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Abstract
The limited memory steepest descent method (LMSD, Fletcher, 2012) for uncon-
strained optimization problems stores a few past gradients to compute multiple
stepsizes at once.We review this method and propose new variants. For strictly convex
quadratic objective functions, we study the numerical behavior of different techniques
to compute new stepsizes. In particular, we introduce a method to improve the use
of harmonic Ritz values. We also show the existence of a secant condition associated
with LMSD, where the approximating Hessian is projected onto a low-dimensional
space. In the general nonlinear case, we propose two new alternatives to Fletcher’s
method: first, the addition of symmetry constraints to the secant condition valid for
the quadratic case; second, a perturbation of the last differences between consecutive
gradients, to satisfy multiple secant equations simultaneously.We show that Fletcher’s
method can also be interpreted from this viewpoint.
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1 Introduction

Westudy the limitedmemory steepest descentmethod (LMSD), introducedbyFletcher
[1], in the context of unconstrained optimization problems for a continuously differ-
entiable function f :

min
x∈Rn

f (x).
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The iteration for a steepest descent scheme reads

xk+1 = xk − βk gk = xk − α−1
k gk,

where gk = ∇ f (xk) is the gradient, βk > 0 is the steplength, and its inverse αk = β−1
k

is usually chosen as an approximate eigenvalue of an (average) Hessian. We refer to
[2, 3] for recent reviews on various steplength selection procedures.

The key idea of LMSD is to store the latest m > 1 gradients, and to compute (at
most) m new stepsizes for the following iterations of the gradient method. We first
consider the strictly convex quadratic problem

min
x∈Rn

1
2 x

TAx − bT x (1)

where A is a symmetric positive definite (SPD) matrix with eigenvalues 0 < λ1 ≤
· · · ≤ λn , and b ∈ R

n . Fletcher points out that the m most recent gradients G =
[ g1 . . . gm ] form a basis for an m-dimensional Krylov subspace of A. (Although G
will change during the iterations, for convenience, and without loss of generality, we
label the first column as g1.) Then, m approximate eigenvalues of A (Ritz values) are
computed from the low-dimensional representation of A, a projected Hessian matrix,
in the subspace spanned by the columns of G, and used as m inverse stepsizes. For
m = 1, the proposed method reduces to the steepest descent method with Barzilai–
Borwein stepsizes [4].

LMSD shares the property with L-BFGS (see, e.g., [5, Ch. 7]), the limited memory
version of BFGS, that 2m past vectors are stored, of the form sk−1 = xk − xk−1
and yk−1 = gk − gk−1. While LMSD is a first-order method which incorporates
some second-order information in its simplest form (the stepsize), L-BFGS is a quasi-
Newton method, which exploits the s-vectors and y-vectors to provide an additive
rank-m update of a tentative approximate inverse Hessian (typically a multiple of the
identity matrix). Compared to BFGS, at each iteration, the L-BFGS method computes
the action of the approximate inverse Hessian, without storing the entire matrix and
using O(mn) operations (see, e.g., [5, Ch. 7]). As we will see in Section 4, the cost
of m LMSD iterations is approximately O(m2n), meaning that the costs of the two
algorithms are comparable.

There are several potential benefits of LMSD. First, as shown in Fletcher [1], there
are some problems for which LMSD performs better than L-BFGS. Secondly, to the
best of our knowledge and as stated in [5, Sec. 6.4], there are no global convergence
results for quasi-Newton methods applied to non-convex functions. Liu and Nocedal
[6] have proved the global superlinear convergence of L-BFGS only for (twice con-
tinuously differentiable) uniformly convex functions. On the contrary, as a gradient
method endowed with line search, LMSD converges globally for continuously dif-
ferentiable functions (see [7, Thm. 2.1], for the convergence of gradient methods
combined with nonmonotone line search). Finally, and quite importantly, we note that
the idea of LMSD can be readily extended to other types of problems: to name a few,
it has been used in the scaled spectral projected gradient method [8] for constrained
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optimization problems, in a stochastic gradient method [9], and, more recently, in a
projected gradient method for box-constrained optimization [10].

Summary of the state of the art and our contributions. In the quadratic case
(1), the projected Hessian matrix can be computed from the Cholesky decomposition
of GTG (cf. [1, Eq. (19)] and Section 2) without involving any extra matrix-vector
product withA. Although this procedure is memory and time efficient, it is also known
to be potentially numerically unstable (cf., e.g., the discussion in [11]) because of the
computation of the Gramian matrix GTG, especially in our context of having an ill-
conditionedG. Therefore, we consider alternativeways to obtain the projectedHessian
in Section 2.1; in particular, we propose to use the pivoted QR decomposition of G
(see, e.g., [12, Algorithm 1]), or its SVD, and compare the three methods.

In addition, we show that, in the quadratic case, there is a least squares secant
condition associated with LMSD. Indeed, in Section 2.4 we prove that the projected
Hessian, obtained via one of these three decompositions, is similar to the solution
to minB ‖Y − SB‖, where ‖ · ‖ denotes the Frobenius norm of a matrix, and S =
[ s1 . . . sm ] and Y = [ y1 . . . ym ] store the m most recent s-vectors and y-vectors,
respectively.

Since Y = AS for quadratic functions, the obtained stepsizes are inverse eigenval-
ues of a projection of the Hessian matrix A. In the general nonlinear case (i.e., for a
non-quadratic function f ), one can still reproduce the small matrix in [1, Eq. (19)],
since the Hessian is not needed explicitly in its computation. However, there is gen-
erally not a clear interpretation of the stepsizes as approximate inverse eigenvalues of
a certain Hessian matrix. Also, the obtained eigenvalues might even be complex.

To deal with this latter problem, Fletcher proposes a practical symmetrization of
[1, Eq. (19)], but, so far, a clear theoretical justification for this approach seems to
be lacking. To address this issue, we rely on Schnabel’s theorem [13, Thm. 3.1] to
connect Fletcher’s symmetrization to a perturbation of the Y matrix, of the form
˜Y = Y + �Y. This guarantees that the eigenvalues of the symmetrized matrix [1,
Eq. (19)] correspond to a certain symmetric matrix A+ that satisfies multiple secant
equations ˜Y = A+S as in the quadratic case. The matrix A+ can be interpreted as an
approximate Hessian in the current iterate.

In the same line of thought, we also exploit one of the perturbations ˜Y proposed by
Schnabel [13] in theLMSDcontext.Although the idea of testingdifferent perturbations
of Y is appealing, a good perturbation may be expensive to compute, compared to the
task of getting m new stepsizes. Therefore, we explore a different approach based on
the modification of the least squares secant condition of LMSD. The key idea is to add
a symmetry constraint to the secant condition:

min
B=BT

‖Y − SB‖.

Interestingly, the solution to this problem corresponds to the solution of a Lyapunov
equation (see, e.g., [14]). This secant condition provides a smooth transition from the
strictly convex quadratic case to the general case, and its solution has real eigenvalues
by construction.
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Along with discussing both the quadratic and the general case, we study the com-
putation of harmonic Ritz values, which are also considered by Fletcher [1] and Curtis
and Guo [15, 16]. For the quadratic case, in Section 2.2, we show that there are some
nice symmetries between the computation of the Ritz values ofA by exploiting a basis
for the matrix of gradientsG, and the computation of the inverse harmonic Ritz values
of A by means of Y. Our implementation is different from Fletcher’s, but the two
approaches show similar performance in the quadratic experiments of Section 4.1. In
general, LMSD with harmonic Ritz values appears to show a less favorable behavior
than LMSD with Ritz values. Therefore, in Section 2.2, we present a way to improve
the quality of the harmonic Ritz values, by taking an extra Rayleigh quotient of the
harmonic Ritz vectors. This is based on the remarks in, e.g., [17, 18].

Outline. The rest of the paper is organized as follows. We first focus on the strictly
convex quadratic problem (1) in Section 2.We review the LMSDmethod, as described
by Fletcher [1], and present new ways to compute the approximate eigenvalues of the
Hessian.We also give a secant condition for the low-dimensional Hessian of which we
compute the eigenvalues. We move to the general unconstrained optimization prob-
lems in Section 3, where we give a theoretical foundation to Fletcher’s symmetrized
matrix [1, Eq. (19)], and show how to compute new stepsizes from the secant equa-
tion for quadratics, by adding symmetry constraints. A third new approach based on
[13] is also proposed. In both Sections 2 and 3, particular emphasis is put on the
issue of (likely) numerical rank-deficiency ofG (or Y, when computing the harmonic
Ritz values). Sections 2.3 and 3.4 report the LMSD algorithms for strictly convex
quadratic problems, as in [1], and for general continuously differentiable functions, as
in [2]. Related convergence results are also recalled. Finally, numerical experiments
on both strictly convex quadratics and general unconstrained problems are presented
in Section 4; conclusions are drawn in Section 5.

Throughout the paper, the Frobenius norm of a matrix is denoted by ‖ · ‖. The
eigenvalues of a symmetric matrix A are ordered increasingly λ1 ≤ · · · ≤ λn , while
its singular values are ordered decreasingly σ1 ≥ · · · ≥ σn .

2 Limitedmemory BB1 and BB2 for quadratic problems

We review Fletcher’s limited memory approach [1] for strictly convex quadratic func-
tions (1), and study some new theoretical and computational aspects. Common choices
for the steplength in gradientmethods for quadratic functions are theBarzilai–Borwein
(BB) stepsizes [4]

βBB1
k = gTk−1gk−1

gTk−1Agk−1
, βBB2

k = gTk−1Agk−1

gTk−1A
2 gk−1

. (2)

The inverse stepsizes αBB1
k = (βBB1

k )−1 and αBB2
k = (βBB2

k )−1 are the standard
and the harmonic Rayleigh quotients of A, evaluated at gk−1, respectively. Therefore,
they provide estimates of the eigenvalues of A. The key idea of LMSD is to pro-
duce m > 1 approximate eigenvalues from an m-dimensional space simultaneously,
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hopefully capturingmore information compared to that from a one-dimensional space.
One hint about why considering m > 1 may be favorable is provided by the well-
known Courant–Fischer Theorem and Cauchy’s Interlace Theorem (see, e.g., [19,
Thms. 10.2.1 and 10.1.1]). For two subspaces V ,W with V ⊆ W , we have

max
z∈V, ‖z‖=1

zTAz ≤ max
z∈W, ‖z‖=1

zTAz ≤ max‖z‖=1
zTAz = λn .

Therefore, a larger search space may result in better approximations to the largest
eigenvalue of A. Similarly, a larger subspace may better approximate the smallest
eigenvalue, as well as the next-largest and the next-smallest values.

We now show why m consecutive gradients form a basis of a Krylov subspace of
A. It is easy to check that, given the stepsizes β1, . . . , βm corresponding to them most
recent gradients, each gradient can be expressed as follows:

gk =
k−1
∏

i=1

(I − βiA) g1, k = 1, . . . ,m. (3)

Therefore allm gradients belong to theKrylov subspace of degreem (and of dimension
at most m)

gk ∈ Km(A, g1) = span{g1, Ag1, . . . , Am−1g1}.
Moreover, under mild assumptions, the columns of G form a basis for Km(A, g1).
This result is mentioned by Fletcher [1]; here we provide an explicit proof.

Proposition 1 Suppose the gradient g1 does not lie in an �-dimensional invariant
subspace, with � < m, of the SPD matrix A. If βk �= 0 for all k = 1, . . . ,m − 1, the
vectors g1, . . . , gm are linearly independent.

Proof In view of the assumption, the set {g1, A g1 . . . , Am−1g1} is a basis for
Km(A, g1). In fact, from (3),

[g1 g2 . . . gm ] = [g1 Ag1 . . . Am−1g1]

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 × × × ×
−β1 × × ×

β1β2 × ×
. . . ×

(−1)m
∏m−1

i=1 βi

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (4)

Up to a sign, the determinant of the rightmost matrix in this equation is βm−1
1 βm−2

2 · · ·
βm−1, which is nonzero if and only if the stepsizes are nonzero. Therefore, g1, . . . , gm
are linearly independent. 	


This result shows that m consecutive gradients of a quadratic function are linearly
independent in general; in practice, this formula suggests that small βi may quickly
cause ill conditioning. Numerical rank-deficiency of G is an important issue in the
LMSD method and will be considered in the computation of a basis for span(G) in
Section 2.1.
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For the following discussion, we also relate S and Y to the Krylov subspace
Km(A, g1).

Proposition 2 If G is a basis for Km(A, g1), then

(i) the columns of S also form a basis for Km(A, g1);
(ii) the columns of Y form a basis for AKm(A, g1).

Proof The thesis immediately follows from the relations

S = −GD−1, Y = −AGD−1, D = diag(α1, . . . , αm), (5)

where the αi = β−1
i are the latest m inverse stepsizes, ordered from the oldest to the

most recent. Note that D is nonsingular. 	

Given a basis for Km(A, g1) (or AKm(A, g1)), one can approximate some eigen-

pairs ofA from this subspace. The procedure is known as the Rayleigh–Ritz extraction
method (see, e.g., [19, Sec. 11.3]) and is recalled in the next section.

2.1 The Rayleigh–Ritz extraction

We formulate the standard and harmonic Rayleigh–Ritz extractions in the context of
LMSDmethods for strictly convex quadratic functions. LetS be the subspace spanned
by the columns of S, and Y be the subspace spanned by the columns of Y. Fletcher’s
main idea [1] is to exploit the Rayleigh–Ritz method on the subspace S. We will now
review and extend this approach.

We attempt to extract m promising approximate eigenpairs from the subspace S.
Therefore, such approximate eigenpairs can be represented as (θi ,Sci ), with nonzero
ci ∈ R

m , for i = 1, . . . ,m. The (standard) Rayleigh–Ritz extraction imposes a
Galerkin condition:

AS c − θ S c ⊥ S. (6)

This means that the pairs (θi , ci ) are the eigenpairs of the m ×m pencil (STY, STS).
The θi are called Ritz values. In the LMSD method, we have S = Km(A, g1) (see
Proposition 2). Note that for m = 1, the only approximate eigenvalue reduces to the
Rayleigh quotient αBB1 (2). Ritz values are bounded by the extreme eigenvalues ofA,
i.e., θi ∈ [λ1, λn]. This follows from Cauchy’s Interlace Theorem [19, Thm. 10.1.1],
by choosing an orthogonal basis for S. This inclusion is crucial to prove the global
convergence of LMSD for quadratic functions [1].

Although the matrix of gradients G (or S) already provides a basis for S, from a
numerical point of view it may not be ideal to exploit it to compute the Ritz values,
sinceG is usually numerically ill conditioned. Therefore,we recall Fletcher’s approach
[1] to compute a basis for S, and then propose two new variants: via a pivoted QR and
via an SVD. Fletcher starts by a QR decomposition G = QR, discarding the oldest
gradients whenever R is numerically singular. Then Q is an orthogonal basis for a
possibly smaller space S = span([gm−s+1, . . . , gm]), with s ≤ m. The product AG
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can be computed from the gradients without additional multiplications by A, in view
of

AG = −YD = [

G gm+1
]

J, where J =

⎡

⎢

⎢

⎢

⎣

α1

−α1
. . .

. . .
αm

−αm

⎤

⎥

⎥

⎥

⎦

. (7)

Here, the relation yk−1 = gk − gk−1 is used. Then the s × s low-dimensional repre-
sentation of A can be written in terms of R:

T := QTAQ = [R r ] JR−1, (8)

where r = QT gm+1. It is clear that T is symmetric; it is also tridiagonal in view of the
fact that it is associatedwith aKrylov relation for a symmetricmatrix (see also Fletcher
[1]). Since r is also the solution toRT r = GT gm+1, the matrixQ is in fact not needed
to compute r. For this reason, Fletcher concludes that the Cholesky decomposition
GTG = RTR is sufficient to determine T and its eigenvalues. Standard routines raise
an error whenGTG is numerically not SPD (numerically having a zero or tiny negative
eigenvalue). If this happens, the oldest gradients are discarded (if necessary one by
one in several steps), and the Cholesky decomposition is repeated.

Instead of discarding the oldest gradients g1, . . . , gm−s , wewill now consider a new
variant by selecting the gradients in the following way. We carry out a pivoted QR
decomposition ofG, i.e.,Ĝ� = ̂Q̂R, where ̂� is a permutation matrix that iteratively
picks the column with the maximal norm after each Gram–Schmidt step [12]. As a
consequence, the diagonal entries of ̂R are ordered nonincreasingly in magnitude. (In
fact, we can always ensure that these entries are positive, but since standard routines
may output negative values, we consider the magnitudes.)

The pivoted QR approach is also a rank-revealing factorization, although generally
less accurate than the SVD (see, e.g., [12]). Let ̂RG be the first s × s block of ̂R for
which |̂ri | > thresh · |̂r1|, where r̂i is the i th diagonal element of ̂R and thresh > 0.
A crude approximation to its condition number is κ(̂RG) ≈ |̂r1| / |̂rs |. Although this
approximation may be quite imprecise, the alternative to repeatedly compute κ(̂RG)

by removing the last column and row of the matrix at each iteration might take up to
O(m4) work, which, even for modest values of m, may be unwanted.

The approximation subspace for the eigenvectors ofA is now S = span(̂QG), with
Ĝ�G = ̂QĜRG , where ̂�G and ̂QG are the first s columns of ̂� and ̂Q, respectively.
The upper triangular ̂R can be partitioned as follows:

̂R =
[

̂RG ̂R12

0 ̂R22

]

. (9)

As in (8), we exploit (7) to compute the projected Hessian

BQR := ̂QT
G ÂQG = ̂QT

G AG ̂�ĜR−1
G = ̂QT

G [ ̂Q̂R̂�
−1 gm+1 ] Ĵ�ĜR−1

G

= [ [̂RG ̂R12] ̂�
−1

̂QT
G gm+1 ] J ̂�G ̂R−1

G . (10)
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Note that, compared to Fletcher’s approach, this decomposition removes the unwanted
gradients all at once, while in [1] the Cholesky decomposition is repeated every time
the R matrix is numerically singular. Fletcher’s T (8) is a specific case of (10), where
̂� = ̂�G is the identity matrix, and ̂RG is the whole ̂R, but where G only contains
[gm−s+1, . . . , gm].

As the second new variant, we exploit an SVD decompositionG = U� VT , where
� ism×m, to get a basis for S. An advantage of an SVD is that this provides a natural
way to reduce the space by removing the singular vectors corresponding to singular
values below a certain tolerance. We decide to retain the s ≤ m singular values for
which σi ≥ thresh · σ1, where σ1 is the largest singular value of G. Therefore we
consider the truncated SVD G ≈ G1 = UG �G VT

G , where the matrices on the right-
hand side are n × s, s × s, and s ×m, respectively. Then the approximation subspace
becomes S = span(UG), and we compute the corresponding s × s representation of
A. Since G1VG = GVG , and UG = G1VG�−1

G , we have, using the expression for
AG (7),

BSVD = UT
G AUG = UT

G AGVG �−1
G = UT

G [U� VT gm+1 ] JVG �−1
G .

= [�GVT
G UT

G gm+1 ] JVG �−1
G . (11)

We remark that, by construction, bothBSVD andBQR are SPD. Due to the truncation of
the decompositions ofG in both the pivoted QR and SVD techniques, the subspace S
will generally not be aKrylov subspace, in contrast to Fletcher’smethod.An immediate
consequence of this is that, in contrast with T in (8), the matrices BSVD and BQR are
not tridiagonal. Still, of course, one can also expect to extract useful information from
a non-Krylov subspace.

Since LMSDwith Ritz values can be seen as an extension of a gradient method with
BB1 stepsizes, it is reasonable to look for a limited memory extension of the gradient
method with BB2 stepsizes. The harmonic Rayleigh–Ritz extraction is a suitable tool
to achieve this goal.

2.2 The harmonic Rayleigh–Ritz extraction

The use of harmonic Ritz values in the context of LMSD has been mentioned
by Fletcher [1, Sec. 7], and further studied by Curtis and Guo [15]. While the
Rayleigh–Ritz extraction usually finds good approximations for exterior eigenvalues,
the harmonic Rayleigh–Ritz extraction has originally been introduced to approximate
eigenvalues close to a target value in the interior of the spectrum. A natural way to
achieve this is to consider a Galerkin condition for A−1:

A−1Ỹc − ˜θ−1Ỹc ⊥ Y, (12)

which leads to the eigenpairs (̂θ−1
i , ĉi ) of the pair (YTS, YTY). However, since A−1

is usually not explicitly available or too expensive to compute, one may choose a
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subspace of the formY = AS (see, e.g., [17]). This simplifies the Galerkin condition:

AS c̃ − ˜θ S c̃ ⊥ AS.

The eigenvalues˜θi from this condition are called harmonic Ritz values. In the limited
memory extension of BB2 we set Y = AKm(A, g1), and we know that Y is a basis
for Y from Proposition 2. Harmonic Ritz values are also bounded by the extreme
eigenvalues of A: ˜θi ∈ [λ1, λn]; see, e.g., [20, Thm. 2.1]. It is easy to check that the
(memory-less) case m = 1 corresponds to the computation of the harmonic Rayleigh
quotient αBB2.

We have just observed that the Galerkin condition for the harmonic Ritz values can
be formulated either in terms of Y or S. The latter way is presented in the references
[1, 15], which again look for a basis of S by means of a QR decomposition of G.
Following the line of [1], the aim is to find the eigenvalues of

(QTAQ)−1QTA2Q =: T−1 P, (13)

where G = QR. Since QTA2Q involves the product [G gm+1 ]T [G gm+1 ], we
determine the Cholesky decomposition of this matrix, to write [1, Eq. (30)]

P = R−T JT
[

R r
0 ρ

]T [

R r
0 ρ

]

JR−1, (14)

where
[ R r
0 ρ

]

is the Cholesky factor of [G gm+1 ]T [G gm+1 ], such that R is the
Cholesky factor ofGTG, r = QT gm+1 as in (8), while ρ is a scalar. Both T and P are
symmetric; moreover, whileT is tridiagonal, P is pentadiagonal. IfG is rank deficient,
the oldest gradients are discarded.

Given the similar roles of S for A in (6) and of Y for A−1 in (12), we now consider
new alternativeways to find the harmonicRitz values ofA, based on the decomposition
of either Y or YTY. The aim is to get an s × s representation of A−1, as we did for A
in Section 2.1. In this context, we need the following (new) relation:

A−1Y = −GD−1 = [Y −gm+1 ]˜J, where ˜J =

⎡

⎢

⎢

⎣

1
...

. . .

1 · · · 1
1 · · · 1

⎤

⎥

⎥

⎦

D−1. (15)

As for (7), this follows from the definition yk−1 = gk − gk−1.
We start with the pivoted QR of Y, i.e., Y�̌ = Q̌Ř. As in Section 2.1, we truncate

the decomposition based on the diagonal values of Ř, and obtainY�̌Y = Q̌Y ŘY , with

Ř =
[

ŘY Ř12

0 Ř22

]

.
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Then we project A−1 onto Y = span(QY ) to obtain

HQR = Q̌T
YA

−1Q̌Y = Q̌T
YA

−1 Y �̌Y Ř
−1
Y = Q̌T

Y [Y −gm+1 ]˜J �̌Y Ř
−1
Y

= [ [ŘY Ř12] �̌
−1 −Q̌T

Y gm+1 ]˜J �̌Y Ř
−1
Y . (16)

ThematrixHQR is also symmetric and delivers the reciprocals of harmonicRitz values;
its expression is similar to (10). An approach based on the Cholesky decomposition
of YTY = ˜RT

˜R may also be derived:

HCH = [ ˜R r̃ ]˜J˜R−1, (17)

with r̃ solution to ˜RT r̃ = −YT gm+1.
As for the Ritz values, SVD is another viable option. Consider the truncated SVD of

Y: Y1 = UY �Y VT
Y , where �Y is s × s. Since Y1VY = YVY , by using similar argu-

ments as in the derivation of (11), we get the following low-dimensional representation
of A−1:

HSVD = UT
YA

−1UY = UT
YA

−1YVY �−1
Y = UT

Y [Y −gm+1 ]˜JVY �−1
Y

= [�YVT
Y −UT

Y gm+1 ]˜JVY �−1
Y . (18)

Note that, in contrast toT−1P, the matrixHSVD is symmetric and gives the reciprocals
of harmonic Ritz values. In addition, the expression forHSVD is similar to the one for
BSVD in (11).

To conclude the section, we mention the following technique, which is new in the
context of LMSD. For the solution of eigenvalue problems, it has been observed
(e.g., by Morgan [17]) that harmonic Ritz values sometimes do not approximate
eigenvalues well, and it is recommended to use the Rayleigh quotients of harmonic
Ritz vectors instead. This means that we use S̃ci as approximate eigenvectors, and
their Rayleigh quotients c̃Ti S

TAS̃ci as approximate eigenvalues. This fits nicely with
Fletcher’s approach: in fact, once we have the eigenvectors c̃i of T−1P (13), we
compute their corresponding Rayleigh quotients as c̃Ti T̃ci . We remark that, in the
one-dimensional case, this procedure reduces to the gradient method with BB1 step-
sizes, instead of the BB2 ones.

In Section 4.1 we compare and comment on the different strategies to get both
the standard and the harmonic Ritz values. We will see how the computation of the
harmonic Rayleigh quotients can result in a lower number of iterations of LMSD,
although computing extra Rayleigh quotients involves some additional work in the
m-dimensional space.

2.3 An algorithm for strictly convex quadratic functions

In this section we present the LMSD method for strictly convex quadratic functions.
As already mentioned, the key idea of the algorithm is to store the m most recent
gradients or y-vectors, to compute up to s ≤ m new stepsizes, according to one of the
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procedures described in Sections 2.1 and 2.2. These stepsizes are then used in (up to)
s consecutive iterations of a gradient method; this group of iterations is referred to as
a sweep [1].

In Algorithm 1, we report the LMSDmethod for strictly convex quadratic functions
as proposed in [1, “ARitz sweep algorithm”]. This routine is a gradientmethodwithout
line search. Particular attention is put into the choice of the stepsize: whenever the
function value increases compared to the initial function value of the sweep fref ,
Fletcher resets the iterate and computes a newpoint by taking aCauchy step (cf. Line 9).
This ensures that the next function value will not be higher than the current fref ,
since the Cauchy step is the solution to the exact line search minβ f (xk − β gk).
Additionally, every time we take a Cauchy step, or the norm of the current gradient
has increased compared to the previous iteration, we clear the stack of stepsizes and
compute new (harmonic) Ritz values. At each iteration, a new gradient or y-vector
is stored, depending on the method chosen to approximate the eigenvalues of A (cf.
Sections 2.1 and 2.2).

Algorithm 1 LMSD for strictly convex quadratic functions [1].

Input: Function f (x) = 1
2 xTAx− bT x with A SPD, initial guess x0, initial stepsize β0 > 0, tolerance tol

Output: Approximation to minimizer argminx f (x)
1: g0 = ∇ f (x0), fref = f (x0)
2: j = 0, s = 1 # s is the stack size
3: for k = 0, 1, . . .
4: νk = β j , j = j + 1
5: xk+1 = xk − νk gk
6: if ‖gk+1‖ ≤ tol · ‖g0‖, return, end
7: if f (xk+1) ≥ fref
8: Reset xk+1 = xk , clear the stack
9: Reset β0 = gTk gk / gTk Agk , j = 0, s = 1 # Cauchy stepsize
10: continue
11: else
12: if ‖gk+1‖ ≥ ‖gk‖, clear the stack, end
13: end
14: if empty stack or j ≥ s
15: Compute stack of s ≤ m new stepsizes β j , ordered increasingly
16: j = 0, fref = f (xk+1), end
17: end

It is possible to implement LMSD without controlling the function value of the
iterates or the gradient norm, as in [16]. Here Curtis and Guo also show the R-linear
convergence of the method. However, in our experiments, we have noticed that this
latter implementation converges slower than Fletcher’s (for quadratic problems).

The stepsizes are plugged in the gradient method in increasing order, but there is
no theoretical guarantee that this choice is optimal in some sense. From a theoretical
viewpoint, the ordering of the stepsizes is irrelevant in a gradient method for strictly
convex quadratic functions, as is apparent from (3). In practice, due to rounding errors
and other additions to the implementation (such as, e.g., Lines 7–13 of Algorithm 1),
the stepsize ordering is relevant for both the quadratic and the general nonlinear case,
which will be discussed in Section 3.4. For the quadratic case, Fletcher [1] suggests
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that choosing the increasing order improves the chances of a monotone decrease in
both the function value and the gradient norm. Nevertheless, his argument is based on
the knowledge of s exact eigenvalues of A [21].

To the best of our knowledge, an aspect that has not been discussed yet is the
presence of rounding errors in the low-dimensional representation of the Hessian.
Except for (13), all the obtained matrices are symmetric, but their expressions are
not. Therefore, in a numerical setting, it might happen that a representation of the
Hessian is not symmetric. This may result in negative or complex eigenvalues; for this
reason, we enforce symmetry by taking the symmetric part of the projected Hessian,
i.e., B ← 1

2 (B + BT ), which is the symmetric matrix nearest to B. In the Cholesky
decomposition, we replace the upper triangle of T with the transpose of its lower
triangle, in agreement with Fletcher’s choice for the unconstrained case (cf. [1] and
Section 3.1). In both situations, we discard negative eigenvalues, which may still arise.

In practice, we observe that the non-symmetry of a projected Hessian appears
especially in problemswith large κ(A), for a relatively large choice ofm (e.g.,m = 10)
and a small value of thresh (e.g., thresh = 10−10). In this situation, the Cholesky
decomposition seems to produce a non-symmetric projected Hessian more often than
pivotedQRor SVD.This is likely related to the fact that theCholesky decomposition of
an ill-conditioned Gramian matrix leads to a more inaccurate R factor (cf. Section 1).
In addition, the symmetrizedT seems to generate negative eigenvaluesmore often than
the Hessian representations obtained via pivoted QR and SVD. However, these aspects
may not directly affect the performance of LMSD. As we will see in Section 4.1, the
adoption of different decompositions does not seem to influence the speed of LMSD.

We finally note that for smaller values of m, such as m = 5, the projected Hessian
tends to be numerically symmetric even for a small thresh. In fact, fewer gradients
form a better condition matrix, because of the following argument. First, we have
σ 2
i (G) = λm−i+1(GTG), for i = 1, . . . ,m. Since the Gramian matrix of the s ≤

m most recent gradients [gm−s+1, . . . , gm] is a submatrix of GTG, from Cauchy’s
Interlace Theorem (see, e.g., [19, Thms. 10.2.1 and 10.1.1]), we get that σmin(G) ≤
σmin([gm−s+1, . . . , gm]) and σmax(G) ≥ σmax([gm−s+1, . . . , gm]). This proves that
κ([gm−s+1, . . . , gm]) ≤ κ(G).

2.4 Secant conditions for LMSD

We finally show that the low-dimensional representations of the Hessian matrix A
(or its inverse) satisfy a certain secant condition. This result is new in the context
of LMSD, and will be the starting point of one of our extensions of LMSD to gen-
eral unconstrained optimization problems in Section 3. Recall from [4] that the BB
stepsizes (2) satisfy a secant condition each, in the least squares sense:

αBB1 = argmin
α

‖y − αs‖, αBB2 = argmin
α

‖α−1y − s‖.

We now give a straightforward extension of these conditions to the limited memory
variant of the steepest descent. We show that there exist m × m matrices that satisfy
a secant condition and share the same eigenvalues as the two pencils (STY, STS),

123



Numerical Algorithms

(YTS, YTY). In the quadratic case, when Y = AS, the following results correspond
to [19, Thm. 11.4.2] and [22, Thm. 4.2], respectively.

Proposition 3 Let S, Y ∈ R
n×m be full rank, with n ≥ m, and let B, H ∈ R

m×m.

(i) The unique solution to min
B

‖Y − SB‖ is B = (STS)−1STY.

(ii) The unique solution to min
H

‖YH − S‖ is H = (YTY)−1YTS.

(iii) In the quadratic case (1), the eigenvalues of B are the Ritz values of A and the
eigenvalues of H are the inverse harmonic Ritz values of A.

Proof The stationarity conditions for the overdetermined least squares problem
minB ‖Y−SB‖ are the normal equations ST (Y−SB) = 0. Since S is of full rank, STS
is nonsingular, and thus B = (STS)−1 STY. Part (ii) follows similarly, by exchanging
the role of S and Y. Since B and (STY, STS) have the same eigenvalues, part (iii)
easily follows. The same relation holds for the eigenvalues of H and the eigenvalues
of the pencil (YTS, YTY). 	


Proposition 3 is a good starting point to extend LMSD for solving general uncon-
strained optimization problems.

3 General nonlinear functions

When the objective function f is a general continuously differentiable function, the
Hessian is no longer constant through the iterations, and not necessarily positive
definite. In general, there is no SPD approximate Hessian such that multiple secant
equations hold (that is, an expression analogous to Y = AS in the quadratic case).
This is clearly stated by Schnabel [13, Thm. 3.1].

Theorem 4 Let S, Y be full rank. Then there exists a symmetric (positive definite)
matrix A+ such that Y = A+ S if and only if YTS is symmetric (positive definite).

By inspecting all the expressions derived in Sections 2.1 and 2.2, we observe that
only G and Y are needed to compute the m × m matrices of interest for LMSD.
However, given that YTS is in general not symmetric, Theorem 4 suggests that we
cannot interpret these matrices as low-dimensional representations of some Hessian
matrices.

We propose two ways to restore the connection with Hessian matrices. In
Section 3.1, we exploit a technique proposed by Schnabel [13] for quasi-Newton
methods. It consists of perturbingY to makeYTS symmetric. We show that Fletcher’s
method can also be interpreted in this way. In Section 3.2, we introduce a second
method which does not aim at satisfying multiple secant equations at the same time,
but finds the solution to the least squares secant conditions of Proposition 3 by impos-
ing symmetry constraints.

3.1 Perturbation of Y to solvemultiple secant equations

In the context of quasi-Newton methods, Schnabel [13] proposes to perturb the matrix
Y of a quantity �Y = ˜Y−Y to obtain an SPD ˜YTS. With this strategy, we implicitly
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obtain a certain SPD approximate Hessian A+ such that ˜Y = A+ S. We then refer to
Sections 2.1 and 2.2 to compute either the Ritz values or the harmonic Ritz values
of the approximate Hessian A+. Although we only have ˜Y at our disposal, and not
A+, this is all that is needed; the procedures in Section 2 do not need to know A+
explicitly. In addition, Proposition 3 is still valid, after replacingYwith˜Y. We remark
that, for our purpose, just a symmetric ˜YTS may also be sufficient, since we usually
discard negative Ritz values.

In Section 4we test one possible way of computing�Y, as proposed in [13], and the
Ritz values of the associated low-dimensional representation ofA+. This application is
new in the context of LMSD. The perturbation is constructed as follows: first, consider
the strict negative lower triangleL ofYTS−STY = −L+LT , and suppose S is of full
rank. (If not, remove the oldest s-vectors until the condition is satisfied.) ThenYTS+L
is symmetric. Schnabel [13] solves the underdetermined system �YTS = L, which
has �Y = S(STS)−1LT as minimum norm solution. By Theorem 4, there exists a
symmetric A+ such that ˜Y = A+ S. Now let us consider the QR decomposition of
G = QR, which is of full rank since S is also of full rank. Similar to (7) we know that
A+G = −˜YD. Moreover, we recall that S = −GD−1, and that YD = −[G gm+1 ] J
from (7). For any perturbation �Y that symmetrizes YTS, we obtain the following
low-dimensional representation of A+:

QTA+Q = QTA+GR−1 = −QT
˜YDR−1 = −QT (Y + �Y)DR−1

= T − QT�YDR−1. (19)

where T = [R r ] JR−1 as in (8). In particular, by replacing �Y = S(STS)−1LT , we
obtain

QTA+Q = T + R(RTR)−1DLTDR−1. (20)

This means that (20) can be computed by means of the Cholesky decomposition of
GTG only; the factor Q is not needed.

We now give a new interpretation of Fletcher’s extension of LMSD to general
nonlinear problems [1, Sec. 4], in terms of a specific perturbation of Y. Fletcher
notices that the matrix T (8) is an upper Hessenberg matrix and can still be computed
from the matrix of gradients, but, because of Theorem 4, there is no guarantee that T
corresponds to a low-dimensional representation of a symmetric approximate Hessian
matrix. Since the eigenvalues of T might be complex, Fletcher proposes to enforce T
to be tridiagonal by replacing its strict upper triangular part with the transpose of its
strict lower triangular part. We now show that this operation in fact corresponds to a
perturbation of the Y matrix. To the best of our knowledge, this result is new.

Proposition 5 Let T be as in (8) and consider its decomposition T = L + � + U,
where L (U) is strictly lower (upper) triangular and � is diagonal. Moreover, let G
be full rank and G = QR its QR decomposition. If

�Y = Q (U − LT )RD−1,

then ˜YTS = (Y + �Y)TS is symmetric and there exists a symmetric A+ such that
˜Y = A+S and QTA+Q = L + � + LT .
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Proof First, we prove that ST˜Y is symmetric. By replacing the expression for �Y and
exploiting the QR decomposition of G, we get

ST˜Y = −D−1RT ( − [R r ] JR−1 + U − LT )

RD−1

= −D−1RT ( − (L + � + U) + U − LT )

RD−1

= D−1RT (

L + � + LT )

RD−1.

Therefore ST˜Y is symmetric; Theorem 4 implies that there exists a symmetric A+
such that ˜Y = A+S. From this secant equation, it follows from (19) that

QTA+Q = (

L + � + LT )

RD−1(DR−1) = L + � + LT .

	

From this proposition, we are able to provide an upper bound for the spectral norm of
the perturbation �Y:

‖�Y‖2 ≤ max
i

βi · ‖R‖2 · ‖T − (L + � + LT )‖2,

where maxi βi is the largest stepsize among the latest m steps. This suggests that the
size of the perturbation �Y is determined not only by the distance between T and its
symmetrization, as expected, but also by the spectral norm of R: if this is large, the
upper bound may also be large.

We would like to point out the following important open and intriguing question.
While Schnabel solves �YTS = L to symmetrize YTS, and Fletcher’s update is
described in Proposition 5, there may be other choices for the perturbation matrix �Y
that, e.g., have a smaller�Y in a certain norm. However, obtaining these perturbations
might be computationally demanding, compared to the task of gettingm new stepsizes.
In the cases we have analyzed, the lower-dimensional A+ can be obtained from the
Cholesky decomposition of GTG at negligible cost.

Given the generality of Schnabel’s Theorem 4, another possibility that may be
explored is a perturbation of S, rather than Y, to symmetrize STY. This would be a
natural choice for computing the harmonic Ritz values given a basis for Y. In this
situation, the matrix binding S and Y would play the role of an approximate inverse
Hessian. A thorough investigation is out of the scope of this paper.

3.2 Symmetric solutions to the secant equations

In this subsection, we explore a second and alternative extension of LMSD. We start
from the secant condition of Proposition 3 for a low-dimensional matrix B. The key
idea is to impose symmetry constraints to obtain real eigenvalues from the solutions
to the least squares problems of Proposition 3. Even if the hypothesis of Theorem 4 is
not met, this method still fulfills the purpose of obtaining new stepsizes for the LMSD
iterations.
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The following proposition gives the stationarity conditions to solve the twomodified
least squares problems. Denote the symmetric part of a matrix by sym(A) := 1

2 (A +
AT ).

Proposition 6 Let S, Y ∈ R
n×m be full rank, with n ≥ m, and B, H ∈ R

m×m.

(i) The solution to min
B=BT

‖Y − SB‖ satisfies sym(STSB − STY) = 0.

(ii) The solution to min
H=HT

‖YH − S‖ satisfies sym(YTYH − YTS) = 0.

Proof If B is symmetric, it holds that

‖Y − SB‖2 = tr(BSTSB − 2 sym(STY)B + YTY),

where tr(·) denotes the trace of a matrix. Differentiation leads to the following sta-
tionarity condition for B:

STSB + BSTS = 2 sym(STY), (21)

which is a Lyapunov equation. Since S is of full rank, its Gramian matrix is positive
definite. This implies that the spectra of STS and −STS are disjoint, and therefore
the equation admits a unique solution (see, e.g., [14] for a review of the Lyapunov
equation and properties of its solution). Part (ii) follows similarly. 	


It is easy to check that, for m = 1, B in part (i) reduces to αBB1 and H in part (ii)
to βBB2. Compared to Fletcher’s T matrix (8), the symmetric solutions B and H will
generally give a larger residual (since they are suboptimal for the unconstrained secant
conditions), but they enjoy the benefit that their eigenvalues are guaranteed to be real.

We remark that symmetry constraints also appear in the secant conditions of the
BFGSmethod, and in the symmetric rank-one update (see, e.g., [5, Chapter 6]). While
in the BFGS method the approximate Hessians are SPD, provided that the initial
approximation is SPD, in the rank-one update method it is possible to get negative
eigenvalues. The fundamental difference between LMSD and these methods is that
we do not attempt to find an approximate n × n Hessian matrix.

Even while we do not approximate the eigenvalues of some Hessian, as in the
quadratic case of Section 2, it is possible to establish bounds for the extreme eigen-
values of the solutions to the Lyapunov equations of Proposition 6, provided that
sym(STY) is positive definite. The following result is a direct consequence of [23,
Cor. 1].

Proposition 7 Given the solution B to (21), let λ1(B) (λn(B)) be the smallest (largest)
eigenvalue of B. If S is of full rank and sym(STY) is positive definite, then

[λ1(B), λn(B)] ⊆ [λ1((STS)−1 sym(STY)), λn((STS)−1 sym(STY))].

If there exists an SPD matrix A+ such that Y = A+S, then [λ1(B), λn(B)] ⊆
[λ1(A+), λn(A+)].
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Proof The first statement directly follows from [23, Cor. 1]. From this we have

λ1(B) ≥ −λ−1
1 (−STS (sym(STY))−1), λn(B) ≤ −λ−1

n (−STS (sym(STY))−1).

The thesis follows from the fact that, given a nonsingular matrix � with positive
eigenvalues, the following equality holds for the largest and the smallest eigenvalue:
λi (−�−1) = −1/λi (�), where i = 1, n.

When Y = A+S, from Cauchy’s Interlace Theorem, the spectrum of B lies in
[λ1(A+), λn(A+)]. 	


An analogous result can be provided for the matrix H of Proposition 6(ii).

3.3 Solving the Lyapunov equation while handling rank deficiency

The solution to the Lyapunov equation (21) is unique, provided that S is of full rank. In
this section,wepropose three options ifS is (close to) rankdeficient.As inSection2,we
discuss approaches using a Cholesky decomposition, a pivoted QR factorization, and
a truncated SVD. By using the decompositions exploited in Section 2.1 we can either
discard some s-vectors (and their corresponding y-vectors) or solve the Lyapunov
equation onto the space spanned by the first right singular vectors of S.

In the Cholesky decomposition and the pivoted QR decomposition we remove
some of the s-vectors and the corresponding y-vectors, if needed. As we have seen
in Section 2.1, in the Cholesky decomposition we discard past gradients until the
Cholesky factor R of GTG is sufficiently far from singular. In this new context of
Lyapunov equations, we additionally need the relation (cf. (7))

Y = [

G gm+1
]

K, where K =

⎡

⎢

⎢

⎢

⎣

−1

1
. . .

. . .
−1
1

⎤

⎥

⎥

⎥

⎦

. (22)

Then we can easily compute the matrices present in (21):

STS = D−1RTRD−1, STY = −D−1RT [R r ]K. (23)

In the pivoted QR, we keep only the columnsĜ�G andŶ�G , as in Section 2. LetDG

be the diagonal matrix that stores the inverse stepsizes corresponding to Ĝ�G . Then

̂�
T
G STS ̂�G = D−1

G
̂RT
G
̂RG D−1

G ,

̂�
T
G STY ̂�G = −D−1

G [ ̂RT
G [̂RG ̂R12] ̂�

−1
̂�

T
GG

T gm+1 ]K̂�G,

where ̂RG and ̂R12 come from the block representation of ̂R (9).
The third approach involves the SVDofS, instead of the SVDofG as in Section 2.1.

This is due to the fact that the solution to the Lyapunov equation (21) for S and Y is
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not directly related to the solution to the Lyapunov equation for S� and Y�, for a
nonsingular �. From the SVD S = ̂Û�̂VT , we get

̂V̂�
2
̂VT B + B̂V̂�

2
̂VT = 2 sym(STY).

To simplify this equation, consider the truncated SVD S1 = US�SVT
S , where �S is

s×s, andmultiply byVT
S on the left andbyVS on the right. SinceVT

S
̂V�2

̂VT = �2
SV

T
S ,

�2
S BS + BS �2

S = 2 sym(�SUT
SYVS), (24)

where BS = VT
SBVS is the projection of B onto VS . Moreover, from (22) we get

UT
SY = [ −�SVT

SD UT
S gm+1 ]K.

We remark that it is appropriate to control the truncation of the SVD by the condition
number of the coefficient matrix STS, which is κ2(S).

The previous discussion on the three decompositions can also be extended to the
secant equation of Proposition 6(ii), to compute the matrix H and use its eigenvalues
directly as stepsizes. Several possibilitiesmay be explored by decomposing eitherG or
Y as in Section 2.2 for the harmonic Ritz values.Wewill not discuss any further details
regarding all these methods, but in the experiments in Section 4 we will present results
obtained with the Cholesky factorization of [G gm+1 ]T [G gm+1 ] as expressed in
(14). Then for the quantities in Proposition 6(ii) we have:

YTY = KT
[

R r
0 ρ

]T [

R r
0 ρ

]

K,

and the matrix YTS can be obtained from (23).
We note that all Lyapunov equations in this section are of the form ETEB +

BETE = F. We describe a practical solution approach. Consider the truncated SVD
E ≈ UE�EVT

E , where the singular values in �E satisfy σ 2
i (E) ≥ thresh · σ 2

1 (E). In
casewe exploit theCholesky decomposition or the pivotedQR, an extra truncated SVD
might still be appropriate, since these two decompositions do not provide an accurate
estimate of κ2(E). By left and right multiplication by VE , we obtain an expression
analogous to (23):

�2
E BE + BE �2

E = VT
EFVE ,

where BE = VT
EBVE . Since �E is diagonal, the solution to this Lyapunov equation

can be easily found by elementwise division (cf. [14, p. 388]):

[BE ]i j = [VT
EFVE ]i j / (σ 2

i (E) + σ 2
j (E)).

We notice that, in the SVD approach (23), the solution can be found directly from this
last step. In addition, we remark that, for the scope of LMSD, it is not necessary to
find the solution B to the original Lyapunov equation.

123



Numerical Algorithms

3.4 An algorithm for general nonlinear functions

We now review the limited memory steepest descent for general unconstrained opti-
mization problems, as implemented in [2, Alg. 2] and reported in Algorithm 2.
Compared to the gradient method for strictly convex quadratic functions, LMSD for
general nonlinear functions has more complications. In Section 3 we have proposed
two alternative ways to find a set of real eigenvalues to use as stepsizes. However,
we may still get negative eigenvalues. This problem also occurs in classical gradi-
ent methods, when sTk yk < 0: in this case, the standard approach is to replace any
negative stepsize with a positive one. In LMSD, we keep s ≤ m positive eigenval-
ues and discard the negative ones. If all eigenvalues are negative, we restart from
βk = max(min(‖gk‖−1, 105), 1) as in [7]. Moreover, as in [2], only the latest s gra-
dients are kept. As an alternative to this strategy, we also mention the more elaborated
approach of Curtis and Guo [15], which involves the simultaneous computation of
Ritz and harmonic Ritz values.

The line search of LMSD in [2] is inspired by Algorithm 1 for quadratic func-
tions, and has many similarities with the routine proposed by Fletcher [1]. Once new
stepsizes have been computed, at each sweep we produce a new iterate starting from
the smallest stepsize in the stack. The reference function value fref for the Armijo
sufficient decrease condition is the function value at the beginning of the sweep, as
in Algorithm 1. We note that this Armijo type of line search appropriately replaces
the exact line search of Algorithm 1, i.e., the choice of the Cauchy stepsize when a
nonmonotone behavior (with respect to fref ) is observed. The stack of stepsizes is
cleared whenever the current steplength needs to be reduced to meet the sufficient
decrease condition, or when the new gradient norm is larger than the previous one.
This requirement is also present in Algorithm 1. Notice that, since we terminate the
sweep whenever a backtracking step is performed, starting from the smallest stepsizes
decreases the likelihood of ending a sweep prematurely. In contrast with [2], we keep
storing the past gradients even after clearing the stack. This choice turns out to be
favorable for the experiments in Section 4.2.

We remark that, by construction, all new function values within a sweep are smaller
than fref . Therefore, the line search strategy adopted in [2] can be seen as a nonmono-
tone line search strategy [24]. Given the uniform bounds imposed on the sequence of
stepsizes, the result of global convergence for a gradient method with nonmonotone
line search [7, Thm. 2.1] also holds for Algorithm 2.

4 Numerical experiments

We explore the several variants of LMSD, for the quadratic and for the general uncon-
strained case. We compare LMSD with two gradient methods which adaptively pick
either BB1 or BB2 stepsizes [25, 26]. As claimed by Fletcher [1], we have observed
that LMSD may indeed perform better than L-BFGS on some problems. However,
in the majority of our test cases, L-BFGS, as implemented in [27], converges faster
than LMSD, in terms of number of function (and gradient) evaluations, and computa-
tional time. The comparison with another gradient method seems fairer to us than the
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Algorithm 2 LMSD for general nonlinear functions [2].
Input: Continuously differentiable function f , initial guess x0, initial stepsize β0 > 0, tolerance tol;
safeguarding parameters βmax > βmin > 0; line search parameters cls, σls ∈ (0, 1)
Output: Approximation to minimizer argminx f (x)
1: g0 = ∇ f (x0), fref = f (x0)
2: j = 0, s = 1 # s is the stack size
3: for k = 0, 1, . . .
4: νk = max(βmin, min(β j , βmax)), j = j + 1
5: if f (xk − νkgk ) ≤ fref − cls νk ‖gk‖2
6: xk+1 = xk − νkgk
7: else
8: while f (xk − νk gk ) > fref − cls νk ‖gk‖2 do νk = σls νk end
9: xk+1 = xk − νkgk
10: clear the stack
11: end
12: if ‖gk+1‖ ≤ tol · ‖g0‖, return, end
13: if ‖gk+1‖ ≥ ‖gk‖, clear the stack end
14: if empty stack or j ≥ s
15: Compute stack of s ≤ m new stepsizes β j > 0, ordered increasingly
16: Store only last s most recent vectors of G
17: j = 0, fref = f (xk+1)

18: end
19: end

comparison with a second-order method, and therefore we will not show L-BFGS in
our study. Nevertheless, as discussed in Section 1, we recall the two main advantages
of considering LMSD methods: the possibility to extend its idea to problems beyond
unconstrained optimization (see, e.g., [8–10]), and the less stringent requirements on
the objective functions to guarantee the global convergence of the method.

4.1 Quadratic functions

The performance of the LMSD method may depend on several choices: the memory
parameterm, whether we compute Ritz or harmonic Ritz values, and howwe compute
a basis for either S orY . This section studies how different choices affect the behavior
of LMSD in the context of strictly convex quadratic problems (1).

We consider quadratic problems by taking the Hessian matrices from the SuiteS-
parse Matrix Collection [28]. These are 103 SPD matrices with a number of rows n
between 102 and 104. From this collection we exclude onlymhd1280b, nd3k, nos7.
The vector b is chosen so that the solution of Ax = b is x∗ = e, the vector of all ones.
For all problems, the starting vector is x0 = 10 e, and the initial stepsize is β0 = 1.
The algorithm stops when ‖gk‖ ≤ tol · ‖g0‖ with tol = 10−6, or when 5 · 104 itera-
tions are reached. We compare the performance of LMSD with memory parameters
m = 3, 5, 10 with the ABBmin gradient method [25] and one of its variants, presented
in [26], which we indicate with ABBbon. The ABBmin stepsize is defined as

β
ABBmin
k =

{

min{βBB2
j | j = max{1, k − m}, . . . , k}, if βBB2

k < η βBB1
k ,

βBB1
k , otherwise,
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wherem = 5 and η = 0.8. TheABBbon stepsize is defined in the sameway asABBmin,
but with an adaptive threshold η: starting from η0 = 0.5, this is updated as

ηk+1 =
{

0.9 ηk, if βBB2
k < ηk βBB1

k ,

1.1 ηk, otherwise.

Since the performance of these methods depends less on the choice of m than
LMSD, we only show m = 5 for both ABBmin and ABBbon. Among many possible
stepsize choices, we compare LMSDwith these gradient methods because they behave
better than classical BB stepsizes on quadratic problems (see, e.g., [29]).

We recall that one ABBmin (ABBbon) step requires the computation of three inner
products of cost O(n) each. An LMSD sweep is slightly more expensive, involving
operations of order m2n and (much less important) m3, but it is performed approxi-
mately once everym iterations. These costs correspond to the decomposition of either
G or Y, the computation of the projected Hessian matrices and their eigenvalues. We
also remark that, while pivotedQR and SVD requireO(m2n) operations, the Cholesky
decomposition is O(m3), but is preceded by the computation of a Gramian matrix,
with cost O(m2n).

We consider two performance metrics: the number of gradient evaluations (NGE)
and the computational time. The number of gradient evaluations also includes the
iterations that had to be restarted with a Cauchy step (cf. Algorithm 1, Line 9). Our
experience indicates that computational time may depend significantly on the chosen
programming language, and therefore should not be the primary choice in the compar-
ison of the methods. Nevertheless, it is included as an indication, because it takes into
account the different costs of an LMSD sweep and m iterations of a gradient method.

The comparison of different methods is made by means of the performance profile
[30], as it is implemented in Python’s library perfprof. Briefly speaking, the cost of
each algorithm per problem is normalized, so that the winning algorithm has cost 1.
This quantity is called performance ratio. Then we plot the proportion of problems
that have been solved within a certain performance ratio. An infinite cost is assigned
whenever a method is not able to solve a problem to the tolerance within the maximum
number of iterations.

We compare the performance of LMSD where the stepsizes are computed as sum-
marized in Table 1. In the first comparison we only consider methods that involve a
Cholesky decomposition for simplicity. The Cholesky routine raises an error any time
the input matrix is not SPD; therefore no tolerance thresh for discarding old gradients
needs to be chosen. The performance profiles for this first experiment are shown in
Fig. 1 for m ∈ {3, 5, 10}, in the performance range [1, 3]. As m increases all methods
improve, both in terms of gradient evaluations and computational time.

The method that performs best, both in terms of NGE and computational time, is
LMSD-G for m = 10. When m = 5, LMSD-HG-RQ performs better than LMSD-
G in terms of NGE, but it is more computationally demanding. This is reasonable,
since LMSD-HG-RQ has to compute m extra Rayleigh quotients; this operation has
an additional cost of m3, which can be relatively large for some problems in our
collection, where m3 ≈ n.
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Table 1 Strategies to compute the new stack of stepsizes in LMSD methods for quadratic functions. RQ
refers to the computation of Rayleigh quotients from the harmonic Ritz vectors. H stands for “harmonic”,
the letters G (Y) indicate whether a decomposition has been used to implicitly compute a basis for G (Y)

Method Description Matrix

LMSD-G [1] Cholesky on GTG to compute the inverse Ritz values of A T (8)

LMSD-G-QR Pivoted QR on G to compute the inverse Ritz values of A BQR (10)

LMSD-G-SVD SVD on G to compute the inverse Ritz values of A BSVD (11)

LMSD-HG [1] A · span(G) to compute the inverse harmonic Ritz values of A T−1P (13)

LMSD-HG-RQ A · span(G) to find the harmonic Ritz vectors A and next compute
their inverse Rayleigh quotients (cf. end of Sec. 2.2)

T−1P (13)

LMSD-HY Cholesky on YTY to compute the Ritz values of A−1 HCH (17)

LMSD-HG and LMSD-HY perform similarly, since they are two different ways
of computing the same harmonic Ritz values. They generally perform worse than the
other two methods; in the casem = 10, their performances are comparable with those
of LMSD-G for m = 5.

In Fig. 2 we compare LMSD with ABBmin and ABBbon. Given the comments
to Fig. 1, we decide to compute the Ritz values of the Hessian matrix, by decom-
posing G in different ways. Specifically, we compare LMSD-G, LMSD-G-QR and
LMSD-G-SVD (cf. Table 1). The tolerance to decide the memory size s ≤ m is set to
thresh = 10−8, for both pivoted QR and SVD. Once more, we clearly see that LMSD
improves as the memory parameter increases, both in terms of gradient evaluations
and computational time. Once m is fixed, the three methods to compute the basis
for S are almost equivalent. LMSD-G-SVD seems to be slightly faster than LMSD-
G in terms of computational time, as long as the performance ratio is smaller than
1.5. In our implementation, LMSD-G-QR seems to be more expensive. Compared to
ABBmin and ABBbon, all LMSD methods with m = 5, 10 perform better in terms of

Fig. 1 Performance profile for strictly convex quadratic problems, based on the number of gradient evalua-
tions (left) and computational time (right). Different line types indicate different values for m. Comparison
between the computation of Ritz values or harmonic Ritz values

123



Numerical Algorithms

Fig. 2 Performance profile for strictly convex quadratic problems, based on the number of gradient evalua-
tions (left) and computational time (right). Different line types indicate different values for m. Comparison
between different decompositions for the matrix G

gradient evaluations. LMSD-G-SVD, for m = 10, appears to be faster than ABBmin
and ABBbon, also in terms of computational time.

Figure 2 already suggests that different decompositions give approximately equiv-
alent results. In addition, given a problem, it is difficult to recommend a certain
decomposition strategy. We illustrate this idea with the following example: consider a
family of 15 problems withA = diag(1, ω, ω2, . . . , ω99), where ω assumes 15 values
equally spaced in [1.01, 1.4]. Geometric sequences as eigenvalues are quite frequent
in the literature; see, e.g., [1, 2]. The starting vector is x0 = e, the associated linear
system isAx = 0; the memory parameter ism = 5, and each problem is scaled by the
norm of the first gradient, so that tol = 10−7/‖g0‖. The initial stepsize is β0 = 0.5.
In Fig. 3, we plot the condition number of A against the number of gradient evalua-
tions. The three methods start to differ already with κ(A) ≈ 105. For a large condition
number, there is no clear winner in the performed experiments.

Fig. 3 Condition number of quadratic problems with Hessian matrix A and corresponding number of
gradient evaluations. Different colors indicate different ways of computing the Ritz values of A
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To summarize, when the objective function is strictly convex quadratic, Ritz values
seem preferable over harmonic Ritz values. This is emphasized by the improvement of
LMSD-HG when taking Rayleigh quotients instead of harmonic Rayleigh quotients.
Different decompositions ofG result in mild differences in the performance of LMSD.
Even if Cholesky decomposition is the least stable from a numerical point of view, its
instability does not seem to have a clear effect on the performance of LMSD. Finally,
we observe that, in all methods, LMSD seems to improve as the memory parameter
m increases.

4.2 General unconstrained optimization problems

In this section we want to assess the performance of LMSD for general unconstrained
optimization problems, when we choose different methods to compute the stepsizes.
These choices are summarized in Table 2. All the methods presented in Section 3
are considered, along with the extension of the harmonic Ritz values computation to
the general unconstrained case. This is explained in [15], and indicated as LMSD-
H-CHOL. In the quadratic case, the authors point out that the matrix P (14) can be
expressed in terms of T as P = TTT + ξξ T , where ξ T = [0T ρ] JR−1. Then, if ˜T
is the tridiagonal symmetrization of T as in LMSD-CHOL, the new P is defined as
˜P = ˜TT

˜T + ξξ T . The new stepsizes are the eigenvalues of ˜P−1
˜T, and are real since

˜P is generically SPD, and ˜T is symmetric.
All the LMSDmethods are tested against either the gradientmethodwith nonmono-

tone line search [7]. The stepsize choice is again ABBmin or ABBbon withm = 5. The
nonmonotone line search features a memory parameter M = 10; negative stepsizes
are replaced by βk = max(min(‖gk‖−1, 105), 1), as in [7]. In both algorithms, we
set βmin = 10−30, βmax = 1030, cls = 10−4, σls = 1

2 , and β0 = ‖g0‖−1. The routine
stops when ‖gk‖ ≤ tol · ‖g0‖, with tol = 10−6, or when 105 iterations are reached.
In LMSD, the memory parameter has been set to m ∈ {3, 5, 7}.

We take 31 general differentiable functions from the CUTEst collection [31, 32]
and the suggested starting points x0 therein. The problems are reported in Table 3.

Table 2 Strategies to compute the new stack of stepsizes in LMSDmethods for general nonlinear functions.
H stands for “harmonic”

Method Description

LMSD-CHOL [1] Tridiagonalize T as in [1] and compute its inverse eigenvalues

LMSD-H-CHOL [15] Symmetrize P−1T as in [15] and compute its eigenvalues

LMSD-LYA Inverse eigenvalues of the solution to Prop. 6 (i) with Cholesky of
GTG to handle rank deficiency

LMSD-LYA-QR Idem with pivoted QR of G to handle rank deficiency

LMSD-LYA-SVD Idem with SVD of S to handle rank deficiency

LMSD-H-LYA Eigenvalues of the solution to Prop. 6 (ii) with Cholesky of
[G gm+1 ]T [G gm+1 ] to handle rank deficiency

LMSD-PERT PerturbY according to [13] to get (20) and compute its inverse eigen-
values
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Table 3 Problems from the CUTEst collection and their sizes

Problem n Problem n Problem n

ARGTRIGLS 200 EIGENBLS 110 MOREBV 5000

CHNROSNB 50 EIGENCLS 462 MSQRTALS 529

COATING 134 ERRINROS 50 MSQRTBLS 529

COSINE 10000 EXTROSNB 1000 NONCVXU2 10000

DIXMAANE1 3000 FLETCHCR 1000 NONCVXUN 10000

DIXMAANF 9000 FMINSURF 1024 NONDQUAR 10000

DIXMAANG 9000 GENHUMPS 5000 SPMSRTLS 10000

DIXMAANH 9000 GENROSE 500 SSBRYBND 5000

DIXMAANJ 9000 LUKSAN11LS 100 TQUARTIC 5000

DIXMAANK 9000 LUKSAN21LS 100

EIGENALS 110 MODBEALE 2000

Since some test problems are non-convex, we checked whether all gradient methods
converged to the same stationary point for different methods. As the performance
profile, we may consider three different costs: the number of function evaluations
(NFE), the number of iterations, and the computational time. The number of iterations
coincides with the number of gradient evaluations for LMSD, ABBmin and ABBbon.

Before comparing LMSD methods with the other gradient methods, we discuss
the following two aspects of LMSD: the use of different decompositions of either G
or S in LMSD-LYA, which has been presented in Section 3.3; the number of steps
per sweep that are actually used by each LMSD method, in relation with the chosen
memory parameter m.

Different decompositions in LMSD-LYA. In the quadratic case, we notice that
there is not much difference between the listed decompositions to compute a basis for
S. We repeat this experiment with LMSD-LYA, for general unconstrained problems,
because the Hessian matrix is not constant during the iterations and therefore the way
we discard the past gradientsmight be relevant.We recall that Cholesky decomposition
(LMSD-LYA) discards the oldest gradients first, pivotedQR (LMSD-LYA-QR) selects
the gradients in a different order; SVD (LMSD-LYA-SVD) takes a linear combination
of the available gradients. For the last two methods, the tolerance to detect linear
dependency is set to thresh = 10−8.

Figure 4 shows the three decompositions form = 5. Memory parametersm = 3, 7
are not reported as they are similar to the case m = 5. The conclusion is the same
as for the quadratic case: the decomposition method does not seem to have a large
impact on the performance of LMSD. However, for the general case, we remark that
while LMSD-LYA solved all problems, both LMSD-LYA-QR and LMSD-LYA-SVD
fail to solve one problem each, for all the tested memory parameters. In addition,
LMSD-LYA seems more computationally efficient than the other methods. For these
two reasons, we continue our analysis by focusing on Cholesky decomposition only.

Average number of stepsizes per sweep.We quantify the efficiency of the various
LMSDmethods as follows. Ideally, each sweep should providem new stepsizes, which
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Fig. 4 Performanceprofile for general unconstrainedproblems, basedon the number of function evaluations,
gradient evaluations, and computational time. Comparison between different decompositions for the matrix
G (or S) and m = 5

are supposed to be used in the next m iterations. However, because of the algorithm
we adopted, less than m stepsizes are actually employed before the stack is cleared.
For each problem and method, we compute the ratio between the number of iterations
and the number of sweeps. This gives the average number of stepsizes that are used
in each sweep. This value is in [1,m], where the memory parameter m indicates the
ideal situation where all the steps are used in a sweep. A method that often uses less
than m stepsizes might be inefficient, since the effort of computing new stepsizes (of
approximately O(m2n) operations) is not entirely compensated.

The number of iterations per sweep is shown in Fig. 5 as a distribution function
over the tested problems. An ideal curve should be a step function with a jump in
m. For example, when m = 3, LMSD-CHOL, i.e., Fletcher’s method, tends to use
3 stepsizes on average for approximately 80% of the problems; this is close to the
desired situation. When m = 5, we notice that LMSD-H-LYA and LMSD-LYA have
a similar behavior but for an average smaller than 5. In all cases, LMSD-H-LYA is the
curve that shows the lowest average number of steps per sweep. Another interesting
behavior is the one of LMSD-PERT, which, for some problems, approaches the largest
value m, but, for many others, shows a lower average. In m = 5, 7, more than 50%
of problems are solved by using only half of the available stepsizes per sweep. This
behavior was reflected by the performance profiles of LMSD-PERT: while going from
m = 5 to m = 7, we observed an improvement in terms of the number of function
evaluations, but a deterioration in the computational time.

Fig. 5 Cumulative distribution function of the number of iterations per sweep, i.e., the average number of
stepsizes per sweep. Curves are based on the tested problems. Straight dashed lines indicate the uniform
distribution over [1,m]
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Fig. 6 Performanceprofile for general unconstrainedproblems, basedon the number of function evaluations,
gradient evaluations, and computational time. Comparison between different ways to compute the new
stepsizes of a sweep in LMSD, and the gradient method with nonmonotone line search and with either the
ABBmin or the ABBbon step

As m increases, the deterioration of the average number of stepsizes per sweep
is also visible for the other methods. As already remarked by [1, 2], this suggests
that choosing a large value for m does not improve the LMSD methods for general
unconstrainedproblems.This is in contrastwithwhatwehaveobserved in the quadratic
case.

Comparison with gradient methods. In what follows, we consider only m = 5
for the comparison with ABBmin and ABBbon. For LMSD, we do not include m =
3 because it showed poorer results compared to the simpler nonmonotone gradient
method. LMSD for m = 7 is not considered since it gives performances similar to
m = 5, but with a higher computational cost. Results are shown in Fig. 6. From the
performance profiles related to the computational time, we see that ABBbon solves a
high proportion of problems with the minimum computational time.

Regarding the performance profiles for both NFE and NGE, we note that LMSD-
PERT has the highest curve; LMSD-LYA and LMSD-CHOL almost overlap for a
performance ratio smaller than 1.5; after that, the two curves split, and LMSD-CHOL
reaches LMSD-PERT.

TheLMSD-PERTmethod solves 42%of the problemswith theminimumnumber of
gradient evaluations. By looking at the performance profile for the NFE, this fact does
not seem to be complemented by a low number of function evaluations. Intuitively,
this means that LMSD-PERT enters the backtracking procedure more often than the
other methods, and it reflects what we have also observed in the central plot of Fig. 5.
Any time we enter the backtracking procedure, the stack of stepsizes is cleared and the
sweep is terminated. Then, the more backtracking we need, the smaller the number of
stepsizes per sweep we use.

LMSD-H-CHOL and LMSD-H-LYA, the “harmonic” approaches, perform a lit-
tle bit worse than the other methods: while LMSD-H-CHOL can still compete with
ABBmin and ABBbon in terms of NFE and NGE, it performs worse in terms of com-
putational time. LMSD-H-LYA performs generally worse than the other techniques;
Figure 5 was already suggesting the poorer quality of the stepsizes of LMSD-H-LYA,
which often need backtracking or lead to an increasing gradient norm.

To complete the picture, Table 4 reports two important quantities related to the
performance profile: the proportion of problems solved by each method, and the pro-
portion of problems solved with minimum cost, which is not always clearly visible
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Table 4 For each method, we
report the proportion of solved
problems and the proportion of
problems solved at minimum
cost (performance ratio equal to
1) for different performance
measures. The memory
parameter is m = 5 for all the
LMSD methods

Method Solved (%) PR = 1 (%)

ABBbon 1.00 0.26 0.23 0.48

LMSD-CHOL 1.00 0.13 0.13 0.06

LMSD-H-CHOL 1.00 0.13 0.03 0.00

LMSD-LYA 1.00 0.13 0.19 0.19

LMSD-PERT 1.00 0.06 0.42 0.10

ABBmin 0.97 0.26 0.06 0.10

LMSD-H-LYA 0.97 0.06 0.06 0.06

fromFig. 6.We notice thatABBmin andLMSD-H-LYA fail to solve one of the 31 tested
problems. The ABBbon stepsize solves 26% of problems with minimumNFE and 48%
of problems with minimum computational time. LMSD-PERT wins in terms of NGE.
The proportion of problems solved with minimumNFE is the same for LMSD-CHOL,
LMSD-LYA, and LMSD-H-CHOL.

5 Conclusions

We have reviewed the limited memory steepest descent method proposed by Fletcher
[1], for both quadratic and general nonlinear unconstrained problems. In the context
of strictly convex quadratic functions, we have explored pivoted QR and SVD as
alternativeways to compute a basis for either thematrixG (Ritz values) orY (harmonic
Ritz values).We have also proposed to improve the harmonicRitz values by computing
the Rayleigh quotients of their corresponding harmonic Ritz vectors.

Experiments in Section 4.1 have shown that the type of decomposition has lit-
tle influence on the number of iterations of LMSD. The choice between Cholesky
decomposition, pivoted QR and SVD is problem dependent. These three methods
may compete with the ABBmin and ABBbon gradient methods.

The experiments also suggest that a larger memory parameter improves the perfor-
mance of LMSD, and Ritz values seem to perform better than harmonic Ritz values.
The modification of the harmonic Ritz values (Section 2.2) effectively improves the
number of iterations, at the extra expense of (relatively cheap) O(m3) work.

In the context of general nonlinear functions, we have given a theoretical foundation
to Fletcher’s idea [1] (LMSD-CHOL), by connecting the symmetrization of T (8)
to a perturbation of Y. We have proposed another LMSD method (LMSD-PERT)
based on a different perturbation given by Schnabel [13] in the area of quasi-Newton
methods. An additional modification of LMSD for general functions (LMSD-LYA)
has been obtained by adding symmetry constraints to the secant condition of LMSD
for quadratic functions. The solution to this problem coincides with the solution to a
Lyapunov equation.

In Section 4.2, experiments on general unconstrained optimization problems have
shown that, in contrast with the quadratic case, increasing the memory parameter does
not necessarily improve the performance of LMSD. This may also be related to the
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choices made in Algorithm 2, such as the sufficient decrease condition or the criteria
to keep or discard old gradients.

Given a certain memory parameter, the aforementioned LMSD methods seem to
perform equallywell in terms of the number of function evaluations and computational
time. They all seem valid alternatives to the nonmonotone gradient method based on
either ABBmin or ABBbon stepsizes, with the caveat that LMSD-PERT and LMSD-
LYA tend to not exploit all the stepsizes computed in a sweep, more often than LMSD-
CHOL.

A Python code for the LMSDmethods and the nonmonotone ABBmin and ABBbon
is available at github.com/gferrandi/lmsdpy.
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