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Abstract
In this paper, incorporating the quaternion matrix framework, the logarithmic norm
of quaternion matrices is employed to approximate rank. Unlike conventional
sparse representation techniques for matrices, which treat RGB channels separately,
quaternion-based methods maintain image structure by representing color images
within a pure quaternion matrix. Leveraging the logarithmic norm, factorization and
truncation techniques can be applied for proficient image recovery. Optimization of
these approaches is facilitated through an alternate minimization framework, sup-
plemented by meticulous mathematical scrutiny ensuring convergence. Finally, some
numerical examples are used to demonstrate the effectiveness of the proposed algo-
rithms.

Keywords Quaternion matrix · Matrix decomposition · Logarithmic norm ·
Color image reconstruction

1 Introduction

In today’s era of information explosion, data volumes across various industries are
experiencing exponential growth, posing significant challenges in storage, processing,
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and analysis.High-dimensional data, such as images [1], videos [2], sensor readings [3]
and genomic sequences [4], are becoming increasingly prevalent in scientific research
[5], industrial applications [6] and daily life. However, high-dimensional data often
come with substantial computational and storage costs, along with the potential for
containing a considerable amount of redundant information. To address this challenge,
researchers have turned to dimensionality reduction techniques aimed at representing
complex high-dimensional data in lower-dimensional spaces while preserving their
fundamental structure and information [7, 8].

A prominent dimensionality reduction technique is the sparse representation model
[9–11], which aims to reduce data dimensionality by finding a sparse set of linear com-
binations to express the data [12]. By emphasizing the sparsity of the representation
matrix, redundant information in the data can be eliminated, resulting in amore concise
and interpretable data representation. The application of rank-constrained optimization
problems is widespread. For example, in the field of computer vision, sparse represen-
tation has been used for tasks such as image denoising [13], image restoration [14], and
image classification [15]. In signal processing, sparse representationmodels have been
applied to audio and speech processing for tasks like source separation [16], speech
enhancement [17], and audio compression [18]. Additionally, sparse representation
models find wide applications in neuroscience [19], bioinformatics [20], genomics
[21], and other fields.

In prior research, the nuclear norm of amatrix has been demonstrated as an effective
alternative method to traditional rank function. Unlike the nuclear norm, which treats
each singular value equally [22], larger singular values may contain richer and more
useful information compared to smaller ones [22, 23]. To address these limitations,
several non-convex alternatives have been proposed, such as the truncated nuclear
norm, weighted nuclear norm, and weighted Schatten-p norm, as suggested in [22–
24]. Additionally, the log-determinant alternatingmethod has been proven to be amore
accurate approximation of rank [25], particularly evident in neural networks compared
to the nuclear norm.These strategies are all based on approximate optimization of rank,
where singular value decomposition (SVD) plays an indispensable role. However, the
high complexity involved in SVD computations poses limitations when dealing with
high-dimensional or large datasets [26]. To overcome this challenge, low-rank matrix
decomposition is applied to the sparse representation of matrices [26]. Specifically,
decomposing the target matrix into two smaller factor matrices describes the low-
rank property of the target matrix. This approach not only satisfies the requirement of
low-rank matrices but also benefits from rapid numerical optimization.

Currently, sparse representation methods for color images primarily focus on pro-
cessing two-dimensional data. Consequently, when dealing with color images, it is
common to process the RGB channels separately. However, this approach may lead to
overlooking the intrinsic relationships among the three channels, resulting in the loss
of their potential connections.

Based on the analysis above, there are two main issues with low-rank structured
sparse representation of color images.

The first challenge in sparse representation of color images is that the correlation
between RGB channels cannot be adequately maintained Consequently, researchers

123



Numerical Algorithms

have turned their attention to color image processing methods based on quaternion
frameworks. Due to the unique structure of quaternion, each pixel in a color image can
be represented using pure quaternions, forming a quaternionmatrix. This approach has
been widely applied in areas such as face recognition [27, 28], image edge detection
[29], and image denoising [30, 31]. Other applications of color image processing can
be found in references [32–34].

The second challenge is how to accurately describe the underlying low-rank
structure In the sparse representation of color images in quaternion space, many
studies have been based on non-convex functions used for approximating the rank
of quaternion matrices, including weighted Schatten-p norm, and Laplacian approxi-
mation. These functions highlight the advantages of quaternion matrices, which have
been validated experimentally and theoretically. However, these methods require full
processing of QSVD for quaternion matrices, which incurs high computational costs.
To address this challenge, researchers have extended low-rank matrix decomposi-
tion to the quaternion algebra. The authors decompose the target quaternion matrix
into dual-factor quaternion matrices for low-rank quaternion matrix completion [35].
These factorization-based methods only require optimization of two smaller quater-
nion matrices, thus significantly reducing any associated computational costs.

To address the aforementioned challenges, two quaternion sparse representation
models have been proposed: Quaternion Logarithmic Norm Factorization Sparse
Representation (QLNFSR) and Truncated Quaternion Logarithmic Norm Sparse
Representation (TQLNSR). Both models are designed to approximate the rank in
quaternion algebra more accurately and efficiently, thereby better utilizing the struc-
ture of color images. This paper utilizes the quaternion log-norm as a non-convex
substitute for rank, which provides a more reliable description of low-rank matrices
through compared to traditional approximation methods such as quaternion nuclear
norm. With the increasing of singular values, the penalty of the logarithmic function
becomes more lenient, hence the smaller singular values may receive more punish-
ment. In Fig. 1, an intuitive explanation of rank approximation using the logarithmic
function for scalar cases can be observed. When X = x ∈ R, rank(x) = 0 if x = 0
and rank(x) = 1 otherwise. Additionally, for x bounded by a positive constant M ,
denoted as |x | ≤ M , ‖x‖∗

M = |x |
M represents the convex envelope of rank(x) on the

interval {x | |x | ≤ M} [36]. Consequently, the slope of rank(x) at the origin is infinite,
while the convex envelope (|x | ≤ M) exhibits a consistent slope. In contrast, the slope
of the logarithmic function at the origin is 1/δ, where δ is a small positive constant that
ensures the logarithmic norm closely approximates rank(x) compared to the convex
envelope [37].

Subsequently, the quaternion logarithmic norm is applied to two smaller quaternion
matrices, which are the factor quaternion matrices of the target quaternion matrix
based on the quaternion log-norm factorization algorithm. Therefore, the expensive
QSVD only needs to act on the smaller factor quaternion matrices, thereby improving
algorithm efficiency. In the truncated quaternion logarithmic norm approximation
algorithm, the quaternion logarithmic norm is first truncated, and then the shrinkage
operator of the quaternion logarithmic norm is directly applied to optimize the target
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Fig. 1 The rank, nuclear norm, and the logarithmic norm for scalar x

quaternion matrix. Thus, the main contributions of this paper can be summarized as
follows.

• The rank of quaternion matrices is not affected by the maximum singular value.
Therefore, truncated quaternion logarithmic normoperates is to truncate the largest
singular value, and then utilize the quaternion logarithmic norm in the truncation
problem.

• In order to solve the QLNFSR and TQLNSRmodels, we adopt the idea of alternat-
ing direction method of multipliers (ADMM) and establish two main algorithms
called QLNFSR algorithm (Algorithm 1) and TQLNSR algorithm (Algorithm 2).
Experimental results confirm the effectiveness of two algorithms in color image
sparse representation processes.

This paper is organized as follows. In Section 2, we review some notations, def-
initions and lemmas with regard to the quaternion matrix. In Section 3, we review
sparse representation methods based on low-rank matrices and introduce two strate-
gies for low-rank sparse representation based on quaternion. In Section 4, we provide
convergence analysis of the algorithms. In Section 5, the proposed algorithms have
been applied to color image reconstruction. The feasibility and effectiveness of the
algorithms are verified. Finally, we give some conclusions in Section 6.

Notation In this article, R and Q denote the real space and quaternion space, respec-
tively. A scalar and a matrix are written as a and A, respectively. a and A represent a
quaternion number and a quaternionmatrix, respectively. The symbols (·)∗, (·)−1, (·)T
and (·)H denote the conjugation, inverse, transpose and conjugate transpose, respec-
tively. The symbols |·|, ‖·‖F and ‖·‖∗ are the absolute value ormodulus, the Frobenius
norm and the nuclear norm, respectively. The symbols 〈·, ·〉, tr{·} and rank(·) denote
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the inner product operation, the trace and rank operators, respectively. The real part
of quaternion (scalar, vector, and matrix) denotes R(·). The symbol I represents the
identity matrix with appropriate size.

2 Preliminaries

In this section, we recall some preliminary results that will be used in the following
discussion. Firstly, we introduce the definition of quaternion.

Definition 2.1 [38] A quaternion q ∈ Q is expressed as

q = q0 + q1 i + q2 j + q3k,

where q0, q1, q2, q3 ∈ R, and three imaginary units i, j , k satisfy

i2 = j2 = k2 = i j k = −1, i j = − j i = k, j k = −k j = i, ki = −i k = j .

One of the most important properties of quaternion is that the multiplication of
quaternion is noncommutative as these rules, that is pq �= qp in general for p, q ∈ Q.
For example, it is obvious that pq �= qp while p = i and q = j .

Definition 2.2 [38] A quaternion matrix A ∈ Q
m×n is expressed as

A = A0 + A1 i + A2 j + A3k,

where A0, A1, A2, A3 ∈ R
m×n . The conjugate transpose matrix of A is defined as

AH = AT
0 − AT

1 i − AT
2 j − AT

3 k.

We get the following definitions about the norm of the quaternion and quaternion
matrix.

Definition 2.3 [38] Let a ∈ Q and A ∈ Q
m×n . The norm of a quaternion a =

a0 + a1 i + a2 j + a3k and the Frobenius norm of the quaternion matrix A = A0 +
A1 i + A2 j + A3k = (ai j ), are defined as

‖a‖ =
√
a20 + a21 + a22 + a23

and

‖A‖F =
√

‖A0‖2F + ‖A1‖2F + ‖A2‖2F + ‖A3‖2F =
√
tr(AH A).

Below we give the definition of the generalized inverse of a quaternion matrix.

Definition 2.4 [39] For given A ∈ Q
m×n , the generalized inverse of the quaternion

matrix A is defined as X , which satisfies the following conditions

(1) AXA = A, (2) XAX = X, (3) (AX)H = AX, (4) (XA)H = XA. (2.1)
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We denote X by A†.

Specially, if A is invertible, it is clear that X = A−1 trivially satisfies (2.1).

Definition 2.5 (QNN, [40]) Given X ∈ Q
m×n , the nuclear norm of the quaternion

matrix is

‖X‖∗ =
min(m,n)∑

i=1

σi (X), (2.2)

where σi (X) denotes the i-th singular value of X .

Lemma 2.1 (Binary factorization framework, [35]) Let the quaternion matrix A ∈
Q

m×n with rank(A) = r ≤ d. Then the binary factorization framework is devised as:

A = UV H , (2.3)

where U ∈ Q
m×d and V ∈ Q

n×d such that rank(U) = rank(V ) = r .

Lemma 2.2 (Quaternion Singular Value Decomposition (QSVD), [19]) Let A ∈
Q

m×n, then there exist two unitary quaternion matrices U ∈ Q
m×m and V ∈ Q

n×n

such that
A = U�V H ,

where� = diag(σ1, σ2, · · · , σl), σ1 ≥ σ2 ≥ · · · ≥ σl ≥ 0, and the diagonal elements
of � are all the nonnegative singular values of the matrix A and l = min(m, n).

Definition 2.6 (QLN, [41]) Let X ∈ Q
m×n . The logarithmic norm of the quaternion

matrix with 0 ≤ p ≤ 1 and ε > 0 is defined as

‖X‖p
L =

min(m,n)∑
i=1

log(σ p
i (X) + ε), (2.4)

where σi (X) denotes the i-th singular value of X .

Lemma 2.3 [41] Let the quaternion matrix X ∈ Q
m×n with rank(X) = r ≤ d ≤

min{m, n}. There exist U ∈ Q
m×d and V ∈ Q

N×d such that X = UV H . Then we
have:

‖X‖1/2L = min
U,V

X=UVH

1

2
‖U‖1L + 1

2
‖V‖1L . (2.5)

Lemma 2.4 (Quaternion Logarithmic Singular Value Thresholding (QLSVT), [41])
Let the quaternion matrix A ∈ Q

m×n and λ > 0. If QSVD of A is A = UA�AV
H
A , then

the closed solution of the problem

argmin
X

1

2
‖A − X‖2F + λ‖X‖1L (2.6)
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is provided by X = UA�λ,ε,AV
H
A . Here, the soft thresholding operator �λ,ε,A is defined

as:
�λ,ε,A = diag(lλ,ε(σ1), lλ,ε(σ2), · · · , lλ,ε(σr ), 0, · · · , 0) ∈ R

m×n

with

lλ,ε(x) =
⎧
⎨
⎩
0, δ ≤ 0,

argmin
a∈{0, 12 (x−ε+√

δ)}
h(a), δ > 0, (2.7)

where δ = (x − ε)2 − 4(λ − xε) and the function h : R
+ → R

+ is defined as
h(a) := 1

2 (a − x)2 + λlog(a + ε).

3 Quaternionmatrix sparse representationmodel

Due to the pronounced non-local self-similarity evident in the structure of visual data,
often observed as low-rank features, the goal of matrix sparse representation models
is to tackle image rendering problems using the following approach:

min
X

rank(X), s.t. B ≈ AX , (3.1)

where rank(X) is the rank function, B is the known data matrix, A is the constraint
matrix, and X is the matrix to be found. Problem (3.1) constitutes a combinatorial
optimization challenge, typically addressable by optimizing convex surrogates for the
rank function [42].

Problem (3.1) briefly introduces the classic matrix sparse representation model,
which fundamentally optimizes the sparse representation of grayscale images and
other two-dimensional data. When processing color images, the model in (3.1) needs
to decompose the RGB channels, while the quaternion matrix sparse representation
model can assemble the RGB channels. Therefore, it can be expressed as:

min
X

rank(X), s.t. B ≈ AX, (3.2)

where rank(X) is the quaternion matrix rank function, B is the known quaternion
matrix, A is the constraint quaternion matrix, and X is the quaternion matrix to be
found.

The main sparse representation model in quaternion algebra primarily focuses on
low-rank minimization. Similar to the classical matrix sparse representation model,
the rank function in model (3.2) is challenging to optimize. Therefore, according to
Definition 2.5, the low-rank minimization model can be expressed as:

min
X

‖X‖∗, s.t. B ≈ AX . (3.3)

A rank, akin to a value in the real domain, is represented by a real number. As
depicted in Fig. 1, QLN provides a finer approximation compared to QNN. Further-
more, drawing on both the bi-factor surrogate theorem for matrix logarithmic norm
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mentioned in [37] and Lemma 2.1, it becomes feasible to formulate the bi-factor sur-
rogate theorem for QLN. Therefore, combined with the Definition 2.6 and Lemma
2.3, this paper proposes two quaternion sparse representation models: Quaternion
Logarithmic Norm Factorization Sparse Representation (QLNFSR) and Truncated
Quaternion Logarithmic Norm Sparse Representation (TQLNSR) as follows.

3.1 Quaternion logarithmic norm factorization sparse representation

According to Definition 2.6 and Lemma 2.3, on the basis of model (3.3), the following
sparse representation model based on quaternion framework is proposed:

min
X

‖X‖1/2L , s.t. B ≈ AX, (3.4)

where B is the known quaternion matrix, A is the constraint quaternion matrix, and
X is the quaternion matrix to be found. Our aim is to minimize the disparity between
B and AX , while simultaneously reducing the rank of X to its lowest possible value.
Combining the aforementioned objectives into a single equation allows us to represent
(3.4) as:

min
X,Y,Z

λ

2
(‖Y‖1L + ‖Z‖1L) + ρ

2
‖B − AX‖2F , s.t. Y = M, Z = N, X = MNH . (3.5)

It’s worth noting that (3.5) decomposes the interconnected terms, enabling them to
be tackled separately. Subsequently, the challenges posed by (3.5) can be addressed
using the ADMM framework.

Initially, we address the task described in (3.5) by minimizing the augmented
Lagrangian function given by:

L(X,Y , Z, M, N, F1, F2, F3, α)

= λ

2
(‖Y‖1L + ‖Z‖1L ) + ρ

2
‖B − AX‖2F + R(〈F1, M − Y 〉) + R(〈F2, N − Z〉)

+ R(〈F3, X − MNH 〉) + α

2
(‖Y − M‖2F + ‖Z − N‖2F + ‖X − MNH‖2F ),

(3.6)

where F1, F2 and F3 are Lagrange multipliers, α > 0 is the penalty parameter.

Updating M and N In the (k + 1)-th iteration, while keeping the other variables at
their most recent values, M and N are determined as the optimal solutions of the
subsequent problems:

Mk+1 =argmin
M

1

2
‖Xk + 1

αk
Fk
3 − M(Nk)H‖2F + 1

2
‖M − Y k + 1

αk
Fk
1‖2F .

Nk+1 =argmin
N

1

2
‖Xk + 1

αk
Fk
3 − Mk+1NH‖2F + 1

2
‖N − Zk + 1

αk
Fk
2‖2F .

(3.7)
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Let

Q(M) := 1

2
‖Xk + 1

αk
Fk
3 − M(Nk)H‖2F + 1

2
‖M − Y k + 1

αk
Fk
1‖2F

and

P(N) := 1

2
‖Xk + 1

αk
Fk
3 − Mk+1NH‖2F + 1

2
‖N − Zk + 1

αk
Fk
2‖2F .

Applying the relevant principles regarding quaternionmatrix derivatives as outlined
in [43], the gradient of Q(M) can be calculated as

∂Q(M)

∂M
= M(Nk)HNk − (Xk + 1

αk
Fk
3)N

k + M − Y k + 1

αk
Fk
1. (3.8)

By setting (3.8) equal to zero, the solution can be derived as

Mk+1 = [
(Xk + 1

αk
Fk
3)N

k + Y k − 1

αk
Fk
1

][
I + (Nk)HNk]−1

. (3.9)

Utilizing a comparable approach, we can derive the optimal solution for Nk+1 as
follows:

Nk+1 = [
(Xk + 1

αk
Fk
3)

HMk+1 + Zk − 1

αk
Fk
2

][
I + (Mk+1)HMk+1]−1

. (3.10)

Updating Y and Z In the (k + 1)-th iteration, while maintaining the remaining vari-
ables at their most recent values, Y k+1 and Zk+1 represent the optimal solutions of
the subsequent problems:

⎧
⎨
⎩
Y k+1 = argmin

Y

1
2‖Mk+1 + 1

αk F
k
1 − Y‖2F + λ

2αk ‖Y‖1L ,

Zk+1 = argmin
Z

1
2‖Nk+1 + 1

αk F
k
2 − Z‖2F + λ

2αk ‖Z‖1L .
(3.11)

According to Lemma 2.4, we can utilize the QLSVT technique to update Y k+1 and
Zk+1 in reference to (3.11), that are

⎧
⎨
⎩
Y k+1 = US1

� λ

2αk
,ε,�S1

V H
S1 ,

Zk+1 = US2
� λ

2αk
,ε,�S2

V H
S2 ,

(3.12)

where S1 = Mk+1 + 1
αk F

k
1 and S2 = Nk+1 + 1

αk F
k
2. Let S1 = US1

�S1
V H

S1 and
S2 = US2

�S2
V H

S2 be the QSVD of quaternion matrices S1 and S2, respectively.
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Updating X In the (k +1)-th iteration, fixing the other variables at their latest values,
X is the optimal solutions of the following problem:

Xk+1 = argmin
X

ρ

2
‖B − AX‖2F + 1

2
‖X − Mk+1(Nk+1)H + 1

αk
Fk
3‖2F . (3.13)

Let

H(X) := ρ

2
‖B − AX‖2F + 1

2
‖X − Mk+1(Nk+1)H + 1

αk
Fk
3‖2F .

The gradient of H(X) can be calculated as

∂H(X)

∂X
= ρAH (AX − B) + (X + Fk

3

αk
− Mk+1(Nk+1)H ). (3.14)

Setting (3.14) to zero, we can obtain a unique solution

Xk+1 = [
I + ρAH A

]−1[
ρAH B + Mk+1(Nk+1)H − 1

αk
Fk
3

]
. (3.15)

Updating F1, F2, F3 and α The update formats are as follows:
⎧
⎪⎪⎨
⎪⎪⎩

Fk+1
1 = Fk

1 + αk(Y k+1 − Mk+1),

Fk+1
2 = Fk

2 + αk(Zk+1 − Nk+1),

Fk+1
3 = Fk

3 + αk(Xk+1 − Mk+1(Nk+1)H ),

αk+1 = min(βαk, αmax).

(3.16)

Algorithm 1 outlines the complete process, detailing each step sequentially.

Algorithm 1 QLNFSR algorithm.
Input: A, B, ρ, β, αmax, d(d ≤ min{m, n})
Output: Xk+1

1: Initialize M0, N0, X0, Y0, Z0, F0
1, F

0
2, F

0
3 and α0

2: Repeat
3: Update Mk+1 and Nk+1 via (3.9) and (3.10).
4: Update Yk+1 and Zk+1 via (3.12).
5: Update Xk+1 via (3.15).
6: Updating Fk+1

1 , Fk+1
2 , Fk+1

3 and αk+1 via (3.16).
7: Set k ← k + 1.
8: Until convergence

3.2 Truncated quaternion logarithmic norm sparse representation

The truncated nuclear norm can achieve a better approximation of the rank function
than the nuclear norm. According to this property, the method adopted in this paper
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combines the truncation skill and QLN, and the definition of truncated logarithmic
norm based on quaternion is introduced below.

Definition 3.1 (TQLN, [10]) Given X ∈ Q
m×n , the truncated logarithmic norm of the

quaternion matrix with 0 ≤ p ≤ 1 and ε > 0 is defined as the sum of logarithmic
function of min(M, N ) − r minimum singular values:

‖X‖p
L,r =

min(m,n)∑
i=r+1

log(σ p
i (X) + ε), (3.17)

where σi (X) denotes the i-th singular value of X .

Given that the initial large singular values do not affect the rank, they are disregarded
in TQLN. Subsequently, the focus shifts towards optimizing the smallestmin(M, N )−
r singular values to achieve a more precise low-rank estimation. According to TQLN
principles, the completion process based on the low-rank minimization model (3.2)
can be expressed as follows:

min
X

‖X‖p
L,r , s.t. B ≈ AX . (3.18)

Lemma 3.1 [41] Let X ∈ Q
m×n, and the matrices U ∈ Q

r×m and V ∈ Q
r×n with

UUH = Ir , VV H = Ir . Here, r is any integer (r ≤ min(m, n)). Then it has

∥∥∥tr(UXV H )

∥∥∥ ≤
r∑

i=1

σi (X), max
∥∥∥tr(UXV H )

∥∥∥ =
r∑

i=1

σi (X).

Based onDefinition 3.1 andLemma3.1,we introduce a sparse representationmodel
utilizing the quaternion-based framework:

min
X

λ‖X‖p
L − max

CCH=Ir ,DDH=Ir

∥∥∥tr(CXDH )

∥∥∥ , s.t. B ≈ AX . (3.19)

The procedure is outlined in Algorithm 2.
In Algorithm 2, Ck and Dk are first obtained by QSVD of Xk . Next, we will focus

on Step 5 of Algorithm 2, which can be expressed as the following formula:

min
X,K

λ‖X‖p
L −

∥∥∥tr(CkK (Dk)H )

∥∥∥ + ρ

2
‖B − AK‖2F , s.t. X = K . (3.20)

It’s worth noting that the problem (3.20) can be addressed using the ADMM frame-
work. Initially, we tackle the problem (3.5) by minimizing the augmented Lagrangian
function provided below:

L(K , X, F, α) = λ‖X‖pL −
∥∥∥tr(Ck K (Dk )H )

∥∥∥ + ρ

2
‖B − AK‖2F + R(〈F, K − X〉) + α

2
‖K − X‖2F ,

(3.21)
whereα and F are a positive penalty parameter and aLagrangemultiplier, respectively.
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Algorithm 2 TQLNSR algorithm.
Input: A, B ∈ Q

m×n , ρ, β, αmax
Output: Xk+1

1: Initialize X0, F0, α0

2: Repeat

3: Computing [Ûk
, ∼, V̂

k ] = QSVD(Xk ), where

Û
k = (u1, · · · , um ) ∈ Q

m×m , V̂
k = (v1, · · · , vn) ∈ Q

n×n .

4: Let Ck = (u1, · · · , ur )T ∈ Q
r×m , Dk = (v1, · · · , vr )

T ∈ Q
r×n .

5: Solving Xk+1 = argmin
X

B=AX

λ‖X‖pL −
∥∥∥tr(CkX(Dk )H )

∥∥∥.

6: Set k ← k + 1.
7: Until convergence

Updating K In the (k+1)-th iteration, fixing the other variables at their latest values,
K is the optimal solution of the following problem:

K k+1 = argmin
K

ρ

2
‖B − AK‖2F + 1

2
‖K − Xk + 1

αk
Fk‖2F −

∥∥∥tr(CkK (Dk)H )

∥∥∥ .

= argmin
K

ρ

2
‖B − AK‖2F + 1

2
‖K − Xk + 1

αk
(Fk − (Ck)H Dk)‖2F .

(3.22)
Let

W(K ) := ρ

2
‖B − AK‖2F + 1

2
‖K − Xk + 1

αk
(Fk − (Ck)H Dk)‖2F .

Applying the relevant principles regarding quaternionmatrix derivatives as outlined
in [43], the gradient of W(K ) can be calculated as

∂W(K )

∂K
= −ρAH (B − AK ) + K − Xk + 1

αk
(Fk − (Ck)H Dk). (3.23)

Setting (3.23) to zero, we can obtain a unique solution

K k+1 = [ρ I + AH A]−1[ρAH B + Xk + 1

αk
(Fk − (Ck)H Dk)

]
. (3.24)

Updating X In the (k + 1)-th iteration, while keeping the other variables constant
at their most recent values, Xk+1 represents the optimal solution of the subsequent
problem:

Xk+1 = argmin
X

1

2
‖K k+1 + 1

αk
Fk − X‖2F + λ

αk
‖X‖p

L . (3.25)
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ByLemma 2.4, theQLSVT can be applied to (3.25) for updating Xk+1 when p = 1,
that is

Xk+1 = US3
�

λ,αk ,�S3
V H

S3 , (3.26)

where S3 = K k+1 + 1
αk F

k . Let S3 = US3
�S3

V H
S3 be the QSVD of quaternion matrices

S3.

Updating F and α The update formats are as follows:

{
Fk+1 = Fk + αk(Xk+1 − K k+1),

αk+1 = min(βαk, αmax).
(3.27)

Algorithm 3 outlines the complete process, detailing each step sequentially.

Algorithm 3 The ADMM optimization process is used in Step 5 of the TQLNSR
algorithm.

Input: A, B, Ck , Dk , ρ, αmax, β
Output: Xk+1

1: Initialize X0, F0, α0

2: Repeat
3: Update K k+1 via (3.24).
4: Update Xk+1 via (3.26).
5: Updating Fk+1 and αk+1 via (3.27).
6: Set k ← k + 1.
7: Until convergence

The termination condition for Algorithms 1, 2 and 3 is defined as the following
relative error:

RE := ‖AXk − B‖2F
‖Xk‖2F

≤ tol,

where tol > 0 is the stopping tolerance. In the experiments, we set tol=1e-4.

4 Convergence analysis

No definite convergence property of the ADMM has been established for non-convex
problems (or convex problems involving more than two blocks of variables), even
within the real number field. Therefore, concerning the formidable problems (3.5) and
(3.20), we empirically demonstrate their convergence behavior. Additionally, along-
side the empirical observations, we provide a weak convergence property for problem
(3.5) (similarly for problem (3.20)), subject to mild conditions, as outlined in the
following theorems.
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Theorem 4.1 Let 
1 := (X,Y , Z, M, N, F1, F2, F3) and {
k
1}∞k=1 be generated by

Algorithm 1. Assume that {
k
1}∞k=1 is bounded, and {αk}∞k=1 is non-decreasing and

bounded. Then,
(1) {Xk}, {Y k}, {Zk}, {Mk} and {Nk} are Cauchy sequences;
(2) any accumulation point of {
k

1}∞k=1 satisfies the Karush-Kuhn-Tucker (KKT)

conditions for the problem (3.5).

Proof (1) According to (3.16), we have

Mk+1 − Y k+1 = 1

αk
(Fk+1

1 − Fk
1),

Nk+1 − Zk+1 = 1

αk
(Fk+1

2 − Fk
2),

Xk+1 − Mk+1(Nk+1)H = 1

αk
(Fk+1

3 − Fk
3).

Due to the assumptions that the quaternion matrix sequences {Fk
1}, {Fk

2} and {Fk
3}

are bounded, we have

∞∑
k=0

‖Mk+1 − Y k+1‖F ≤
∞∑
k=0

αk+1

(αk)2
‖Fk+1

1 − Fk
1‖F < ∞,

∞∑
k=0

‖Nk+1 − Zk+1‖F ≤
∞∑
k=0

αk+1

(αk)2
‖Fk+1

2 − Fk
2‖F < ∞,

∞∑
k=0

‖Xk+1 − Mk+1(Nk+1)H‖F ≤
∞∑
k=0

αk+1

(αk)2
‖Fk+1

3 − Fk
3‖F < ∞,

which imply that

lim
k→∞ ‖Mk+1 − Y k+1‖F = 0,

lim
k→∞ ‖Nk+1 − Zk+1‖F = 0,

lim
k→∞ ‖Xk+1 − Mk+1(Nk+1)H‖F = 0.

Hence, {(Xk,Y k, Zk, Mk, Nk)} indeed approaches to a feasible solution.
Next, we show that {Mk} and {Nk} are Cauchy sequences. Note that

⎧
⎨
⎩

Fk
1 = Fk−1

1 + αk−1(Y k − Mk),

Fk
2 = Fk−1

2 + αk−1(Zk − Nk),

Fk
3 = Fk−1

3 + αk−1(Xk − Mk(Nk)H ).
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Then, from (3.12) and (3.13), we have

1

2

(
Mk+1 − Yk + 1

αk
Fk
1
) + 1

2

(
Mk+1(Nk )H − Xk − 1

αk
Fk
3
)
Nk

= 1

2

(
Mk+1 − Mk + Mk − Yk + Fk

1
αk

) + 1

2

(
Mk+1(Nk )H − Mk (Nk )H − 1

αk−1
Fk
3

+ 1

αk−1
Fk−1
3 − 1

αk
Fk
3
)
Nk

= 1

2
[(Mk+1 − Mk )(I + (Nk )H (Nk )) + 1

αk−1
(Fk

1 − Fk−1
1 ) + 1

αk
Fk
1 − (

1

αk−1
(Fk

3 − Fk−1
3 )

+ 1

αk
Fk
3)N

k ] = O, (4.1)

and

1

2

(
Nk+1 − Zk + 1

αk
Fk
2

) + 1

2

(
Nk+1(Mk+1)H − (Xk)H − 1

αk
(Fk

3)
H )

Mk+1

=1

2

(
Nk+1 − Nk + Nk − Zk + 1

αk
Fk
2

) + 1

2

(
Nk+1(Mk+1)H − Nk(Mk)H − 1

αk−1 F
k
3

+ 1

αk−1 F
k−1
3 − 1

αk
Fk
3

)
Mk+1

=1

2
[(Nk+1 − Nk)(I + (Mk+1)H (Mk+1)) + 1

αk−1 (Fk
2 − Fk−1

2 ) + 1

αk
Fk
2

+ Nk(Mk+1 − Mk)HMk+1 − (
1

αk−1 (Fk
3 − Fk−1

3 ) + 1

αk
Fk
3)M

k+1] = O. (4.2)

Based on (4.1) and (4.2), we can respectively obtain

Mk+1 − Mk

= 2
[ 1

αk−1
(Fk−1

1 − Fk
1) − 1

αk
Fk
1 + (

1

αk−1
(Fk

3 − Fk−1
3 ) + 1

αk
Fk
3)N

k][I + (Nk )H (Nk )]−1 (4.3)

and

Nk+1 − Nk

= 2
[ 1

αk−1 (Fk−1
2 − Fk

2) − 1

αk
Fk
2 + Nk(Mk+1 − Mk)HMk+1 + Nk(Mk+1 − Mk)H

+ (
1

αk−1 (Fk
3 − Fk−1

3 ) + 1

αk
Fk
3)M

k+1][I + (Mk+1)H (Mk+1)
]−1

. (4.4)

Recall that αk = min(βαk−1, αmax), it follows that {αk}∞k=1 is non-decreasing and
bounded, we have

∞∑
k=0

‖Mk+1 − Mk‖F ≤
∞∑
k=0

η1

αk
≤

∞∑
k=0

αk+1η1

(αk)2
< ∞, (4.5)
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where the constant η1 is defined as

η1 =max{2(β‖Fk−1
1 − Fk

1‖F + ‖Fk
1‖F + (β‖Fk

3 − Fk−1
3 ‖F + ‖Fk

3‖F )‖Nk‖F )

‖(I + (Nk)H (Nk)
)−1‖F , k = 1, 2, · · · }.

And it has

∞∑
k=0

‖Nk+1 − Nk‖F ≤
∞∑
k=0

η2

αk
+

∞∑
k=0

η3‖Mk − Mk−1‖F

≤
∞∑
k=0

αk+1η2

(αk)2
+

∞∑
k=0

η3‖Mk − Mk−1‖F < ∞, (4.6)

where the constants η2 and η3 are defined as

η2 =max{2(β‖Fk−1
2 − Fk

2‖F + ‖Fk
2‖F + (β‖Fk

3 − Fk−1
3 ‖F + ‖Fk

3‖F )‖Mk+1‖F )

‖(I + (Mk+1)H (Mk+1)
)−1‖F , k = 1, 2, · · · }

and

η3 = max{2‖Nk‖F‖Mk+1‖F‖(I + (Mk+1)H (Mk+1)
)−1‖F , k = 1, 2, · · · }.

From(4.5) and (4.6),weknow that limk→∞‖Mk+1−Mk‖F = 0 and limk→∞‖Nk+1−
Nk‖F = 0. Hence, {Mk} and {Nk} are Cauchy sequences. Similarly, one can also
verify {Xk} is Cauchy sequence.

Later, we establish that the sequences {Y k}, {Zk} and {Xk} are Cauchy sequences.
Let Uk

y�
k
y(V

H
y )k be QSVD of the matrix Mk + 1

αk F
k
1 in the (k+1)-th iteration. Then

utilizing the QLSVT, we can get:

Y k+1 = Uk
y� λ

2αk
,ε,�k

y
(V H

y )k . (4.7)

The soft thresholding operator �λ,ε,A is defined as:

�λ,ε,A = diag(lλ,ε(σ1), lλ,ε(σ2), · · · , lλ,ε(σr ), 0, · · · , 0) ∈ R
m×n

with

lλ,ε(x) =
⎧
⎨
⎩
0, δ ≤ 0,

argmin
a∈{0, 12 (x−ε+√

δ)}
h(a), δ > 0, (4.8)

where δ = (x − ε)2 − 4(λ − xε) and the function h : R
+ → R

+ is defined as
h(a) := 1

2 (a − x)2 + λlog(a + ε). Let x0 present an arbitrary singular value (x0 ≥ 0)
and g(λ, x0) = x0 − lλ,ε(x0), then we can obtain max

(
g(λ, x0)

) = 2
√

λ as follows.
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Case 1: δ ≤ 0. From the definition of δ, we have 0 ≤ x0 ≤ 2
√

λ − ε. Moreover,
lλ,ε(x0) in this case, so we have max

(
g(λ, x0)

) = 2
√

λ.
Case 2: δ > 0. In this case, x0 > 2

√
λ − ε and we have

max
(
g(λ, x0)

) = x0 − argmin
a∈{0, 12 (x−ε+√

δ)}
h(a) = x0 − 1

2
(x0 − ε + √

δ).

Then it holds

∂max
(
g(λ, x0)

)

∂x0
= 1

2
(1 − x0 + ε√

(x0 + ε)2 − 4λ
) < 0.

We could know that g(λ, x0) < g(λ, 2
√

λ − ε) = √
λ. For αk > 0, from (3.16), we

have

lim
k→∞ ‖Y k+1 − Y k‖F

= lim
k→∞ ‖Mk+1 + 1

αk
(Fk+1

1 − Fk
1) − Y k‖F

= lim
k→∞ ‖Mk+1 − Mk + 1

αk
Fk+1
1 + Mk − Y k + 1

αk
Fk
1‖F

≤ lim
k→∞(‖Mk+1 − Mk‖F + 1

αk
‖Fk+1

1 ‖F + ‖Mk − Y k + 1

αk
Fk
1‖F )

= lim
k→∞(‖Mk+1 − Mk‖F + 1

αk
‖Fk+1

1 ‖F + ‖Mk + 1

αk
Fk
1 − Y k‖F )

= lim
k→∞(‖Mk+1 − Mk‖F + 1

αk
‖Fk+1

1 ‖F + ‖Uk
y�

k
y(V

H
y )k − Uk

y� λ

2αk
,ε,�k

y
(V H

y )k‖F )

= lim
k→∞(‖Mk+1 − Mk‖F + 1

αk
‖Fk+1

1 ‖F + ‖Uk
y

(
�k

y − � λ

2αk
,ε,�k

y

)
(V H

y )k‖F )

≤ lim
k→∞

( 1

αk
‖Fk+1

1 ‖F + max(m, n)

√
λ

2αk

)

= 0.

Similarly, one can also verify that {Zk} and {Xk} are Cauchy sequences.
(2) Let (Y∗, Z∗, M∗, N∗, X∗) be a stationary point of (3.5). Then, it satisfies the

following KKT conditions

{
O ∈ λ

2 ∂‖Y∗‖1L + F1∗, O ∈ λ
2 ∂‖Z∗‖1L + F2∗, O = ρAH (B − AX∗) + F3∗,

X∗ = M∗(N∗)H , Y∗ = M∗, Z∗ = N∗.
(4.9)

Subsequently, we will confirm that every limit point of (Y k, Zk, Mk, Nk, Xk)

aforementioned KKT conditions.
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From (3.11) and (3.13), we can respectively obtain

O ∈ λ

2αk
∂‖Y k+1‖1L + (Mk+1 − Y k+1 + Fk

1

αk
),

O ∈ λ

2αk
∂‖Zk+1‖1L + (Nk+1 − Zk+1 + Fk

2

αk
),

O = ρAH (B − AXk+1) + (Xk+1 − Mk+1(Nk+1)H + Fk
3

αk
).

(4.10)

Since {Y k}, {Zk}, {Mk}, {Nk} and {Xk} are Cauchy sequences, we can let
Y∞, Z∞, M∞, N∞ and X∞ be their accumulation points, respectively. Then,
together with the results in Algorithm 1, we have that Y∞ = M∞, Z∞ = N∞,
X∞ = Y∞(Z∞)H . Thus, when k → ∞, (4.10) becomes

O ∈ λ

2
∂‖Y∞‖1L + F∞

1 ,

O ∈ λ

2
∂‖Z∞‖1L + F∞

2 ,

O = ρAH (B − AX∞) + F∞
3 .

(4.11)

Consequently, any accumulation point {Y∞, Z∞, M∞, N∞, X∞} of the sequence
{(Y k, Zk, Mk, Nk, Xk)} generated by Algorithm 1 indeed satisfies the KKT condi-
tions for the problem (3.5). This proof is complete. ��
Below we give the weak convergence property of the problem (3.20), but under mild
conditions, as described in the following theorem.

Theorem 4.2 Let
2 := (K , X, F) and {
k
2}∞k=1 be generated byAlgorithm 3. Assume

that {
k
2}∞k=1 is bounded, and {αk}∞k=1 is non-decreasing and bounded. Then,

(1) {K k} and {Xk} are Cauchy sequences;
(2) any accumulation point of {
k

2}∞k=1 satisfies the Karush-Kuhn-Tucker (KKT)

conditions for the problem (3.20).

Proof (1) According to (3.27), we have

K k+1 − Xk+1 = 1

αk
(Fk+1 − Fk).

Due to the assumptions that {Fk} is bounded and {αk}∞k=1 is non-decreasing and
bounded, we have

∞∑
k=0

‖K k+1 − Xk+1‖F ≤
∞∑
k=0

αk+1

(αk)2
‖Fk+1 − Fk‖F < ∞,

which implies that
lim
k→∞ ‖K k+1 − Xk+1‖F = 0.
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Hence, {(K k, Xk)} indeed approaches to a feasible solution.
Next, we show that {K k} and {Xk} are Cauchy sequences. Let Uk

x�
k
x (V

H
x )k be the

QSVD of K k + 1
αk F

k in the (k + 1)-th iteration.

For αk > 0, from (3.27) and the proof of Theorem 4.1, we know that

lim
k→∞ ‖Xk+1 − Xk‖F

= lim
k→∞ ‖K k+1 + 1

αk
(Fk+1 − Fk) − Xk‖F

= lim
k→∞ ‖K k+1 − K k + 1

αk
Fk+1 + K k − Xk + 1

αk
Fk‖F

≤ lim
k→∞(‖K k+1 − K k‖F + 1

αk
‖Fk+1‖F + ‖K k − Xk + 1

αk
Fk‖F )

= lim
k→∞(‖K k+1 − K k‖F + 1

αk
‖Fk+1‖F + ‖K k + 1

αk
Fk − Xk‖F )

= lim
k→∞(‖K k+1 − K k‖F + 1

αk
‖Fk+1‖F + ‖Uk

x�
k
x (V

H
x )k − Uk

x� λ

αk
,ε,�k

x
(V H

x )k‖F )

= lim
k→∞(‖K k+1 − K k‖F + 1

αk
‖Fk+1‖F + ‖Uk

x

(
�k

x − � λ

αk
,ε,�k

x

)
(V H

x )k‖F )

≤ lim
k→∞

( 1

αk
‖Fk+1‖F + max(m, n)

√
λ

αk

)

= 0.

Similarly, one can also verify that {Hk} is Cauchy sequence.
(2) Let (K∗, X∗) be a stationary point of (3.20). Then, it satisfies the following

KKT conditions ⎧
⎨
⎩

O ∈ λ∂‖X∗‖1L + F∗,
O = ρAH (B − AK∗) + F∗,
X∗ = K∗.

(4.12)

Subsequently, we will confirm that every limit point of (K k, Xk) aforementioned
KKT conditions.

From (3.22) and (3.25), we can respectively obtain

O ∈ λ

αk
∂‖Xk+1‖1L + (K k+1 − Xk+1 + 1

αk
Fk),

O = ρAH (B − AK k+1) + (
K k+1 − Xk+1 + 1

αk
(Fk − CH D)

)
.

(4.13)
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Since {K k} and {Xk} are Cauchy sequences, let K∞ and X∞ be their accumulation
points, respectively. Then, together with the results in Algorithm 3, we have that
K∞ = X∞. Thus, when k → ∞, (4.13) becomes

O ∈ λ∂‖X∞‖1L + F∞,

O = ρAH (B − AK∞) + F∞.
(4.14)

Consequently, any accumulation point {K∞, X∞} of the sequence {(K k, Xk)} gen-
erated by Algorithm 3 indeed satisfies the KKT conditions for the problem (3.20). ��

5 Numerical experiments

In this section, based on the discussions in Sections 3 and 4, we give some numerical
examples of color image sparse representation to prove the feasibility and effectiveness
of Algorithms 1-3.We implemented all algorithms inMATLABR2020a on a personal
computer with Inter(R) Core(TM) i7-10700 CPU @ 2.90GHz and 8 GB memory.

Let A = rand (n, n)+rand (n, n) i+rand (n, n) j+rand (n, n) k ∈ Q
n×n with n =

20. We employ Algorithms 1-3 to individually compute the reconstructed quaternion
matrix and random matrix under the models (3.5) and (3.19). The three-dimensional
correlation between the target value and the parameter values α and ρ is illustrated in
Figs. 2 and 3.

From Figs. 2 and 3, it’s evident that the matrices reconstructed by our proposed
Algorithms 1-3 consistently yield lower target values within the model compared to
the random matrices. Therefore, the feasibility of our proposed algorithms is demon-
strated. We represent a color image as A = R i + G j + Bk ∈ Q

m×n , where R,G
and B respectively represent the real matrix corresponding to the red, green and blue
channels in the color image. The original color images selected in the experiments
are 64 × 64 × 3 pixels. Obviously, every color image matrix is a pure imaginary

Fig. 2 Comparison of target values between quaternion matrix reconstructed by QLNFSR algorithm and
random quaternion matrix under different parameters
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Fig. 3 Comparison of target values between quaternion matrix reconstructed by QTLNSR algorithm and
random quaternion matrix under different parameters

quaternion matrix. Using this representation method, we can make better use of the
relationship between the three channels of the color image and process a color image
as a whole. We compare the proposed algorithm with truncated QSVD algorithm [44]
and quaternion nuclear norm algorithm [45].

Parameters and initialization setting we set B = A, λ = 0.05
√
max(m, n), ρ =

0.05, d = 10, αmax = 107 and β = 1.03. Let α0 = 0.01, X0 = randQ(m, n),
[U x ,∼, V x ] = svdQ(X0), M0 = Y0 = U x (1 : d, :), N0 = Z0 = V x (1 : d, :)
and F0

1 = F0
2 = F0

3 = 0. In TQLNSR, as the exact number of truncated singular
values is unknown beforehand, experimenting with r = 1 can yield useful insights.
Adjusting r appropriately can lead to improved outcomes. The randomly generated
quaternion matrix function randQ and the quaternion singular value decomposition
function svdQ are derived from the Structure-preserving Quaternion Toolbox [46].

Quantitative assessment To assess the effectiveness of the proposed methods, we
utilize three commonly employed quantitative qualitymetrics, namely the peak signal-
to-noise ratio (PSNR), themean structural similarity index (MSSIM)and the sparsity of
the proportion of zero elements, in addition to evaluating visual quality. The calculation
formulas are as follows.

(1) PSNR

PSNR = 10log10(
L2

MSE
),MSE = 1

3mn

3∑
h=1

m∑
w=1

n∑
u=1

[Xh(w, u) − Yh(w, u)]2,

where L is the maximum value of the data type of the color image. MSE is the mean
square error, where X = X1 i + X2 j + X3k ∈ Q

m×n , Y = Y1 i +Y2 j +Y3k ∈ Q
m×n

and (w, u) represent the original image, the reconstructed image and the coordinates,
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respectively. m and n are the number of rows and columns of the image matrix,
respectively.

Generally speaking, PSNR in the range of 30(dB) to 40(dB) indicates good image
quality. That is, the distortion is perceptible but acceptable. When PSNR is higher
than 40(dB), the image quality is excellent. The encrypted image is very close to the
original image.

(2) MSSIM

SSIM(Xh,Yh) =
(
2μ(Xh)μ(Yh) + c1

)(
2σ(Xh,Yh) + c2

)
(
μ2(Xh) + μ2(Yh) + c1)(σ 2(Xh) + σ 2(Yh) + c2)

,

MSSIM(X,Y) = 1

3

3∑
h=1

SSIM(Xh,Yh),

where μ(Xh)/μ(Yh) and σ(Xh)/σ (Yh) represent the mean value and standard devi-
ation of Xh/Yh with h = 1, 2, 3; σ(Xh,Yh) denotes the covariance matrix of Xh and
Yh . c1 and c2 are constants in order to avoid denominators of 0 and maintain stability.
The value of MSSIM ranges from 0 to 1. Notice that it has a well similarity of two
images while the value of MSSIM is closed to 1.

(3) Sparsity

Sparsity = m × n − Tz
m × n

,

where m and n represent the dimensions of the quaternion matrix row and column,
respectively. Tz represents the number of non-zero elements of the quaternion matrix.
The sparsity measure ranges between 0 and 1. A sparsity value closer to 0 indicates a
denser matrix, while a value closer to 1 indicates a sparser matrix.

The reconstruction results about PSNR,MSSIM, Sparsity and CPU time(s) for four
test methods on eight test images are shown in Table 1. When the value of PSNR is
inf, the image similarity is very high. Additionally, Fig. 4 illustrates the visual contrast
between the four test methods on the eight test color images. As can be seen from
Fig. 4 and Table 1, Algorithms 1-3 proposed in this paper can be well applied to the
reconstruction after sparse representation of color images.

6 Conclusions

In conclusion, this paper introduces a novel approach for image restoration using
quaternion matrix framework and logarithmic norm. By representing color images
in a pure quaternion matrix, the proposed method preserves image structure while
approximating rank efficiently. Furthermore, leveraging factorization and truncation
techniques based on the logarithmic norm ensures effective image recovery. The
alternate minimization framework facilitates optimization of these techniques, with
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Fig. 4 Color image (Male, Blossom, Baboon, Peppers, Female, Tree, Splash and Plane) sparse representa-
tion results after reconstruction. The sequence is the results of the original image, QSVD, QSVT, QLNFSR
and TQLNSR algorithms from left to right, respectively
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rigorousmathematical analysis validating convergence. Numerical examples provided
in the paper demonstrate the efficacy of the proposed algorithms in practice, highlight-
ing their potential for various applications in image processing and computer vision.
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