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Abstract
In this paper, we introduce amodified projectionmethod and give a strong convergence
theorem for solving variational inequality problems in real Hilbert spaces. Under mild
assumptions, there exists a novel line-search rule that makes the proposed algorithm
suitable for non-Lipschitz continuous and pseudo-monotone operators. Compared
with other known algorithms in numerical experiments, it is shown that our algorithm
has better numerical performance.
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1 Introduction

We research the classical variational inequality problem, which is defined as follows:
find x∗ ∈ C such that

〈A x∗, x − x∗〉 ≥ 0, ∀x ∈ C , (1)

whereC is a nonempty closed convex subset of a real Hilbert spaceH,A : H → H is
a nonlinear operator. For simplicity, we denote the solution set of variational inequality
problem (1) by Sol(C ,A ).
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Numerical Algorithms

The variational inequality problem plays an important role in nonlinear analysis
research, which not only promotes the development of optimization problems, math-
ematical statistics, fixed point theory and other mathematical disciplines, but also has
a very wide range of applications in engineering, mechanics, physics and economics.
So far, many methods for solving variational inequalities have been produced. In this
paper, we mainly study a class of projection methods.

It is well known that one of the most classical projection methods is the gradient
projectionmethod involving the stronglymonotone andLipschitz continuous operator.
Due to its mandatory conditions, it was later improved by Korpelevich [1] into the
following algorithm, which is often referred to as the extragradient algorithm:

{
yn = PC (xn − τA xn),

xn+1 = PC (xn − τA yn),

where τ ∈ (0, 1
L ) and the operator A is monotone and L-Lipschitz continuous. The

extragradient algorithm was first used to solve the saddle point problem, and was later
applied to the variational inequality problem by scholars. Since then,manymeaningful
results have been produced. For example, Yao et al. [2, 3] constructed extragradient
algorithms involving Lipschitz continuous and monotone operators for solving vari-
ational inequalities and fixed point problems. Vuong [4] proved the convergence of
the extragradient algorithm under the pseudo-monotone condition, and the operator is
Lipschitz continuous and sequentially weakly continuous.

However, it is worth noting that when the operator A is non-Lipschitz continuous
or the Lipschitz constant L is not easy to calculate, the above extragradient algorithm
will fail due to the difficulty in determining the value of τ . To overcome this short-
coming, the authors apply different techniques. Thong [5] used the line-search process
so that the involved operators only need to satisfy uniform continuity. Tan et al. [6, 7]
and Duvocelle et al. [8] introduced different self adaptive rules so that the algorithms
involving Lipschitz continuous and pseudo-monotone operators do not need to calcu-
late the Lipschitz constant. In addition, Iusem [9] combined the line-search rule with
the extragradient algorithm and obtained the following algorithm:

{
yn = PC (xn − τnA xn),

xn+1 = PC (xn − λnA yn),

where τn := γ lmn , mn := min{m ∈ N : γ lm‖A xn − A yn‖ ≤ μ‖xn − yn‖}, μ, l ∈
(0, 1) and λn := 〈A yn ,xn−yn〉

‖A yn‖2 . Under suitable assumptions, Iusem established a weak
convergence theorem without the need for the Lipschitz continuity.

On the basis of the algorithm proposed by Iusem [9], Iusem et al. [10],
Thong et al. [11, 12] and Xie et al. [13] have more or less improved the line-search
rule and obtained the convergence of the corresponding algorithms. Specifically, the
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improved algorithm in [12] is as follows:

⎧⎪⎨
⎪⎩

yn = PC (xn − τnA xn),

zn = PC (xn − λnA yn),

xn+1 = βnx0 + (1 − βn)zn,

where τn := γ lmn , mn := min{m ∈ N : γ lm〈A xn − A yn, xn − yn〉 ≤ μ‖xn −
yn‖2}, μ, l ∈ (0, 1) andλn := 1−μ

γ
‖xn−yn‖2
‖A yn‖2 . They effectivelymodified the line-search

rule, thereby increasing the range of choices for the sequence {τn}. Under suitable
assumptions, a strong convergence theorem is obtained by introducing Halpern-type
iteration.

In addition, it is noted that during the operation of the extragradient algorithm,
each iteration needs to calculate the projection on the feasible set C twice, but the
generality of C will increase the computational complexity. To this end, the authors
have proposed various methods to improve this situation. Vuong et al. [14] and
Reich et al. [15] proposed different projection algorithms by using different line-search
rules, and obtained the corresponding strong convergence theorems by combining
Halpern iteration and viscosity iteration respectively. Censor et al. [16, 17] constructed
a subgradient half-space {x ∈ H : 〈xn − τA xn − yn, x − yn〉 ≤ 0} to replace the
feasible set C in the second projection process in the extragradient algorithm, which
accelerated the iteration rate of the algorithm. Tseng [18] directly omitted the second
projection andused yn−τ(A yn−A xn) to replace the computation of PC (xn−τA yn).
Based on the algorithm proposed by Tseng, Reich et al. [19] and Yao et al. [20] add a
single inertial term and a double inertial term respectively, and the convergence results
of the related algorithms are obtained by combining self adaptive rule. In this paper, we
mainly research such a projection-type algorithm modified by Vuong and Shehu [14].
The detailed algorithm is as follows:

Vuong and Shehu [14] introduced a half-space Cn in Algorithm 1 to replace the
second-step projection in the iterative process, which is an interesting improvement
and reduces the difficulty of projection computation. At the same time, they obtained
the strong convergence theorem involving uniformly continuous, pseudo-monotone
and sequentially weakly continuous operators by combining the line-search rule and
Halpern-type iteration method. Based on the result of Algorithm 1, Reich et al. [15]
made some improvements while speeding up the convergence of the following algo-
rithm:

Reich et al. [15] proposed a different line-search rule than in Algorithm 1, thereby
adjusting the half-space Cn . The operator A in Algorithm 2 is pseudo-monotone,
uniformly continuous and satisfies ‖A q‖ ≤ lim infn→∞ ‖A xn‖ whenever {xn} ⊂ C
and xn⇀q. On the other hand, the introduced viscosity iteration method further accel-
erates the convergence process of Algorithm 2. Under the imposition of appropriate
assumptions on the parameters, they obtained a strong convergence theorem.

Motivated and inspired by the above results, we propose a new algorithm for solving
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Algorithm 1 Halpern-type projection method
Initialization: Given {βn} ⊂ (0, 1), l ∈ (0, 1), μ ∈ (0, 1). Let x1 ∈ C be arbitrary.
Iterative Steps: Given the current iterate xn (n ≥ 1), calculate xn+1 as follows:
Step 1. Compute

zn = PC (xn − A xn)

and r(xn) := xn − zn . If r(xn) = 0, then stop; xn belongs to Sol(C ,A ). Otherwise,
Step 2. Compute

yn = xn − τnr(xn),

where τn := lmn and mn is the smallest non-negative integer m satisfying

〈A (xn − lmr(xn)), r(xn)〉 ≥ μ

2
‖r(xn)‖2.

Step 3. Compute
xn+1 = βnx1 + (1 − βn)PCn (xn),

where
Cn := {x ∈ C : hn(xn) ≤ 0}

and
hn(x) := 〈A yn , x − yn〉.

Set n := n + 1 and go to Step 1.

Algorithm 2 Viscosity projection method

Initialization: Given {βn} ⊂ (0, 1), μ > 0, l ∈ (0, 1), λ ∈ (0, 1
μ ). Let x1 ∈ C be arbitrary.

Iterative Steps: Given the current iterate xn (n ≥ 1), calculate xn+1 as follows:
Step 1. Compute

zn = PC (xn − λA xn)

and r(xn) := xn − zn . If r(xn) = 0, then stop; xn belongs to Sol(C ,A ). Otherwise
Step 2. Compute

yn = xn − τnr(xn),

where τn := lmn and mn is the smallest non-negative integer m satisfying

〈A xn − A (xn − lmr(xn)), r(xn)〉 ≤ μ

2
‖r(xn)‖2.

Step 3. Compute
xn+1 = βn f (xn) + (1 − βn)PCn (xn),

where
Cn := {x ∈ C : hn(xn) ≤ 0}

and
hn(x) := 〈A yn , x − xn〉 + τn

2λ
‖r(xn)‖2.

Set n := n + 1 and go to Step 1.

variational inequalities with uniformly continuous pseudo-monotone operators. Pre-
cisely, we create a novel line-search rule to determine the value of the key sequence and
make appropriate adjustments to Cn . In addition, we introduced inertial technology to
speed up iteration efficiency. Finally, by comparing with known results in numerical
experiments, it is confirmed that our proposed algorithm indeed has better behavior.
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2 Preliminaries

In this section, we recall some basic concepts and facts.
Let H be a real Hilbert space. Then

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 (2)

and
‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2, (3)

for every x, y ∈ H and α ∈ R.
Let C be a nonempty subset ofH. Then an operator A : C → H is called
(a) L-Lipschitz continuous with L > 0 if

‖A x − A y‖ ≤ L‖x − y‖, ∀x, y ∈ C . (4)

If L ∈ (0, 1), A is called a contraction.
(b) monotone if

〈A x − A y, x − y〉 ≥ 0, ∀x, y ∈ C . (5)

(c) pseudo-monotone if

〈A x, y − x〉 ≥ 0 ⇒ 〈A y, y − x〉 ≥ 0, ∀x, y ∈ C . (6)

(d) sequentially weakly continuous if for each sequence {xn} ⊂ C we have: xn⇀x
implies A xn⇀A x as n → ∞.

For any point x ∈ H, it is obvious that there exists a unique nearest point in
C , denoted by PC x satisfying ‖x − PC x‖ ≤ ‖x − y‖, ∀y ∈ C . PC is called the
metric projection of H onto C . The projection formula will be applied to numerical
experiments (Sect. 4). The projection of x onto a half-space Cu,v = {x : 〈u, x〉 ≤ v}
is computed by

PCu,v
= x − max{[〈u, x〉 − v]/‖u‖2, 0}u.

Throughout this paper, let C be a nonempty closed convex subset of a real Hilbert
space H. Next, list some lemmas that will be needed later.

Lemma 1 ([21]) Given x ∈ H and z ∈ C . Then

z = PC x ⇔ 〈x − z, z − y〉 ≥ 0, ∀y ∈ C .

Lemma 2 ([21]) Given x ∈ H. Then
(1) ‖PC x − PC y‖2 ≤ 〈PC x − PC y, x − y〉, ∀y ∈ H;
(2) ‖PC x − y‖2 ≤ ‖x − y‖2 − ‖x − PC x‖2, ∀y ∈ C .

Lemma 3 ([22]) Given x ∈ H and α ≥ β > 0. Then
(1) ‖x − PC (x − βA x)‖ ≤ ‖x − PC (x − αA x)‖;
(2)

‖x − PC (x − αA x)‖
α

≤ ‖x − PC (x − βA x)‖
β

.
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Lemma 4 ([23]) Let H1 and H2 be two real Hilbert spaces. Suppose A : H1 → H2
is uniformly continuous on bounded subsets ofH1 and M is a bounded subset ofH1.
Then A (M) (the image of M under A ) is bounded.

Lemma 5 ([24]) Let A : C → H be pseudo-monotone and continuous. Then, x∗
belongs to Sol(C ,A ) if and only if

〈A x, x − x∗〉 ≥ 0, ∀x ∈ C .

Lemma 6 ([25]) Let h be a real-valued function on H and defined K := {x ∈ C :
h(x) ≤ 0}. If K is nonempty and h is Lipschitz continuous on C with modulus θ > 0,
then

dist(x, K ) ≥ θ−1 max{h(x), 0}, ∀x ∈ C ,

where dist(x,K) denotes the distance of x to K .

Lemma 7 ([26]) Let {dn} be a sequence of non-negative real number such that there
exists a subsequence {dn j } ⊂ {dn} such that dn j < dn j+1 for all j ∈ N. Then there
exists a non-decreasing sequence {mk} ⊂ N such that limk→∞ mk = ∞ and the
following properties are satisfied by all (sufficiently large) number k ∈ N:

dmk ≤ dmk+1, dk ≤ dmk+1.

In fact, mk = max{n ∈ N : dn < dn+1, n ≤ k}.

Lemma 8 ([27]) Let {dn} be a sequence of non-negative real numbers such that

dn+1 ≤ (1 − an)dn + anbn, ∀n ≥ 0,

where {an} ⊂ (0, 1) and {bn} is a real sequence such that
(a)

∑∞
n=1 an = ∞;

(b) lim supn→∞ bn ≤ 0.
Then limn→∞ dn = 0.

Lemma 9 ([12]) Let C be a nonempty closed convex subset of a real Hilbert spaceH
andA : C → H be pseudo-monotone, sequentially weakly continuous and uniformly
continuous on the bounded subsets of C . There exists a subsequence {wnk } ⊂ {wn}
such that wnk⇀q ∈ C and limk→∞ ‖wnk − PC (wnk − τnkA wnk )‖ = 0, where τn is
a positive sequence. If

lim inf
k→∞ 〈A wnk , x − wnk 〉 ≥ 0, ∀x ∈ C .

Then q ∈ Sol(C ,A ).
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3 Main results

3.1 Strong convergence

In this section, we propose an improved projection-typemethod for solving variational
inequality problems in Hilbert spaces. First, we give the following conditions:

(C1) The feasible set C is a nonempty closed convex subset of a real Hilbert space
H. The solution set Sol(C ,A ) is nonempty.

(C2) The operator A : C → H is uniformly continuous, pseudo-monotone and
sequentially weakly continuous on C .

(C3) Let f : C → C be a contraction mapping with a coefficient ρ ∈ [0, 1) and
βn be a sequence in (0, 1) such that

lim
n→∞ βn = 0,

∞∑
n=1

βn = ∞.

The sequence {αn} satisfies limn→∞ αn
βn

= 0.
Next, we introduce our new algorithm.

Algorithm 3Modified viscosity projection method
Initialization: Let μ ∈ (0, 1], l ∈ (0, 1), γ > 0 and x1 ∈ C be arbitrary.
Iterative steps: Given the current iterate xn (n ≥ 1).
Step 1. Evaluate

wn = (1 − αn)xn + αnx1.

Step 2. Compute

zn = PC (wn − τnA wn),

yn = wn − τnr(wn),

where τn := γ lmn and mn is the smallest non-negative integer m satisfying

γ lm 〈A wn − A (wn − γ lmr(wn)), r(wn)〉 ≤ μ

2
‖r(wn)‖2, (7)

and r(wn) := wn − zn . If r(wn) = 0: Stop. Otherwise, go to Step 3.
Step 3. Calculate

xn+1 = βn f (wn) + (1 − βn)PCn (wn),

where
Cn := {x ∈ C : hn(wn) ≤ 0}

and
hn(x) = 〈A yn , x − wn〉 + μ

2
‖r(wn)‖2. (8)

Set n := n + 1 and return to Step 1.

Remark 1 1. Since C is a convex set, it can be deduced that all iterates {xn}, {wn},
{yn} and {zn} generated by Algorithm 3 belong to C . Therefore, the operator A
needs to be defined only on C , rather than necessarily on the entire space H.
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2. The operator A is pseudo-monotone and uniformly continuous, which allows us
to prove the strong convergence theorem without Lipschitz prior knowledge.

3. The sequence {αn} could be chosen such that

αn =
{
min{ θn‖x1−xn‖ , α

2 }, if xn �= x1,
α
2 , otherwise ,

where α is a constant such that 0 ≤ α < 1 and {θn} is a positive sequence such that
limn→∞ θn

βn
= 0. At this time, it is easy to see that limn→∞ αn

βn
= 0. In addition,

if α = 0, then wn = xn , this is a trivial case. In the following text we will mainly
study non-trivial situations.

4. Compared to Algorithms 1 and 2, Algorithm 3 introduces a step size rule with
parameter γ > 0 in (7), which allows the trial step τn to start from a value other
than1 in eachouter iteration.Thismodificationmakes sense because there are cases
where a larger step size τn > 1may be acceptable (resulting in faster convergence),
and cases where τn < 1 may be smaller (in which case it is beneficial to choose
γ < 1 to avoid unnecessary evaluations ofA in the inner loop). In addition, during
the inner loop, we initially set m = 0, which gives τn = γ . We then substitute
this value into (7) to see if it satisfies the condition. If it does, we output the result,
otherwise we setm = 1 and continue iterating until the condition in (7) is satisfied.
Once satisfied, we output the corresponding yn value and continue with further
iterations.

5. In Algorithm 2, hn(x) is defined as hn(x) = 〈A yn, x − xn〉+ τn

2λ
‖r(xn)‖2, where

τn‖r(xn)‖2 → 0 is a crucial assumption for proving r(xn) → 0. However, in the
original proof, it was necessary to consider two separate cases: lim infn→∞ τn > 0
and lim infn→∞ τn = 0, as detailed in [15, Lemma 3.5]. To streamline the proof,
we havemade an improvement to hn(x) in (8). This adjustment eliminates the need
to consider separate cases and leads directly to the conclusion, thus simplifying
the overall proof.

Lemma 10 Assume that conditions (C1-C3) hold. Then the line-search rule (7) is well
defined.

Proof Ifwn ∈ Sol(C ,A ), thenwn = PC (wn −γA wn), thus (7) holds withmn = 0.
Next, we suppose that wn /∈ Sol(C ,A ) and assume the contrary. That is, for all m
we have

γ lm〈A wn − A (wn − γ lmr(wn)), r(wn)〉 >
μ

2
‖r(wn)‖2. (9)

By the Cauchy-Schwarz inequality, then

γ lm〈A wn − A (wn − γ lmr(wn)), r(wn)〉
≤ γ lm‖A wn − A (wn − γ lmr(wn))‖‖r(wn)‖. (10)

Combining (9) and (10), we have

γ lm‖A wn − A (wn − γ lmr(wn))‖ >
μ

2
‖wn − PC (wn − γ lmA wn)‖.
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It follows that

‖A wn − A (wn − γ lmr(wn))‖ >
μ

2

‖wn − PC (wn − γ lmA wn)‖
γ lm

. (11)

Since wn ∈ C , PC is continuous and A is uniformly continuous, we obtain

lim
m→∞ ‖wn − PC (wn − γ lmA wn)‖ = 0, (12)

and
lim

m→∞ ‖A wn − A (wn − γ lmr(wn))‖ = 0.

Noticing (11), we get

lim
m→∞

‖wn − PC (wn − γ lmA wn)‖
γ lm

= 0. (13)

Let zm = PC (wn − γ lmA wn). By Lemma 1, we have

〈zm − wn + γ lmA wn, x − zm〉 ≥ 0, ∀x ∈ C .

That is
〈 zm − wn

γ lm
, x − zm〉 + 〈A wn, x − zm〉 ≥ 0, ∀x ∈ C .

Consequently

〈 zm − wn

γ lm
, x − zm〉 + 〈A wn, x − wn〉 + 〈A wn, wn − zm〉 ≥ 0, ∀x ∈ C . (14)

Taking m → ∞ in (14) and using (12) and (13), we obtain

〈A wn, x − wn〉 ≥ 0, ∀x ∈ C ,

it follows that wn ∈ Sol(C ,A ). This contradiction implies that (7) is well defined. ��
Lemma 11 Assume that conditions (C1-C3) hold. Let the function hn be defined by

(8) and p ∈ Sol(C ,A ). Then hn(wn) = μ

2
‖r(wn)‖2 and hn(p) ≤ 0. Particularly,

hn(wn) > 0 whenever r(wn) �= 0.

Proof According to (8), hn(wn) = μ

2
‖r(wn)‖2 is obvious. On the other hand, from

the pseudomonotonicity of A and p ∈ Sol(C ,A ), we have 〈A yn, yn − p〉 ≥ 0 and

hn(p) = 〈A yn, p − wn〉 + μ

2
‖r(wn)‖2

= 〈A yn, p − yn〉 + 〈A yn, yn − wn〉 + μ

2
‖r(wn)‖2

≤ −τn〈A yn, r(wn)〉 + μ

2
‖r(wn)‖2. (15)
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From the rule (7) and the definition of {yn}, we obtain

τn〈A wn − A yn, r(wn)〉 ≤ μ

2
‖r(wn)‖2,

that is
τn〈A yn, r(wn)〉 ≥ τn〈A wn, r(wn)〉 − μ

2
‖r(wn)‖2. (16)

According to Lemma 2 (1), we can conclude that

‖wn − PC (wn − τnA wn)‖2 ≤ τn〈A wn, wn − PC (wn − τnA wn)〉,

or equivalently
τn〈A wn, r(wn)〉 ≥ ‖r(wn)‖2. (17)

Substituting (16) and (17) into (15), we get that

hn(p) ≤ −(1 − μ)‖r(wn)‖2.

Since μ ∈ (0, 1], then hn(p) ≤ 0. ��

Lemma 12 Assume that conditions (C1-C3) hold. Let {wn} be a sequence generated
by Algorithm 3. If there exists a subsequence {wnk } ⊂ {wn} converges weakly to q ∈ C
and limk→∞ ‖wnk − znk‖ = 0, then q ∈ Sol(C ,A ).

Proof Since znk = PC (wnk − τnkA wnk ), we have

〈wnk − τnkA wnk − znk , x − znk 〉 ≤ 0, ∀x ∈ C ,

or equivalently

1

τnk
〈wnk − znk , x − znk 〉 ≤ 〈A wnk , x − znk 〉, ∀x ∈ C .

Consequently

1

τnk
〈wnk − znk , x − znk 〉 + 〈A wnk , znk − wnk 〉 ≤ 〈A wnk , x − wnk 〉, ∀x ∈ C . (18)

Next, we prove that

lim inf
k→∞ 〈A wnk , x − wnk 〉 ≥ 0, ∀x ∈ C . (19)

We consider the following two possible cases.
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Case 1 Suppose that lim infk→∞ τnk > 0. Since wnk⇀q ∈ C , then {wnk } is
bounded. As A is uniformly continuous on bounded subsets of C , by Lemma 4, we
get that {A wnk } is bounded. Taking k → ∞ in (18), since ‖wnk − znk‖ → 0, we get

lim inf
k→∞ 〈A wnk , x − wnk 〉 ≥ 0.

Case 2 Assume that lim infk→∞ τnk = 0. Let snk = PC (wnk − τnk l
−1A wnk ), we

have τnk l
−1 > τnk . Applying Lemma 3, we obtain

‖wnk − PC (wnk − τnk l
−1A wnk )‖

τnk l
−1 ≤ ‖wnk − PC (wnk − τnkA wnk )‖

τnk
,

that is

‖wnk − snk‖ ≤ 1

l
‖wnk − znk‖ → 0 (k → ∞). (20)

Therefore, snk⇀q ∈ C , it folllows that {snk } is bounded. In addition,

‖A wnk − A (wnk − τnk l
−1r(wnk ))‖ → 0 (k → ∞). (21)

By τnk l
−1 > τnk , we know that τnk l

−1 does not satisfy (7), owing to (11), then

‖A wnk − A (wnk − τnk l
−1r(wnk ))‖ >

μ

2

‖wnk − PC (wnk − τnk l
−1A wnk )‖

τnk l
−1 ,

which implies that

lim
k→∞

‖wnk − snk‖
τnk l

−1 = 0. (22)

Furthermore, it follows from the definition of {snk } and Lemma 1 that

〈wnk − τnk l
−1A wnk − snk , x − snk 〉 ≤ 0, ∀x ∈ C .

It follows that

1

τnk l
−1 〈wnk −snk , x−snk 〉+〈A wnk , snk −wnk 〉 ≤ 〈A wnk , x−wnk 〉, ∀x ∈ C . (23)

Taking k → ∞ in (23), we get

lim inf
k→∞ 〈A wnk , x − wnk 〉 ≥ 0, ∀x ∈ C .

By Lemma 9, q ∈ Sol(C ,A ) and the proof is completed. ��
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Theorem 1 Assume that conditions (C1-C3) hold and the sequence {αn} is chosen
such that

lim
n→∞

αn

βn
‖x1 − xn‖ = 0.

Then the sequence {xn} generated by Algorithm 3 converges strongly to an element
p ∈ Sol(C ,A ), where p = PSol(C ,A ) ◦ f (p).

Proof We divide the proof into five claims.
Claim 1.We prove that the {xn} is bounded. Indeed, let sn := PCn (wn), then

‖sn − p‖2 = ‖PCn (wn) − p‖2 ≤ ‖wn − p‖2 − ‖PCn (wn) − wn‖2
= ‖wn − p‖2 − dist2(wn,Cn)

≤ ‖wn − p‖2.

That is
‖sn − p‖ ≤ ‖wn − p‖. (24)

Thus

‖xn+1 − p‖ = ‖βn f (wn) + (1 − βn)sn − p‖
= ‖βn( f (wn) − p) + (1 − βn)(sn − p)‖
≤ βn‖ f (wn) − p‖ + (1 − βn)‖sn − p‖
≤ βn‖ f (wn) − f (p)‖ + βn‖ f (p) − p‖ + (1 − βn)‖sn − p‖
≤ βnρ‖wn − p‖ + βn‖ f (p) − p‖ + (1 − βn)‖wn − p‖
= (1 − βn(1 − ρ))‖wn − p‖ + βn‖ f (p) − p‖. (25)

It follows from the definition of {wn} that

‖wn − p‖ = ‖(1 − αn)xn + αnx1 − p‖
≤ ‖xn − p‖ + αn‖x1 − xn‖
≤ ‖xn − p‖ + βn · αn

βn
‖x1 − xn‖. (26)

Since
lim
n→∞

αn

βn
‖x1 − xn‖ = 0,

there exists N ∈ N and a constant M1 > 0 such that

αn

βn
‖x1 − xn‖ ≤ M1, ∀n ≥ N . (27)

Combining (26) and (27), we have

‖wn − p‖ ≤ ‖xn − p‖ + βnM1. (28)
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Substituting (28) into (25), we get

‖xn+1 − p‖ ≤ (1 − βn(1 − ρ))‖xn − p‖ + βnM1 + βn‖ f (p) − p‖
≤ (1 − βn(1 − ρ))‖xn − p‖ + βn(1 − ρ)

‖ f (p) − p‖ + M1

1 − ρ

≤ max{‖xn − p‖, ‖ f (p) − p‖ + M1

1 − ρ
}

≤ · · ·
≤ max{‖xN − p‖, ‖ f (p) − p‖ + M1

1 − ρ
}.

This implies that the sequence {xn} is bounded. Consequently, the sequences
{yn}, { f (wn)} and {A yn} are bounded too.

Claim 2.We prove that

‖sn − wn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + βnM2 + 2βn〈 f (wn) − p, xn+1 − p〉,

for some M2 > 0. Ineeed, from (2) and (25), we have

‖xn+1 − p‖2 = ‖βn( f (wn) − p) + (1 − βn)(sn − p)‖2
≤ (1 − βn)‖sn − p‖2 + 2βn〈 f (wn) − p, xn+1 − p〉
≤ ‖sn − p‖2 + 2βn〈 f (wn) − p, xn+1 − p〉
= ‖PCn (wn) − p‖2 + 2βn〈 f (wn) − p, xn+1 − p〉
≤ ‖wn − p‖2 − ‖sn − wn‖2 + 2βn〈 f (wn) − p, xn+1 − p〉. (29)

Using (28), we get

‖wn − p‖2 ≤ (‖xn − p‖ + βnM1)
2

= ‖xn − p‖2 + βn(2M1‖xn − p‖ + βnM
2
1 ), (30)

Substituting (30) into (29), then

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − ‖sn − wn‖2 + βnM2 + 2βn〈 f (wn) − p, xn+1 − p〉,

where M2 := supn∈N{2M1‖xn − p‖ + βnM2
1 }. Thus,

‖sn − wn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + βnM2 + 2βn〈 f (wn) − p, xn+1 − p〉.

Claim 3.We prove that

(1 − βn)
[ μ

2L
‖r(wn)‖2

]2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + βnM3,
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for some M3 > 0. Indeed, from {A yn} is bounded, there exists L > 0 such that
‖A yn‖ ≤ L . By the definition of hn(x), for all u, v ∈ Cn ,

‖hn(u) − hn(v)‖ = ‖〈A yn, u − v〉‖ ≤ ‖A yn‖‖u − v‖ ≤ L‖u − v‖,

which implies that hn(·) is L-Lipschitz continuous on Cn . From Lemma 6, we have

dist(wn,Cn) ≥ 1

L
hn(wn).

Applying Lemma 11, we get

dist(wn,Cn) ≥ μ

2L
‖r(wn)‖2. (31)

Thus,

‖sn − p‖2 ≤ ‖wn − p‖2 −
[ μ

2L
‖r(wn)‖2

]2
. (32)

On the other hand,

‖xn+1 − p‖2
= ‖βn f (wn) + (1 − βn)sn − p‖2
= ‖βn( f (wn) − p) + (1 − βn)(sn − p)‖2
= βn‖ f (wn) − p‖2 + (1 − βn)‖sn − p‖2 − βn(1 − βn)‖ f (wn) − sn‖2
≤ βn‖ f (wn) − p‖2 + (1 − βn)‖sn − p‖2

≤ βn‖ f (wn) − p‖2 + (1 − βn)‖wn − p‖2 − (1 − βn)
[ μ

2L
‖r(wn)‖2

]2
≤ βn‖ f (wn) − p‖2 + ‖wn − p‖2 − (1 − βn)

[ μ

2L
‖r(wn)‖2

]2
≤ βn‖ f (wn) − p‖2 + ‖xn − p‖2 + βn(2M1‖xn − p‖ + βnM

2
1 )

− (1 − βn)
[ μ

2L
‖r(wn)‖2

]2
≤ ‖xn − p‖2 + βnM3 − (1 − βn)

[ μ

2L
‖r(wn)‖2

]2
,

where M3 := supn∈N{‖ f (wn) − p‖2 + 2M1‖xn − p‖ + βnM2
1 }. Therefore,

(1 − βn)
[ μ

2L
‖r(wn)‖2

]2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + βnM3.
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Claim 4.We prove that

‖xn+1 − p‖2

≤ (1 − βn(1 − ρ))‖xn − p‖2 + βn(1 − ρ)
[ 2

1 − ρ
〈 f (p) − p, xn+1 − p〉

+ 2M

1 − ρ
· αn

βn
‖x1 − xn‖

]
,

for some M > 0. In fact, using (2), we have

‖wn − p‖2 = ‖(1 − αn)xn + αnx1 − p‖2
≤ ‖xn − p‖2 + 2αn〈x1 − xn, wn − p〉
≤ ‖xn − p‖2 + 2αn‖x1 − xn‖‖wn − p‖. (33)

By (2), (3) and (24), we obtain

‖xn+1 − p‖2
= ‖βn f (wn) + (1 − βn)sn − p‖2
= ‖βn( f (wn) − f (p)) + (1 − βn)(sn − p) + βn( f (p) − p)‖2
≤ ‖βn( f (wn) − f (p)) + (1 − βn)(sn − p)‖2 + 2βn〈 f (p) − p, xn+1 − p〉
≤ βn‖ f (wn) − f (p)‖2 + (1 − βn)‖sn − p‖2 + 2βn〈 f (p) − p, xn+1 − p〉
≤ βnρ‖wn − p‖2 + (1 − βn)‖wn − p‖2 + 2βn〈 f (p) − p, xn+1 − p〉
= (1 − βn(1 − ρ))‖wn − p‖2 + 2βn〈 f (p) − p, xn+1 − p〉. (34)

Substituting (33) into (34), we get that

‖xn+1 − p‖2
≤ (1 − βn(1 − ρ))‖xn − p‖2 + 2αn‖x1 − xn‖‖wn − p‖

+ 2βn〈 f (p) − p, xn+1 − p〉
= (1 − βn(1 − ρ))‖xn − p‖2 + βn(1 − ρ) · 2

1 − ρ
〈 f (p) − p, xn+1 − p〉

+ 2αn‖x1 − xn‖‖wn − p‖
≤ (1 − βn(1 − ρ))‖xn − p‖2 + βn(1 − ρ) · 2

1 − ρ
〈 f (p) − p, xn+1 − p〉

+ 2Mαn‖x1 − xn‖
= (1 − βn(1 − ρ))‖xn − p‖2 + βn(1 − ρ)

[ 2

1 − ρ
〈 f (p) − p, xn+1 − p〉

+ 2M

1 − ρ
· αn

βn
‖x1 − xn‖

]
,
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where M := supn∈N{‖wn − p‖}.
Claim 5.We prove that {‖xn − p‖} converges to zero by considering two possible

cases.
Case 1 There exists N ∈ N such that ‖xn+1 − p‖2 ≤ ‖xn − p‖2 for all n ≥ N , it

follows that limn→∞ ‖xn − p‖2 exists. Next we prove that

lim
n→∞ ‖xn+1 − xn‖ = 0. (35)

Indeed, by Claim 2 we have

lim
n→∞ ‖sn − wn‖ = 0. (36)

In addition,

‖wn − xn‖ = αn‖x1 − xn‖ = βn · αn

βn
‖x1 − xn‖ → 0 (n → ∞), (37)

and
‖xn+1 − sn‖ = βn‖ f (wn) − sn‖ → 0 (n → ∞). (38)

Combining (36), (37) and (38), we obtain

‖xn+1 − xn‖ = ‖xn+1 − sn‖ + ‖sn − wn‖ + ‖wn − xn‖ → 0 (n → ∞).

This implies that (35) holds. On the other hand, since the sequence {xn} is bounded,
it follows that there exists a subsequence {xnk } of {xn}, which converges weakly to
q ∈ C and

lim sup
n→∞

〈 f (p)− p, xn − p〉 = lim
k→∞〈 f (p)− p, xnk − p〉 = 〈 f (p)− p, q − p〉. (39)

According to Claim 3, we get

lim
k→∞

[ μ

2L
‖r(wnk )‖2

]2 = 0.

That is
lim
k→∞ ‖wnk − znk‖ = 0. (40)

Using the fact that xnk⇀q (k → ∞), (40) and Lemma 12, we have q ∈ Sol(C ,A ).
Since p = PSol(C ,A ) ◦ f (p), combining (35) and (39), we obtain

lim sup
n→∞

〈 f (p) − p, xn+1 − p〉
≤ lim sup

n→∞
〈 f (p) − p, xn+1 − xn〉 + lim sup

n→∞
〈 f (p) − p, xn − p〉

≤ 0. (41)
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Hence, by Claim 4, (41) and Lemma 8, we conclude that limn→∞ ‖xn − p‖ = 0.
Case 2 There exists a subsequence {‖xn j − p‖2} ⊂ {‖xn − p‖2} such that

‖xn j − p‖2 < ‖xn j+1 − p‖2, ∀ j ∈ N.

From Lemma 7, there exists a non-decreasing sequence {mk} of N such that
limk→∞ mk = ∞ and

‖xmk − p‖2 ≤ ‖xmk+1 − p‖2, ‖xk − p‖2 ≤ ‖xmk+1 − p‖2, ∀k ∈ N. (42)

From Claim 2,

‖smk − wmk‖2
≤ ‖xmk − p‖2 − ‖xmk+1 − p‖2 + βmk M2 + 2βmk 〈 f (wmk ) − p, xmk+1 − p〉
≤ ‖xmk − p‖2 − ‖xmk+1 − p‖2 + βmk M2 + 2βmk‖ f (wmk ) − p‖‖xmk+1 − p‖
→ 0 (k → ∞).

As proved in Case 1, we can conclude that

lim
k→∞ ‖xmk+1 − xmk‖ = 0

and
lim sup
k→∞

〈 f (p) − p, xmk+1 − p〉 ≤ 0. (43)

Applying Claim 4, we have

‖xmk+1 − p‖2

≤ (1 − βmk (1 − ρ))‖xmk − p‖2 + βmk (1 − ρ)
[ 2

1 − ρ
〈 f (p) − p, xmk+1 − p〉

+ 2M

1 − ρ
· αmk

βmk

‖x1 − xmk‖
]

≤ (1 − βmk (1 − ρ))‖xmk+1 − p‖2 + βmk (1 − ρ)
[ 2

1 − ρ
〈 f (p) − p, xmk+1 − p〉

+ 2M

1 − ρ
· αmk

βmk

‖x1 − xmk‖
]
.

It follows that

‖xmk+1 − p‖2 ≤ 2

1 − ρ
〈 f (p) − p, xmk+1 − p〉 + 2M

1 − ρ
· αmk

βmk

‖x1 − xmk‖.

From (42) and (43), we obtain

‖xk − p‖2 ≤ ‖xmk+1 − p‖2 → 0 (k → ∞).
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Hence, xk → p as k → ∞. This completes the proof. ��

3.2 Convergence rate

Next, we assume that the operatorA in Algorithm 3 is η-strongly pseudo-monotone.
In this case, by modifying Algorithm 3, we obtain that the sequence {xn} strongly
converges with a linear rate. The modified algorithm is as follows:

Algorithm 4

Initialization: Let μ ∈ (0,min{ 1√
2
,
2lη
L }), l ∈ (0, 1), γ > 0 and x1 ∈ C be arbitrary.

Iterative steps: Given the current iterate xn (n ≥ 1).
Step 1. Compute

xn+1 = PC (xn − τnA xn),

where τn := γ lmn and mn is the smallest non-negative integer m satisfying

γ lm‖A xn − A xn+1‖ ≤ μ‖xn − xn+1‖. (44)

Set n := n + 1 and return to Step 1.

Remark 2 Similar to the proof of Lemma 10, it is easy to get that (44) is well defined.

Theorem 2 Assume thatA : C → C is η-strongly pseudo-monotone and L-Lipschitz
continuous. Then the sequence {xn} generated by Algorithm 4 converges strongly with
a Q-linear rate to the unique element p in Sol(C ,A ).

Proof According to the conditions of Theorem 2, 〈A p, xn+1 − p〉 ≥ 0 and thus

〈A xn+1, xn+1 − p〉 ≥ η‖xn+1 − p‖2.

From the definition of {xn+1}, we have

〈xn − τnA xn − xn+1, p − xn+1〉 ≤ 0.

It follows from (44) that

2〈xn − xn+1, p − xn+1〉 ≤ 2τn〈A xn, p − xn+1〉
= −2τn〈A xn+1, xn+1 − p〉 + 2τn〈A xn − A xn+1, p − xn+1〉
≤ −2τnη‖xn+1 − p‖2 + 2τn‖A xn − A xn+1‖‖p − xn+1‖
≤ −2τnη‖xn+1 − p‖2 + ‖xn+1 − xn‖2 + μ2‖p − xn+1‖2.

Moreover,

2〈xn − xn+1, p − xn+1〉 = −‖xn − p‖2 + ‖xn − xn+1‖2 + ‖xn+1 − p‖2,
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which implies that

(1 + 2τnη − μ2)‖xn+1 − p‖2 ≤ ‖xn − p‖2.

Sinceμ ∈ (0,min{ 1√
2
,
2lη
L }), we have 1+μ2 < 2−μ2. Nextwe show that τn >

μl
L .

Indeed, we know that τn
l must violate (44), thus,

μl

τn
‖xn − xn+1‖ < ‖A xn − A xn+1‖ ≤ L‖xn − xn+1‖,

that is τn >
μl
L . It follows that 2τnη > 2μlη

L > μ2 and μ2

min{1−μ2,2τnη} < 1. Fix

δ ∈ (
1+μ2

2μ ,
2−μ2

2μ ) and ε ∈ (
μ2

min{1−μ2,2τnη} ,
2(1−δμ)

min{1−μ2,2τnη} ). Since
μ2

min{1−μ2,2τnη} < 1,
we can choose ε ∈ (0, 1) such that

μ2 < εmin{1 − μ2, 2τnη}.

Let ν := 1
2εmin{1 − μ2, 2τnη}, we see that

2ετnη ≥ 2ν > μ2.

Therefore,
1 + 2τnη − μ2 > 1 + 1 + 2ετnη − μ2 = 1 + γ,

where γ := 2ετnη − μ2 > 0. It follows that

‖xn+1 − p‖2 ≤ 1

1 + γ
‖xn − p‖2,

that is,

‖xn+1 − p‖ ≤
√

1

1 + γ
‖xn − p‖.

This implies that the sequence {xn} generated by Algorithm 4 converges strongly
to p with a Q-linear rate. ��

4 Numerical experiments

We give some numerical examples to show performances of our proposed Algorithm
3 and compare with [15, Algorithm SD], [14, Algorithm PY], [28, AlgorithmDY] and
[12, Algorithm DA].

Example 1 Assume that A : Rm → R
m is defined by A (x) := Mx + q with M =

NNT + S+ D, N is anm ×m matrix, S is anm ×m skew-symmetric matrix, D is an
m×m diagonal matrix, whose diagonal entries are positive (soA is positive definite).
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Fig. 1 Example 1 with m = 5

All the entries of N , S and D are randomly generated in the interval (0, 20). Consider
Sol(C ,A ) with the feasible set C = {x ∈ R

m : −10 ≤ xi ≤ 10, i = 1, 2, · · · ,m}.
The parameters are taken as follows.

– Algorithm 3: αn =
{ 1

(n+1)2
, if ‖xn − x1‖ = 0

min
{

1
(n+1)2

, 1
(n+1)2×‖xn−x1‖

}
, otherwise

,μ = 0.9,

l = 0.9, γ = 0.05, βn = 1
n+1 and ρ = 0.5;

– Algorithm SD: αn = 1
n+1 ,μ = 0.9, l = 0.9, ρ = 0.5 and λ is randomly generated

in the interval (0, 1/μ);
– Algorithm PY: αn = 1

n+1 , μ = 0.9 and l = 0.9;

– Algorithms DY, DA: αn = 1
n+1 , μ = 0.9, l = 0.9, γ = 0.05.

In our experiment, the starting point x1 is generated randomly in (−10, 10)m , where
m = 5, 10. We use the stopping rule En = ‖xn − PC (I − A )xn‖ ≤ 10−1 and we
also stop if the number of iterations N = 60000 for all algorithms. Figures 1, 2 and

Fig. 2 Example 1 with m = 10
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Table 1 The number of termination iterations and execution time of all algorithms

Method Algorithm 3 Algorithm SD Algorithm PY Algorithm DY Algorithm DA

Iter 7504 60000 60000 12301 60000

CPU 2.5121 24.2943 38.5131 15.4500 76.0455

Tables 1, 2 show the computational results for Example 1 by using Algorithms 3, SD,
PY, DY and DA.

Let “Iter” denote number of iterations, “CPU” denote the CPU time seconds.
Example 1 shows that our proposed Algorithm 3 is fast, efficient and easy to imple-
ment. We notice that from Figs. 1, 2 and Tables 1, 2 that our Algorithm 3 outperforms
SD, PY, DY and DA, in terms of CPU time and required number of iterations for each
case of different dimensions given as follows: m = 5, 10.

Example 2 Consider H = L2([0, 1]) with inner product 〈x, y〉 := ∫ 1
0 x(t)y(t)dt and

norm ‖x‖2 := (
∫ 1
0 |x(t)|2dt) 1

2 . Suppose C := {x ∈ H : ‖x‖2 ≤ 2}. Let g : C → R

bedefinedby g(u) := 1
1+‖u‖22

.Observe that g is Lg-Lipschitz continuouswith Lg = 16
25

and 1
5 ≤ g(u) ≤ 1,∀u ∈ C . Define the Volterra integral mapping F : H → H by

F(u)(t) :=
∫ t

0
u(s)ds, ∀u ∈ H, t ∈ [0, 1].

Then F is bounded linear monotone, see [29]. Now define A : C → H by

A (u)(t) := g(u)F(u)(t), ∀u ∈ C , t ∈ [0, 1].

As given in [30], the mappingA is pseudo-monotone but not monotone. Now take

C := {x ∈ H : 〈a, x〉 ≥ b},

where a ∈ H and b ∈ R. Then we define the metric projection PC as

PC (x) =
{

b−〈a,x〉
‖a‖22

a + x, if 〈a, x〉 < b

x, otherwise.

Let Q = {x ∈ H : ‖x‖2 ≤ r} be a closed ball centered at 0 with radius r = 2, then
Q is a nonempty closed and convex subset of L2([0, 1]). Thus, the projection onto Q

Table 2 The number of termination iterations and execution time of all algorithms

Method Algorithm 3 Algorithm SD Algorithm PY Algorithm DY Algorithm DA

Iter 19076 60000 60000 27687 60000

CPU 19.6727 39.4768 52.8476 136.1701 183.1247
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Fig. 3 Example 2 with x1 = t

is easily computed as

PQ(x) =
{
r x

‖x‖2 , x /∈ Q

x, otherwise.

During this experiment, the parameters are taken as follows.

– Algorithm 3: αn =
{ 1

(n+1)2
, if ‖xn − x1‖2 = 0

min
{

1
(n+1)2

, 1
(n+1)2×‖xn−x1‖2

}
, otherwise

, μ =

0.4, l = 0.1, γ = 0.5, βn = 1
n+1 and ρ = 0.5;

– Algorithm SD: αn = 1
n+1 ,μ = 0.4, l = 0.1, ρ = 0.5 and λ is randomly generated

in the interval (0, 1/μ);
– Algorithm PY: αn = 1

n+1 , μ = 0.4 and l = 0.1;

– Algorithms DY, DA: αn = 1
n+1 , μ = 0.4, l = 0.1, γ = 0.5.

We test Algorithms 3, PY, DY for different cases of the initial point x1 ∈ L2([0, 1]).
Let the initial point be x1 = t .We take En = ‖xn+1−xn‖2 ≤ 4×10−3 as a termination
criterion. The results of this test are displayed in Fig. 3 and Table 3.

Let the initial point be x1 = t3.We terminate the iterations if En = ‖xn+1−xn‖2 ≤
10−3. The numerical results are presented in Fig. 4 and Table 3.

Let “Iter” denote number of iterations, “CPU” denote the CPU time seconds.
Figures 3, 4 and Table 3 show that the numerical results of Example 2 with ini-
tial points x0 = t and x1 = t3, respectively. They show that the performance of

Table 3 The number of termination iterations and execution time of all algorithms

x1 Method Algorithm-3 Algorithm-PY Algorithm-DY

t Iter. 18 22 26

CPU 171.0379 445.7557 1368.5464

t3 Iter. 39 41 52

CPU 581.5528 1132.5577 5692.5919
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Fig. 4 Example 2 with x1 = t3

Algorithm 3 is better than that of Algorithms PY, DY, in terms of the number of
iterations and CPU time required to reach the stopping criterion.

Example 3 Let us consider the variational inequality problem. Let

A (x) =
(

(x21 + (x2 − 1)2)(1 + x2)
−x31 − x1(x2 − 1)2

)

and C := {x ∈ R
2 : −10 ≤ xi ≤ 10, i = 1, 2}. This problem has unique solution

x∗ = (0,−1)T . It is easy to see thatA is not a monotone map on C . However, using
the Monte Carlo approach (see [31]), it can be shown that A is pseudo-monotone on
C . Let f (x) = 20/x . Parameters in different algorithms are selected as follows:

Algorithm 3: βn = 1
50n+1 , γ = 1.35, l = 0.22, μ = 0.99 and α = 0.8;

Algorithm SD: αn = 1
50n+1 , l = 0.22, μ = 0.99 and λ = 0.9/μ;

Table 4 Comparison of Algorithm 3, Algorithm SD and Algorithm PY for Example 3

Algorithm 3 Algorithm SD Algorithm PY
Initial point ε Iter. CPU Iter. CPU Iter. CPU

0.01 29 0.0001 33 0.0001 32 0.0001

[10, 10]T 0.001 41 0.0005 36 0.0002 304 0.0006

0.0001 390 0.0015 394 0.0010 3025 0.0051

0.01 21 0.0003 16 0.0001 14 0.0001

[−5,−5]T 0.001 41 0.0005 42 0.0002 132 0.0003

0.0001 390 0.0014 394 0.0009 1304 0.0023

0.01 35 0.0004 28 0.0002 25 0.0005

[−10, 5]T 0.001 41 0.0004 41 0.0002 239 0.0005

0.0001 390 0.0014 394 0.0009 2374 0.0041
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Fig. 5 The value of error versus the iteration numbers for Example 3

Algorithm PY: αn = 1
50n+1 , l = 0.22 and μ = 0.99.

We take some initial points and different stopping criteria conditions in the Table 4.
The following statistical data are obtained by averaging the number of iterations and
CPU costs from 10 independent trials. In the Fig. 5, the initial point is [10, 10]T and
the number of steps to stop criteria is 1000.

5 Conclusions

In this paper, we have given an improved projection-type method for solving classical
variational inequalities in Hilbert spaces. We have proposed a novel line-search rule
that removes the reliance on Lipschitz continuity. Furthermore, a strong convergence
theorem is obtained through the combination of viscosity iteration and the projection
method. In numerical experiments, we have compared our Algorithm 3 with some
recent related results, and it can be found from the figures and tables that our new
scheme has better convergence performance.
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