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Abstract
The low-rank quaternion matrix approximation has been successfully applied in many
applications involving signal processing and color image processing. However, the
cost of quaternion models for generating low-rank quaternion matrix approximation
is sometimes considerable due to the computation of the quaternion singular value
decomposition (QSVD), which limits their application to real large-scale data. To
address this deficiency, an efficient quaternion matrix CUR (QMCUR) method for
low-rank approximation is suggested, which provides significant acceleration in color
image processing. We first explore the QMCUR approximation method, which uses
actual columns and rows of the given quaternion matrix, instead of the costly QSVD.
Additionally, two different sampling strategies are used to sample the above-selected
columns and rows. Then, the perturbation analysis is performed on the QMCUR
approximation of noisy versions of low-rank quaternionmatrices. Andwe also employ
the proposed QMCUR method to color image recovery problem. Extensive experi-
ments on both synthetic and real data further reveal the superiority of the proposed
algorithm compared with other algorithms for getting low-rank approximation, in
terms of both efficiency and accuracy.
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1 Introduction

Quaternion [1] as a mathematical concept was originally introduced by Hamilton in
1843. As an extension of complex numbers, a quaternion number consists of one real
part and three imaginary parts. A quaternion matrix is a generalization of a complex
matrix in quaternion algebra.Bynow, quaternions andquaternionmatrices havewidely
used in signal processing [2, 3], machine learning [4, 5], color image processing [6,
7], and other fields [8, 9]. By encoding the red, green, and blue channel pixel values of
a color image on the three imaginary parts of quaternion matrix, this method perfectly
fits the color image structure and effectively preserves the inter-relationship between
the color channels [10].

As an emerging mathematical tool, low-rank quaternion matrix approximation
(LRQA) has attracted much attention in the field of color image processing, such as
color face recognition [11], color image inpainting [12–15], and color image denoising
[16, 17]. For instance, Chen et al. [18] proposed the quaternion nuclear norm-based
LRQA for color image denoising and inpainting. This method fully utilizes the high
correlation among RGB channels by extending low-rank matrix approximation into
the quaternion domain. Yu et al. [19] further extended theweighted nuclear normmin-
imization (WNNM) into the quaternion domain and proposed the quaternion-based
WNNM method for color image restoration. Notably, the work [20] proposed the
robust quaternion matrix completion to minimize the nuclear norm and l1-norm. This
approach provides an exact recovery guarantee under certain conditions and shows
superior performance for color image recovery. Moreover, Jia et al. [21] introduced
the patch group-based nonlocal self-similarity (NSS) prior scheme to learn explicit
NSS models, and subsequently offered the NSS-based quaternion matrix completion
(QMC) algorithm to reconstruct color images, leading to a promising result. Fur-
thermore, they extended this approach to tensor NSS-based QMC for color videos
inpainting. Additionally, in [22], the authors employed quaternion logarithmic norm
to achieve amore accurate low-rank approximation. However, a key limitation of these
methods for generating low-rank quaternion matrix approximation is that they need to
compute the quaternion singular value decomposition (QSVD) in each iteration and
suffer from computational deficiency, especially for large-scale data.

In addition to rank minimization, recent studies have utilized quaternion matrix
decomposition and randomized techniques to improve the performance of LRQA
[13, 23]. For instance, Miao et al. [24] suggested the matrix factorization for the
target quaternion matrix, followed by three quaternion-based bilinear factor matrix
norm factorization methods for low-rank quaternion matrix completion, which can
avoid expensive calculations. Liu et al. [25] presented a randomized QSVD algorithm
for low-rank matrix approximation. The randomized QSVD algorithm reduces the
computational cost compared to traditional QSVD for large-scale data. Is there any
method with lower computational cost for low-rank approximation of a quaternion
matrix?

In recent years, thematrixCUR (MCUR)method [26–28] for fast low-rank approxi-
mation of realmatrices has been actively investigated because of its ability to efficiently
handle large-scale problems. The MCUR method approximates a low-rank matrix by
directly sampling a subset of columns and rows from the original matrix and repre-
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senting it as a product of three small-scale matrices. Owing to the random column/row
selection strategy, the MCUR decomposition shows great potential for reducing the
computational costs and preserving the properties of the original datamatrix compared
with other methods [29, 30].

To further enhance the approximation performance and boost the computational
efficiency of LRQA, we consider the efficient quaternion matrix CUR (QMCUR)
method for low-rank approximation. Precisely, the QMCUR approximation of a
quaternion matrix is obtained by utilizing the actual rows and columns of the original
quaternion matrix. Additionally, we employ two different sampling strategies to sam-
ple the above-selected columns and rows. In summary, the introduction of theQMCUR
approximation and the utilization of sampling strategies offer promising avenues for
achieving low-rank approximation. The main contributions of this paper are twofold:

• We consider the QMCUR method for low-rank approximation of a quaternion
matrix. This approach helps to reduce computational costs and improve the preci-
sion of low-rank approximation.

• The perturbation error bound of the proposed approximation method is studied
and demonstrated under the spectral norm. We also employ the QMCUR method
to color image recovery problem and develop an algorithm to solve it.

• Experimental results for synthetic data and color images demonstrate that the
proposed QMCUR approximation method achieves a substantial speed-up while
maintaining accuracy compared with other methods.

The rest of the paper is organized as follows. The main notation and preliminary for
quaternions are presented in Section 2. Section 3 gives the details of the proposed
quaternion CUR approximation method and perturbation error bound, and presents
the QMCUR method for color image recovery. We provide numerical experiments in
Section 4. Finally, some concluding remarks will be given in Section 5.

2 Preliminaries

2.1 Notation

Throughout this paper, R, C, and Q respectively denote the set of real numbers, the
set of complex numbers, and the set of quaternions. The set of all positive integers
is denoted by N, and the symbol [n] represents the set of integers {1, . . . , n} for any
n ∈ N. A scalar, a vector, and a matrix are written as x , x, and X, respectively. A
dot (above the variable) is used to denote a quaternion variable Q (e.g., ẋ , ẋ, and
Ẋ respectively represent a quaternion scalar, a quaternion vector, and a quaternion
matrix). We use Ẋ(I , :) and Ẋ(:, J ) to denote the row and column submatrices with
indices I and J , respectively. Here, (·)∗, (·)�, (·)H , and (·)† represent the conjugate,
transpose, conjugate transpose, and Moore-Penrose inverse, respectively.
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2.2 Quaternion and quaternionmatrices

The set of quaternions Q is a linear space over R, with an ordered basis of 1, i ,
j , and k. Here, i , j , and k are three imaginary units with the multiplication laws:
i2 = j2 = k2 = i j k = −1, i j = − j i = k, j k = −k j = i , ki = −i k = j .
An quaternion number ẋ ∈ Q is of the form ẋ = x0 + x1 i + x2 j + x3k ∈ Q with
x0, x1, x2, x3 ∈ R. In particular, ẋ is called a pure quaternion if the real component x0
equals 0. The conjugate and modulus of x are defined as ẋ∗ = x0 − x1 i − x2 j − x3k

and |ẋ | =
√
x20 + x21 + x22 + x23 , respectively.

Analogously, a quaternion matrix Ẋ ∈ Q
m×n can be written as Ẋ = X0 +

X1 i + X2 j + X3k with X0,X1,X2,X3 ∈ R
m×n . For given Ẋ = (ẋst ) ∈ Q

m×n ,
the conjugate of Ẋ is denoted by Ẋ∗ = (ẋ∗

st ) ∈ Q
m×n , the transpose of Ẋ is

denoted by Ẋ� = (ẋts) ∈ Q
n×m , and the conjugate transpose of Ẋ is denoted

by ẊH = (ẋ∗
ts) ∈ Q

n×m . Moreover, the Frobenius norm of Ẋ is defined as

‖Ẋ‖F =
√
Tr(ẊH Ẋ) =

√∑m
s=1

∑n
t=1 |ẋst |2, where Tr(·) is the trace operator, and

the spectral norm ‖Ẋ‖2 is defined as ‖Ẋ‖2 = maxȧ∈Qn ,‖ȧ‖2=1 ‖Ẋȧ‖2. The following
gives some definitions and properties of quaternion matrices.

Definition 1 (The rank of quaternion matrix[31]) The maximum number of right
(left) linearly independent columns (rows) of a quaternion matrix Ẋ ∈ Q

m×n is called
the rank of Ẋ.

Definition 2 (Quaternion singular value decomposition (QSVD)[31]) Let Ẋ ∈
Q

m×n be of rank k. There exist unitary quaternionmatrices Ẇ ∈ Q
m×m and V̇ ∈ Q

n×n

such that Ẋ = Ẇ�V̇H , where � =
(
Dk 0

0 0

)
∈ R

m×n , and Dk = diag(σ1, . . . , σk)

∈ R
k×k is a real diagonal matrix and has k positive entries σk (i = 1, . . . , k) on

its diagonal (i.e., positive singular values of Ẋ). The truncated QSVD of A with
rank k is denoted by Ak = Ẇk�kV̇H

k , where Ẇk = Ẇ(:, 1 : k) ∈ Q
m×k ,

V̇k = V̇(:, 1 : k) ∈ Q
n×k , and �k is a k × k matrix containing the largest k sin-

gular values.

Definition 3 (Cayley-Dickson form[32]and Complex adjoint form [31]) Let Ẋ =
X0 + X1 i + X2 j + X3k, Ẋ ∈ Q

m×n , X0,X1,X2,X3 ∈ R
m×n . Then the Cayley-

Dickson form of Ẋ is expressed by Ẋ = Xa + Xb j ∈ Q
m×n, where Xa = X0 +

X1 i,Xb = X2 + X3 j , and Xa,Xb ∈ C
m×n . The complex adjoint form of X is

formulated as

PẊ =
[

Xa Xb

−X∗
b X∗

a

]
∈ C

2m×2n, (1)
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The relation between the QSVD of quaternion matrix Ẋ and the SVD of its equivalent
complex matrix PẊ ∈ C

2m×2n (PẊ = W�′VH ) is defined as follows [3, 33, 34]

� = row(colodd(�
′)) ∈ R

m×n,

Ẇ = colodd(W1) + colodd(−W∗
2) j ∈ Q

m×m,

V̇ = colodd(V1) + colodd(−V∗
2) j ∈ Q

n×n,

(2)

such that Ẋ = Ẇ�V̇H , where

W =
⎡
⎢⎣W1t m×2m

[W2]m×2m

⎤
⎥⎦ ∈ C

2m×2m, V =
⎡
⎢⎣V1t n×2n

[V2]n×2n

⎤
⎥⎦ ∈ C

2n×2n, (3)

and rowodd(M), colodd(M) extracts the odd rows and odd columns of matrix M,
respectively. Consequently, we obtain the QSVD of quaternion matrix Ẋ as Ẋ =
Ẇ�V̇H .

Based on QSVD Ẋ = Ẇ�V̇H we can further obtain the Moore-Penrose inverses
[35, 36] of quaternion matrix as

Ẋ† = V̇�†ẆH = V̇

(
D−1
r 0

0 0

)
ẆH Ẋ ∈ Q

n×m . (4)

More information about quaternion matrices can be found in [3, 31, 35].

3 Proposed approach

In this section, we first present the QMCUR method, which is designed to efficiently
compute a low-rank approximation of a large-scale quaternion matrix with low com-
putational costs and comparable accuracy. Then we provide the perturbation estimates
for the QMCUR approximation of the noisy version of low-rank matrices. Further-
more, We employ the QMCUR method to color image recovery problem and develop
an algorithm to solve it.

3.1 QMCUR-based low-rank approximationmethod

We now present the QMCUR approximation method. Let Ẋ ∈ Q
m×n be a low-rank

quaternion matrix with a predefined rank k. Consider row indices I ⊆ [m] and column
indices J ⊆ [n] satisfying |I |, |J | ≥ k. Denote a column submatrix Ċ = Ẋ(:, J )

whose columns span the column space of Ẋ and a row submatrix Ṙ = Ẋ(I , :) whose
rows span the row space of Ẋ. Then the QMCUR approximation of Ẋ is a product of
the form

Ẋ ≈ ĊU̇Ṙ, (5)

123



Numerical Algorithms

where Ċ ∈ Q
m×|J | with |J | columns from the quaternion matrix Ẋ and Ṙ ∈ Q

|I |×n

with |I | rows from the quaternionmatrix Ẋ. It’s obvious that the core quaternionmatrix
U̇ ∈ Q

|J |×|I | should be computed to yield the smallest error. The optimal choice for
the core quaternion matrix U̇ in the least-squares sense is U̇ = Ċ†ẊṘ† [37] because

Ċ†ẊṘ† = argmin
U̇∈Q|J |×|I |

‖Ẋ − CUR‖2F . (6)

Note that one may replace Ċ† in (5) by Ċ†ẊṘ† to improve the approximation, result-
ing in the QMCUR approximation ĊĊ†ẊṘ†Ṙ. Algorithm 1 summarizes the overall
process of the QMCUR approximation.

Algorithm 1Main steps of QMCUR approximation
Input: Ẋ ∈ Q

m×n : the quaternion matrix; k: predefined rank; |I |, |J |: number of rows and columns to
sample; {p j }, {qi }: sampling probability distribution, j = 1, . . . , n, and i = 1, . . . ,m.

1: Drawsampling column indices J ⊆ [n]based on the sampling probability p j and construct Ċ ∈ Q
m×|J |;

2: Draw sampling row indices I ⊆ [m] based on the sampling probability qi and construct Ṙ ∈ Q
|I |×n ;

3: Compute Ċ† ∈ Q
|J |×m and Ṙ† ∈ Q

n×|I | by (7);
4: Compute U̇: U̇ = Ċ†ẊṘ† ∈ Q

|J |×|I |;
Output: Ċ, U̇, Ṙ such that Ẋ ≈ ĊU̇Ṙ.

In Algorithm 1, the matrix U̇ ∈ Q
|J |×|I | is computed by U̇ = Ċ†ẊṘ†. Here, the

computation of Ċ† relies on its QSVD (see (4) for more details) [35, 36]. If the QSVD
of Ċ ∈ Q

m×|J | is Ċ = Ẇ�V̇H , then the Moore-Penrose inverse of Ċ is given by

Ċ† = V̇�†ẆH ∈ Q
|J |×m . (7)

And the calculation of Ṙ† ∈ Q
n×|I | is similar to that of Ċ†. Additionally, we set the size

of Ċ to bem×k log k and Ṙ to be k log k×n for the QMCUR approximation method.
The indices used to determine Ċ and Ṙ are sampled using two different strategies [38,
39]. In the first strategy, the sampling probabilities pcolj and qrowi for each column j

and row i of the quaternion matrix Ẋ are based on the Euclidean norm of the columns
and rows, which are respectively defined as

pcolj := ‖Ẋ(:, j)‖22
‖Ẋ‖2F

, j = 1, 2, . . . , n and qrowi := ‖Ẋ(i, :)‖22
‖Ẋ‖2F

, i = 1, 2, . . . ,m.

(8)
This strategy is referred to as QMCUR_length. In the second strategy, the sampling
probabilities punifj and qunifi are respectively defined as

punifj := 1

n
, j = 1, 2, . . . , n and qunifi := 1

m
, i = 1, 2, . . . ,m. (9)

This approach is referred to as QMCUR_uniform.
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3.2 Computational complexity

Now, we discuss the computational complexity of the proposed algorithm. Let Ẋ ∈
H

m×n be a given quaternion matrix. According to (2), the computation of the QSVD
for am×n quaternionmatrix is equivalent to the computation of the SVD of a 2m×2n
complex matrix (its complex adjoint). Thus, the computational complexity of QSVD
for a m × n quaternion matrix isO(min(8mn2, 8nm2)). Then, computing Ċ† requires
performing QSVD on matrices with size of m × |J | and multiplication, which cost
O((9|J |2m+|J |m2).Similarly, computing Ṙ† requires performingQSVDonmatrices
with size of |I |×n andmultiplication,which costO(9|I |2n+|I |n2).Computing U̇ and
Ẋ only involves multiplication costingO((|I |+|J |)mn+|I ||J |(m+n)). In summary,
the computational cost of the developed algorithm isO((8|J |2m + 8|I |2n + |J |m2 +
|I |n2 + (|J | + |I |)mn).

3.3 Perturbation estimates for CUR approximation

In practical applications, quaternion matrix data is often perturbed, such as noise in
pictures, which may cause huge errors. In this section, we present the perturbation
analysis suggested by the QMCUR approximation described above. Our main task
will be to consider matrices in the form of

˜̇X = Ẋ + Ė, (10)

where Ẋ ∈ Q
m×n with rank k, and Ė ∈ Q

m×n is an arbitrary noise quaternion matrix
drawn from a certain distribution.

Before analyzing the perturbation, we will first introduce some notations. If ˜̇X =
Ẋ + Ė, and we consider ˜̇C = ˜̇X(:, J ) ∈ Q

m×|J |, ˜̇R = ˜̇X(I , :) ∈ Q
|I |×n , and ˜̇U =

˜̇C† ˜̇X ˜̇R† ∈ Q
|J |×|I | for selected index sets I and J . Then we write

⎧
⎨
⎩

˜̇C = Ẋ(:, J ) + Ė(:, J ) = Ċ + Ė(:, J ),

˜̇R = Ẋ(I , :) + Ė(I , :) = Ṙ + Ė(I , :),
(11)

where Ċ = Ẋ(:, J ) ∈ Q
m×|J |, Ṙ = Ẋ(I , :) ∈ Q

|I |×n , and U̇ = Ċ†ẊṘ† ∈ Q
|J |×|I |.

For ease of notation, we will use the conventions that ĖJ = Ė(:, J ) ∈ Q
m×|J | and

ĖI = Ė(I , :) ∈ Q
|I |×n . The following theorem provides a perturbation estimate for

the QMCUR approximation.

Theorem 1 Let ˜̇X = Ẋ+ Ė for a fixed but arbitrary Ė ∈ Q
m×n . Using the notation in

(11), then the following holds:

‖Ẋ − ˜̇C ˜̇C† ˜̇X ˜̇R† ˜̇R‖ ≤ ‖ĖI ‖‖ẊṘ†‖ + ‖ĖJ‖‖Ċ†Ẋ‖ + 3‖Ė‖. (12)
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Furthermore, suppose that Ẋ ∈ Q
m×n has rank k and its truncated QSVD is Ẋ =

Ẇk�kV̇H
k , where Ẇk ∈ Q

m×k , �k ∈ R
k×k , and V̇k ∈ Q

n×k . Then we have

‖Ẋ − ˜̇C ˜̇C† ˜̇X ˜̇R† ˜̇R‖ ≤ ‖Ė‖(‖Ẇ†
k,I ‖ + ‖V̇†

k,J‖ + 3), (13)

where Ẇk,I = Ẇk(I , :) ∈ Q
|I |×k and V̇k,J = V̇k(J , :) ∈ Q

|J |×k for index sets I , J .
In a word, Theorem 1 shows that the error estimation in the QMCUR method is

controlled by the pseudoinverses of the submatrices of the orthogonal singular vectors
and is linear in the norm of the noise Ė. To establish Theorem 1, we will introduce
the following lemmas.

Lemma 1 Suppose that Ẋ ∈ Q
m×n has rank k with the QMCUR approximation:

Ẋ ≈ CUR, where Ċ = Ẋ(:, J ) with selected column indices J , Ṙ = Ẋ(I , :) with
selected row indices I , and U̇ = Ċ†ẊṘ†. Then we have

rank(Ċ) = rank(Ṙ) = rank(Ẋ). (14)

Proof Recall that Ċ = Ẋ(:, J ). Thus, span(Ċ) ⊂ span(Ẋ). On account of the fact
that Ẋ = ĊĊ†ẊṘ†Ṙ, we have span(Ẋ) ⊂ span(Ċ). A similar argument shows that
span(ṘH ) ⊂ span(ẊH ). The conclusion follows. �

Lemma 2 The following hold:

‖Ẋ − ˜̇C ˜̇C† ˜̇X‖ ≤ ‖ĖJ‖‖Ċ†Ẋ‖ + ‖Ė‖, ‖Ẋ − ˜̇X ˜̇R† ˜̇R‖ ≤ ‖ĖI ‖‖ẊṘ†‖ + ‖Ė‖. (15)

Proof Note that

‖(I − ˜̇C ˜̇C†
)Ċ‖ = ‖(I − ˜̇C ˜̇C†

) ˜̇C − (I − ˜̇C ˜̇C†
)ĖJ‖

≤ ‖(I − ˜̇C ˜̇C†
) ˜̇C‖ + ‖(I − ˜̇C ˜̇C†

)ĖJ‖
≤ ‖ĖJ‖.

(16)

The final inequality holds because the first norm term is 0 by identity of the Moore-

Penrose pseudoinverse and‖I− ˜̇C ˜̇C†‖2 ≤ 1 as this is an orthogonal projection operator.
Since rank(Ċ) = rank(Ẋ), we have Ẋ = ĊĊ†Ẋ. Then

‖Ẋ − ˜̇C ˜̇C† ˜̇X‖ ≤ ‖(I − ˜̇C ˜̇C†
)Ẋ‖ + ‖Ė‖

= ‖(I − ˜̇C ˜̇C†
)ĊĊ†Ẋ‖ + ‖Ė‖

≤ ‖ĖJ‖‖Ċ†Ẋ‖ + ‖Ė‖.
(17)

The second inequality is derived by mimicking the above argument. The conclusion
follows. �
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Lemma 3 Suppose Ẋ, Ċ, U̇, and Ṙ are as in (5) such that Ẋ = ĊU̇Ṙ, and suppose that
rank(Ẋ) = k. Let Ẋ = Ẇk�kV̇H

k be the truncated QSVD of Ẋ. Then the following
hold:

‖ẊṘ†‖ = ‖Ẇ†
k,I ‖, ‖Ċ†Ẋ‖ = ‖(V̇H

k,J )
†‖, (18)

where Ẇk,I = Ẇk(I , :) ∈ Q
|I |×k and V̇k,J = V̇k(J , :) ∈ Q

|J |×k for selected index
sets I , J .

Proof Begin with the fact that Ṙ = Ẇk(I , :)�kV̇H
k = Ẇk,I�kV̇H

k . Then we have

ẊṘ† = Ẇk�kV̇H
k (Ẇk,I�kV̇H

k )†. (19)

Notice that Ẇk,I has full column rank, �k is a k × k matrix with full rank, and V̇H
k

has orthogonal rows (i.e., (V̇H
k )† = V̇k). In this case,

(Ẇk,I�kV̇H
k )† = (V̇H

k )†�−1
k Ẇ†

k,I = V̇k�
−1
k Ẇ†

k,I . (20)

Consequently, the following holds:

‖ẊṘ†‖ = ‖Ẇk�kV̇H
k V̇k�

−1
k Ẇ†

k,I ‖
= ‖�kV̇H

k V̇k�
−1
k Ẇ†

k,I ‖
= ‖�k�

−1
k Ẇ†

k,I ‖
= ‖Ẇ†

k,I ‖.

(21)

The second equality above follows from the unitary invariance of the norm [40].
Similarly, we have

‖Ċ†Ẋ‖ = ‖(V̇H
k,J )

†‖, (22)

whereupon the conclusion follows from the fact that ‖(V̇H
k,J )

† = (V̇†
k,J )

H which has

the same norm as V̇†
k,J . The conclusion follows. �


Proof of Theorem 1 First note that

‖Ẋ − ˜̇C ˜̇C† ˜̇X ˜̇R† ˜̇R‖ = ‖Ẋ − ˜̇C ˜̇C† ˜̇X + ˜̇C ˜̇C† ˜̇X(I − Ṙ†Ṙ)‖
≤ ‖Ẋ − ˜̇C ˜̇C† ˜̇X‖ + ‖ ˜̇C ˜̇C†‖‖ ˜̇X(I − Ṙ†Ṙ)‖
≤ ‖Ẋ − ˜̇C ˜̇C† ˜̇X‖ + ‖ ˜̇X(I − Ṙ†Ṙ)‖.

(23)

The second inequality follows from the fact that ‖ĊĊ†‖F = 1. Next, using the formula
˜̇X = Ẋ+ Ė, we have ‖ ˜̇X(I− ˜̇R† ˜̇R)‖ ≤ ‖Ẋ(I− ˜̇R† ˜̇R)‖ + ‖Ė‖ since ‖I− ˜̇R† ˜̇R‖2 ≤ 1.
Then applying Lemma 2, we obtain

‖Ẋ − ˜̇C ˜̇C† ˜̇X ˜̇R† ˜̇R‖ ≤ ‖Ẋ − ˜̇C ˜̇C† ˜̇X‖ + ‖Ẋ(I − ˜̇R† ˜̇R)‖ + ‖Ė‖
≤ ‖ĖI ‖‖ẊṘ†‖ + ‖ĖJ‖‖Ċ†Ẋ‖ + 3‖Ė‖.

(24)
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Moreover, from Lemma 3, it follows that

‖Ẋ − ˜̇C ˜̇C† ˜̇X ˜̇R† ˜̇R‖ ≤ ‖Ė‖(‖Ẇ†
k,I ‖ + ‖V̇†

k,J‖ + 3). (25)

3.4 QMCUR approximation for color image recovery

In this section, we apply the QMCUR approximation method to recover color images.
The problemof recovering color images can be formulated as a quaternionmatrix com-
pletion problem, aiming to find its missing entries through the following optimization.
The mathematical model is

min
Ẋ

rank(Ẋ) s.t. P�(Ẋ) = P�(Ẏ), (26)

where rank(·) denotes the rank function, Ẋ ∈ Q
m×n and Ẏ ∈ Q

m×n represent the
recovered and observed quaternion matrices, respectively. � represents the set of
observed elements, and P�(Ẋ) is the projection operator that keeps entries in � and
zeros out others. However, directly solving the problem (26) is difficult as the rank
minimization problem is known as NP-hard [41].

The quaternion nuclear norm minimization (QNNM) [18] is a popular convex sur-
rogate of non-convex rank function, and its minimization method is as following

min
Ẋ

‖Ẋ‖∗ s.t. P�(Ẋ) = P�(Ẏ), (27)

However, the computational of QNNM can be quite expensive for large-scale data,
due to calculating the QSVD of quaternion matrices. Therefore, if the rank of the
matrix Ẋ is known [42–44], the QNNM method can be more effectively replaced by
the concept of quaternion decomposition. In this case, the problem (26) is presented
as follows

min
Ẋ

‖P�(Ẋ) − P�(Ẏ)‖2F s.t. rank(Ẋ) = k, (28)

Intuitively, this problem seeks the matrix Ẋ of rank k that best fits the given data Ẏ.
Similar to the Algorithm framework in [43], the optimization problem (28) can be

expressed as follows

min
Ẋ

‖Ẋ − Ṁ‖2F s.t. rank(Ẋ) = k, P�(Ẋ) = P�(Ẏ). (29)

where Ṁ ∈ Q
m×n is the auxiliary tensor variable. Therefore, we can solve the opti-

mization problem (28) alternatively over the variables Ẋ and Ṁ. The solution to the
minimization problem (28) can be approximated using the following iterative proce-
dures:

Ṁt+1 ← L(Ẋt ), (30)

Ẋt+1 ← � � Ẏ + (1 − �) � Ṁt+1, (31)
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where t represents the iteration number, L is the an operator used to calculate a
low-rank quaternion matrix approximation of the quaternion matrix Ẋ, which can be
achieved by Algorithm 1, and 1 is a matrix in which all components are equal to one.
The algorithmmainly consists of two steps: low-rank quaternionmatrix approximation
(30) andmasking computation (31).We summarize the proposedmethod inAlgorithm
2. It starts with the initial incomplete data Ẋ0 and iteratively enhances the approximate
solution until a stopping criterion is satisfied or the maximum number of iterations is
reached.

Algorithm 2 QMCUR approximation for color image recovery
Input: An incomplete quaternion matrix Ẏ ∈ Q

m×n , observation locations �, rows and columns (i.e., I
and J ) indices that define Ṙ ∈ Q

|I |×n and Ċ ∈ Q
m×|J | respectively, and maximal iteration tmax=200.

Output: The recovered quaternion matrix Ẋ∗.

1: Ẋ0 = Ẏ ∈ Q
m×n is the observed quaternion matrix with missing pixels.

2: Ṁ0 ∈ Q
m×n is a zero quaternion matrix.

3: For t = 0, 1, 2, . . . do
4: Ṁt+1 ← compute QMCUR approximation of the data matrix Ẋt using Algorithm 1.
5: Ẋt+1 = (Ṁt+1)�c + Ẏ�, where �c denotes the complementary set of �.
6: If ‖Ẋt+1 − Ẋt‖F/‖Ẋt‖F ≤ 10−4, or t ≥ tmax then
7: Ẋ∗ = Ẋt+1 and break,
8: end
9: end

4 Numerical experiments

In this section, we conduct numerical experiments to assess the accuracy and com-
putation time of the proposed QMCUR method for low-rank quaternion matrix
approximation.

Example 4.1 In this experiment, we demonstrate the error estimation in Theorem 1
using simulation data. We randomly generate a quaternion matrix Ẋ as a product
Ẋ = Ẇk�kV̇H

k ∈ Q
m×m , where Ẇk ∈ Q

m×k, V̇k ∈ Q
m×k are unitary matrices, and

�k is a diagonal k×k matrix with positive diagonal elements. In addition, the random
noise quaternion matrix is given by Ė = E0 + E1 i + E2 j + E3k ∈ Q

m×n , where the
entries of Et (t = 0, 1, 2, 3) are i.i.d. Gaussian variables with mean zero and variance
σ . Then we obtain the perturbed quaternion matrix

˜̇X = Ẋ + Ė. (32)

In this experiment, we assume that m = 500 and k = 50. By applying Algorithm

1 to compute the rank-k approximation of ˜̇X with σ = 10−1, 10−2, . . . , 10−6, Fig. 1

shows the results. As observed, the error ‖Ẋ − ˜̇C ˜̇U ˜̇R‖2 increases linearly as ‖Ė‖2
increases, which confirms the conclusion of Theorem 1.
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Fig. 1 ‖Ẋ − ˜̇C ˜̇U ˜̇R‖2 vs. ‖Ė‖2

Example 4.2 In this experiment, we test the proposed QMCUR method on simulated
quaternion data and compare their performance with that of QSVD [33], qSVD4 [45],

lansvdQ [46], and CSP-QM [7]. We still consider the perturbed quaternion matrix ˜̇X
in Example 4.1. Figure 2 displays the relative error and running time computed by
different methods with the varying size m when k =10. This error is measured by

‖Ṁ − Ẋ‖F
‖Ẋ‖F

, (33)

Fig. 2 Comparison of low-rank quaternion matrix approximation methods under different noise levels σ .
Rank k=10 is used in all tests and m varies from 50 to 500. Top row: relative approximation errors vs.
quaternion matrix dimensions. Bottom row: running time vs. quaternion matrix dimension
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Fig. 3 Numerical simulation results of different methods with different sampling strategies to color images
with different rank k. From top to bottom: Image01 and Image02, respectively

where Ẋ denotes the quaternionmatrix that represents the clean data and Ṁ is obtained
by all methods.

As observed, QMCUR_length and QMCUR_uniform methods in Algorithm 1 are
significantly faster than QSVD when the data size (i.e., m) is sufficiently large. In
particular, the errors for QMCUR_uniform are smaller than those obtained by the
QSVD algorithm in the noiseless case (i.e., σ = 0). This is mainly because only
the QSVD of the smaller sizes Ċ and Ṙ need to be computed, not the QSVD of the
quaternion matrix Ẋ. The proposed methods require less computation time and give
more accurate approximations than the qSVD4, lansvdQ, and CSP-QMmethods. This
observation verifies that the proposed QMCUR method enhance computational per-
formance by calculating the QSVD of selected rows and columns. In summary, the
proposed methods achieve a substantial speed-up while maintaining accuracy com-
pared to other methods, especially when m is sufficiently large.

Example 4.3 In this example, we evaluate the performance of the proposed QMCUR
method for color image compression. The dataset used in this example is the Set271

and two images are shown in Fig. 4. Each image, with a size of 683 × 1024 × 3, is
represented by a pure quaternion matrix Ẋ = Ri + G j + Bk ∈ Q

683×1024, where R,
G, and B represent the RGB (red, green, blue) channels of color image. The elements
of Ẋ are ẋst = rst i + gst j + bst k, where rst , gst , and bst denote the red, green, and

1 https://github.com/Huang-chao-yan/dataset.
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Fig. 4 Low-rank color image reconstruction. From top to bottom: Image01 and Image02, respectively

blue pixel values at the position (s, t) of the color image, respectively. Notably, the
number of rows and columns is sethui to klogk, where k represents the predefined rank
of the quaternion matrix Ẋ ∈ Q

m×n .

Figure 3 illustrates the relative error and running time of all methods for various
selected ranks. As observed, the performance of the proposed methods is superior to
that of QSVD in terms of relative error when k is set to a suitable size. In terms of
running time, the proposed methods are much faster than QSVD. Fig. 4 presents the
reconstructed image quality for various target ranks, showing little difference in the
visual effect between each original image and the approximate image obtained by the
proposed methods and QSVD.

Example 4.4 In this part, we test the Algorithm 2 using four-color images of size
512×768×3 from the Kodak PhotoCD Dataset2 under the random missing scenario.
Several low-rankmatrix completion methods are compared in this experiment, includ-
ing LRQA-1 [18], QLNF [22], and Q-DFN [24]. The missing ratio (MR) is defined
as the ratio of the number of missing elements to the total number of elements. To

2 http://r0k.us/graphics/kodak/
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provide a numerical evaluation of the recovered results, the peak signal-to-noise rate
(PSNR), structural similarity (SSIM), and running time per iteration (in seconds) are
employed. The higher PSNR and SSIM value imply better recovered results.

In Table 1, we list the PSNR, SSIM, and time values of different methods on
color images, and the best values are highlighted in bold. Compared with com-
peting methods, the proposed methods (QMCUR_length and QMCUR_uniform)
achieve the best results in terms of all quantitative metrics. Furthermore, the pro-
posed QMCUR_uniform is the fastest, demonstrating its feasibility on large-scale
color images. To clearly observe the recovery performance, Fig. 5 presents the recov-
ered images of four color images by all methods with MR = 80%. As observed, the

Table 1 PSNR, SSIM, and running time per iteration (in seconds) of results by different methods with
different MRs on color images. The best and second best values are respectively highlighted in boldface
and underlined

Data Method MR=90% MR=80% MR=70%
PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time

Observed 9.18 0.038 0.000 9.69 0.104 0.000 10.26 0.184 0.000

LRQA-1 24.71 0.954 0.460 26.73 0.967 0.446 28.07 0.975 0.503

DFN 24.89 0.953 0.348 27.04 0.967 0.280 28.51 0.976 0.350

QLNF 24.63 0.949 0.738 26.53 0.964 1.178 27.98 0.972 3.999

QMCUR_length 25.12 0.951 0.226 27.20 0.967 0.257 28.63 0.976 0.316

QMCUR_uniform 24.99 0.950 0.159 27.23 0.968 0.166 28.66 0.976 0.265

Observed 8.00 0.024 0.000 8.50 0.050 0.000 9.09 0.082 0.000

LRQA-1 22.79 0.771 0.456 25.50 0.868 0.498 27.24 0.905 0.478

DFN 23.10 0.757 0.270 25.96 0.852 0.350 27.79 0.889 0.326

QLNF 23.25 0.772 1.188 25.87 0.854 2.727 27.15 0.856 3.768

QMCUR_length 23.49 0.776 0.184 26.23 0.858 0.321 27.88 0.889 0.346

QMCUR_uniform 23.67 0.776 0.135 26.36 0.848 0.277 27.98 0.883 0.322

Observed 7.22 0.022 0.000 7.73 0.045 0.000 8.30 0.072 0.000

LRQA-1 21.85 0.725 0.478 23.98 0.798 0.451 25.41 0.841 0.542

DFN 21.86 0.702 0.362 24.13 0.783 0.335 25.60 0.825 0.349

QLNF 21.85 0.690 1.483 23.83 0.764 1.583 18.75 0.648 2.867

QMCUR_length 22.04 0.690 0.220 24.20 0.779 0.349 25.50 0.824 0.351

QMCUR_uniform 22.15 0.688 0.165 24.22 0.769 0.283 25.62 0.822 0.247

Observed 7.20 0.026 0.000 7.71 0.058 0.000 8.29 0.095 0.000

LRQA-1 21.75 0.815 0.434 24.85 0.894 0.512 26.84 0.927 0.501

DFN 22.58 0.830 0.286 25.46 0.900 0.318 27.57 0.930 0.362

QLNF 22.37 0.810 1.310 25.02 0.883 2.789 26.44 0.907 4.110

QMCUR_length 22.76 0.819 0.230 25.50 0.892 0.283 27.51 0.923 0.341

QMCUR_uniform 22.98 0.829 0.168 25.60 0.894 0.227 27.55 0.924 0.327
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Fig. 5 Visual comparison of different methods for color image recovery. From top to bottom: Image03,
Image04, Image05, and Image06, respectively

proposed methods generate better results than the compared methods. These observa-
tions demonstrate that our methods can be applicable for large-scale data processing.

5 Conclusion

This work presented an efficient quaternion matrix CUR method for computing low-
rank approximation of a quaternion matrix. The QMCUR approximation offers a
balance between accuracy and computational costs by selecting specific column and
row submatrices of a given quaternion matrix. Besides, we conducted a perturbation
analysis of the proposed approximation method and concluded that the error in the
quaternion spectral norm is correlated with the noise quaternion matrix in the first
order. Experimental results illustrated that the QMCUR approximation methods are
significantly faster than comparative low-rank quaternionmatrix approximationmeth-
ods, without sacrificing the quality of reconstruction on both synthetic and color image
datasets. In the future, we will extend the proposed methods to other high-dimensional
data processing, e.g., quaternion tensor completion [47], tensor completion [48, 49]
and multi-dimensional image recovery [50].
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