,
therefore have zero power for tests involving these parameters.

In practice, most DSGE models will be over-identified - see Le et al. (2013).
In particular, the SW model is highly over-identified. The reduced form of the SW
model is approximately a 7VAR(4) which has 196 coefficients. Depending on the
version used, the SW model has around 15 (estimatable) structural parameters and
around 10 ARMA parameters. The 196 coefficients of the VAR are all non-linear
functions of the 25 model parameters, indicating a high degree of over-identification.

The over-identifying restrictions may also affect the variance matrix of the
reduced-form errors. If true, these extra restrictions may be expected to produce more
precise estimates of the coefficients of the auxiliary model and thereby increase its
power. It also suggests that the power of the test may be further increased by using
these variance restrictions to provide further features to be included in the test.

7 Using These Methods to Test a Model

In this final section we discuss the results we have found in using the Smets-Wouters
model for monetary and fiscal policy purposes in the context of the recent crisis and
its aftermath. This work is all on US data for the period since the mid-1980s; we have
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not found it possible to mimic US behaviour for earlier data, we think because there
has been substantial regime change before then - Le et al. (2014).

We start from the position that the model has credible micro-foundations but that
we are searching for a variant of it that a) can allow for a banking system with
the monetary base (M0) as an input into it b) can integrate the zero bound on the
risk-free interest rate and Quantitative Easing together with bank regulation as pol-
icy tools; and c) can explain the behaviour of the three key macro variables: output,
inflation and interest rates. This is because we want to find a model within which
we can reliably explore policies that would improve these variables’ behaviour, espe-
cially their crisis behaviour. There is of course a large macro literature in which
claims are made for the efficacy of a variety of policy prescriptions; but here we just
focus on the set of policies investigated for this model, to illustrate the power of our
methods.

We will discuss the model’s properties with these policies in a moment. But first
let us note that we can test it two ways - by a Likelihood Ratio test for three key macro
variables, inflation, output and interest rates and also by an IIW test on the same three
variables. We choose these because they are focused on the behaviour of the three
variables of interest to us as policymakers. The LR test measures how close the model
gets to the data - essentially a forecasting test; notice at once that this is not really
our interest but we are using it as a general specification test. It turns out that the LR
test is not sensitive, at least for the SW model, to what variables are included in the
test, no doubt becase if a model forecasts some variables well, it must be forecasting
the other variables well that are closely linked to them. We carry out the LR test in
the usual way, allowing the ρs to be re-estimated on the error processes extracted by
LIML. The IIW test looks at how close the model gets to these three variables’ data
behaviour - which we are deeply interested in matching and represented by a VECM
(which we rewrite as a VARX) here as the data is non-stationary. Thus with the IIW
test we have carefully chosen its focus to match our policy interests; we could have
chosen a broader group of variables which would have raised the test power but at
the cost of possibly not finding a model that would fit their broader behaviour. Thus
we see here that the focus of the test is a crucial aspect of the IIW test.

We now reproduce some Monte Carlo experiments for the SW model from
Tables 1 and 5 above:

The basic point we want to emphasise from this comparison is that if this model
passes the IIW test, we can be sure it is less than 7 % False whereas if it passes the
LR test we can only be sure it is less than 15 % False under stationarised data; under
non-stationary data, the relevant case here, we cannot even be sure it is less than 20 %
False - in fact we find that it requires the model to be as much as 50 % False for it to
be rejected roughly 100 % of the time.

When we now apply the two tests to theMonetary model discussed above, it passes
both tests. We can now compare how our policy analysis would vary with the two
test approaches. (Table 12)

Our basic policy results when we treat the model as True are summarised in the
first row of the following Table 13:

If we use the IIW test we know that our model could be up to 7 % False but no
more. We can discover the effect of this degree of Falseness on our policy results by
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Table 12 Rejection Rates for Wald and Likelihood Ratio for 3 Variable VAR(1)

Percent Mis-specified Wald LR Wald LR

Stationary data Non-stationary data

True 5.0 5.0 5.0 5.0

1 19.8 6.3 7.9 5.2

3 52.1 8.8 49.2 5.8

5 87.3 13.1 97.8 6.2

7 99.4 21.6 100.0 7.4

10 100.0 53.4 100.0 9.6

15 100.0 99.3 100.0 15.6

20 100.0 99.7 100.0 26.5

redoing the whole policy exercise with the parameters disturbed by 7 %. We obtain
the results shown in the second row of Table 13.

In investigating the power of the test, we have simply assumed that we are pre-
sented with a False set of parameters somehow from the estimation process. We can
then ask what power can we have against a quite mis-specified model whose param-
eters are simply different. We have looked at this for the model here, by asking what
the power is against a quite different model - say a New Classical model versus as
assumed True SW model. The power is 100 %; it is always rejected. So we can be
quite sure the True model is not something quite different.

Between these two things we therefore have a lot of reassurance. First, if the
model is not well-specified, it will be certainly rejected. Second, if the model is
well-specified, then models up to 7 % distant from it could be True; and our policy
conclusions can be tested for robustness within this range as we have done here.

Table 13 Policy analysis when models have varying falseness

Frequency of crisis Base Monetary PLT NGDPT PLT+ NGDPT+

(expected crises per 1000 years) case Reform Mon.Reform Mon.Reform

Policy exercise

when model is True 20.8 6.62 2.15 1.83 1.41 1.31

when model is 7 % False 57.4 18.6 10.3 8.7 11.8 10.3

when model is 15 % False 63.6 Explosive 19.4 19.6 19.4 17.4

when model is 50 % False 70.4 Explosive 33.3 33.4 34.4 34.2

Notes:

Base Case: monetary policies as estimated over the sample period

Monetary Reform: running aMonetary Base rule targeted on the credit premium side by side with a Taylor
Rule

PLT:substituting Price Level Target for Inflation Target in Taylor Rule

NGDPT: substituting Nominal GDP target for inflation and output targets in Taylor Rule
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If we use the LR test we know the model could be up to 50 % False - we cannot
guarantee to reject a model that is less false than this. For example a 15 % False
model will be rejected only a third of the time. If we now redo the exercise for a 15 %
disturbance to the parameters we obtain the third row of Table 13. Now our policy is
plainly vulnerable. The frequency of crises under the current regime goes up to once
every 15 years; with NGDPT+monetary reform it only comes down to once every
50-60 years. This is on the borderline of acceptability.

If we look at the 50 % false case, shown in the last row of Table 13, it is disastrous.
First, only just under half of the bootstrap simulations have sensible solutions. If we
take those that do, we can see that the prevalence of crises under the existing regime
would be much greater, at one every 14 years. As with 15 % False the monetary
reform regime is explosive. The other regimes all generate crisis frequency of around
one every 30 years which is far from acceptable.

To make matters worse, we have seen that the LR test has virtually no power
against model misspecification, so that we cannot be sure that a misspecified model
with yet other, possibly even worse, results might be at work.

What this is showing us is that according to the LR test versions of our model that
could be true imply much higher frequency of crises than in the estimated case and
the monetary policy regimes suggested as improvements could either give explosive
results or produce an improvement in the crisis frequency that is quite inadequate
for policy purposes. In other words the policymaker cannot rely on the model policy
results. But using the IIW test we can be sure that the recommended policies will
deliver the results we claim.

7.1 Can Estimation Protect us Against Falseness?

But would this vulnerability not be reduced if we take ML estimation seriously?
Unfortunately, as we saw above, estimation by ML gives us no guarantees of getting
close to the true parameters. It is well-known to be a highly biased estimator in small
samples - with an average absolute estimation bias across all parameters of nearly
9% in our Monte Carlo experiment above (see Table 3). Bearing in mind that our
‘falseness’ measure assumes x as the absolute bias, alternating plus and minus, this
suggests that FIML will on average give us this degree of falseness; in any particular
sample it could be much larger therefore.

We also looked above at whether the Indirect Inference estimator could give us
any guarantees in this respect. This estimator was much less biased in small samples,
with an average absolute bias about half that of FIML, as again shown in Table 3.
However, again this can give us no guarantees of the accuracy of the estimates in any
particular sample.

It follows that we are essentially reliant on the power of the test, in the sense that
this can guarantee that our model is both well specified and no more than 7 % false
under indirect inference, because if it were either it would have been rejected with
complete certainty.

The dimension in which we have carried out this examination of the model’s reli-
ability in the face of what we might call ‘general falseness’. It may be also that the
model’s performance is sensitive to the values of one or two particular parameters
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Fig. 6 Maximising Friedman utility

and if so we would also need to focus on the extent to which these might be false,
how far the test’s power can protect us against this and how sensitive the model is
within this range. This further investigation can be carried out in essentially the same
way as the one we have illustrated with general falseness.11

7.2 Choosing the Testing Procedure

Thus what we have illustrated in this section is how macro models can be estimated
and tested by a user with a particular purpose in mind. The dilemma a user faces is
the trade-off between test power (i.e. the robustness to being false of a model that
marginally passes the test) and model tractability (i.e. the relevance for the facts to
be explained of a model that marginally passes the test). Different testing procedures
give different trade-offs as we have seen and is illustrated in Fig. 6. Thus the Full
Wald test gives the greatest power; but a model that passes this test will have to
reflect the full complexity of detailed behaviour and thus be highly intractable. At the
other extreme the LR test is easy to pass for a simple and tractable model; but it has
very low power. In between lie Wald statistics with increasing ‘narrowness’ of focus
as we move away from the Full Wald. These offer lower power in return for higher
tractability - somewhere along their trade-off will be chosen by the policymaker, as
shown in Fig. 6.

11The LR test and the Monte Carlo results for power are based on various versions of the Smets-Wouters
model and varying data samples. Our aim is to illustrate the method of policy analysis. Ideally the
policymaker should redo all this work on the model and data sample being used.
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In order for us to find a tractable model we have to allow a degree of falseness in
the model with respect to the data features other than those the policymaker prizes.
The way to do this is to choose an Indirect Inference test that focuses tightly (in a
‘directed’ way) on the features of the data that are relevant to our modelling purposes.

To apply these methods it is necessary to a) estimate and test the model, b) assess
which ‘directed’ test to choose, c) assess the power in the case of the model being
used. We have programmes to do these things which we are making available freely
to users - Appendix 2 shows the steps involved in finding theWald statistic, as carried
out in these programmes12.

8 Conclusions

In this paper we examine the workings of the Indirect Inference Wald test of a
macroeconomic model, typically a DSGE model. We show how the model can be
estimated by Indirect Inference and how much power the test has in small sam-
ples against falseness in the estimated parameters as well as against complete model
misspecification. We perform numerous Monte Carlo experiments with widely-used
DSGE models to establish the extent of this power. We consider how the test can
be focused narrowly (via a ‘directed Wald’) on features of the model in which the
user is interested, echoing Friedman’s advice that models should be tested ‘as if
true’ according to their ability to explain features of the data the user is concerned
about. For a user of a model with a clear purpose, for example a monetary poli-
cymaker, this testing method offers an attractive trade-off between the chances of
finding a model to pass the test and the power of the test to reject false models.
Thus the user can determine whether the model found can be assumed to be reliable
enough to use for a policy exercise, by seeing whether it is robust to the potential
degree of falseness it could be open to. In this way users can discover whether their
models are ‘good enough’, in Friedman’s original sense, for the purposes intended,
and the model uncertainty facing them can be reduced and even eliminated. Tailor-
made programmes to carry out this procedure are now available to applied macro
economists.

We benchmarked the IIW test against the widely-used Likelihood Ratio (LR) test,
test. A key finding is that, in small samples, tests based on the IIW test have much
greater power than those based on the LR test. This finding is at first sight puzzling
as the LR test can be transformed into a standard Wald test, which in turn can be
obtained by indirect inference using the unrestricted variance matrix of the auxiliary
model coefficients estimated on the data. We attempted to explain why this result
occurs.

We find that the difference in power in small samples of the two tests can be
attributed to two things. First, for the LR test the autoregressive processes of the
structural errors are normally re-estimated when carrying out the test. This ‘brings

12Programmes to implement the methods described in this paper can be downloaded freely and at no cost
from http://www.patrickminford.net/Indirect.

http://www.patrickminford.net/Indirect
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the model back on track’ and as a result undermines the power of this test as it is,
in effect, based on the relative accuracy of one-step ahead forecasts compared with
those obtained from an auxiliary VAR model.

Second, additional power of the IIW test arises from its use of the restricted
variance matrix of the auxiliary model’s coefficients, determined from data simu-
lated using the restrictions on the DSGE model. These may give both give more
precise estimates of these coefficients and provide further features of the model
to test. The greater the degree of over-identification of the DSGE model, the
stronger this effect. This suggests that for a complex, highly restricted, model like
that of Smets and Wouters, the power of the Indirect Inference Wald test can
be made very high even in small samples. Because a test of all of the proper-
ties of a DSGE model is likely to lead to its rejection, it is preferable to focus
on particular features of the model and their implications for the data. This is
where the IIW test can flexibly be tailored to optimise the ratio of power to
tractability.

In sum, we find that the IIW test can become a formidable weapon in the armoury
of the users of macro models, enabling them to estimate a model that can pass the test
when suitably focused and then to check its reliability in use against such potential
inaccuracy as cannot be ruled out by the power of the test.

Appendix 1: Available IIW tests of macro models

Le et al. (2011) found that, after re-estimation by indirect inference, the SWmodel on
post-1984 (but pre-crisis) data passed the indirect inference test comfortably. It is of
interest to examine the outcome from using a likelihood ratio test. The II test used a
VAR(1) with three variables — output, inflation and interest rates — as the auxiliary
model. With a higher-order VAR for these 3 variables, as well as with a VAR(1) with
more than these three variables, the model performed progressively worse, being
rejected most of the time. Le et al. interpreted this to mean that the model is able to
capture the ‘broad outlines’ of the behaviour of these key macroeconomic variables
but the model is not the full ‘truth’.

We choose as the benchmark for the LR test a VAR(1) with 3 variables, as
we have seen that the power does not vary with the lag order of the VAR or
with the number of variables. For both the LR and Wald tests we generate 1000
sets of bootstrap data from the model’s errors from which we obtain critical val-
ues from estimates of the distributions of the test statistics under the null that the
model is true. The probabilities of rejecting the null that the model is correct and
the VAR is restricted against the alternative of an unrestricted VAR are reported
in Table 14.

We have found in our Monte Carlo experiments that the power of the LR test is
considerably lower than that for the Wald test; with more variables in the VAR and
with higher-order lags, we found that the power of the Wald test rose substantially,
while remaining little changed for the direct inference LR test. This is consistent with
what we find here for the modified SW model. Of the two tests, the LR fails to reject
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Table 14 Tests using varying VARs

VAR— no. of coefficients Wald+ LR

3 variable VAR(1) — 9 83.5 71.7

3 variable VAR(2) — 18 99.6 71.4

3 variable VAR(3) — 27 100 67.7

4 variable VAR(1) — 16 90.1 82.8

5 variable VAR(1) — 25 96.6 74.2

7 variable VAR(3) — 147 100 13.4

+The Wald test includes the variances of the data in each case

at all, while the Wald rejects for any VAR with more than 18 coefficients. We can
also see that for our main focus on three variables with a VAR(1) (the first line of
Table 14) both tests give consistent results.

Comparing the outcomes for the two tests, the LR tests are all passed rather easily
indicating that the model is well ‘on track’. This was noticed by Smets and Wouters
for their original model on which they performed various forecasting tests that are
closely related to the LR test used here. In contrast, the model passes the Wald test
only using a VAR(1) with 3 or 4 key variables, which is a coarse description of the
inter-relationships. For finer descriptions or with more variables, the model fails. This
provides information about what the model can do. In general we find that macro
models cannot match the details of consumption and investment, even when they can
match the key variables: output, inflation and interest rates. A possible reason is that
the data on consumption and investment are poor; for example, we know that durable
consumption goods, which should be treated as capital, are routinely included in
consumption.

Table 15 summarises the results of many of the recent applications of the use of the
indirect inference evaluation procedure. The Wald statistic used is based on the coef-
ficients of the auxilary VAR model and the data variances. The first three columns
denote the country, sample episode and the model studied; the fifth column provides
the name of the authors and the reference. The fourth column gives the results which
show that models can be found that are not rejected for key sets of macro variables
such as output, inflation and interest rates. The findings of Le etal. (2010, 2011, 2014)
are that, in general, models which can match a VAR(1) on a limited number of vari-
ables, do not perform as well on VARs with many more variables, and are typically
rejected for higher-order VARs than a VAR(1).

Another common finding is that the 3-equation New Keynesian model originally
proposed by Clarida et al. (1999) passes the test after re-estimation and can even
match higher-order VARs - see Minford and Ou (2013), Liu and Minford (2014a,
b), and also Minford et al. (2012) for similar results. A possible explanation is the
relative lack of tight cross-equation restrictions in these small models compared with
those imposed by the more elaborate model of Smets and Wouters.
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Appendix 2: Steps in deriving the Wald statistic

The following steps summarise our implementation of the Wald test by bootstrap-
ping:

Step 1: Estimate the errors of the economic model conditional on the observed
data and θ0.

Estimate the structural errors εt of the DSGEmacroeconomic model, xt (θ0), given
the stated values θ0 and the observed data. The number of independent structural
errors is taken to be less than or equal to the number of endogenous variables. The
errors are not assumed to be normally distributed. Where the equations contain no
expectations the errors can simply be backed out of the equation and the data. Where
there are expectations estimation is required for the expectations; here we carry this
out using the robust instrumental variables methods of McCallum (1976) and Wick-
ens (1982), with the lagged endogenous data as instruments— thus effectively we use
the auxiliary model V AR. An alternative method for expectations estimation is the
‘exact’ method; here we use the model itself to project the expectations and because
these depend on the extracted residuals there is iteration between the two elements
until convergence.

Step 2: Derive the simulated data

On the null hypothesis the {εt }Tt=1 are the structural errors. The simulated dis-
turbances are drawn from these errors. In some DSGE models, including the SW
model, many of the structural errors are assumed to be generated by autoregressive
processes rather than being serially independent. If they are, then under our method
we need to estimate them. We derive the simulated data by drawing the bootstrapped
disturbances by time vector to preserve any simultaneity between them, and solv-
ing the resulting model using Dynare (Juillard 2001). To obtain the N bootstrapped
simulations we repeat this, drawing each sample independently. We set N = 1000.

Step 3: Compute the Wald statistic

We estimate the auxiliary model — a VAR(1) — using both the actual data and
the N samples of simulated data to obtain estimates aT and aS(θ0) of the vector α.
The distribution of aT − aS(θ0) and its covariance matrix W(θ0)

−1 are estimated by
bootstrapping aS(θ0). The bootstrapping proceeds by drawing N bootstrap samples
of the structural model, and estimating the auxiliary VAR on each, thus obtaining N

values of aS(θ0); we obtain the covariance of the simulated variables directly from
the bootstrap samples. The resulting set of ak vectors (k = 1, ...., N) represents
the sampling variation implied by the structural model from which estimates of its
mean, covariance matrix and confidence bounds may be calculated directly. Thus,
the estimate of W(θ0)

−1 is

1

N
�N

k=1(ak − ak)
′(ak − ak)
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where ak = 1
N

�N
k=1ak . We then calculate the Wald statistic for the data sample; we

estimate the bootstrap distribution of the Wald from the N bootstrap samples.
We note that the auxiliary model used is a VAR(1) and is for a limited number of

key variables: the major macro quantities which include GDP, consumption, invest-
ment, inflation and interest rates. By raising the lag order of the VAR and increasing
the number of variables, the stringency of the overall test of the model is increased. If
we find that the structural model is already rejected by a VAR(1), we do not proceed
to a more stringent test based on a higher order VAR13.

Rather than focus our tests on just the parameters of the auxiliary model or the
impulse response functions, we also attach importance to the ability to match data
variances, hence their inclusion in α. As highlighted in the debates over the ‘Great
Moderation’ and the recent banking crisis, there is a major concern over the scale of
real and nominal volatility. In this way our test procedure is within the traditions of
RBC analysis.

We refer to the Wald statistic based on the full set of variables as the Full Wald
test; it checks whether the a vector lies within the DSGE model’s implied joint dis-
tribution and is a test of the DSGE model’s specification in a wide sense. We show
where in the Wald bootstrap distribution the Wald based on the data lies (the Wald
percentile). We also show the Mahalanobis Distance based on the same joint distri-
bution, normalised as a t-statistic, and also the equivalent Wald p-value, as an overall
measure of closeness between the model and the data.14

We also consider a second Wald test, which we refer to as a ‘Directed Wald statis-
tic’. This focuses on more limited features of the structural model. Here we seek to
know how well a particular variable or limited set of variables is modelled and we
use the corresponding auxiliary equations for these variables in the VAR as the basis
of our test. For example, we may wish to know how well the model can reproduce the
behaviour of US output and inflation by creating a Wald statistic based on the VAR
equation for these two variables alone.
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