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Abstract
Complex networks are made up of vertices and edges. The edges, which may be
directed or undirected, are equipped with positive weights. Modeling complex sys-
tems that consist of different types of objects leads to multilayer networks, in which
vertices in distinct layers represent different kinds of objects. Multiplex networks are
special vertex-aligned multilayer networks, in which vertices in distinct layers are
identified with each other and inter-layer edges connect each vertex with its copy in
other layers and have a fixed weight γ > 0 associated with the ease of communication
between layers. This paper discusses two different approaches to analyze communica-
tion in a multiplex. One approach focuses on the multiplex global efficiency by using
themultiplex path lengthmatrix, the other approach considers themultiplex total com-
municability. The sensitivity of both the multiplex global efficiency and the multiplex
total communicability to structural perturbations in the network is investigated to help
to identify intra-layer edges that should be strengthened to enhance communicability.

Keywords Multiplex network · Network analysis · Total communicability ·
Global efficiency · Sensitivity analysis · Multiplex path length matrix

Mathematics Subject Classification (2010) 65F15 · 65F50 · 05C82

1 Introduction

Multilayer networks arise when one seeks to model a complex system that contains
connections andobjectswith distinct properties; see, e.g., [17, 24].Multiplex networks,
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or briefly multiplexes, are special multilayer networks in which vertices in distinct
layers are identified with each other, i.e., every vertex in some layer has a copy in all
other layers and is connected to them. Connections between vertices in distinct layers
are furnished by inter-layer edges that connect instances of the same vertex in different
layers; connections between vertices in the same layer are represented by intra-layer
edges.

Let the multiplex have L layers and let the graph for layer � have N vertices. This
graph is represented by an adjacency matrix A(�) = [a(�)

i j ]Ni, j=1, whose entry a(�)
i j is

positive if there is an edge from vertex vi to vertex v j in layer �; if there is no such edge,

then a(�)
i j = 0. The graph is said to be undirected if a(�)

i j = a(�)
j i for all 1 ≤ i, j ≤ N ;

otherwise the graph is directed. When a(�)
i j > 0, this quantity is the weight of the edge

from vertex vi to vertex v j in layer �; we denote this intra-layer edge by e(v�
i → v�

j ). A
graph is said to be unweighted if all nonvanishing edge-weights equal one; otherwise
the the graph is weighted. All matrices A(�), 1 ≤ � ≤ L , that make up a multiplex
are of the same size and all inter-layer edges are undirected and have the same weight
γ > 0.

Applications ofmultiplexes includemodeling transportation networks that aremade
up of train and bus routes, where the train routes and bus routes define intra-layer edges
in different layers, and the train stations and bus stops define vertices with diverse
properties. The weight of an intra-layer edge may account for the time needed to
travel along the road or rail represented by the edge, while the weight γ of the inter-
layer edges may model the average time spent transferring between a train station and
an adjacent bus stop; see, e.g., [5].

A multiplex with N vertices {v1, v2, . . . , vN } and L layers may be represented by
a third-order adjacency tensorA ∈ R

N×N×L and a parameter γ . The horizontal slices
of the tensor are the adjacency matrices A(�), i.e., A = [a(�)

i j ]i, j=1,2,...,N , �=1,2,...,L .

This multiplex also may be represented by a supra-adjacency matrix B ∈ R
NL×NL

with N × N blocks, where the adjacency matrix A(�) is the �th diagonal block, for
� = 1, 2, . . . , L , and every off-diagonal block, in position (�1, �2) for 1 ≤ �1, �2 ≤ L
and �1 �= �2, equals γ IN with the same γ > 0. The off-diagonal block in position
(�1, �2) represents the inter-layer connection between the layers �1 and �2. Thus,

B = B(γ ) = blkdiag[A(1), A(2), . . . , A(L)] + γ (1L1TL ⊗ IN − IN L), (1)

where ⊗ denotes the Kronecker product. Here IN ∈ R
N×N is the identity matrix, and

1L = [1, 1, . . . , 1]T ∈ R
L ; see [17].

In a weighted multiplex, the edge-weights depend on the network model. In this
paper, the weight associated with each intra-layer edge accounts for its “importance”,
e.g., the number of flights along the route modeled by the edge, or the width of a
highway segment modeled by the edge. Then the larger the edge-weight, the easier
is the communication between the vertices that are connected by the edge. As an
example, let there be an edge e(v�

i → v�
j ) with weight a(�)

i j . If this weight equals the
number of flights from vertex vi to vertex v j offered by airline �, then the reciprocal
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weight, 1/a(�)
i j , may be considered the average wait time between flights with this

airline along this route. Then doubling the number of flights along a route corresponds
to halving the wait time between flights along the edge.

We will need the notions of path and walk in a multiplex. A walk with k + 1
vertices is a sequence of vertices vi1 , vi2 , . . . , vik+1 and an associated sequence of k

intra-layer edges e(v�1
i1

→ v
�1
i2

), . . . , e(v�h
ik

→ v
�h
ik+1

) connected by h inter-layer edges,
with 1 ≤ h ≤ k. The length of the walk defined by these vertices and edges is the sum
of the reciprocal weights of the edges that make up the walk. Vertices and edges of a
walk may be repeated. A path is a walk in which no vertex is repeated. Let there be a
path from vertex vi to vertex v j . Then the distance d(vi , v j ) from vertex vi to vertex
v j is the length of the shortest path from vertex vi to vertex v j measured by the sum
of the reciprocal weights of the edges of the path. If the multiplex is unweighted and
γ = 1, then d(vi , v j ) is the number of edges in a shortest path from vi to v j . Note
that d(vi , v j ) may differ from d(v j , vi ); in fact, some distances might not be defined.

It is of interest to determine the ease of communication between vertices in a
network in a well-defined sense. We consider two approaches in our analysis of the
communication in a multiplex:

1. Construct the multiplex path length matrix P = P(γ ) = [pi j ]Ni, j=1 (to be defined
in Section 3) and consider the multiplex average inverse geodesic length,

eA(γ ) = 1

N (N − 1)

∑

i, j �=i

1

pi j
,

whichwewill refer to as themultiplex global efficiency; see [1, 29]. In this approach
an edge e(v�

i → v�
j ) is considered important when it is efficient to transmit infor-

mation along the edge, e.g., if several paths of short length end at vertex vi and/or
several paths of short length start at vertex v j . We will refer to this technique as
the efficiency approach.

2. Consider the multiplex total communicability, which is defined by

tcB(γ ) = 1TNL exp0(B)1NL ,

where exp0(B) is the modified exponential matrix, with exp0(t) = exp(t)−1; see
[2, 4, 20]. In this approach an edge e(v�

i → v�
j ) is considered important when it is

popular in transmitting information, i.e., when vertex vi has several in-edges with
large weight in layer � and/or vertex v j has several out-edges with large weight in
layer �. This technique will be referred to as the popularity approach.

To assess the sensitivity of a measure of communication between the vertices to
perturbations in intra-layer edge-weights, we analyze the “structured” sensitivity to
changes of the positive entries of the tensor A to determine which intra-layer edges
should be strengthened to enhance the global efficiency or the total communicability
the most.
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It is the purpose of the present paper to discuss and compare two approaches to
analyze communication in a multiplex. The efficiency approach focuses on the multi-
plex global efficiency by using the multiplex path length matrix. This way to analyze
multiplex networks was introduced in Noschese and Reichel [29]. We remark that in
Noschese and Reichel [29] the weight associated with each intra-layer edge accounts
for some kind of “distance”, e.g., the time required to travel from one location to
another, the geographic distance between the locations associated with the vertices
that are connected by the edge, or the cost of traversing along the edge. Consequently,
in Noschese and Reichel [29] the length of a walk is defined as the sum of the weights
of the edges that make up the walk. In the present paper, the length of a walk instead
is defined as the sum of the reciprocal weights associated with the edges of the walk.
This results in a novel derivation of the multiplex path length matrix, which is used
in the computation of the multiplex global efficiency. New bounds for the latter are
derived.

We also consider themultiplex total communicability and approximate this quantity
by the multiplex Perron communicability, which was defined in El-Halouy et al. [20].
The application of thismeasure is referred to as the popularity approach.Themultiplex
global efficiency and the Perron communicability help us identify intra-layer edges
that should be strengthened to enhance communicability in the network.

We are interested in comparing the efficiency and popularity approaches. In particu-
lar, we would like to study how sensitive the multiplex global efficiency and the Perron
communicability are to perturbations of the multiplex network. Related investigations
of single-layer networks are presented in [18, 30].

This paper is organized as follows. In Section 2 we discuss how the sparsity struc-
ture of themultiplex network can be exploited for sensitivity analysis. Sections 3 and 4
focus on the efficiency and popularity approaches, respectively. Numerical exam-
ples that compare the efficiency and popularity approaches are reported in Section 5.
Section 6 contains concluding remarks.

It is a pleasure to dedicate this paper to Michela Redivo-Zaglia. She has made
important contributions in many areas of computational mathematics including the
solution of linear discrete ill-posed problems, handling breakdown in the Lanczos
method, tensor and network computations, extrapolation, sequence transformation,
and also written papers and books on the history of mathematics; see, e.g., [7–14].

2 Structuredmultiplex Perron sensitivity analysis

The following notions form the basis for our sensitivity analysis of multiplex net-
works. Let the matrix A ∈ R

N×n be nonnegative and irreducible. Then it follows
from the Perron-Frobenius theory that A has a unique eigenvalue ρ > 0 of largest
magnitude (the Perron root) and that the associated right and left eigenvectors, x and
y, respectively,

Ax = ρx, yT A = ρyT ,

can be normalized to be of unit Euclidean normwith all components positive. They are
referred to as Perron vectors. Let E ∈ R

N×N be a nonnegative matrix of unit spectral
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norm, ‖E‖2 = 1. Introduce a small positive parameter ε and denote the Perron root
of A + εE by ρ + δρ. Then

δρ = ε
yT Ex
yT x

+ O(ε2) as ε ↘ 0

and
yT Ex
yT x

= |yT Ex|
yT x

≤ ‖y‖2‖E‖2‖x‖2
yT x

= 1

yT x
,

with equality attained when E is the Wilkinson perturbation WN = yxT associated
with ρ; see [32]. The quantity 1

yT x
is referred to as the condition number of ρ and

denoted by κ(ρ). We note that the spectral norm may be replaced by the Frobenius
norm.

Consider the cone S of all nonnegative matrices in R
N×N with a given sparsity

structure and let M |S denote a matrix in S that is closest to a given nonnegative
matrix M with respect to the Frobenius norm, i.e., M |S is the projection of M onto
the cone S. Then M |S is obtained by setting all the positive entries of M outside the
sparsity structure S to zero.

Let E ∈ S be a nonnegative matrix of unit Frobenius norm, ‖E‖F = 1. Then

yT Ex
yT x

= |yT Ex|
yT x

≤ ‖y‖2‖‖WN |S‖F‖x‖2
yT x

= ‖WN |S‖F
yT x

,

with equality for the structured analogue of the Wilkinson perturbation WN ,

E = WN |S
‖WN |S‖F .

This is the worst-case perturbation for the Perron root ρ induced by a unit normmatrix
E ∈ S; see [27]. The quantity

κstruct(ρ) = ‖WN |S‖F
yT x

= κ(ρ)‖WN |S‖F (2)

is referred to as the structured condition number of ρ. It satisfies κstruct(ρ) ≤ κ(ρ).
Assume that the matrix A+ := ∑L

�=1 A
(�) is irreducible. Then also the supra-

adjacency matrix B is irreducible. To determine which edge-weight(s) should be
increased to enhance communicability the most, we apply the Perron-Frobenius the-
ory.

1. As for the efficiency approach, we analyze the Wilkinson perturbation WN asso-
ciated with the Perron root of an N × N efficiency matrix (defined in Section 3.3),
projected onto the cone SA+ ⊆ R

N×N of all nonnegative matrices with the same
sparsity structure as A+.
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2. As for the popularity approach, we analyze theWilkinson perturbationWNL asso-
ciated with the Perron root of the supra-adjacency matrix, projected onto the cone
SBd ⊆ R

NL×NL of all nonnegative matrices with the same sparsity structure as
Bd := blkdiag[A(1), . . . , A(L)].

3 The efficiency approach

This section introduces the path length matrix for multiplexes and describes how it
can be applied to determine the importance of an edge. The sensitivity of the edge
importance to perturbations of the weights is investigated.

3.1 Themultiplex 1-path lengthmatrix

Toconstruct themultiplex path lengthmatrix P = P(γ ) associatedwith the givenmul-
tiplexnetwork,wefirst introduce the third-order tensorP=[p(�)

i j ]i, j=1,2,...,N , �=1,2,...,L

∈ R
N×N×L with entries

p(�)
i j =

⎧
⎨

⎩

0, if i = j,

1/a(�)
i j , if a(�)

i j > 0,
∞, otherwise.

Then define the multiplex 1-path length matrix

P1 = [p1i j ]Ni, j=1, with p1i j = min
�=1,2,...,L

p(�)
i j .

The entry p1i j with i �= j represents the length of the shortest path from vertex vi to
vertex v j made up of a single intra-layer edge, or equals infinity if there is no edge in

any layer from vertex vi to vertex v j . For example, let a(�)
i j be the number of direct

flights from vertex vi to vertex v j offered by airline �. Its reciprocal 1/a(�)
i j can be

interpreted as the average wait time between these flights. The extra-diagonal entry
p1i j then either represents the average wait time for any direct flight or equals infinity
if no airline offers a direct flight.

3.2 Constructing themultiplex K-path lengthmatrix

We discuss how to construct the multiplex K -path length matrix PK = PK (γ ) =
[pKi j ]Ni, j=1, whose entry pKi j with i �= j is the length of the shortest path from vertex
vi to vertex v j made up of at most K intra-layer edges. An analogous path length
matrix has previously been introduced in Noschese and Reichel [28] to investigate
single-layer networks. The diagonal entries of PK are zero by definition. We note that
the multiplex path length matrix P = [pi j ]Ni, j=1 satisfies P ≡ PN−1(γ ), because in
a multiplex path, the number of intra-layer edges is at most N − 1.

123



Numerical Algorithms

The construction of the multiplex K -path length matrix uses min-plus matrix mul-
tiplication, i.e., we carry out matrix multiplication in the tropical algebra; see [25]:

C = A�B : ci j = min
h=1,2,...,N

{aih + bhj }, 1 ≤ i, j ≤ N ,

where A = [ai j ]Ni, j=1, B = [bi j ]Ni, j=1, and C = [ci j ]Ni, j=1 are real N × N matrices.

The multiplex K -path length matrix PK = [pKi j ]Ni, j=1 can be constructed by means

of min-plus powers of P1. For single-layer networks, i.e., when L = 1, the matrix
PK = [pKi j ]Ni, j=1 is for 1 < K ≤ N − 1 given by

pKi j = min
h=1,2,...,N

{pK−1
ih + p1h j }, if i �= j,

and pKi j = 0 otherwise; see [28]. When determining the entry pKi j for a multiplex, one
has to include the cost 1/γ for each layer switch in the sum of the reciprocal weights
of intra-layer edges of a path, because all intra-layer edges of a shortest path of a
multiplex do not necessarily belong to the same layer. In order to see if such switching
cost is relevant, one takes into account the layer of the last edge (i.e., the intra-layer
edge from the penultimate vertex to the last vertex) of all shortest paths from vertex vi
to vertex vh made up of at most K − 1 edges (in case 0 < pK−1

ih < ∞). Only if there

exists an edge from vertex vh to vertex v j in layer � (i.e., if 0 < p(�)
h j < ∞) and such

layer is different from all the above mentioned layers, then the cost 1/γ is included
in the computation of the length of the relevant path made up of at most K intra-layer
edges, because there is a layer-switch preceding the last intra-layer edge.

In this way the off-diagonal entries of the multiplex K -path length matrix PK =
[pKi j ]Ni, j=1, for 1 < K ≤ N − 1, are computed according to

pKi j = pK−1
i h̄

+ p(�̄)

h̄ j
+ 1

γ
δ
(�̄)

h̄
where (h̄, �̄) = argminh,� {pK−1

ih + p(�)
h j + 1

γ
δ
(�)
h },

with δ
(�)
h = 0, if one of the following conditions holds:

pK−1
ih = 0, i.e., vi = vh ;
pK−1
ih = ∞, i.e., there is no path from vertex vi to vertex vh made up of at most

K − 1 edges;
p(�)
h j = 0, for all � = 1, 2, . . . , L , i.e., vh = v j ;

p(�)
h j = ∞, for all � = 1, 2, . . . , L , i.e., there are no intra-layer edges from vertex

vh to vertex v j ;

the intra-layer edge from vertex vh to vertex v j with weight p(�)
h j belongs to the

same layer � as the last edge of a shortest path made up of at most K − 1 edges
from vertex vi to vertex vh of length pK−1

ih ,

and δ
(�)
h = 1 otherwise; see [29].
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3.2.1 Min-plus powers versus powers

Consider for ease of discussion an undirected and unweighted single-layer network,
i.e., a simple graph. Let A = [ai j ]Ni, j=1 be the adjacency matrix for the graph and

define its hth power Ah = [a(h)
i j ]Ni, j=1. The entry a(h)

i j counts the number of walks
of length h between the vertices vi and v j . Estrada and Rodriguez-Velazquez [22]
defined the communicability between the vertices vi and v j for i �= j as the (i, j)th
entry of the matrix

exp0(A) =
∞∑

h=1

Ah

h! . (3)

The rapid growth of the denominator with h ensures that the expansion converges and

that terms Ah

h! with h large contribute only little to exp0(A). This is in agreement with
the intuition that messages propagate better along short walks than along long ones.
The (i, i)th entry of the sum (3) is commonly referred to as the subgraph centrality of
vertex vi ; see [22]1.

We turn to the min-plus power PK . The (i, j)th entry of PK gives the length of the
shortest path between the vertices vi and v j made up of at most K edges, i.e., it counts
the number of edges of such shortest paths (since the graph is unweighted). Compare
with the K th partial sum

∑K
h=1 A

h/h!, whose (i, j)th entry is related to the number of
walks between vi and v j made up of at most K edges. Thus, when considering the path
length matrix P instead of exp0(A), one emphasizes the availability of a short shortest
path more than the availability of several paths that can be used for communication,
thus focusing more on efficiency than popularity.

3.3 Estimating themultiplex global efficiency

For 1 ≤ K ≤ N − 1, we introduce the multiplex K -efficiency matrix PK−1 =
[pK ,−1

i j ]Ni, j=1. It is obtained by replacing the off-diagonal entries of the K -path length

matrix PK by their reciprocals, i.e.,

pK ,−1
i j = 1/pKi j , 1 ≤ i, j ≤ N , i �= j .

Moreover, we define the multiplex global K -efficiency

eKA(γ ) = 1

N (N − 1)

∑

i, j �=i

1

pKi j
= 1

N (N − 1)
1TN PK−11N ,

with 1/∞ identified with 0; see [29].

1 In [22] exp(A) is used instead of exp0(A), but the term IN has no natural interpretation in network
modeling.
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For the multiplex global efficiency eA(γ ), one has

eA(γ ) = 1

N (N − 1)

∑

i, j �=i

1

pi j
= 1

N (N − 1)
1TN P−11N ,

where P−1 will be referred to as the multiplex efficiency matrix. The following result
shows how we can estimate the multiplex global efficiency.

Proposition 1 The multiplex global K -efficiency, for 1 ≤ K ≤ N − 1, satisfies the
inequality

e1A(γ ) ≤ e2A(γ ) ≤ · · · ≤ eN−1
A = eA(γ ).

Proof The proof follows by observing that by construction PK−1 ≤ PK+1
−1 , for 1 ≤

K < N − 1, and that P−1 ≡ PN−1
−1 . �

3.4 Increasing themultiplex efficiency

Wewould like to identify the intra-layer edges that should be strengthened to enhance
the multiplex global efficiency the most and will refer to these edges as “efficient”.
Consider the nonnegative vectors hin ∈ R

N and hout ∈ R
N defined as follows: the i th

entry of the former is the harmonic in-centrality
∑

h �=i 1/phi of vertex vi and the i th
entry of the latter is its harmonic out-centrality

∑
h �=i 1/pih ; see [1]. The following

results hold.

Proposition 2 For the multiplex global efficiency and the harmonic in- and out-
centralities, we have

eA(γ ) = 1

N (N − 1)
‖hin‖1 = 1

N (N − 1)
‖hout‖1.

Proof Since all the entries of the multiplex efficiency matrix P−1 are nonnegative
quantities, one has that every entry of both harmonic in- and out-centrality vectors
equals its modulus. Thus, the equalities ‖hin‖1 = ‖hout‖1 = 1TN P−11N give the
desired equality. �
Proposition 3 For the Perron root of the multiplex efficiency matrix and the harmonic
in- and out-centrality vectors, one has

ρ ≤ min{‖hin‖∞, ‖hout‖∞}.

Proof One can see that ‖P−1‖1 = ‖hin‖∞ and ‖P−1‖∞ = ‖hout‖∞. Since the spectral
radius is less than or equal to any natural matrix norm, it follows that ρ ≤ ‖P−1‖1
and ρ ≤ ‖P−1‖∞. This yields the desired inequality. �
Proposition 4 For the Perron root of the multiplex efficiency matrix and the multiplex
global efficiency, one has

ρ ≤ N (N − 1)eA(γ ).
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Proof By Proposition 3, both ρ ≤ ‖hin‖1 and ρ ≤ ‖hout‖1 hold, having observed that
for any vector z one has ‖z‖∞ ≤ ‖z‖1. The proof now follows by Proposition 2. �

The above results lead us to expect that the multiplex global efficiency increases
the most by increasing the edge-weights that make ρ increase the most. We therefore
should strengthen the existing edges e(v�

i → v�
j ), for � = 1, 2 . . . , L , determined

by the (i, j)th entry of A+ = ∑L
�=1 A

(�) that corresponds to a largest entry of the
Wilkinson perturbation WN associated with ρ, projected onto the cone SA+ .

Since multiplexes typically have a large number of vertices, we focus on techniques
that are well suited for large-scale networks. In case the computation of the path length
matrix P ≡ PN−1 is too expensive to be attractive, one may instead consider the
Perron root ρK of the multiplex K -efficiency matrix PK−1 and the associated Perron
vectors xK and yK , and determine the Wilkinson matrix WK

N = yK xTK , for 1 ≤ K ≤
N − 1 large enough, to identify edges whose strengthening may be advantageous;
see [30]. This leads us to propose to strengthen existing edges e(v�

i → v�
j ), for

� = 1, 2, . . . , L , determined by the (i, j)th entry of A+ that correspond to a largest
entry of the Wilkinson perturbation WK

N projected onto the cone SA+ . The following
result motivates this approach.

Proposition 5 One has ρK ≤ ρK+1 ≤ ρ, for 1 ≤ K < N − 1.

Proof The proof follows by observing that PK−1 ≤ PK+1
−1 , for 1 ≤ K < N − 1, and

that P−1 ≡ PN−1
−1 . �

Moreover, consider the vector hK
in ∈ R

N whose i th entry is the harmonic Kin-
centrality

∑
h �=i 1/p

K
hi of vi and the vector hK

out ∈ R
N whose i th entry is its harmonic

Kout-centrality
∑

h �=i 1/p
K
ih ; see [30]. The following propositions can be shown sim-

ilarly as Propositions 2, 3, and 4.

Proposition 6 For the multiplex global K -efficiency and the harmonic Kin- and Kout-
centralities, the following equalities hold

eKA(γ ) = 1

N (N − 1)
‖hK

in‖1 = 1

N (N − 1)
‖hK

out‖1, 1 ≤ K ≤ N − 1.

Proposition 7 For the Perron root of the multiplex K -efficiency matrix and the har-
monic Kin- and Kout-centralities one has, for 1 ≤ K ≤ N − 1,

ρK ≤ min{‖hK
in‖∞, ‖hK

out‖∞}.

Proposition 8 For the Perron root of the multiplex K -efficiency matrix and the multi-
plex global K -efficiency one has, for 1 ≤ K ≤ N − 1,

ρK ≤ N (N − 1)eKA(γ ).

Themultiplex global K -efficiency is expected to increase themost by increasing the
edge-weights that make the Perron root ρK increase the most. In fact, when analyzing
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PK−1, for 1 ≤ K ≤ N − 1, we prefer to consider the eigenvector centrality over the
degree, that is to say, the i th entry of yK instead of the in-degree of vertex vi (its
harmonic Kin-centrality) and the j th entry of xK instead of the out-degree of vertex
v j (its harmonic Kout-centrality); see, e.g., [6, 21, 26] for discussions on eigenvector
centrality.

4 The popularity approach

This section considers the multiplex Perron communicability and discusses how it
can be used to determine the importance of an edge. The sensitivity of this measure
to perturbations of the weights is studied. The multiplex Perron communicability has
prviously been described in El-Halouy et al. [20]. It is the aim of the present paper to
compare the performance of the techniques of this section and Section 3.

The evaluation of the matrix exp0(B) is very time-consuming when the supra-
adjacencymatrix B is large.We therefore are interested in estimating themultiplex total
communicabilitywithout calculating exp0(B) by using the Perron rootρ of B = B(γ ),
the associated Perron vectors x and y, and the Wilkinson matrix WNL = yxT . We
propose to approximate tcB(γ ) = 1TNL exp0(B)1NL by means of themultiplex Perron
communicability

PcB(γ ) = exp0(ρ) 1TNLWNL1NL ,

which is much easier to compute; see [18, 20] for related discussions. The following
result holds.

Proposition 9 [18] If the Perron root ρ of B is significantly larger than the magnitude
of the other eigenvalues of B, then

tcB(γ ) ≈ κ(ρ)PcB(γ ).

Thus, tcB(γ ) depends on PcB(γ ) and the conditioning of the Perron root ρ. In
the special case of an undirected network, the Perron vectors x and y coincide and,
therefore, κ(ρ) = 1/yT x = 1. Under the assumption of Proposition 9, we then obtain
that

tcB(γ ) ≈ PcB(γ ).

Additionally, since 1TNLWNL1NL = ‖x‖1‖y‖1 and, ∀z ∈ C
n , one has ‖z‖2 ≤ ‖z‖1 ≤√

n‖z‖2, the following bounds for the multiplex Perron communicability hold.

Proposition 10 [18]
exp0(ρ) ≤ PcB(γ ) ≤ NL exp0(ρ).

Typically, exp0(ρ) � NL . Therefore, it suffices to consider exp0(ρ) to determine
whether the multiplex Perron communicability is large or small.
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4.1 Sensitivity of multiplex total communicability

Wewould like to identify the intra-layer edges that should be strengthened to enhance
themultiplex total communicability themost. The canonical way to identify the entries
of the block-diagonal portion of the supra-adjacencymatrix (1), whose weights should
be increased, is to evaluate the Fréchet derivative Lexp0(B, E) ∈ R

NL×NL at B =
B(γ ) in the direction E = eieTj ∈ R

NL×NL for 1 ≤ i, j ≤ NL . TheFréchet derivative
L f (B, E) of a function f at the matrix B in the direction E is defined as

f (B + E) = f (B) + L f (B, E) + o(‖E‖2) as ‖E‖2 → 0;

see, e.g., [23, 30, 31].We are interested in determining intra-layer edges that have large
weights, whose modification results in a relatively large change in the total communi-
cability. Note that the sensitivity in the direction eieTj , i.e., 1

T
NL Lexp0(B, eieTj )1NL , is

eTi Lexp0(B
T , 1NL1TNL)e j ; see [31]. However, the evaluation of Lexp0(B

T , 1NL1TNL)

is very demanding (about 8 times more arithmetic floating point operations than the
evaluation of exp0(B)).

We remark that one could approximate the gradient of tcB(γ ) by using Arnoldi
or Lanczos decompositions, as proposed for large-scale single-layer networks in [30,
31]. In the following subsection, we focus on another approach, that takes into account
the multiplex Perron communicability. The computations required are quite straight-
forward and not very demanding also for large-scale problems.

4.2 Increasing themultiplex communicability

We propose to determine the intra-layer edges with large weights whose modification
yields a relatively large change in the Perron root ρ of the supra-adjacency matrix
B. These intra-layer edges should be strengthened to enhance the multiplex Perron
communicability the most. We will illustrate that modifications of the weights of the
intra-layer edges identified by this technique give a relatively large change in the
multiplex total communicability.

Following [30], we construct an “importance vector” by multiplying the positive
entries of

Bd = blkdiag[A(1), . . . , A(L)]
element by element by the corresponding entries ofWNL |SBd

, where SBd ⊆ R
NL×NL

is the cone of all nonnegative matrices with the same sparsity structure as Bd , and
then choose the weights a(�)

i j ∈ A that correspond to the largest entries of this vector.
Since supra-adjacency matrices typically are quite large, one generally computes their
right and left Perron vectors by an iterative method that only requires the evaluation
of matrix-vector products with the matrix Bd and its transpose. Clearly, one does not
have to store Bd , but only A, to evaluate matrix-vector products with the matrix Bd

and its transpose.
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To estimate the potential for increase in communicability, we propose to also eval-
uate an approximation of the structured multiplex Perron communicability, which is
defined by

PcstructB (γ ) = exp0(ρ) 1TNLWNL |SBd
1NL .

The following result holds.

Proposition 11
PcstructB (γ ) ≤ PcB(γ ).

Proof The proof follows from the inequality WNL |SBd
≤ WNL . �

Due to Proposition 10, we have PcstructB (γ ) ≤ NL exp0(ρ). This bound can be
refined as the following result shows.

Proposition 12

PcstructB (γ ) ≤ NL exp0(ρ)
κstruct(ρ)

κ(ρ)
.

Proof Since 1TNLWNL |SBd
1NL = ‖vec(WNL |SBd

)‖1 ≤ NL‖WNL |SBd
‖F , we have

the upper bound PcstructB (γ ) ≤ NL exp0(ρ)‖WNL |SBd
‖F . The proof follows by

observing that κstruct(ρ) = κ(ρ)‖WNL |SBd
‖F ; cf. (2). �

5 Numerical tests

The numerical tests reported in this section have been carried out using MATLAB
R2024a on a 3.2 GHz Intel Core i7 6 core iMac. The Perron root, and the left and
right Perron vectors for small to moderately sized networks can easily be evaluated
by using the MATLAB function eig. For large-scale multiplexes, these quantities can
be computed by the MATLAB function eigs or by an Arnoldi algorithm (one-sided or
two sided).

5.1 Single-layers networks

In the simple case when L = 1, the supra-adjacency matrix B, the third-order tensor
A, as well as Bd and A+, reduce to the adjacency matrix A ∈ R

N×N for the given
single-layer network. Also, SA+ ≡ SBd ≡ SA. Nevertheless, a few comments about
the well-known Air500 and Autobahn data sets may be of interest to a reader since
these networks allow simple illustrations of the concepts of efficiency and popularity.

Example 5.1 (Air500 data set) Consider the adjacency matrix A ∈ R
500×500 for the

network Air500 in [19]. This data set describes flight connections for the top 500
airports worldwide based on total passenger volume. The flight connections between
airports are for the year from 1 July 2007 to 30 June 2008. The network is represented
by a directed unweighted connected graphG with N = 500 vertices and 24009 directed
edges. The vertices of the network are the airports and the edges represent direct flight
routes between two airports.
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The global efficiency is eA = e499A ≡ e5A = 4.8392 · 10−1, see [29, Example 5],
and the total communicability is tcA = 1.9164 · 1038. The Perron communicability is
PcA = 1.9132 · 1038. The flight connection from the Frankfurt FRA Airport (vertex
v161) to the New York JFK Airport (vertex v224) is more efficient than the flight
connection from New York JFK Airport (vertex v224) to the Atlanta ATL Airport
(vertex v24), i.e., strengthening the former edge has a larger impact on the global
efficiency than strengthening the latter edge. The latter edge is the most popular edge,
i.e., increasing the weight for this edge increases the total communicability the most.
The former edge appears in several shortest paths that connect airports, while the
latter picks up travelers from several major airports and transmits them to several
major airports. Note that the information provided by the efficiency matrix is the same
as the one given by P2−1, so that the perturbation that increases the global 2-efficiency
the most also increases the global efficiency the most; cf. Table 1.

Example 5.2 (Autobahn data set) Consider the undirected unweighted graph G that
represents the German highway system network Autobahn. The graph, which is avail-
able at [19], has N = 1168 vertices representing German locations and 1243 edges
representing highway segments that connect them. Therefore, the adjacency matrix
A ∈ R

1168×1168 for this network has 2486 nonvanishing entries.
The global efficiency is eA = e1167A ≡ e62A = 6.7175 · 10−2; see [29, Example 6].

The total communicability is tcA = 1.2563 · 104 and the Perron communicability is
PcA = 2.2448 · 103. The highway segment that connects Duisburg (vertex v219) and
Krefeld (vertex v565) turns out to be more efficient than the highway segment that
connects Duisburg (vertex v219) and Düsseldorf (vertex v217), which instead turned
out to be the most popular edge. Note that the information provided by the efficiency
matrix is the same as the one given by P4−1, so that the perturbation that increases the
global 4-efficiency the most also increases the global efficiency the most; cf. Table 2.

5.2 Multiplex networks

The computations in this subsection use the two-sided Arnoldi method described in
Zwaan and Hochstenbach [33].

Table 1 Air500 data set
K (h, k) eKA (1)

5 (161, 224) 4.8392 · 10−1

4 (161, 224) 4.8387 · 10−1

3 (161, 224) 4.7909 · 10−1

2 (161, 224) 3.6044 · 10−1

1 (224, 24) 9.6228 · 10−2

Indices chosen by the procedure are shown in the second column
and the global K -efficiency is displayed in the third column for
K = 1, 2, . . . , 5
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Table 2 Autobahn data set
K (h, k) eKA (1)

62 (565, 219) 6.7175 · 10−2

.

.

.
.
.
.

.

.

.

5 (565, 219) 7.9991 · 10−3

4 (565, 219) 6.1823 · 10−3

3 (219, 217) 4.6017 · 10−3

2 (693, 543) 3.2082 · 10−3

1 (219, 217) 1.8238 · 10−3

The second column shows indices chosen by the procedure for K =
1, 2, . . . , 5 and K = 62, and the third column displays the global
K -efficiency

Example 5.3 (European airlines data set)We consider the undirected, unweighted, and
connected network consisting of N = 417 vertices that represent European airports
and L = 37 layers that represent different airlines operating in Europe. Each edge
represents a flight between airports. The network can be downloaded from [3]. In this
multiplex all the maximal shortest paths are made up of 7 intra-layer edges and 2 layer
switches, with γ = 1 that reflects the effort required to change airlines for connecting
flights. Thus, for any K ≥ 7, one has eA(1) = eKA(1) with

eA(1) = 1

N (N − 1)

∑

i, j �=i

1

pi j
= 0.3477.

For all K ≥ 3, the largest entries ofWK
N |SA+ correspond to the route between vertices

v40 and v15. Thus, the information provided by the multiplex efficiency matrix P−1
is the same as the information given by P3−1, so that the perturbation that increases
the multiplex global 3-efficiency the most is the same that increases the multiplex
global efficiency the most; cf. Table 3. This indicates that the Perron root ρ of P−1
may be increased the most by doubling the number of flights between the Barcelona

Table 3 European airlines data
set

K (h, k) eKA(1)

7 (40, 15) 3.4766 · 10−1

6 (40, 15) 3.4766 · 10−1

5 (40, 15) 3.4746 · 10−1

4 (40, 15) 3.4416 · 10−1

3 (40, 15) 3.1949 · 10−1

2 (38, 15) 1.8393 · 10−1

1 (38, 15) 3.4046 · 10−2

Indices chosen by the procedure in the second column and multiplex
global K -efficiency in the third column for K = 1, 2, . . . , 7
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(vertex v40) and Amsterdam (vertex v15) airports. The airlines that operate this route
are EasyJet (layer 3), KLM (layer 9), Vueling (layer 21), and Transavia Holland (layer
27), all with the same number of flights.

Increasing the number of flights of each airline by 25 percent, so as to increase by
one the total number of flights on the route, yields the perturbed third-order adjacency
tensor Ã and the global efficiency

eÃ(1) = 1

N (N − 1)

∑

i, j �=i

1

p̃i j
= 0.3480.

As for the popularity approach, one has

tcB(1) = 1TNL exp0(B)1NL = 2.4930 · 1020.

The Perron root ρ = 38.3714 of B (with exp0(ρ) = 4.6183 · 1016, κ(ρ) = 1 and
κstruct(ρ) = 5.3310·10−2) is significantly larger than the other eigenvalues.We obtain

PcB(1) = exp0(ρ) 1TNLWNL1NL = 1.9637 · 1020,
PcstructB (1) = exp0(ρ) 1TNLWNL |SBd

1NL = 1.4733 · 1017.

The largest entries of WNL |SBd
correspond to edge e(v138 ↔ v12). This indicates

that the Perron root may be increased the most by doubling the number of flights
operated by Lufthansa airline between the Munich (vertex v38) and Frankfurt (vertex
v2) airports. Note that Lufthansa (layer 1) is the only operating company for this route.
For the perturbed supra-adjacency matrix B̂ one has the Perron root ρ̂ = 38.3798,
with exp0(ρ̂) = 4.6572 · 1016, and

tcB̂(1) = 1TNL exp0(B̂)1NL = 2.5056 · 1020.

Finally, we observe that

eÂ(1)=0.3479<0.3480=eÃ(1); tcB̃(1)=2.4972 · 1020<2.5056 · 1020= tcB̂(1).

Example 5.4 (London transportation data set) Consider the undirected, weighted, and
connected network consisting of N = 369 vertices that represent train stations in
London and L = 3 layers that represent the networks of stations connected by

1. Tube - All underground lines (e.g., District, Circle, etc) aggregated;
2. Overground;
3. Docklands Light Railway (DLR).

Each intra-layer edge represents a route between stations. Data was collected in 2013.
The network can be downloaded from Bergermann [15].

In this multiplex all the maximal shortest paths are made up of 40 intra-layer edges
and 2 layer switches, with γ = 1.
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Table 4 London transportation
data set

K (h, k) eKA(1)

40 (185, 182) 1.1261 · 10−1

.

.

.
.
.
.

.

.

.

10 (185, 182) 6.4761 · 10−2

9 (182, 39) 5.8334 · 10−2

8 (182, 39) 5.1699 · 10−2

7 (182, 39) 4.4932 · 10−2

6 (182, 39) 3.7978 · 10−2

5 (182, 39) 3.1098 · 10−2

4 (185, 182) 2.4577 · 10−2

3 (185, 182) 1.8541 · 10−2

2 (182, 39) 1.2894 · 10−2

1 (182, 39) 7.2464 · 10−3

The second column shows indices chosen by the procedure for K =
1, 2, . . . , 10 and K = 40, and the third column displays the multiplex
global K -efficiency

Thus, for all K ≥ 40, one has eKA(1) = eA(1), with

eA(1) = 1

N (N − 1)
1TN P−11N = 0.1126.

Also, for all K ≥ 10, the largest entries of WK
N |SA+ correspond to the route between

vertices v185 and v182; cf. Table 4. This indicates that the Perron root of the multiplex
efficiency matrix, ρ(P−1) = 46.5551, may be increased the most by adding a new
underground line to the 3 lines operating between the Euston Square (v185) and King’s
Cross St. Pancras (v182).

As for the popularity approach, one has

tcB(1) = 1TNL exp0(B)1NL = 5.6238 · 104.

The Perron root ρ = 6.5138 of B (with exp0(ρ) = 6.7341 · 102, κ(ρ) = 1 and
κstruct(ρ) = 5.0028 · 10−1) is significantly larger than the other eigenvalues.

PcB(1) = exp0(ρ) 1TNLWNL1NL = 2.0831 · 104

PcstructB (1) = exp0(ρ) 1TNLWNL |SBd
1NL = 1.6214 · 103.

The largest entries of WNL |SBd
correspond to the edge e(v1182 ↔ v139) in layer 1. This

indicates that the Perron root may be increased the most by adding a new underground
line to the 3 lines operating between King’s Cross St. Pancras (v182) and Farrington
Station (v39).
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Let us take into account both the efficiency and the popularity approaches, by adding
the underground line Euston Square - King’s Cross St. Pancras - Farrington Station.
As for the perturbed multiplex, one has the Perron root ρ(P̂−1) = 46.9491 and

eÂ(1) = 1

N (N − 1)
1TN P̂−11N = 0.1132,

whereas, for the perturbed supra-adjacency matrix B̂, one has the Perron root ρ̂ =
7.4155, exp0(ρ̂) = 1.6606 · 103, and

tcB̂(1) = 1TNL exp0(B̂)1NL = 7.0644 · 104.

In the above examples, we used the Wilkinson perturbation associated with the
Perron root of B and projected onto SBd (or associated with the Perron root of the
PK−1, for a suitable K , and projected onto SA+ ) to determine the edge, such that a
change in its weight has the largest effect on the total communicability (or the global
efficiency) of the multiplex. If we are interested in identifying more than one edge,
whose weight should be changed to increase such measure of communication, then
we can either repeat the computations with the network obtained by having modified
one edge-weight or consider the edge that is identified by the second largest entry of
the same matrix.

6 Concluding remarks

Two measures of communicability in multiplex networks are considered: multiplex
global efficiency and multiplex total communicability. Their sensitivity to changes
in edge-weights is investigated. Approximations of both measures can be evaluated
also for large multiplex networks. They measure different aspects of communicability
and shed light on which edges should be strengthened (e.g., which roads should be
widened) to increase the communicability of the network the most. Application of
these concept to single-layer and multiplex transportation networks are presented.
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