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Abstract
The paper is concernedwith a generalization of Floater–Hormann (briefly FH) rational
interpolation recently introduced by the authors. Compared with the original FH inter-
polants, the generalized ones depend on an additional integer parameter γ > 1, that, in
the limit case γ = 1 returns the classical FH definition. Here we focus on the general
case of an arbitrary distribution of nodes and, for any γ > 1, we estimate the sup norm
of the error in terms of the maximum (h) and minimum (h∗) distance between two
consecutive nodes. In the special case of equidistant (h = h∗) or quasi–equidistant
(h ≈ h∗) nodes, the new estimate improves previous results requiring some theoretical
restrictions on γ which are not needed as shown by the numerical tests carried out to
validate the theory.

Keywords Rational approximation · Linear rational interpolation ·
Barycentric rational interpolation

1 Introduction

In this paper, we explore the interpolation problem of a function f (x) within a finite
interval [a, b], given its values at the nodes

a = x0 < x1 < · · · < xn−1 < xn = b, n ∈ N. (1)
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We consider arbitrary distributions of such nodes basing our estimates on the max-
imum and minimum distance between two consecutive nodes, namely

h = max
0≤i<n

(xi+1 − xi ), h∗ = min
0≤i<n

(xi+1 − xi ). (2)

As a particular case, we consider the case of equidistant or quasi-equidistant con-
figurations of nodes for which one has h = h∗ (equidistant nodes) or h/h∗ ≤ C holds
for all n ∈ N with C > 1 an absolute constant (quasi–equidistant nodes).

In their work [9], Huybrechs and Trefethen compare various methods for approxi-
mating a functionwith equidistant nodes. One suchmethod employs Floater-Hormann
(FH) interpolating rational functions denoted by r(x) [6]. Such interpolants (briefly
FH interpolants) generalize Berrut’s rational interpolation [1] by introducing a fixed
integer parameter 0 ≤ d ≤ n to speed up the convergence getting, in theory, arbitrarily
high approximation orders.

When d = 0, the FH interpolant reduces to the Berrut’s first interpolant from [1]
(see also [7]). For any 1 ≤ d ≤ n, similarly to Berrut’s approximant, Floater and
Hormann established that the approximant r(x) lacks poles on the real line, coincides
with f on the set of nodes Xn = {x0, x1, . . . , xn}, and, for any x /∈ Xn , provides a
barycentric representation for efficient and stable computations [5].

Moreover, as h → 0 (and hence n → ∞), the FH approximation error behaves,
for any fixed d ∈ N, as [6, Thm. 2]:

‖r − f ‖∞ = O(hd+1), ∀ f ∈ Cd+2[a, b], (3)

For an overview of linear barycentric rational interpolation, interested readers can
refer to the paper by Berrut and Klein [2].

While applicable to any node configuration, the Floater-Hormann method proves
particularly effective for equidistant setups due to the logarithmic growth of the
Lebesgue constants [4, 8]. In this case, (3) continues to hold but the convergence
is not guaranteed for less regular functions, e.g. for functions that are only continuous
on [a, b].

To overcome this problem, in [12], we extended the Floater-Hormann method by
defining a new family of linear rational approximants denoted by r̃(x). These approx-
imants depend on d and an additional parameter γ ∈ N. When γ = 1, r̃(x) reduces
to the original FH interpolant r(x).

Similarly to the original FH interpolants, we showed that, for all γ > 1, r̃(x)
has no real poles, interpolates the data, preserves polynomials of degree ≤ d, and
has a barycentric-type representation. Moreover, in the case of equidistant or quasi-
equidistant nodes, we proved the uniform boundedness of the Lebesgue constants
and

lim
n→∞ ‖r̃ − f ‖∞ = 0, ∀ f ∈ C[a, b].

Concerning the approximation rate, in [12] we established several error estimates
depending on the smoothness class of f . In particular, for arbitrarily fixed d ∈ N and
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equidistant or quasi-equidistant nodes, as n → ∞, we proved that

‖r̃ − f ‖∞ = O(hs), ∀ f ∈ Cs[a, b], 1 ≤ s ≤ d + 1,

holds provided that γ > s + 1, and

‖r̃ − f ‖∞ = O(h), ∀ f ∈ Lip[a, b],

holds provided that γ > 2.
In this paper, for the previous classes of functions, we aim to derive error estimates

valid for arbitrary configurations of nodes (Theorems 3.1 and 3.4). Moreover, in the
special case of equidistant or quasi-equidistant nodes, we aim to state the previous
results but without any restriction on γ besides γ > 1 (Corollaries 3.3 and 3.5).

The outline of the paper is the following. In Section 2 we briefly recall the defi-
nition and the properties proved in [12] for generalized FH interpolants at arbitrary
distribution of nodes. In Section 3 we state the new estimates. In Section 4 we show
several numerical tests. Finally, in Section 5 we give conclusions.

2 Generalized Floater–Hormann interpolation

For any pair of integer parameters 0 ≤ d ≤ n and γ ≥ 1, the generalized FH
approximation of f at the nodes (1) is given by [12]

r̃( f , x) =
∑n−d

i=0 λ̃i (x)pi (x)
∑n−d

i=0 λ̃i (x)
, x ∈ [a, b], (4)

where

λ̃i (x) = (−1)iγ

(x − xi )γ (x − xi+1)γ . . . (x − xi+d)γ
, i = 0, . . . , n − d, (5)

and pi (x) is the unique polynomial of degree at most d interpolating f at the (d + 1)
nodes xi < xi+1 < . . . < xi+d .

In the case γ = 1, r̃( f , x) coincides with the original FH interpolants introduced in
[6]. In the sequel, we will also use the notation r̃( f ) to represent the function r̃( f , x)
as defined in (4).

For completeness, we recall below the properties already proved for the generalized
FH approximants [6, 12]. Unless otherwise specified, they are valid for any distribution
of nodes and for any value of the parameters 0 ≤ d ≤ n and γ ≥ 1.

1. Poles: The generalized FH rational function r̃( f ) has no real poles in the interval
[a, b].

2. Interpolation: We have r̃( f , xk) = f (xk), k = 0, . . . , n.
3. Preservation of polynomials: If f is a polynomial of degree at most d then we

have r̃( f ) = f .
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4. Barycentric–type form: For all x /∈ {x0, . . . , xn} we have

r̃( f , x) =
∑n

k=0
wk (x)

(x−xk )γ
f (xk)

∑n
k=0

wk (x)
(x−xk )γ

, (6)

where

wk(x) =
∑

i∈Jk

(−1)iγ
i+d∏

s=i,s �=k

1

(xk − xs)(x − xs)γ−1 , k = 0, . . . , n, (7)

with Jk = {i ∈ {0, . . . , n − d} k − d ≤ i ≤ k}.
5. Lebesgue constants: They are defined as �n = sup f �=0

‖r̃( f )‖∞
‖ f ‖∞ , ∀n ∈ N.

For all parameters γ > 1 and 1 ≤ d ≤ n, we have [12]

�n ≤ C d2d
(

h

h∗

)γ+d

(8)

where C > 0 is a constant independent of n, h, d and γ .
For γ = 1, 0 ≤ d ≤ n, and equidistant or quasi–equidistant distribution of nodes,
we have [3, 4, 8]

�n ≤ C 2d log n, (9)

where C > 0 is a constant independent of n, d.

3 Main results

In the space Cs[a, b] of all functions that are s–times continuously differentiable in
[a, b], we state the following result.

Theorem 3.1 Let d, γ ∈ N be arbitrarily fixed with γ > 1. For all f ∈ Cs[a, b] with
1 ≤ s ≤ d + 1, and any configuration of nodes a = x0 < x1 < ... < xn = b, with
n ≥ d, the associated generalized FH interpolant r̃( f ) satisfies

‖ f − r̃( f )‖∞ ≤ C
(

h

h∗

)γ (d+1)

(h∗)s (10)

where C > 0 is a constant independent of n, h, h∗.

Proof Let x ∈ [a, b] be arbitrarily fixed. We shall prove that | f (x) − r̃( f , x)| is not
greater than the right–hand side of (10) with C > 0 independent of n, h, h∗, and x too.
Recalling the interpolation property, we may suppose x /∈ {x0, . . . , xn}, otherwise it
is trivial.
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By the definition of r̃( f , x) (cf. (4)) we get

f (x) − r̃( f , x) =
∑n−d

i=0 λ̃i (x) [ f (x) − pi (x)]
∑n−d

i=0 λ̃i (x)
=

n−d∑

i=0

λ̃i (x)

D(x)
[ f (x) − pi (x)] (11)

where, for brevity, we set

D(x) =
n−d∑

i=0

λ̃i (x).

Recalling that the interpolation error for pi can be expressed by theNewton formula

f (x) − pi (x) = f [xi , . . . , xi+d , x]
i+d∏

s=i

(x − xs),

by (11) we obtain

| f (x) − r̃( f , x)| ≤
n−d∑

i=0

∣
∣
∣
∣
∣

λ̃i (x)

D(x)

∣
∣
∣
∣
∣

i+d∏

s=i

|x − xs | | f [xi , . . . , xi+d , x]| . (12)

Concerning the last factor, in the case f ∈ Cs[a, b] with s = d + 1, we recall that
the divided differences of order d + 1 satisfy

| f [xi , . . . , xi+d , x]| =
∣
∣ f (d+1)(ξi )

∣
∣

(d + 1)! ≤ ‖ f (d+1)‖∞
(d + 1)! , ∀ f ∈ Cd+1[a, b],

where ξi ∈ [min{x, xi },max{x, xi+d}]. In the case s = d and f ∈ Cd [a, b], we note
that

∣
∣ f [xi , . . . , xi+d , x]∣∣ =

∣
∣
∣
∣
f [xi+1, . . . , xi+d , x] − f [xi , . . . , xi+d−1, x]

xi+d − xi

∣
∣
∣
∣ ≤ 2‖ f (d)‖∞

d!|xi+d − xi | ,

and using
|xi − x j | ≥ |i − j | h∗, ∀i, j ∈ {0, . . . , n}, (13)

we get

| f [xi , . . . , xi+d , x]| ≤ 2‖ f (d)‖∞
d!(dh∗)

, ∀ f ∈ Cd [a, b].
More generally, in the case f ∈ Cs[a, b]with s = d+1−k, reasoning by induction

on k = 0, . . . , d, it can be proved that

∣
∣ f [xi , . . . , xi+d , x]∣∣ ≤ c

(h∗)k
‖ f (d+1−k)‖∞, ∀ f ∈ Cd+1−k [a, b], k = 0, 1, .., d,

(14)

where c > 0 is a constant depending on d but not on x, f and i ∈ {0, . . . , n − d}.
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Summing up, setting

S(x) :=
n−d∑

i=0

σi (x), σi (x) :=
∣
∣
∣
∣
∣

λ̃i (x)

D(x)

∣
∣
∣
∣
∣

i+d∏

s=i

|x − xs |,

by (12) and (14) we have

| f (x) − r̃( f , x)| ≤ c
‖ f (s)‖∞
(h∗)d+1−s

S(x), ∀ f ∈ Cs[a, b], 1 ≤ s ≤ d + 1. (15)

In the following we estimate the summation S(x). To this aim, we recall that [12,
Eq. (24)]

|D(x)| ≥ |λ̃ j (x)| =
j+d∏

s= j

1

|x − xs |γ , ∀ j ∈ I�, (16)

where
I� := {i ∈ {0, . . . , n − d} : � − d + 1 ≤ i ≤ �},

� ∈ {0, . . . , n − 1} depends on x , and is defined by the condition x� < x < x�+1.
Note that d ≥ 1 implies that I� �= ∅ holds for any �. Moreover, note that i ∈ I�

ensures that � ∈ {i, . . . , i + d − 1}. Hence, for any i ∈ I� we can write

i+d∏

s=i

|x − xs | =
�∏

s=i

|x − xs | ·
i+d∏

s=�+1

|x − xs |

≤
�∏

s=i

(x�+1 − xs) ·
i+d∏

s=�+1

(xs − x�),

and taking into account that

|xi − x j | ≤ h|i − j |, ∀i, j ∈ {0, . . . , n}, (17)

we get

i+d∏

s=i

|x − xs | ≤ hd+1
�∏

s=i

(� + 1 − s)
i+d∏

s=�+1

(s − �) = hd+1(� + 1 − i)!(i + d − �)!

and therefore
i+d∏

s=i

|x − xs | ≤ hd+1d! ∀i ∈ I�. (18)

Furthermore, by collecting (16) and (18), we also get

1

|D(x)| ≤
(
hd+1d!

)γ

. (19)
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Given this, let us consider the following decomposition

S(x) =
�−d−1∑

i=0

σi (x) +
�+1∑

i=�−d

σi (x) +
n−d∑

i=�+2

σi (x) =: S1(x) + S2(x) + S3(x),

of the summation S(x) with the convention that empty summations are null (i.e.,∑n2
i=n1

ai = 0 if n1 > n2), and that always i ∈ {0, . . . , n − d}.
For � ≥ (d + 1) the (nonempty) summation S1(x), can be estimated by applying

(19),

S1(x) :=
�−d−1∑

i=0

∣
∣
∣λ̃i (x)

∣
∣
∣

|D(x)|
i+d∏

s=i

|x − xs | ≤
(
hd+1d!

)γ
�−d−1∑

i=0

i+d∏

s=i

1

|x − xs |γ−1

≤
(
hd+1d!

)γ
�−d−1∑

i=0

i+d∏

s=i

1

|x� − xi+d |γ−1

=
(
hd+1d!

)γ
�−d−1∑

i=0

1

|x� − xi+d |(γ−1)(d+1)
,

and using (13) we get

S1(x) ≤
(
hd+1d!

)γ
[

�−d−1∑

i=0

1

|� − i − d|(γ−1)(d+1)

] (
1

h∗

)(γ−1)(d+1)

≤ (d!)γ
(

h

h∗

)γ (d+1) (
h∗)d+1

⎡

⎣
n∑

j=1

1

j (γ−1)(d+1)

⎤

⎦ ,

where (γ − 1)(d + 1) ≥ 2 implies

n∑

j=1

1

j (γ−1)(d+1)
≤

n∑

j=1

1

j2
< ∞. (20)

Hence, we conclude that

S1(x) ≤ C1
(

h

h∗

)γ (d+1) (
h∗) d+1

, (21)

where C1 = (d!)γ ∑∞
j=1

1
j2

is independent of x, n, h and h∗.
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Now, for � + 2 ≤ n − d, let us show that (21) also holds for S3(x) by using similar
arguments. Indeed, by (19), (13), and (20), we have

S3(x) :=
n−d∑

i=�+2

∣
∣
∣λ̃i (x)

∣
∣
∣

|D(x)|
i+d∏

s=i

|x − xs | ≤
(
hd+1d!

)γ
n−d∑

i=�+2

i+d∏

s=i

1

|x − xs |γ−1

≤
(
hd+1d!

)γ
n−d∑

i=�+2

i+d∏

s=i

1

(xi − x�+1)
γ−1

≤
(
hd+1d!

)γ
n−d∑

i=�+2

1

(xi − x�+1)
(γ−1)(d+1)

≤
(
hd+1d!

)γ

⎡

⎣
n−d∑

i=�+2

1

(i − � − 1)(γ−1)(d+1)

⎤

⎦
(

1

h∗
)(γ−1)(d+1)

≤ C1
(

h

h∗
)γ (d+1) (

h∗) d+1
. (22)

Finally, let us estimate S2(x). To this aim, by applying (16), (17) and (13), we note
that

σ�−d(x) = |λ̃�−d(x)|
|D(x)|

�∏

s=�−d

|x − xs |

≤ |λ̃�−d(x)|
|λ̃�−d+1(x)|

�∏

s=�−d

|x − xs | = |x − x�+1|γ
|x − x�−d |γ

�∏

s=�−d

|x − xs |

≤ |x� − x�+1|γ
|x� − x�−d |γ

�∏

s=�−d

|x�+1 − xs |

≤
(

h

dh∗

)γ �∏

s=�−d

|� + 1 − s|hd+1 = (d + 1)!
dγ

(
h

h∗

)γ

hd+1

and similarly

σ�+1(x) = |λ̃�+1(x)|
|D(x)|

�+1+d∏

s=�+1

|x − xs |

≤ |λ̃�+1(x)|
|λ̃�(x)|

�+1+d∏

s=�+1

|x − xs | = |x − x�|γ
|x − x�+1+d |γ

�+1+d∏

s=�+1

|x − xs |

≤ |x�+1 − x�|γ
|x�+1 − x�+1+d |γ

�+1+d∏

s=�+1

|x� − xs |
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≤
(

h

dh∗

)γ
(

�+1+d∏

s=�+1

|� − s|hd+1

)

= (d + 1)!
dγ

(
h

h∗

)γ

hd+1.

Moreover, by (16) and (18), we get

�∑

i=�−d+1

σi (x) =
∑

i∈I�

∣
∣
∣λ̃i (x)

∣
∣
∣

|D(x)|
i+d∏

s=i

|x − xs | ≤
∑

i∈I�

i+d∏

s=i

|x − xs | ≤
∑

i∈I�
hd+1d! ≤ hd+1d!d.

Consequently, by the above estimates, we obtain

S2(x) :=
�+1∑

i=�−d

σi (x) ≤ hd+1d!d + 2
(d + 1)!

dγ

(
h

h∗

)γ

hd+1,

that is S2(x) can be estimated as

S2(x) ≤ C2
(

h

h∗

)γ

hd+1, (23)

where C2 = d!d + 2(d+1)!
dγ is independent of x, n, h and h∗.

In conclusion, from (15), (21), (22), and (23), we deduce

| f (x) − r̃( f , x)| ≤ c
‖ f (s)‖∞
(h∗)d+1−s

[S1(x) + S3(x) + S2(x)]

≤ c‖ f (s)‖∞

[

2C1
(

h

h∗

)γ (d+1)

(h∗)s + C2
(

h

h∗

)γ+d+1

(h∗)s
]

,

and the statement follows by taking into account that γ + d + 1 ≤ γ (d + 1) holds for
all γ, d ∈ N with γ > 1. 
�
Remark 3.2 We remark that the case d = 0 and γ > 1, and the case γ = 1, 0 ≤ d ≤ n,
are not covered in Thm. 3.1. In the latter case, estimates can be found in [2, 6, 10, 11].
Moreover, a case close to taking d = 0 and γ = 2 has been considered in [13].

Concerning the bounds on s hypothesized in Thm. 3.1, we remark that if we have
s > d + 1 then the estimate proven for s = d + 1 continues to hold. Indeed, looking
at the proof of Thm. 3.1, in the case s > d + 1 we can replace (15) with

| f (x) − r̃( f, x)| ≤ c‖ f (d+1)‖∞S(x), ∀ f ∈ Cs[a, b], s > d + 1,

where c > 0 is a constant independent of f , x and n, h, h∗. Hence, by applying the
estimate proved for S(x), we conclude

‖ f − r̃( f )‖∞ ≤ C
(

h

h∗

)γ (d+1)

(h∗)d+1, ∀ f ∈ Cs[a, b], s ≥ d + 1, (24)
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where C > 0 is a constant independent of n, h, h∗.
Note that in the limit case γ = 1 the right-hand side of (24) agrees with (3).

In the special case of equidistant or quasi–equidistant distribution of nodes, by the
previous theorem and remark we get the following result.

Corollary 3.3 Let d, γ ∈ N be arbitrarily fixed with γ > 1. For all f ∈ Cs[a, b] with
s ∈ N, and any set of n + 1 nodes a = x0 < x1 < ... < xn = b with n ≥ d such that
h ∼ h∗ ∼ n−1, the associated generalized FH interpolant r̃( f ) satisfies

‖ f − r̃( f )‖∞ ≤ C
nr

, r = min{s, d + 1}, (25)

where C > 0 is a constant independent of n, h, h∗.

We remark that in [12, Thm. 5.3] the same estimate was proved under the additional
hypothesis that γ > r + 1 holds.

Finally, we consider the case of less smooth functions f that are only Lipschitz
continuous on [a, b], i.e., satisfying

| f (x) − f (y)| ≤ L|x − y|, ∀x, y ∈ [a, b], (26)

with L > 0 independent of x, y.
By the following theorem, we prove that in the space Lip[a, b] of such functions,

we get the same error estimate proved in C1[a, b].
Theorem 3.4 Let d, γ ∈ N be arbitrarily fixed with γ > 1. For all f ∈ Lip[a,b] and
any configuration of nodes a = x0 < x1 < ... < xn = b, with n ≥ d, the associated
generalized FH interpolant r̃( f ) satisfies

‖ f − r̃( f )‖∞ ≤ C
(

h

h∗

)γ (d+1)

h∗, (27)

where C > 0 is a constant independent of n,h,h∗.

Proof The proof is similar to the previous one. The only change regards the estimate
of the factor | f [xi , . . . , xi+d , x]| in (12), that in the case of Lipschitz continuous
functions can be estimated as

| f [xi , . . . , xi+d , x]| ≤ C
(h∗)d

, ∀x ∈ [a, b], ∀i ∈ {0, . . . , n − d}, (28)

where C > 0 is independent of x, h and h∗.
Such a bound can be easily proved reasoning by induction on d ∈ N. Indeed, for

d = 1 it is true since by (26) we have

| f [xi , x]| =
∣
∣
∣
∣
f (xi ) − f (x)

xi − x

∣
∣
∣
∣ ≤ L, ∀x ∈ [a, b], ∀i ∈ {0, . . . , n − d},
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and consequently

| f [xi , xi+1, x]| =
∣
∣
∣
∣
f [xi+1, x] − f [xi , x]

xi+1 − xi

∣
∣
∣
∣ ≤ 2L

h∗ .

Moreover, assuming that (28) holds for d ≥ 1, we get

| f [xi , . . . xi+d+1, x]| =
∣
∣
∣
∣
f [xi+1, . . . xi+d+1, x] − f [xi , , . . . xi+d , x]

xi+d+1 − xi

∣
∣
∣
∣

≤ 2C
(h∗)d

1

|xi+d+1 − xi | ≤ 2C
(d + 1)(h∗)d+1

i.e., (28) holds for d + 1 too. 
�
Finally, by Thm. 3.4 we get the following result concerning the case of equidistant

and quasi– equidistant nodes

Corollary 3.5 Let d, γ ∈ N be arbitrarily fixed with γ > 1. For all f ∈ Lip[a, b]
and any set of n + 1 nodes a = x0 < x1 < ... < xn = b with n ≥ d such that
h ∼ h∗ ∼ n−1, the associated generalized FH interpolant r̃( f ) satisfies

‖ f − r̃( f )‖∞ ≤ C
n

, (29)

where C > 0 is a constant independent of n, h, h∗.

We remark that in [12, Thm. 5.2] the same estimate was proved under the stronger
hypothesis that γ > 2 holds.

4 Numerical experiments

First in Fig. 1, we show the generalized FH interpolants for d = 0, 1, 2, 3, with
fixed γ = 2. h/h∗ = 5 and h∗ = 0.05, approximating the Runge function f (x) =
1/(1 + 25x2) in the interval [−1,+1]. The interpolation nodes are constructed using
the procedure described below, resulting in 13 quasi-equidistant interpolation nodes.

Next, we investigate the behavior of the error

E

(
h

h∗ , h∗
)

= ‖ f − r̃( f )‖∞

as a function of h
h∗ and h∗ for a fixed value each for the degree d and the parameter

γ . In all numerical experiments we performed it turns out that E behaves as:

E

(
h

h∗ , h∗
)

≈ D

(
h

h∗

)α

(h∗)β .
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Fig. 1 The rational interpolant r̃( f , x) of theRunge function f (x) = 1/(1+25x2) on the interval [−1,+1],
for γ = 2, h/h∗ = 5, h∗ = 0.05 and d = 0, 1, 2, 3 (from left to right and top to bottom)

This means that

log E

(
h

h∗ , h∗
)

≈ log(D) + α log

(
h

h∗

)

+ β log(h∗).

To determine log(D), α and β, we can use linear least squares approximation
when we have different measurements for the values of the function log E

( h
h∗ , h∗)

for different values of log
( h
h∗

)
and log(h∗). Consider the interval [a, b] = [−1,+1].

Given log
( h
h∗

)
and log(h∗), the corresponding points xi consist of two subsets. In the

first subset there are all points −1,−1 + h + h∗,−1 + 2(h + h∗), . . . in the interval
[−1,+1]. In the second subset there are all points of the first subset shifted by h to
the right, i.e., −1 + h,−1 + h + (h + h∗),−1 + h + 2(h + h∗), . . . in the interval
[−1,+1]. Note that the endpoint +1 does not necessarily belong to the point set but
it is at a maximum distance of h from the right-most point in the point set. The values
taken for h and h∗ are all combinations of a value of h∗ chosen from

h∗ : 2−13, 2−12, . . . , 2−4
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and a value of g among

g : 100/10, 101/10, 102/10, . . . , 1010/10

with h = gh∗. The norm ‖ f ‖∞ is approximated by looking at the largest value of | f |
in 105 Chebyshev points in the interval [−1,+1].

Let us take the function f (x) = x2|x | ∈ C2[−1,+1], the degree d = 1 and the
parameter γ = 2. A plot of the function E

( h
h∗ , h∗) is given in Fig. 2. From this figure,

it can be seen that the function E can be approximated very well by an affine function
in h

h∗ and h∗. A similar plot was obtained for the other examples given in this section.
Solving the least squares problem gives us the values

D = 1.84, α = 1.84, β = 2.02.

In view of (10), the value α should be compared to γ (d + 1) = 4 and the value
β to s = 2. Note that the value of D is small, the value of α is much smaller than
γ (d + 1) = 4 and the value of β is approximately equal to s = 2.

In Table 1, we give several other examples. Theorem 3.1 is illustrated by the exam-
ples with i = 1, 4, 5. Theorem 3.4 is illustrated by the example with i = 7. Note that
for i = 2, 3, 10, 11, the value ofβ is larger than predicted by the theory of Theorem 3.1
or Theorem 3.4.

Based on these results, we give the following conjecture which we were not able
to prove. Let Cs,α[a, b] be the class of functions that are s-times continuously differ-
entiable and whose s–th derivative is Hölder continuous with exponent 0 < α ≤ 1.

Fig. 2 The function E
(

h
h∗ , h∗)

for f (x) = x2|x | with γ = 2 and d = 1
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Table 1 The results of numerical experiments for several values of f , γ and d

i Function f (x) γ d γ (d + 1) α s β D

1 x2|x | 2 1 4 1.84 2 2.02 1.84

2 x2|x | 2 2 6 2.63 2 3.07 1.74

3 x2|x | 2 3 8 2.96 2 3.04 3.63e-2

4 x4 2 2 6 2.59 3 3.04 5.68

5 x4 4 2 12 2.57 3 3.02 4.83

6 |x | 2 0 2 9.51e-1 0 8.44e-1 6.18e-1

7 |x | 2 1 4 9.76e-1 0 9.90e-1 1.77e-1

8 |x |0.5 2 0 2 7.75e-1 0 5.00e-1 3.40e-1

9 x |x |0.5 2 0 2 9.64e-1 1 8.48e-1 7.66e-1

10 x |x |0.5 2 1 4 1.46 1 1.59 1.67e-1

11 x |x |0.5 2 2 6 1.36 1 1.51 8.09e-2

Conjecture 4.1 Let d, γ ∈ N be arbitrarily fixed with γ > 1. For all f ∈ Cs,α[a, b]
with 1 ≤ s ≤ (d + 1), and any set of n + 1 nodes a = x0 < x1 < ... < xn = b
with n ≥ d such that h ∼ h∗ ∼ n−1, the associated generalized FH interpolant r̃( f )
satisfies

‖ f − r̃( f )‖∞ ≤ C
ns+α

(30)

Fig. 3 Pointwise absolute error when interpolating the function f (x) = |x | with d = 1, h∗ = 1.0e-3 and
h = 5h∗ for increasing values of γ = 1, 2, . . . , 7. The error is plotted in blue for γ = 1, in red for γ = 2
and so on
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where C > 0 is a constant independent of n, h, h∗.

Note that in Table 1, for i = 6, 8, 9, we also considered d = 0 which is not covered
by the theory of Theorem 3.1 or Theorem 3.4.

When γ = 1, experimental results for f (x) = |x | are given in [6] and for f (x) =
|x |0.5 in [1]. To illustrate the behavior of the appproximation when γ is varied, we
consider the function f (x) = |x |, d = 1, h∗ = 1.0e-3 and h = 5h∗. For γ =
1, 2, . . . , 7, the error function | f (x)− r̃( f , x)| is plotted in Fig. 3. When γ increases,
the error is more and more concentrated around the x-value 0. The same behavior was
also observed for equidistant points [12].

5 Conclusions

In [12], we proved several results concerning the convergence rate of generalized FH
interpolants corresponding to equidistant and quasi-equidistant distributions of nodes.
These results required a restriction on the value of the parameter γ . In this paper, we
proved similar convergence results without a need for a restriction on the value of
γ .

More generally, for arbitrary distributions of nodes, we stated error estimates in
terms of h and h∗ for continuously differentiable functions and for Lipschitz contin-
uous functions.

Several numerical experiments confirmed the theoretical results. In the case of
non–differentiable functions with isolated singularities, they show that, for fixed d
and increasing values of γ , even if the maximum absolute errors are almost compara-
ble, we get an improvement in the pointwise approximation close to the singularities.
Moreover, they indicate that even stronger results are possible in the case of contin-
uously differentiable functions having a Hölder continuous highest derivative. The
proof of this conjecture remains an open problem.
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