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Abstract
We suggest a revised form of a classic measure function to be employed in the opti-
mization model of the nonnegative matrix factorization problem. More exactly, using
sparse matrix approximations, the revision term is embedded to the model for penal-
izing the ill-conditioning in the computational trajectory to obtain the factorization
elements. Then, as an extension of the Euclidean norm, we employ the ellipsoid norm
to gain adaptive formulas for the Dai–Liao parameter in a least-squares framework. In
essence, the parametric choices here are obtained by pushing the Dai–Liao direction
to the direction of a well-functioning three-term conjugate gradient algorithm. In our
scheme, the well-known BFGS and DFP quasi–Newton updating formulas are used
to characterize the positive definite matrix factor of the ellipsoid norm. To see at what
level our model revisions as well as our algorithmic modifications are effective, we
seek some numerical evidence by conducting classic computational tests and assess-
ing the outputs as well. As reported, the results weigh enough value on our analytical
efforts.
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1 Introduction

Acursory readout of the literature confirms that high-dimensionalmodels have increas-
ingly appeared in the data mining procedures, in the current age of social networks,
bioinformatics, digital communications, and quantum computing. This fact places
great importance on the necessity of diversifying the strategies for managing the dif-
ficulties that need to be prevailed when working with the complex, massive data sets.

A well-known plan to handle the high-dimensional models has been mainly cen-
tered on the compact representation of the input data sets [16]. In this regard, data
reduction principally targets decreasing the size of the data sets while maintaining
the important information, sometimes by data encoding procedures [20]. Meanwhile,
when the data sets are given in the matrix forms, classic tools of the linear algebra such
as nonnegative matrix factorization (NMF) may be greatly and influentially helpful
[10, 17]. As known, a wide range of the real-world data sets are inherently nonnegative
and so, we should technically try to rule out the generation of the negative entries while
managing and processing such data. Nowadays, NMF is repeatedly and purposefully
applied in practical studies such as pattern recognition [11], recommendation systems
[21] and face detection [29].

In a common framework, various NMF techniques take a matrix with nonnegative
entries as the input, and deliver two lower dimensionmatrices with nonnegative entries
as the output [16], in a way that multiplying the output matrices yields an accurate
approximation for the input matrix. As a matter of fact, well-conditioning the inter-
mediary consecutive approximations of the factorization elements may influentially
enhance the computational stability [30], and as a result, make it possible to gain more
appropriate output matrices as well.

Researchers have recently also pushed to devise memoryless versions of the classic
algorithms as another move to handle the high-dimensional optimization models. To
contrive a memoryless technique for a general minimization model, we should tact-
fully benefit the differential features of the cost function as well as the constraints.
Meanwhile, the algorithmic steps should be simply performed, not being so time-
consuming and labor-intensive, alongside keeping the accuracy at an acceptable level
and ensuring the convergence of the solution trajectory. These features can be aggre-
gately seen in the conjugate gradient (CG) algorithms which have been traditionally
shaped in the vector forms [28]. Especially, the Dai–Liao (DL) method is nowadays
labeled as an efficient CG algorithm due to flexibly incorporating the conjugacy and
the quasi–Newton aspects in general circumstances [8, 13].

Here, we plan to address possible model revisions as well as algorithmic modifica-
tions of some classic strategies for managing the large-scale data sets. To summarize
the organization of our study, firstly we deal with a revised form of the classic measure
function proposed by Dennis and Wolkowicz [14] in Section 2, to be embedded to the
optimization model of the NMF problem, by penalizing the ill-conditioned interme-
diary approximations of the factorization elements. Then, in Section 3, we focus on
determining adaptive formulas for the DL parameter as the solutions of a least-squares
model formulated based on the ellipsoid vector norm [28]. We carry out numerical
tests to mirror the value of our theoretical efforts in Section 4, on the CUTEr problems
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[18] as well as a set of randomly generated NMF cases. Finally, we summarize some
results for better understanding of the progress level in Section 5.

2 A revisedmodel for the nonnegativematrix factorization problem

Dimensionality reduction methodologies are naturally understood as influential
approaches for analyzing large data sets. As known, high-dimensional data analysis
is an integral part of the digital era due to recent developments in sensor technology.
As mentioned in Section 1, NMF is one such techniques that has caught researchers’
imagination thanks to the interpretability, simplicity, flexibility and generality [11, 21,
24, 27, 29].

Extracting hidden and important features fromdata gives rise to theNMFpopularity
in which the data matrix is approximated by the product of two matrices, usually
much smaller than the original data matrix. All the input and output matrices of NMF
(often) should be componentwisely nonnegative.Mathematically speaking, for a given
component wisely nonnegative matrix A ∈ R

m×n (or A ≥ 0 for short) and a positive
integer r � min{m, n}, NMF entails finding component wisely nonnegative matrices
W ∈ R

m×r and Z ∈ R
r×n (or W ≥ 0 and Z ≥ 0 for short), by solving the following

minimization problem:

min
W≥0, Z≥0

F(W,Z) = 1

2
‖A − WZ‖2F , (2.1)

where ‖.‖F stands for the Frobenius norm. In an efficient approach to address (2.1),
the alternating nonnegative least-squares (ANLS) technique targets the following two
subproblems [22]:

Zk+1 = argmin
Z≥0

F(Wk,Z), (2.2)

Wk+1 = arg min
W≥0

F(W,Zk+1), (2.3)

for all k ∈ Z
+ = N

⋃{0} = {0, 1, 2, . . . }.
As known, in the computational and analytical studies of the matrix spaces, a great

deal of concern is devoted to the matrix condition number, an influential factor that
is in a straight connection with the collinearity between the rows or the columns of
the matrix [30]. Experiential efforts of the literature show that ill-conditioning may
significantly deflect the solution process and yield misleading results. So, it is a classic
matter of routine to devise a plan for having control over the condition number of the
matrices that iteratively generate in an algorithmic procedure.

A cursory glimpse of the NMF literature shows a lack of analytical will as well as
structural tendency to dealing with well-conditioning of the NMF outputs. It should
be noted that various modified NMF models mainly target the orthogonality or sym-
metrization of the decomposition elements [17], being helpful in special applications
of the data mining such as sparse recovery and clustering. Such extensions of the clas-
sic NMF model have been devised by imposing extra constraints to push the solution
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path toward the desired outputs. As a results, the solution process of the mentioned
models can be to some extent challenging and sometimes, theworkloadmay get heavy.

To depict the effect of ill-conditioning on the NMF model, here we report the
outputs of the MATLAB function ‘nnmf’ on the well-known Hilbert matrix. Defined
by

Hi j = 1

i + j − 1
, i, j = 1, 2, ..., n,

the Hilbert matrix H ∈ R
n×n has been classically recognized as an ill-conditioned

matrix, being also (symmetric) positive definite. By setting n = 20 and r = 6, and
then investigating the NMF outputs on H obtained by 10000 different implementa-
tions of the MATLAB function ‘nnmf’, we observed that for more than 46% of the
implementations, at least three columns (and rows) ofW (and Z) were equal to zero.
That means for more than 46% of the implementations the outputs for r = 4, 5, 6
were quite the same. So, in such situations, the NMF cannot serve as a reliable tool in
a recommender system for which filling the zero entries (empty positions) is of great
importance. On the other hand, we observed that for at least 34% of the outputs the
relative error was more than one. These observations could motivate us to deal with
collinearity in the NMF model.

Combating the collinearity between the columns of W or the rows of Z, in order
to take computational stability attitude toward the NMF model prompted us to plug
condition number of the matrices W = WTW and Z = ZZT of the dimension
r × r into the model (2.1). Note that the existence of sufficient (numerical) linear
independency between the columns ofW or the rows of Z, makes the matricesW and
Z acceptablywell-conditioned and positive definite.While, thementioned collinearity
pushes W and Z toward ill-conditioning and positive semidefiniteness. So, to be
cautious about such troubling issues, the following revised version of the NMF model
(2.1) can be proffered:

F̂(W,Z) = 1

2
‖A − WZ‖2F + λ1κ(WTW) + λ2κ(ZZT ) (2.4)

= 1

2
‖A − WZ‖2F + λ1κ(W) + λ2κ(Z)

= 1

2
‖A − WZ‖2F + λ1

maxmag(W)

minmag(W)
+ λ2

maxmag(Z)

minmag(Z)
,

where λ1 ≥ 0 and λ2 ≥ 0 are the penalty parameters [25, 26] and the maximum
magnification (maxmag) and the minimum magnification (minmag) by an arbitrary
matrix P ∈ R

m×n are respectively defined in Watkins [30] as

maxmag(P) = max
x �=0

‖Px‖
‖x‖ , and minmag(P) = min

x �=0

‖Px‖
‖x‖ .

As seen, ill-conditioned choices for W and Z meaningfully impose penalty to the
model. Meanwhile, although seldom occurs in practice, F̂(W,Z) is not well-defined
when W or Z are rank deficient.
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In the model (2.4) well-conditioning has been brought up by straightly embedding
penalty terms to the cost function. So, in this respect, since we made the solution
process away from the possible troubling consequences resulted by imposing an extra
set of constraints, finding approximate solutions of the model may be less challenging.
However,we should not overlook the complexity of doing computations by the spectral
condition number in the model, especially in large-scale cases. It is generally a matter
of fact that carrying out calculations with high-dimensional dense matrices causes
extra CPU time and may increase the numerical errors as well. So, developing sparse
approximations of such matrices in the data analysis has recently attracted special
attentions [25, 26].

Among the fundamental sparse structures for the symmetricmatrices, there exist the
diagonal and the (banded) symmetric tridiagonal matrices [7] as well as the symmetric
rank-one or rank-two updates of the (scaled) identitymatrix [28]. In essence,we should
conduct a cost-benefit analysis to select a special sparse matrix structure which is of
enough suitability in the relevant application. Driven by this issue, because of the
presence of the spectral condition number in the augmented model (2.4) which is
directly linked to the eigenvalues of the matrix, to tackle some precarious situations
stemming from a great deal of time-consuming for calculating W and Z , it may be
preferable to use diagonal approximations of W and Z in the model (2.4) by

W ≈ D̂ = diag(D̂∗
1, D̂

∗
2, ..., D̂

∗
r ),

Z ≈ Ď = diag(Ď∗
1, Ď

∗
2, ..., Ď

∗
r ),

where

D̂∗
j =

m∑

i=1

W2
i j , j = 1, 2, ..., r , and Ď∗

i =
n∑

j=1

Z2
i j , i = 1, 2, ..., r .

Notably, the above diagonal estimations are derived from

D̂∗ = arg min
D∈D+ ‖W − D‖2F , and Ď∗ = arg min

D∈D+ ‖Z − D‖2F ,

whereD+ denotes the collection of all diagonalmatriceswith the nonnegative elements
in Rr×r .

As known, measure functions provide helpful tools to evaluate and analyze well-
conditioning of the square matrices. They often target the distribution of the matrix
eigenvalues [25].Among them, as a fundamental study to analyze the scaling and sizing
of the quasi–Newton updates, Dennis and Wolkowicz [14] proposed the following
measure function:

ψ(A) = tr(A)

r r
√
det(A)

, (2.5)

for an arbitrary positive definite matrix A ∈ R
r×r . As a factor to evaluate well-

conditioning, ψ(A) considers all the eigenvalues of A, rather than, as occurs in the
spectral condition number, only taking the extreme eigenvalues of the matrix [30]. So,
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by employing ψ(.) instead of κ(.) in (2.4), it is more likely possible to obtain NMF
elements with well-distributed eigenvalues. However, the matrix function (2.5) would
be accompanied by some kinds of complexity due to its denominator.

Mathematical inequalities have been widely and purposefully employed by the
researchers to turn a dense or complicated formula into something manageable. For
this aim, the first and foremost point in accordance with the norm of the literature is to
rise the level of interpretability of the targeted formula or model. Here, for the sake of a
well-planned simplicity that is a crucial issue in the high-dimensional data analysis, we
organize assistance from the first part of the mean inequality chain that is related to the
algebraic ties between the harmonic, geometric, arithmetic, and quadratic means. To

proceed, firstly note that det(A) =
r∏

i=1

ζi , in which {ζi }ri=1 is the set of the eigenvalues

of A. Therefore, bearing the relation between the geometric and the harmonic means
in mind, here in the sense of

r
r∑

i=1

1

ζi

≤ r

√
√
√
√

r∏

i=1

ζi ,

and noting that the trace of a (square) matrix is equal to the sum of its eigenvalues, the
following simple bound for ψ(A) can be obtained:

ψ(A) ≤ ϕ(A) = 1

r2
tr(A)tr(A−1).

This gives rise compelling motivations to employ ϕ(.) instead of κ(.) in (2.4), to
possibly gain NMF elements with well-distributed eigenvalues. So, the modified
model is given by

F̆(W,Z) = 1

2
‖A − WZ‖2F + λ1ϕ(D̂) + λ2ϕ(Ď) (2.6)

= 1

2
‖A − WZ‖2F + λ1

1

r2
tr(D̂)tr(D̂−1) + λ2

1

r2
tr(Ď)tr(Ď−1)

= 1

2
‖A − WZ‖2F + λ1

r2

⎛

⎝
r∑

j=1

m∑

i=1

W2
i j

⎞

⎠

⎛

⎝
r∑

j=1

1
∑m

i=1W
2
i j

⎞

⎠

+λ2

r2

⎛

⎝
r∑

i=1

n∑

j=1

Z2
i j

⎞

⎠

(
r∑

i=1

1
∑n

j=1 Z
2
i j

)

.

Inherited from the measure function (2.5), the penalty terms of the model (2.6) control
the condition number by engaging in all the diagonal elements of the relevant matrices,
not only considering the extreme ones. Also, emerging polynomial terms makes the
model easier to handle with respect to determining the gradient of the cost function.
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Themajor defect of the cost function of themodel (2.6) is that it is not differentiable
everywhere due to the extra penalty terms. Especially, if W has a zero column or Z
has a zero row, then F̆ in (2.6) is not well-defined. Moreover, small magnitudes of the
columns of W or the rows of Z are computationally troublesome. Backed by these
arguments and in favor of simplicity, our revised ANLS (RANLS) method is founded
upon the following modified version of the model (2.6):

F̃(W,Z) = 1

2
‖A − WZ‖2F + λ1

r2

⎛

⎝
r∑

j=1

m∑

i=1

W2
i j

⎞

⎠

⎛

⎝
r∑

j=1

1

γ + ∑m
i=1W

2
i j

⎞

⎠ (2.7)

+λ2

r2

⎛

⎝
r∑

i=1

n∑

j=1

Z2
i j

⎞

⎠

(
r∑

i=1

1

γ + ∑n
j=1 Z

2
i j

)

,

with some constant γ > 0. As seen, F̃ is well-defined and also, it is differentiable
everywhere. Thus, the next revised versions of the least-squares models (2.2) and
(2.3) should alternately be solved:

Zk+1 = argmin
Z≥0

F̃(Wk,Z), (2.8)

Wk+1 = arg min
W≥0

F̃(W,Zk+1), (2.9)

for all k ∈ Z
+.

3 Adaptive optimal choices for the Dai–Liao parameter based
on the ellipsoid norm

Among the fundamental techniques for solving the unconstrained minimization prob-
lem min

x∈Rn
f (x), the CG methods are iteratively defined by

xk+1 = xk + αkdk, dk+1 = −gk+1 + βkdk, ∀k ∈ Z
+, (3.1)

starting by some x0 ∈ R
n and d0 = −g0, in which gk = � f (xk) and βk ∈ R is

the CG parameter [3]. Also, the scalar αk > 0, called the step length, is customarily
determined as the output of an approximate line search, popularly to meet the (strong)
Wolfe conditions [28]. Here, we assume that the cost function f is smooth and its
gradient is analytically available. Also, ‖.‖ signifies the 
2 (Euclidean) norm and
our analysis undergoes with the Wolfe conditions for which sTk yk > 0, where sk =
xk+1 − xk = αkdk .

In the initial years of the current century, the worthy study of Dai and Liao [13]
brought considerable attention to theCG techniques in various guidelines [4].Recently,
Babaie–Kafaki [8] conducted an expository review on the DL method to provide a
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better understanding of the capabilities of the method from several standpoints. For
the DL method, βk in its original form is set to

βDL
k = gTk+1yk

dTk yk
− t

gTk+1sk

dTk yk
, (3.2)

with yk = gk+1 − gk , where the scalar t > 0 is called the DL parameter. It is valuable
to note that if

t ≥ t (η)
k := η

‖yk‖2
sTk yk

, with the constant η >
1

4
, (3.3)

then the DL directions satisfy the sufficient descent condition which is an important
ingredient of the convergence [5].

Among the analytical attempts to seek an appropriate formula for t as a classic open
problem [4, 8], Babaie–Kafaki and Ghanbri [9] offered a least-squares model, i.e.

min
t>0

‖tsk − yk‖2, (3.4)

by pushing the DL direction to the direction of the three-term CGmethod proposed by
Zhang, Zhou and Li (ZZL) [31]. As known, the ZZL directions satisfy a strong form
of the sufficient descent condition. Moreover, they benefit the consecutive gradient
differences vector yk as an element of the search direction, besides the vectors gk+1
and dk in the framework of a linear combination, rather than the DL directions that
are just linear combination of gk+1 and dk . As a result of their plan, Babaie–Kafaki
and Ghanbri [9] obtained the following formula for t :

t := tZZLk = sTk yk
‖sk‖2 . (3.5)

Here,we organize assistance from the ellipsoid vector norm to diversify the adaptive
choices for the DL parameter. As an extended form of the 
2 norm in the sense of

‖x‖M =
√
xTMx,

where M ∈ R
n×n is a (symmetric) positive definite matrix, ellipsoid norm has been

pivotally employed to analyze the convergence of the steepest descent and the quasi–
Newton methods, and particularly, to devise the scaled trust region algorithms [28]. In
our strategy, we plan to set several choices for M using the quasi–Newton updating
formulas [28].

Quasi–Newton methods have been traditionally devised to tactfully estimate the
(inverse) Hessian in order to determine the search direction in the iterative continuous
optimization techniques. Mostly being positive definite, the given matrix approxi-
mations classically should satisfy the (standard) secant equation, i.e. Bk+1sk = yk ,
where Bk+1 ≈ ∇2 f (xk+1) [3, 28]. The methods benefit enough flexibility to effec-
tively address the large-scale models. For this aim, the memoryless versions of the
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well-known BFGS and DFP quasi–Newton updating formulas can be applied [6]; that
is,

HMLBFGS
k+1 = I − yksTk + sk yTk

sTk yk
+

(

1 + yTk yk

sTk yk

)
sksTk
sTk yk

,

and

HMLDFP
k+1 = I + sksTk

sTk yk
− yk yTk

yTk yk
,

both are positive definite approximations of ∇2 f (xk+1)
−1, for all k ∈ Z

+. Here,
MLBFGS and MLDFP are respectively shortened forms of the ‘memoryless BFGS’
and the ‘memoryless DFP’.

It is a matter of tradition that reform is always needed in the available algorithms
to answer the great need of diversity and inclusion. There are a lot of evidence in the
methodology literature that such efforts evolved the algorithmic schemes over time. So,
we should not neglect effects of these evolutionary plans on the hybrid CG algorithms
as well. By this fact at the forefront, here we consider the ellipsoid extension of the
least-squares model (3.4) as follows:

min
t>0

‖tsk − yk‖2M,

which yields

t := tMk = sTk Myk

sTk Msk
.

So, tZZLk given by (3.5) is the solution of (3.4) by setting M as the identity matrix.
Also, if we let M = Bk+1 given by a quasi–Newton update for the Hessian, then,
because of the standard secant equation we have

t := tDKk = ‖yk‖2
sTk yk

, (3.6)

which is an effective formula already suggested byDai andKou (DK) [12]. This salient
fact places great importance on the effectiveness of the given extended least-squares
model. The setting t = tDKk in the DL method ensures (3.3) that squarely leads to the
sufficient descent property. Moreover, if we let M = HMLBFGS

k+1 or M = HMLDFP
k+1 ,

then we respectively obtain

t := tMLBFGS
k =

(
‖sk‖2
sTk yk

+ ‖yk‖2‖sk‖2
(sTk yk)2

− 1

)−1

, (3.7)

or

t := tMLDFP
k =

(
‖sk‖2
sTk yk

− (sTk yk)2

‖yk‖2‖sk‖2 + 1

)−1

. (3.8)
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From the Cauchy–Schwarz inequality, it can be seen that tMLBFGS
k > 0 and tMLDFP

k >

0. To gain the sufficient descent property in light of (3.3), herewe propose the following
restricted versions of (3.7) and (3.8):

tMLBFGS
k ← max

{
tMLBFGS
k , t (η)

k

}
, (3.9)

and
tMLDFP
k ← max

{
tMLDFP
k , t (η)

k

}
. (3.10)

As a result, global convergence of the DL method with the given formulas for t can
be proved following the analysis of [2, 13].

4 Computational experiments

We offer here some computational confirmation for the veracity of our theoretical
analyses, starting with some numerical tests on the CUTEr library [18] with n ≥
50, comprising of 96 problems. All the tests were performed by MATLAB version
7.14.0.739 (R2012a), installed on the Centos 6.2 server Linux operation system, in a
computer AMD FX–9800P RADEON R7 with 12 COMPUTE CORES 4C+8G 2.70
GHz of CPU and 8GB of RAM. The effectuality of the parametric choices (3.6), (3.9),
(3.10) and the Hager–Zhang (HZ) formula [19], i.e.

t := tHZk = 2
‖yk‖2
sTk yk

, (4.1)

is appraised for the DL+ method with

βDL+
k = max

{
gTk+1yk

dTk yk
, 0

}

− t
gTk+1sk

dTk yk
, (4.2)

proposed for establishing convergence for general cost functions [13]. In our tests,
DK+, DL–BFGS+, DL–DFP+ and HZ+, stand for the iterative method (3.1) with the
CG parameter (4.2), in which t is respectively computed by (3.6), (3.7), (3.8) and
(4.1). Since in rare iterations the DL+ method may fail to generate descent direction,
restart (by the negative gradient vector) has been also employed as suggested in Dai
and Liao [13].

For the algorithms, we used the approximate Wolfe conditions of Hager and
Zhang [19] with the similar settings, and let the stopping criteria as k > 10000 or
‖gk‖ < 10−6(1 + | fk |). Also, we set η = 0.26 in (3.9) and (3.10), to enhance the
possibility of employing (3.7) and (3.8). To visually assess the algorithmic results,
we applied the Dolan–Moré performance profile [15], by comparisons based on the
TNFGE and CPUT metrics, being acronyms for the ‘total number of function and
gradient evaluations’ (as outlined in Hager and Zhang [19]) and the ‘CPU time’,
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Fig. 1 Performance profile plots for DK+, DL–BFGS+, DL–DFP+ and HZ+ based on TNFGE (A) and
CPUT (B)

respectively. Figure 1 represents the results, by which it can be seen that DL–BFGS+
and DL–DFP+ are generally preferable to DK+ and HZ+, especially with respect to
TNFGE. Meanwhile, with respect to CPUT, at times DK+ and HZ+ are competitive
with DL–BFGS+ and DL–DFP+. This observation is mainly related to the structure
of the formulas (3.7) and (3.8) which is to some extent more complex rather than (3.6)
and (4.1). Also, sinceDL–DFP+ is slightly preferable toDL–BFGS+,we can conclude
that the setting (3.8) for the DL+ method is more effective than the setting (3.7).

To bring the validity of the given revised NMF model to light, in this part of our
computational experiments we investigate the efficiency of DL–DFP+ for ANLS by
solving the least-squares subproblem (2.2)–(2.3) of the minimization model (2.1), and
for RANLS by solving the least-squares subproblem (2.8)–(2.9) of the minimization
model (2.7). To handle the nonnegativity constraints in the subproblems, we followed
the suggestion of Li et al. [22] and employed a proximal scheme in the sense of
setting the negative entries of the iterative outputs equal to zero. For RALNS, we set
λ1 = λ2 = 1 and γ = 10−10 in (2.7), and for both ANLS and RANLS, we adopted
the termination condition of Liu and Li [23] as well; which is

‖[∇ZF(Wk,Zk),∇WF(Wk,Zk)]‖F
≤ ν‖[∇ZF(W0,Z0),∇WF(W0,Z0)]‖F ,

withF = F andF = F̃, respectively, and ν = 10−2. By using the uniformdistribution,
the test matrices were generated randomly with various dimensions, together with the
initial estimates of the NMF elements, as declared in Ahookhosh et al. [1]. Outputs
have been outlined in Table 1, including the spectral condition number (Cond) and the
relative error (RelErr), calculated by

RelErr = ‖A − WZ‖F
‖A‖F .

To recapitulate the results, we can observe that RANLS and ANLS are approx-
imately competitive with respect to the accuracy. While, in the condition number
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Table 1 The outputs of DL–DFP+ for NMF

Dimension Method RelErr Cond Cond
(m, n, r) W Z

(50, 50, 4) ALNS 6.90E-04 7.9068 5.3490

RALNS 6.43E-04 3.4901 1.2639

(100, 50, 5) ALNS 6.04E-04 5.6807 2.0834

RALNS 5.85E-04 4.2506 1.2307

(100, 100, 5) ALNS 7.11E-04 5.6165 2.2709

RALNS 6.76E-04 4.2227 1.3666

(100, 250, 5) ALNS 8.52E-04 5.1849 2.3579

RALNS 7.31E-04 3.8486 1.3765

(200, 200, 4) ALNS 7.18E-04 4.6986 2.5254

RALNS 7.17E-04 3.4989 1.2648

(200, 200, 8) ALNS 6.05E-04 22.5950 8.0738

RALNS 7.61E-04 5.4005 1.4525

(200, 300, 6) ALNS 6.93E-04 7.8248 3.1594

RALNS 6.88E-04 4.5112 1.2894

(1000, 1000, 10) ALNS 7.22E-04 216.8000 119.1700

RALNS 2.50E-04 12.1330 4.6317

(2000, 3000, 12) ALNS 2.93E-03 13.5770 51.4681

RALNS 3.03E-03 3.6160 4.3847

(6000, 4000,10) ALNS 1.11E-02 15.5430 12.9910

RALNS 1.11E-02 13.0590 10.6700

(8000, 3000,15) ALNS 1.82E-03 17.4270 7.4008

RALNS 2.05E-03 15.8770 6.4922

viewpoint which is the main target of this study, RANLS is generally preferable to
ANLS. Hence, capability of delivering well-conditioned NMF elements with satisfac-
tory accuracy can therefore be considered a success by RANLS.

5 Conclusions

Wehavemainly concentrated on themodifying a classic optimizationmodel of the non-
negative matrix factorization problem, frequently arising in a wide range of practical
fields. Avoiding the possibility of ill-conditioning in the results of the decomposi-
tion motivated us to revise the model by embedding a measurement for condition
numbers of the diagonalized types of the output matrices. What embedded as the
well-conditioner (penalty) term has been extracted from the Dennis–Wolkowicz mea-
sure function [14]. Then, based on an ellipsoid norm-oriented least-squares model,
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some optimal choices for the Dai–Liao parameter have been suggested. Driven by the
great need for algorithmic tools with the low memory consumption of the machine,
the ellipsoid norms have been centered on the memoryless BFGS and DFP formulas.
The approach in terms of which the method’s influential parameter has been computed
is tending the Dai–Liao search direction to that of a well-functioning three-term con-
jugate gradient algorithm. Then, to examine the performance of the Dai–Liao method
when it is equipped with the given formulas as the parametric settings, some compu-
tational tests were performed on the CUTEr functions. The findings were evaluated
leveraged on the well-known Dolan–Moré benchmark. The results demonstrated the
positive impact of our suggestions for the Dai–Liao parameter. Furthermore, the qual-
ity of the given revised nonnegative matrix factorization model has been assessed in
several random cases. The results showed that the revised model can produce more
well-conditioned factorization elements with reasonable relative errors. Thus, in prac-
tical terms, computational experiments have supported our theoretical assertions.
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