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Abstract
We provide a new approach to obtain solutions of linear differential problems set in a
Banach space and equipped with nonlocal boundary conditions. From this approach
we derive a family of numerical schemes for the approximation of the solutions. We
showbynumerical tests that these schemes are numerically robust and computationally
efficient.

Keywords Differential problems · Rational approximation · Functions of matrices
and operators

1 Introduction

In this work we focus on the solution of a class of linear differential problems of the
form

dv

dt
= Av, 0 < t < T , (1.1)

set in a Banach space, with the nonlocal integral condition

1

T

∫ T

0
v(t) dt = f ,

where the function f and the linear, closed, possibly unbounded operator A are given.
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Recall that, given Banach spaces X and Y equipped with norms ‖ · ‖X and ‖ · ‖Y ,
respectively, the norm of a bounded linear operator A : D(A) ⊂ X → Y is defined as

‖A‖ = sup
x∈D(A),x �=0

‖Ax‖Y
‖x‖X .

Here D(A) denotes the domain of A, which is a linear subspace of X . Saying that A
is closed means that whenever xk → x in D(A) and T xk → y in Y , we have T x = y.

The hypothesis that A is (possibly) unbounded with respect to the operator norm
allows us to choose A as a differential operator. For instance, A could be taken as a
second derivativew.r.t. a space variable, yielding the familiar formof the homogeneous
heat equation, albeit with less common boundary conditions. The study of the heat
equation with integral boundary conditions goes back to Cannon [5]; the existence
and properties of the solution are investigated in [15, 17]. See also [11] and references
therein. Another example of application, this time to system identification, is found
in Bellman [1]. In the same vein, note that the evolution problem (1.1) fits into a
more general framework of differential problems where the boundary conditions are
expressed through the application of linear operators to the unknown function [13];
this includes integral conditions, but also periodic conditions, multipoint conditions
and so on.

Let us recall that the theory of operator methods for differential problems provides
a setting for the solution of problems such as (1.1): for a general presentation see for
instance [7, 14] and references therein.

In a finite-dimensional setting, A is a linear operator acting on a finite-dimensional
space, that is, a matrix. The solution to our differential problem can then be expressed
as the action of a function of A on f , namely, v(t) = ψt (A) f , where ψt (z) = T zezt

ezT −1
.

Note in passing that this function is closely related to the reciprocal of the ϕ1 function,
which is of interest in the development of exponential integrators: see e.g., [3, 4, 9,
10] and references therein.

A discussion of the finite-dimensional problem was proposed in [2] and [3]. More
precisely, Boito et al. [2] introduced an expression for v(t) based on a partial fraction
decomposition of the function ψt (z), thus motivating the development of a structured
algorithm for the solution of shifted quasiseparable linear systems. It also presented
an acceleration technique for this rational decomposition, which introduced a cubic
polynomial term. In [3], generalization of this idea led to a family ofmixed polynomial-
rational approximations of v(t), where the polynomial part is in fact a Bernoulli
polynomial of arbitrary degree. In addition to its theoretical interest, this approximation
formula allows for the design of effective numerical methods for the computation of
v(t), particularly when A is a structured matrix. Let us also mention that the approach
based on Bernoulli polynomials for the solution of differential problems with nonlocal
conditions was suggested for the first time in Eidelman et al. [6].

For the more general case where the differential problem is set in a Banach space,
we prove the existence and uniqueness of the solution v(t) and characterize it via a
family of mixed polynomial-rational expansions w.r.t. the operator A. Each expansion
contains a purely polynomial term of arbitrary degree, which is related to the Bernoulli
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polynomials, followed by a series of rational terms. The evaluation of each rational
term involves the inversion of A plus a multiple of the identity operator.

From this result we derive a general numerical procedure for computing an approx-
imation of v(t) up to a given tolerance (Algorithm 1). An interesting feature of this
approach is the fact that successive rational terms can be computed independently: this
allows us to fine-tune the accuracy of the approximation by adding further terms as
needed, without the need to recompute the whole approximation. Moreover, in order
to improve the efficiency of the implementation, one may also employ parallelization
and/or structured methods for the inversion of families of shifted operators; a finite-
dimensional example in presence of quasiseparable structure is found in Boito et al.
[2].

Numerical tests highlight the effectiveness of this approach and suggest strategies
for a good choice of the degree of the polynomial term and of the number of rational
terms. After providing results for the matrix case, we focus on a model problem of
parabolic equation. For this problem we investigate the behavior of the mixed approx-
imation in combination with two different approaches: the classical method of lines,
based on a finite-difference semi-discretization in space, and a “functional” approach
where the expansion is applied directly to the infinite-dimensional operator. Each ratio-
nal term is then computed as the solution of a boundary value problem. Among the
proposed tests, this functional approach is the most innovative and promising applica-
tion of our mixed approximation formula. While more computationally demanding, it
circumvents the numerical obstacles encountered in the finite-dimensional discretiza-
tion and proves to be more robust and flexible.

The paper is organized as follows. Section 2 recalls the problem under study and
contains themain theoretical result of the paper, namely, the statement and proof for the
mixed polynomial-rational expansion of the solution (Theorem 1). This is followed by
Algorithm1,which computes an approximation of v(t). Sections 3 and 4 are devoted to
numerical tests for the matrix case and for the parabolic model equation, respectively.
Section 5 summarizes our contributions and sets out ideas for future work, particularly
for further investigation and improvement of the functional approach.

2 The abstract nonlocal differential problem

Let X be a Banach space. Consider the linear homogeneous differential equation

dv

dt
= Av, 0 < t < T , (2.1)

with the boundary conditions

1

T

∫ T

0
v(t) dt = f . (2.2)

Here A : D(A) → X is a linear unbounded closed operator with domain D(A) ⊂
X , and f ∈ D(A). By solution of the problem (2.1), (2.2) we mean a continuous
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function v : [0, T ] → X on [0, T ] with values in X and with v(t) ∈ D(A), 0 < t <

T , such that v ∈ C1((0, T ); X), that is, v is a continuously differentiable function,
Av ∈ C((0, T ); X), and (2.1), (2.2) hold. Without loss of generality one can assume
that T = 2π .

We say that λ ∈ C is a regular point of A if A − λI , I = IX , is bijective and
(A − λIX )−1 is a bounded operator, i.e.,

‖ (A − λI )−1 ‖= sup{‖ (A − λI )−1y ‖
‖ y ‖ : y �= 0} < +∞.

The following result establishes the basis for the design of numerical schemes for
computing a numerical approximation of the solution v(t). A preliminary version of
this result in the finite dimensional case has first appeared in [2, 3].

Theorem 1 Assume that all the complex numbers

μk = ik, k = ±1,±2, . . .

are regular points of the operator A and there is a constant C > 0 such that

‖(A − μk I )
−1‖ ≤ C

|k| , k = ±1,±2, . . . . (2.3)

Also, suppose that f ∈ D(A2). Then the problem (2.1), (2.2) has a unique solution
which is given by the formula

v(t) = f + (t − π)A f + 2

( ∞∑
k=1

�k(A f ) cos kt +
∞∑
k=1

ϒk(A f ) sin kt

)
(2.4)

with {
�k = A(A + ik I )−1(A − ik I )−1,

ϒk = k−1A2(A + ik I )−1(A − ik I )−1,
k = 1, 2, . . . (2.5)

Moreover for any n ≥ 0 under the additional assumption f ∈ D(A2n+2) the
solution v(t) satisfies the formula

v(t) = pn(t) + sn(t) (2.6)

with

pn(t) =
2n+1∑
k=0

(2π)k

k! Bk(
t

2π
)Ak f , (2.7)

and

sn(t) = (−1)n2
∞∑
k=1

1

k2n
(�k(A

2n+1 f ) cos kt + ϒk(A
2n+1 f ) sin kt), (2.8)
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where Bm(t) are the well-known Bernoulli polynomials:

Bm(t) =
m∑
j=0

1

j + 1

j∑
k=0

(−1)k
(
j
k

)
(t + k)m .

Proof For any f ∈ D(A2) we consider the sequence of partial sums

vn(t) = f + (t − π)A f + 2

⎛
⎝ n∑
k=1

�k(A f ) cos kt +
n∑

k=1

ϒk(A f ) sin kt

⎞
⎠ , n = 0, 1, 2, . . . .

(2.9)

At firstwe prove that the sequence vn(t) in (2.9) converges uniformly in t on [0, 2π ].
Indeed using the first formula in (2.5) we have

‖�k(A f ) cos(kt)‖ ≤ ‖(A + ik I )−1‖‖(A − ik I )−1‖‖A2 f ‖, k = 0, 1, 2, . . . 0 ≤ t ≤ 2π

and from (2.3) follows the uniform convergence in t ∈ [0, 2π ] for the first series in
(2.9). Using the second formula in (2.5) we get

ϒk(A f ) sin kt = k−1A(A + ik I )−1(A − ik I )−1 sin kt(A2 f ), k = 1, 2, . . . 0 ≤ t ≤ 2π.

Using the equality k−1A = k−1(A − ik I ) + iI we get

ϒk(A f ) sin kt = k−1(A + ik I )−1(A2 f ) sin kt + i(A2 + k2 I )−1(A2 f ) sin kt, 0 ≤ t ≤ 2π,

k = 1, 2, . . .

which implies the uniform convergence in t ∈ [0, 2π ] for the second series in (2.9).
Thus there is a continuous function v(t) on [0, 2π ] which is a uniform limit of the
sequence vn(t) on [0, 2π ]. Moreover using the equalities

∫ 2π

0
cos kt dt =

∫ 2π

0
sin kt dt = 0, k = 1, 2, . . . ,

∫ 2π

0
(t − π) dt = 0

we get ∫ 2π

0
vn(t) dt = 2π f , n = 0, 1, 2, . . .

and passing to the limit as n → ∞ we obtain the condition (2.2).
Now consider the sequences

Avn(t)= A f +(t − π)A2 f +2

⎛
⎝ n∑

k=1
�k(A

2 f ) cos kt+
n∑
k=1

ϒk(A
2 f ) sin kt

⎞
⎠ , n=0, 1, 2, . . .

(2.10)
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and

dvn

dt
= A f + 2

(
n∑

k=1

�k(A f )(−k) sin kt +
n∑

k=1

ϒk(A f )k cos kt

)
, n = 0, 1, 2, . . .

(2.11)
Comparing (2.10) with (2.11) and using (2.5) we get

dvn

dt
+ φ(t)A2 f = Avn(t) + φn(t)A

2 f

with

φ(t) = t − π, φn(t) = −
∑
k=1

2

k
sin kt

One can easily see that φn(t), n = 1, 2, . . . is the sequence of the partial sums
of the Fourier series of the function φ(t) on the segment [0, 2π ]. Hence it follows
that φn(t) converges to φ(t) as n → ∞ uniformly in t on [δ, γ ] for any δ, γ with
0 < δ < γ < 2π . One should prove that the sequences Avn(t) in (2.10) and dvn

dt
in (2.11) converge uniformly in t on [δ, γ ]. To this end one can check the uniform
convergence in t on [δ, γ ] of the sums

n∑
k=1

�k cos kt,
n∑

k=1

ϒk sin kt . (2.12)

We apply the Abel transformation to these sums. We have

n∑
k=1

�k cos kt =
n−1∑
k=1

(�k − �k+1)

k∑
j=1

cos j t + �n

n∑
j=1

cos j t .

Using the formula
k∑
j=1

cos j t = −1

2
+ 1

2

sin 2k+1
2 t

sin t
2

we get

n∑
k=1

�k cos kt = − 1

2

n−1∑
k=1

(�k − �k+1) + 1

2

n−1∑
k=1

(�k − �k+1)
sin 2k+1

2 t

sin t
2

− 1

2
�n + 1

2
�n

sin 2n+1
2 t

sin t
2
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which implies

n∑
k=1

�k cos kt = −1

2
�1 + 1

2
�n

sin 2n+1
2 t

sin t
2

+ 1

2

n−1∑
k=1

(�k − �k+1)
sin 2k+1

2 t

sin t
2

.

Similarly for the second series we have

n∑
k=1

ϒk sin kt =
n−1∑
k=1

(ϒk − ϒk+1)

k∑
j=1

sin j t + ϒn

n∑
j=1

sin j t .

Using the formula

k∑
j=1

sin j t = 1

2
cot

t

2
− 1

2

cos 2k+1
2 t

sin t
2

we get

n∑
k=1

ϒk sin kt = 1

2
cot

t

2

n−1∑
k=1

(ϒk − ϒk+1) − 1

2

n−1∑
k=1

(ϒk − ϒk+1)
cos 2k+1

2 t

sin t
2

+

1

2
cot

t

2
ϒn − 1

2
ϒn

cos 2n+1
2 t

sin t
2

which implies

n∑
k=1

ϒk sin kt = 1

2
cot

t

2
ϒ1 − 1

2
ϒn

cos 2n+1
2 t

sin t
2

− 1

2

n−1∑
k=1

(ϒk − ϒk+1)
cos 2k+1

2 t

sin t
2

.

In order to prove convergence of (2.12), we need to study the behavior of �k , ϒk ,
�k − �k+1 and ϒk − ϒk+1 as k → ∞. Using (2.5) we have

�k − �k+1 = A(A2 + k2 I )−1 − A(A2 + (k + 1)2 I )−1

= A(A2 + k2 I )−1(A2 + (k + 1)2 I )−1[(A2 + (k + 1)2 I ) − (A2 + k2 I )]
= A(2k + 1)(A2 + k2 I )−1(A2 + (k + 1)2 I )−1

and analogously

ϒk − ϒk+1 = 1

k(k + 1)
(A2 + (3k2 + 3k + 1)I )(A2 + k2 I )−1(A2 + (k + 1)2 I )−1.
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Now observe that from the identity

A

k
= 1

k
(A − ik I ) + i I

it follows
A

k
(A − ik I )−1 = 1

k
+ i(A − ik I )−1. (2.13)

Using the inequalities (2.3) together with (2.13) we get

‖�k − �k+1‖, ‖ϒk − ϒk+1‖ ≤ K

k2
, k = 1, 2, . . . , (2.14)

where K is a constant. Moreover using (2.5) we have

�k = (A + ik I )−1 + ik(A2 + k2 I )−1, ϒk = 1

k
− k(A2 + k2 I )−1.

This by virtue of (2.3) implies

lim
n→∞ �n = lim

n→∞ ϒn = 0. (2.15)

Finally for any δ, γ with 0 < δ < γ < 2π we have

∣∣∣∣sin t

2

∣∣∣∣ ≥ c > 0, 0 < δ ≤ t ≤ γ < 2π. (2.16)

Thus combining the relations (2.14), (2.15), (2.16) together we conclude that the
sums (2.12) converge uniformly in t on [δ, γ ]. Hence the same is true for the sequences
(2.10), (2.11). Since A is a closed operator, we obtain that Avn(t) → Av(t). Analo-
gously, the uniform convergence of the derivatives implies that the derivative of the

limit is the limit of the derivatives, and, hence,
dvn

dt
→ dv

dt
. Therefore, we conclude

that v(t) is a solution of the equation (2.1).
Proceeding in the same way as in [2, 3] with the assumption f ∈ D(A2n+2) we

obtain the formulas (2.6), (2.7), (2.8) for the solution v(t).
Let us now prove the uniqueness of the solution. Let v(t) be a solution of the linear

homogeneous differential problem

dv

dt
= Av, 0 < t < T , (2.17)

1

2π

∫ 2π

0
v(t) dt = 0. (2.18)
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Note that by integrating (2.17) from 0 to 2π and applying (2.18) we obtain

v(2π) − v(0) =
∫ 2π

0

dv

dt
dt = A

∫ 2π

0
v(t)dt = 0. (2.19)

The function v(t) is continuous on [0, 2π ] and has Fourier coefficients ck, k =
0,±1,±2, . . . given by

ck = 1

2π

∫ 2π

0
v(t)e−μk t dt, k = ±1,±2,±

and

c0 = 1

2π

∫ 2π

0
v(t) dt = 0. (2.20)

Multiplying the equation (2.17) by 1
2π e

−μk t and integrating from 0 to 2π we get

1

2π

∫ 2π

0

dv

dt
e−μk t dt = A

1

2π

∫ 2π

0
v(t)e−μk t dt, k = ±1,±2, . . . .

Integrating by parts in the left hand side and applying (2.19) we get

μkck = Ack, k = ±1,±2, . . . .

which implies
ck = 0, k = ±1,±2, . . . (2.21)

Thus from (2.21), (2.20) it follows that all the Fourier coefficients of the continuous
function v(t) are zeros. Hence v(t) = 0, 0 ≤ t ≤ 2π . 
�

Based on this theorem, we get a family of polynomial/rational approximations of
the solution of (2.1), (2.2) of the form:

v(t) � vn,�(t) = pn(t) + sn,�(t) (2.22)

where sn,�(t) is a partial sum of the series (2.8), i.e.

sn,�(t) = (−1)n2
�∑

k=1

1

k2n
(�k(A

2n+1 f ) cos kt + ϒk(A
2n+1 f ) sin kt)

and
v(t) = vn,�(t) + rn,�(t)

with residual

rn,�(t) = (−1)n2
+∞∑

k=�+1

1

k2n
(�k(A

2n+1 f ) cos kt + ϒk(A
2n+1 f ) sin kt).
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The bulk of the paper deals with theoretical and computational issues associated
with the computation of vn,�(t). The results of a preliminary numerical experience
reported in [2], [3] and [8] upon the finite dimensional case promote some considera-
tions concerning the selection of the parameters n and �.

1. In the finite dimensional case it is shown that the larger the degree of pn(t) is,
the better the convergence of the series of v(t) is. However, in finite precision
arithmetic large values of n generally lead to stability issues in the computation of
the approximant (2.22). Moreover, in view of Theorem 1 large values of n imply
additional smoothness requirements upon the function f (t) in (2.2). Therefore,
in our numerical experience the better strategy is to set the value of n as small as
possible, typically n ∈ {0, 1, 2, 3, 4}, and then determine the value of � so as to
obtain the desired accuracy.

2. An adaptive technique for the selection of the value of � in the finite dimensional
case is presented in Gemignani [8]. For a fixed t ∈ [0, T ] once the value of n and
a threshold tolerance ε > 0 are given, then we can determine the value of � = �(t)
by imposing the condition

‖ vn,�−1(t) − vn,�(t) ‖ / ‖ vn,�(t) ‖≤ ε.

In this way the approximation vn,�(t) is constructed incrementally by adding one
term at a time until a fixed tolerance is reached.

According to these facts, we consider the following general procedure for computing
an approximation vn,�(t) of v(t) for t ∈ [0, T ].

Algorithm 1
1: Select the values of n ∈ {0, 1, 2, 3, 4} and tol.
2: Define a coarse grid of points IS = {t0, . . . , tm } ⊂ [0, T ].
3: Compute, for any ti ∈ IS , vn,�i (ti ) as in (2.22) where �i is the minimum index such that

‖ vn,�i−1(ti ) − vn,�i (ti ) ‖∞ / ‖ vn,�i (ti ) ‖∞≤ tol (2.23)

holds.
4: Set �̂ = max1≤i≤m �i be the length of our rational expansion.
5: return vn,�̂(t) as the approximation of v(t) over [0, T ].

The computational effort of Algorithm 1 at step 3 basically amounts to determine
�k(A f ) and ϒk(A f ) for k = 1, . . . , �̂. The accuracy of the approximation vn,�̂(t)
returned as output by Algorithm 1 is measured by introducing a finer grid of points
IL ⊂ [0, T ] and then setting

err = max
ti∈IL

‖ v(ti ) − vn,�̂(ti ) ‖∞ / ‖ v(ti ) ‖∞ . (2.24)
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The selection of grid points can be problem dependent or related to specific proper-
ties of the solution function. For testing purposes we generally make use of equispaced
grid of points. Theoretical estimates of the norm of the residual rn,�(t) in terms of the
quantities (2.23) are currently unavailable. The feasibility and robustness of Algo-
rithm 1 is validated by numerical simulations shown in the next sections.

3 Thematrix case: Numerical tests

Here it is assumed that X = C
N , A is an N × N matrix with spectrum disjoint

from the set {±ik ∈ C : k = 1, 2, . . .}, f is an N -dimensional column and
v(t) = col(vi (t))Ni=1 is a vector function. For testing purposes let us suppose that
A is diagonalizable by a unitary congruence, that is, A = QH DQ with QH Q = IN
and D = diag[λ1, . . . , λN ]. Then it can be proved by direct calculations that the
solution of (2.1),(2.2) can be expressed as

v(t) = QH diag[eλ1tψ1(λ12π), . . . , eλN tψ1(λN2π)]Q f , (3.1)

where ψ1(z) = z/(ez − 1) is a meromorphic function with poles zk = 2πμk =
2π ik, k = ±1,±2, . . . . It is tacitly assumed that the computation of v(t) by means
of (3.1) gives the "exact" solution of (2.1),(2.2). Thus, such solution can be used in
our numerical simulations to provide error estimates according to (2.24).

We have implemented the computation of the approximation vn,�(t) of v(t) as
described in (2.22) and Algorithm 1. The implementation is done in MATLAB and
it always works in double precision, unless otherwise noted.

The coarse and fine grid of points are formed by equispaced nodes in the interval
[0, T ]. The input parameters arem, n ∈ N and tol ∈ R. SetIS = {ti = 2π(i−1)/(m−
1) : 1 ≤ i ≤ m} the set of m uniformly spaced points in the interval [0, T ] = [0, 2π ].
The finer grid of points is determined so that IL = {ti = 2π(i − 1)/(m − 1)2 : 1 ≤
i ≤ (m − 1)2 + 1} includes Is .

Our test suite consists of the following set of rank-structured matrices:

1. Random unitary Hessenberg matrices. Test problems with known
eigenvalues are generated as follows. A unitary diagonal matrix D is generated and
its eigenvalues noted. A unitary matrix Q, random with respect to Haar measure,
is generated, and the random unitary matrix B = QH DQ formed. Then B is
transformed to upper Hessenberg form by unitary congruence, that is, PH BP =
H , to yield an upper Hessenberg unitary matrix H with known eigenvalues, which
is then factored into the form H = (QP)H D(QP). The matrix V = (QP)H is
the unitary eigenvector matrix.
One could also choose other ways of generating an upper Hessenberg unitary
matrix, such as applying a sequence of N−1Givens transformations to the diagonal
matrix D containing the eigenvalues.
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2. Banded circulant matrices.We consider banded circulant matrices of
the form

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a0 a2 a1

a1
. . . a2

a2
. . .

. . .

. . .
. . .

. . .

a2 a1 a0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
N×N .

We recall thatC can be diagonalized by aDiscrete Fourier Transform. Specifically,

if F = ( f j,�), f j,� = ei2π( j−1)(�−1)/N

√
N

, 1 ≤ j, � ≤ N , is the Fourier matrix of

order N then FHCF = diag[λ1, . . . , λN ] with

λk =
2∑
j=0

a j e
−i2π(k−1) j/N , 1 ≤ k ≤ N .

3. Shifted and scaled 1D Laplacian matrices.Weconsider N×N
tridiagonal Toeplitz matrices generated via the MATLAB command gallery as

A = σ gallery(′tridiag′, N , 1,−2, 1) − γ eye(N) (3.2)

with σ, γ ∈ R
+. These matrices can be diagonalized by means of a discrete sine

transform E = (
√
2/(N + 1) sin

π i j

N + 1
)Ni, j=1.

The figures and tables below show the results of our numerical experiments.
Random unitary Hessenberg matrices provide an easy test class. The eigenvalues

are located on the unit circle in the complex plane, the norm of A is bounded by
1 and the solution of the shifted linear systems associated with the computation of
�k(A f ) and ϒk(A f ) in (2.4), (2.5) is generally well conditioned. Therefore, our
proposed schemes perform quite well in this case. In Fig. 1 we illustrate the plots of
themeasured error over the grid IL for N = 1024, tol = 1.0e−12 and different values
of n ∈ {1, 2, 3, 4}. Notice that the error is flattened out as n increases and, moreover,
the stopping tolerance gives a quite precise measure of the norm of the residual. We
guess that the error behaviour is determined by the decreasing of the algorithmic error
in the computation of the mixed polynomial/rational approximation of the differential
problem.

To experiment with more difficult tests we consider banded circulant matrices. For
a0 = a1 = a2 = 1 and even values of N , the matrix C has one eigenvalue equal to i.
In view of Theorem 1 the solution of (2.1),(2.2) does not exist or is not unique. The
implementation of our code reports "ill-conditioning" warnings in MATLAB’s back-
slash command used to solve the shifted linear systems involved in the computation
of the rational approximant sn(t).

Perturbed values of the coefficients make it possible to tune the conditioning of
the shifted linear systems. In Fig. 2 we show the plots of the computed error for
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Fig. 1 Illustration of the measured error (2.24) for Test 1 with tol = 1.0e− 12 and m = 10 for different
values of n ∈ {1, 2, 3, 4}

N = 1024, tol = 1.0e− 12, n = 1 and a0 = a1 = 1, a2 = 1 + 1.0e− 4 and
a0 = a1 = 1, a2 = 1 + 1.0e− 6, respectively. This figure clearly indicates the
impact of the conditioning of the shifted linear systems on the overall accuracy of the
computed approximation.

Fig. 2 Illustration of the measured error (2.24) for Test 2 with tol = 1.0e− 12, m = 10, n = 1, a0 = a1 =
1, a2 = 1 + 1.0e− 4 in (a) and a0 = a1 = 1, a2 = 1 + 1.0e− 6 in (b)
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Differently, when N is odd, the proposed scheme performs quite satisfactorily. In
Fig. 3 we show the measured error for Test 2 with N = 1023, a0 = a1 = a2 = 1,
tol = 1.0e− 12 and m = 10. Also, the acceleration of the convergence due to the
increasing value of n is dramatic. For n = 0 the stopping criterion (2.23) is not fulfilled
within 50000 iterations. Differently, for n = 4 we find �̂ = 22.

It is worth mentioning that (3.1) can be rewritten as v(t) = expm(At)v(0) where
expm(A) is the matrix exponential of A. This relation provides an easy way based
on the power method to give approximations of the solution vectors v(ti ), ti ∈ IL .
Assume that B = expm(At1) and v(0) are available. Then we can determine the
remaining vectors v(ti ) by setting v(ti+1) = Bv(ti ), i ≥ 0. In Fig. 4 we compare
the accuracy of this power-based method with our algorithm applied for solving Test
2 with a0 = a1 = a2 = 1, tol = 1.0e− 12, n = 2 and m = 30. The matrix B is
computed by means of the MATLAB function expm.

Matrices A ∈ R
N×N of the form (3.2) are useful to check the dependence of the

convergence rate and the accuracy w.r.t. the distribution of the eigenvalues and the
norm of A. This set has already been considered for testing purposes in [2, 3]. For
σ = 1 and γ = 0 all the proposed schemes with n ∈ {0, 1, 2, 3, 4} perform well
in terms of accuracy confirming the results in Boito et al. [2]. For N = 1024 and
tol = 1.0e− 12 the scheme with n = 0 is unpractical since it requires more than
50000 terms to satisfy the stopping criterion. For n = 1, 4 we find l̂ = 1714 and

Fig. 3 Illustration of the measured error (2.24) for Test 2 with a0 = a1 = a2 = 1, tol = 1.0e− 12 and
m = 10 for different values of n ∈ {1, 2, 3, 4}
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Fig. 4 Error plots generated by the power-based method and our algorithm applied or solving Test 2 with
a0 = a1 = a2 = 1, tol = 1.0e− 12, n = 2 and m = 30

l̂ = 21, respectively, showing again the efficiency of the convergence acceleration
introduced by the Bernoulli polynomials.

Increasing the value of σ or γ introduces some numerical difficulties. For σ = 1 and
γ = 100 the shifted linear systems are still well-conditioned but both the magnitude
of eigenvalues and the norm of A increase. As a side effect we observe a deterioration
of the convergence and the accuracy of our algorithm. For n = 1, 2 we find l̂ = 8896
and l̂ = 457, respectively. In Fig. 5 we show the plots of the computed error for shifted
1D Laplacian matrices with N = 1024, tol = 1.0e− 12, and n = 1, 2. The schemes
with n = 3, 4 return inaccurate results. Similar behaviors for the error are found for
σ = 100 and γ = 0.

In conclusion, numerical experiments with the finite dimensional case reveal that
the computation of the approximant vn,�(t) given in (2.22) can be prone to numerical
inaccuracies essentially due to:

1. a possibly large norm of the matrix A which makes unreliable the use of acceler-
ation schemes based on Bernoulli polynomials;

2. the effects of a potential ill-conditioning of the shifted linear systems involved in
the computation of the trigonometric expansion.

Moreover, the occurrence of large eigenvalues inmagnitude determines two additional
effects:
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Fig. 5 Illustration of the measured error (2.24) for Test 3 with σ = 1, γ = 100, tol = 1.0e− 12, m = 10,
n = 1 in (a) and n = 2 in (b)

1. the convergence generally deteriorates as more and more terms are needed into
the expansion to evaluate the function at the eigenvalues;

2. since the convergence is slow, the stopping criterion can be satisfied even if the
approximation is far from the "exact" value.

The analysis of these weak points motivates the extension of the results in [2, 3] to
the functional setting given in Theorem 1. In particular, in the next section we will
show that the extension makes it possible to apply our approach for solving certain
differential problems with nonlocal boundary conditions.

4 Themodel one-dimensional problem for parabolic equation

Consider the differential problem

{
ut = σuxx + c(x)u, 0 < x < 1, 0 < t < T ,

u(0, t) = u(1, t) = 0, 0 < t < T .
(4.1)

with the nonlocal condition

1

T

∫ T

0
u(x, t) dt = f (x), f ∈ D(A). (4.2)

In principle, several numerical schemes for computing the solution of (4.1), (4.2)
can be devised based on Theorem 1. Specifically, we treat the problem (4.1) as a
problem for an ordinary differential equation in the Banach space X = L2(0, 1) of
the form

dv

dt
= Av, 0 < t < T , (4.3)
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Here A = σ
d2

dx2
+ c(x), where the domain D(A) consists of the functions w(x)

with first derivative w′ absolutely continuous on [0, 1] such that w′′ ∈ L2(0, 1), and
satisfying the boundary conditionsw(0) = w(1) = 0. It is worth noting that expansion
(2.4) requires f ∈ D(A2), where D(A2) is the set of functionsw(x) on [0, 1] such that
w′′′(x) is absolutely continuous, w(4)(x) ∈ L2(0, 1), and w(0) = w(1) = w′′(0) =
w′′(1) = 0.

Notice that if we take c(x) = 0 for simplicity, then for any f ∈ D(Ak) the
values Ak f are in fact the even-order derivatives of the given function f , namely
Ak f = f (2k). Similarly, if c(x) is constant, then Ak f can be expressed as linear
combinations of the even-order derivatives of the given function f (x). So we can
assume that the elements g j = A j f , j = 0, . . . , k are given as well. Using Theorem
1, with the assumption f ∈ D(A2n+3) , we have that the solution v(t) satisfies the
formula

v(t) = vn,�(t) + rn,�(t) = pn(t) + sn,l(t) + rn,�(t) (4.4)

with

pn(t) =
2n+1∑
k=0

(2π)k

k! Bk

(
t

2π

)
gk, (4.5)

and

sn,l(t) = (−1)n2
l∑

k=1

1

k2n

(
�k A

2g2n−1 cos kt + ϒk A
2g2n−1 sin kt

)
. (4.6)

We transform the formula (4.6) to an equivalent form. We define the operators

Vk = (A2 + k2 I )−1, k = 1, 2, . . . . (4.7)

Using (2.5) we have that (4.6) takes the form

sn,l(t) = (−1)n2
l∑

k=1

1

k2n

(
Vkg2n+2 cos kt + 1

k
Vkg2n+3 sin kt

)
. (4.8)

So the core of the algorithm is the evaluation of the quantities

Vkg = (A2 + k2 I )−1g, k = 1, 2, . . . , g ∈ X .

The computation of these values may be done as follows.

1. Compute the solution p(k) of the equation

(A − (ki)I )p(k) = g. (4.9)

2. Compute the solution w(k) of the equation

(A + (ki)I )w(k) = p(k). (4.10)
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For any g ∈ X we have obviously p(k) ∈ D(A), w(k) ∈ D(A2).
In our concrete case the evaluation of (4.9) and (4.10) is equivalent to the solution

of two boundary value problems

σ
d2 p(k)(x)

dx2
− ikp(k)(x) + c(x)p(k)(x) = g(x), p(k)(0) = p(k)(1) = 0, k = 1, 2, . . . ,

(4.11)

σ
d2w(k)(x)

dx2
+ikw(k)(x)+c(x)w(k)(x) = p(k)(x), w(k)(0) = w(k)(1) = 0, k = 1, 2, . . . .

(4.12)

The procedure stated above for computing the approximation vn,�(t) of v(t) allows
us to explore different discretization methods. In particular, we have considered two
schemes. The first scheme is purely numerical, whereas the second one uses a combi-
nation of symbolic and numerical computations.

(I) The first, simplest approach is to discretize the operator A using finite differences
methods. By using finite differences in space with equispaced points xi = ih =
i/(N + 1), 0 ≤ i ≤ N + 1, h = 1/(N + 1), for the discretization of the second
derivative we obtain the discrete analogue Â of the operator A,

Â =

⎛
⎜⎜⎜⎜⎝diag[c(x1), . . . , c(xN )] + σ

h2

⎡
⎢⎢⎢⎢⎣

−2 1

1
. . .

. . .

. . .
. . . 1
1 −2

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ ∈ R

N×N .

Replacing Awith Â in the procedure for computing vn,�(t) is formally equivalent
to applying our method for the solution of the first order system

du

dt
= Âu(t), (4.13)

with conditions
1

T

∫ T

0
u(t)dt = f , (4.14)

where f = [ f (x1), . . . , f (xN )]T . The computational problem is of the form
given in (2.1),(2.2) with Â ∈ R

N×N . This finite dimensional first order system
(4.13), (4.14) can also be obtained by exploiting the classical method of lines
[16] for solving (4.1), (4.2).

(II) The second approach combines symbolical and numerical methods. The eval-
uation of the derivatives of the function f is performed symbolically. The
computation of (4.5) is also carried out symbolically. The solution of (4.11)
and (4.12) can be found by means of existing software for the solution of BVP’s.
In our implementation we used the MATLAB function bvp4c derived from
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Kierzenka and Shampine [12] for solving these two-point boundary value prob-
lems. The code is a finite difference algorithm that implements the three-stage
Lobatto IIIa formula. This is a collocation formula and the collocation polyno-
mial provides a C1-continuous solution that is fourth order accurate uniformly in
[a, b]. Mesh selection and error control are adaptively based on the residual of
the continuous solution.

4.1 Numerical tests for the parabolic equation

Synthetic computational problems have been designed to test the two approaches
outlined above. Our test suite consists of the following two problems:

1. The first model example is

{
ut = σuxx , 0 < x < 1, 0 < t < 2π,

u(0, t) = u(1, t) = 0, 0 < t < 2π.
(4.15)

1

2π

∫ 2π

0
u(x, t) dt = f (x) (4.16)

with the data

f (x) = 12
1 − e−2πσ(3π)2

2πσ(3π)2
sin(3πx) − 7

1 − e−2πσ(2π)2

2πσ(2π)2
sin(2πx).

Here the exact solution is

u(x, t) = 12e−σ(3π)2t sin(3πx) − 7e−σ(2π)2t sin(2πx).

2. The second test is concerned with the differential problem of the form

{
ut = uxx + (4π2 − 1)u(x), 0 < x < 1, 0 < t < 2π,

u(0, t) = u(1, t) = 0, 0 < t < 2π.
(4.17)

1

2π

∫ 2π

0
u(x, t) dt = f (x) (4.18)

with the data

f (x) = 1 − e−2π

2π
sin(2πx).

Here the exact solution is

u(x, t) = e−t sin(2πx).

In this section we present the results of numerical tests where approaches (I) and
(II) are applied to model problems 1 and 2 above.
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Table 1 Computed error and the minimum and the maximum values of the length �i of the rational approx-
imation over ti ∈ Is as function of the degree n for the first model problem with σ = 1.0e− 6, N = 1000
and m = 100

n 0 1 2

�min 7798 177 34

�max 32716 223 46

err 1.8e− 9 1.8e− 9 1.8e− 9

Tests for Approach (I). Let us start by testing the accuracy of approach (I), which
is based on semidiscretization in space. Here the error of the computed approximation
vn,�̂(t) is measured with respect to the exact values of the solution function u(x, t) by

err = max
ti∈IL

‖ û(ti ) − vn,�̂(ti ) ‖∞ / ‖ û(ti ) ‖∞,

where û(t) = [̂u1(t), . . . , ûN (t)]T , ûi (t) = u(xi , t), 1 ≤ i ≤ N . The coarse and
fine grid of points are defined by IS = {ti = 2π(i − 1)/(m − 1) : 1 ≤ i ≤ m} and
IL = {ti = 2π(i − 1)/(4(m − 1)) : 1 ≤ i ≤ 4(m − 1) + 1}, respectively.

InTable 1we show the results obtained for thefirstmodel problemwithσ = 1.0e−6,
N = 1000 andm = 100. The results are generated byAlgorithm1with tol = 1.0e−7
for different values of n.We report the value of err and theminimumand themaximum
values of the length �i of the rational approximation over ti ∈ Is as functions of the
degree n.

The discretization error is of order σh2 max |uxxxx |/12� 1.0e− 8. The shifted
linear systems (2.5) are well conditioned. Increasing the value of tol does not improve
the computed error, which is in accordance with a priori error bounds.

In Table 2 we repeat the same test with σ = 0.01. The discretization error is now
of order 1.0e− 4. The error estimates change significantly since the scaling factor
σ(N + 1)2 highlights the pathologies observed in the previous section (compare with
the results of Test 3). In particular, the use of fast expansionswith increasing n becomes
unreliable. For n = 2 Algorithm 1 stops but the returned error is larger than 1.

Tests for Approach (II). Approach (II), on the other hand, is based on computing
the expansion of v(t) as given in Theorem 1 for the infinite dimensional operator
A = σ d2

dx2
+ c(x). Recall that in our implementation we used the MATLAB function

Table 2 Computed error and the minimum and the maximum values of the length �i of the rational approx-
imation over ti ∈ Is as function of the degree n for the first model problem with σ = 1.0e− 2, N = 1000
and m = 100. For n = 2 the computed error is larger than 1

n 0 1 2

�min 9093 112 21

�max 25977 284 33

err 2.2e− 4 6.4e− 6 �
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Fig. 6 Plot of err(x, t) generated by solving the first model problemwith σ = 0.01 for n = 0 with � = 200
in (a) and � = 400 in (b)

bvp4c for solving the two-point boundary value problems (4.11), (4.12). The number
of boundary value problems to be solved depends on the value of � in (2.22), which
is fixed a priori. The output is an interpolating function vn,�(x, t). For the sake of
graphical illustration the computed error is shown by plotting the function err(x, t) =
|vn,�(x, t) − u(x, t)| over the domain [0, 1] × [0, 2π ].

In Figs. 6, 7 and 8 we show the plots generated by solving the first model problem
with σ = 0.01 for different values of n and �.

In Fig. 9 we describe our results for the second model problem with n = 1 and
� = 20 and � = 40.

In summary, our preliminary experience with the infinite dimensional (functional)
approach indicates that, when applicable, expansions with increasing n allow the
computation of quite accurate approximations of u(x, t) already for small or moderate
values of the truncation level �.

Fig. 7 Plot of err(x, t) generated by solving the first model problem with σ = 0.01 for n = 1 with � = 10
in (a) and � = 100 in (b)
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Fig. 8 Plot of err(x, t) generated by solving the first model problem with σ = 0.01 for n = 2 with � = 10
in (a) and � = 20 in (b)

5 Conclusion and future work

In this paperwe have devised amixed polynomial/rational expansion for the solution of
an abstract first-order differential problemwith nonlocal conditions.We have proposed
an algorithm that exploits this expansion to approximate numerically the solution and
tested it on several examples, both in finite- and infinite-dimensional settings. Of
particular interest are implementations where the expansion is directly applied to an
infinite-dimensional operator and discretization only intervenes in the solution of the
resulting family of shifted boundary value problems.

There are still many points for future developments. Specifically:

1. The derivation of precise residual estimates for this expansion also related with
the design of efficient stopping criteria.

2. The study of alternative acceleration schemes not involving high-degree Bernoulli
polynomials in order to to relax the regularity assumptions.

Fig. 9 Plot of err(x, t) generated by solving the second model problem for n = 1 with � = 20 in (a) and
� = 40 in (b)
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3. The design of efficient numerical methods for solving the sequence of shifted
boundary value problems (4.11), (4.12).

4. The application of our proposed method to more general differential problems
such as the two-dimensional parabolic equation and the biharmonic equation.

We also point out that, for suitable classes of problems, one may apply the mixed
polynomial/rational expansion presented here to devise hybrid approaches that com-
bine symbolic/functional and purely numerical techniques. As an example, consider
Problem 1 in Section 3, i.e., (4.15), (4.16). Starting from the finite-dimensional
approach based on semi-discretization in space, we may incorporate more and more
symbolic elements to circumvent potential sources of instability and improve the
quality of the results. For instance, since the function f (x) for (4.15), (4.16) is known
analytically and the action of matrix A corresponds to a second derivative, one may
pre-compute symbolically f ′′(x) and f (4)(x), evaluate them on the points of the space
grid, and use the resulting vectors in place of A f and A2 f in the polynomial/rational
expansion. Moreover, we may also try evaluating the polynomial part of the expansion
symbolically, if the polynomial degree is small (but high enough to be numerically
troublesome). Preliminary experiments show that, with these modifications, the test
presented in Table 2 for n = 2 yields an error that is no longer larger than 1, but
comparable to case n = 1, with a smaller number of rational terms.
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