
Numerical Algorithms
https://doi.org/10.1007/s11075-024-01841-9

ORIG INAL PAPER

Numerical integrator for highly oscillatory differential
equations based on the Neumann series
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Abstract
We propose a third-order numerical integrator based on the Neumann series and the
Filon quadrature, designed mainly for highly oscillatory partial differential equations.
The method can be applied to equations that exhibit small or moderate oscillations;
however, counter-intuitively, large oscillations increase the accuracy of the scheme.
With the proposed approach, the convergence order of the method can be easily
improved. Error analysis of themethod is also performed.We consider linear evolution
equations involving first- and second-time derivatives that feature elliptic differential
operators, such as the heat equation or the wave equation. Numerical experiments
consider the case in which the space dimension is greater than one and confirm the
theoretical study.

Keywords Highly oscillatory PDEs · Numerical integration · The Filon method ·
The Neumann series
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1 Introduction

We consider the following type of highly oscillatory partial differential equations

∂t u(x, t) = Lu(x, t) + f (x, t)u(x, t), t ∈ [0, t�], x ∈ � ⊂ R
m, (1)

u(x, 0) = u0(x),

with zero boundary conditions, where � is an open and bounded subset of Rm with
smooth boundary ∂�, t� > 0 and L is a linear differential operator of degree 2p,
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80-308 Gdańsk, Poland
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p ∈ N, defined on �

L =
∑

| p|≤2p

a p(x)D
p, D p = ∂ p1

∂x p1
1

∂ p2

∂x p2
2

. . .
∂ pm

∂x pm
m

, x ∈ � ⊂ R
m . (2)

Multi-index p is an m-tuple of nonnegative integers p = (p1, p2, . . . , pm) and
a p(x) are smooth, complex-valued functions of x ∈ �̄. We assume that function
f (x, t) from the equation (1) is a highly oscillatory of type

f (x, t) =
N∑

n=−N
n �=0

αn(x, t)e
inωt , ω � 1, N ∈ N, (3)

whereαn are sufficiently smooth, complex-valued functions. The aim of this paper is to
construct a numerical integrator designed for highly oscillatory equations of type (1).

Highly oscillatory differential equations are difficult to solve numerically and are
of great importance in computational mathematics, which is why they have gained
special attention in the field [10, 11], and references therein. In particular, differential
equations of type (1) with extrinsic high oscillations arise in various fields, including
electronic engineering [5], when computing scattering frequencies [6], and in quantum
mechanics [7, 13]. In addition to the previously mentioned works, computational
methods dedicated to equations of type (1) are presented for example in [1, 2, 4, 15, 21].
In this paper,we present a complementary approach as discussed in the aforementioned
papers. Given the generality of equations (1), the numerical scheme derived in this
manuscript can be effectively applied to a range of linear partial differential equations,
including the heat equation and the wave equation.

In traditional numerical methods applied to highly oscillating problems, it is typ-
ically a requirement that the time step h satisfies hω < 1. This causes the method
to become extremely expensive when ω is large. This occurs because conventional
schemes are constructedusingTaylor expansions,where error formulas involve expres-
sionswith high derivatives of a highly oscillatory function. On the other hand, methods
for highly oscillatory equations based on the Modulated Fourier expansion or the
asymptotic expansion may not converge to a solution, rendering them effective only
for equationswith large oscillatory parameterω. In this paper, we propose a third-order
method whose accuracy improves with increasing parameter ω and decreasing time
step h. Furthermore, the approach presented in this paper allows for easy improvement
of the convergence order of the proposed numerical integrator.

To provide a more detailed understanding of the challenges associated with the
numerical approximation of highly oscillating differential equations, let us apply
Duhamel’s formula to equation (1) and write it in the following integral form

u(t + h) = ehLu(t) +
∫ h

0
e(h−τ)L f (t + τ)u(t + τ)dτ, (4)
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where u0 and f (s), u(s) for fixed s are elements of the appropriate Banach spaces.
Let us note that the second time derivative of the solution to equation (1) satisfies

u′′(t) = Lu′(t) + f ′(t)u(t) + f (t)u′(t),

thereforeu′′(t) = O(ω) and furthermoreu(k)(t) = O(ωk−1). This implies that approx-
imating the integral from equation (4) using standard quadrature rules, as in basic
numerical schemes, leads to a significant error. For that reason, we use a different
approach to this issue. In paper [18], it was shown that the solution to equation (1)
can be presented as the Neumann series. Subsequently, by expanding asymptotically
each integral within the Neumann series, it was demonstrated that the solution of
the equation can be expressed as the Modulated Fourier expansion. The Modulated
Fourier expansion, also known as an asymptotic expansion or frequency expansion, is
a technique used for analyzing highly oscillatory problems. It is comprehensively and
thoroughly described in [10]. By representing the solution as the Neumann series, the
time derivatives of the solution, which can be large for highly oscillating equations,
do not appear in the error formula of the numerical scheme. In this paper, instead
of employing an asymptotic expansion for the integrals within the Neumann series
(which is effective only in cases of high oscillations), we approximate them using
quadrature rules designed for highly oscillatory integrals, such as Filon-type meth-
ods. By this approach, we can provide that the local error of the presented numerical
scheme can be estimated by Ch4, where constant C is independent of time step h and
parameter ω. Furthermore, when considering a potential function f with only positive
frequencies, i.e. when only numbers n > 0 appear in formula (3), one can show that
the local error is bounded by C min

{
h4, h2ω−2, ω−3

}
, where again the constant C is

independent of both h and ω.
The convergence rate of the method can be easily improved by approximating a

greater number of integrals from the Neumann series. However, this enhancement
comes at the cost of requiring better regularity for both the initial condition u0 and the
functions αn , and also leads to increased computational complexity.

The paper is organized as follows. In Section 2, we introduce the two fundamen-
tal ingredients of the proposed method – the Neumann series and the Filon method.
Section 3 provides the derivation of the proposed numerical integrator. Section 4 is
dedicated to the error analysis of the method. In Section 5, we demonstrate the appli-
cation of the scheme to equations involving a second time derivative, while Section 6
presents the results of numerical experiments.

2 Preliminaries

In this section, we briefly introduce the basic tools needed to build the proposed
numerical method: the Neumann series and the Filon method.
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The Neumann series

Let us consider the following ordinary differential equation

Y ′(t) = A(t)Y (t), Y (0) = Y0, (5)

where Y : R → C
n and A(t) is an n × n time-dependent matrix. Equation 5 can be

written in the following form

Y (t) = Y0 +
∫ t

0
A(τ )Y (τ )dτ. (6)

By iterating equation (6), one can show that the solution of the problem (6) is given
by the series

Y (t) =
∞∑

d=0

T dY0, (7)

where

T dY0 =
∫ t

0
A(τ1)

∫ τ1

0
A(τ2) . . .

∫ τd−1

0
A(τd)Y0dτd . . . dτ1.

The series (7) is known as the Neumann series and the Dyson series [12], and it
converges to the solution of equation (6) for all values of t provided that the matrix
A(t) is bounded [3].

The Filonmethod

TheFilonmethod is a quadrature rule designed for highlyoscillatory integrals. Suppose
we wish to approximate the following integral

I [h, (a, b)] =
∫ b

a
h(s)eiωg(s)ds, (8)

where h and g are real-valued, sufficiently smooth functions, h �= 0 in [a, b] and ω �
1. Numerical approximation of such integrals by standardmethods based on the Taylor
expansion leads to a significant error. Consider theHermite interpolation polynomial p
that approximates the function h, p(s) ≈ h(s). Let p satisfy the following conditions

p(k)(a) = h(k)(a), p(k)(b) = h(k)(b), k = 0, 1, . . . N .

We assume that the moments

μk =
∫ b

a
skeiωg(s)ds, k = 0, 1, . . . 2N + 1
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can be calculated explicitly. The Filon method reads

∫ b

a
h(s)eiωg(s)ds ≈

∫ b

a
p(s)eiωg(s)ds.

The Filon method is very effective in the approximation of highly oscillatory inte-
grals. Additionally, for small values of ω, it behaves similarly to standard quadrature
rules.

Filon method may be used in approximation of multivariate highly oscillatory
integrals. Various modifications of the Filon quadrature are possible; see, for example,
[8].

3 Derivation of themethod

For the convenience of presenting the method, we introduce the necessary notation
and make the following general assumption, which will be used throughout the paper.

Notation By H2p(�) = W 2p,2(�), where p is a nonnegative integer, we understand
the Sobolev space equippedwith standard norm ‖ ‖H2p(�), and H

p
0 (�) is the closure of

C∞
0 (�) in the space H p(�). By u[t](τ )we understand function u such that u[t](τ ) =

u(t+τ).We slightly abuse the notation and also denote u(t) := u(·, t) as an element of
an appropriate Banach space. Throughout the text, by ‖ ‖ := ‖ ‖L2(�) we understand
the standard norm of L2(�) space.

Assumption 1 Suppose that

1. � is an open and bounded set in Rm with smooth boundary ∂�.
2. Operator −L : D(L) := H p

0 (�) ∩ H2p(�) → L2(�), where L is of form (2), is
a strongly elliptic of order 2p and has smooth, complex-valued coefficients ap(x).
Moreover 2p > m/2.

3. u0 ∈ D(L4) and αn ∈ C4
([0, t�], H8p(�)

)
, n = −N , . . . ,−1, 1, . . . , N , where

D(Lk) = {u ∈ D(Lk−1) : Lk−1u ∈ D(L)}, k = 2, . . .

The assumed regularity of functions u0 and αn is related to the accuracy of
the method. Assumption 1 ensures that differential operator L is the infinitesimal
generator of a strongly continuous semigroup {etL}t≥0 on L2(�) and therefore
maxt∈[0,t�] ‖etL‖L2(�)←L2(�) ≤ C(t�), where C(t�) is some constant independent
of t [17].

Wewish to build themethod based on time steps. Therefore, based on the semigroup
property, we can modify equation (1) and express it as follows

∂su[t](x, s) = Lu[t](x, s) + f [t](x, s)u[t](x, s), s ∈ [0, h], x ∈ � ⊂ R
m,

(9)

u[t](x, 0) = u(x, t),
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where t ≥ 0 and h > 0 is a small time step. By u[t](x, s) we understand u[t](x, s) =
u(x, t + s). By applying Duhamel formula to (9), we obtain

u[t](s) = esLu[t](0) +
∫ s

0
e(s−τ)L f [t](τ )u[t](τ )dτ. (10)

We could simply write u[t](s) = u(t + s), but the above notation helps avoid
misunderstandings in subsequent formulas.

Let Vt denotes the following space

Vt := C
(
[t, t + h], L2(�)

)
, t ≥ 0, h > 0,

Define the linear operator Tt : Vt → Vt

Ttu[t](s) =
∫ s

0
e(s−τ)L f [t](τ )u[t](τ )dτ, s ∈ [0, h],

where function f is defined in (3). The Neumann series for equation (10) reads

u[t](h) =
∞∑

d=0

T d
t e

hLu[t](0). (11)

Term T d
t e

hLu[t](0), d = 1, 2, . . . , from (11) is equal to

T d
t v[t](h) =

∫ h

0
e(h−τd )L f [t](τd)

∫ τd

0
e(τd−τd−1)L f [t](τd−1) . . .

∫ τ2

0
e(τ2−τ1)L f [t](τ1)eτ1Lu[t](0)dτ1 . . . dτd .

It can be shown that the series (11) converges in the norms ‖ ‖L2(�) and ‖ ‖H2p(�) to
the solution of equation (10), where 2p > m/2, for arbitrary time variable h > 0 [18].
The idea for finding an approximate solution to equation (1) involves approximating
the first r terms of the Neumann series (11) using quadrature methods designated to
highly oscillatory integrals. For convenience, we introduce a set

Nd := {−N ,−N + 1, . . . ,−1, 1, . . . , N − 1, N }d ⊂ N
d , (12)

where 2N is a number of terms in sum (3). Using definition (3) of the function f and
the linearity of semigroup operator, we can write each term of the Neumann series
T d
t e

hLu[t](0), d = 1, 2, . . . in a more convenient form for our considerations

T d
t e

hLu[t](0)=
∑

n1,...,nd∈N1

∫

σd (h)

Fn(h, τ1, . . . , τd)e
iω(n1(τ1+t)+···+nd (τd+t))dτ1 . . . τd
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=
∑

n∈Nd

eiωtn
T 1 I [Fn, σd(h)],

where

Fn(h, τ1, . . . τd) = e(h−τd )Lαnd [t](τd)e(τd−τd−1)Lαnd−1[t](τd−1) (13)

. . . e(τ2−τ1)Lαn1 [t](τ1)eτ1Lu[t](0),
I [Fn, σd(h)] =

∫

σd (h)

Fn(h, τ )eiωn
T τdτ ,

τ = (τ1, τ2, . . . , τd), 1 = (1, 1, . . . , 1),

and σd(h) denotes a d-dimensional simplex

σd(h) = {τ := (τ1, τ2, . . . , τd) ∈ R
d : h ≥ τd ≥ τd−1 ≥ · · · ≥ τ2 ≥ τ1 ≥ 0}.

Using the above notation, solution u of (10) can be written as

u(t + h) = u[t](h) = ehLu[t](0) +
∞∑

d=1

eiωtn
T 1

∑

n∈Nd

I [Fn, σd(h)]. (14)

In the proposed numerical scheme, for each time step h we take the first four terms
of the above series that approximate the function u(t + h)

u(t + h) ≈ ehLu[t](0) +
3∑

d=1

∑

n∈Nd

eiωtn
T 1 I [Fn, σd(h)].

Then, we approximate each integral I [Fn, σd(h)] in the above sum by applying the
Filon quadrature. As a result, we derive a fourth-order local method. By employing
Filon quadrature, the method’s error converges to zero both as h → 0 and as ω → ∞.
Our decision to consider only the first four terms in the Neumann expansion is rather
arbitrary. Themethod can be enhanced to achieve a higher level of accuracy, albeit with
increased computational costs and the requirement of better regularity for functions
u0 and αn .

Consider function F(τ ) := Fn1(h, τ ) from the second term of the Neumann series
and the following univariate integral

∫ h

0
F(τ )en1iωτdτ,

where n1 = −N ,−N + 1, . . . ,−1, 1, . . . , N . Let p(τ ) be a cubic Hermite interpo-
lating polynomial

F(τ ) ≈ p(τ ) = F(0) + a1,1τ + a1,2τ
2 + a1,3τ

3,
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which satisfy the conditions: p(0) = F(0), p(h) = F(h), p′(0) = F ′(0), p′(h) =
F ′(h). We have ∫ h

0
F(τ )ein1ωτdτ ≈

∫ h

0
p(τ )ein1ωτdτ,

and the moments ∫ h

0
τ kein1ωτdτ, k = 0, 1, 2, 3,

can be calculated explicitly. Let now F(τ1, τ2) := Fn(h, τ1, τ2), n ∈ N2, and consider
a bivariate integral ∫ h

0

∫ τ2

0
F(τ1, τ2)e

iω(n1τ1+n2τ2)dτ1dτ2. (15)

We approximate function F(τ1, τ2) in points (0, 0), (0, h) and (h, h), the vertices
of the simplex σ2(h), by linear function p(τ1, τ2),

F(τ1, τ2) ≈ p(τ1, τ2) = F(0, 0) + a2,1τ1 + a2,2τ2.

The approximation of integral (15) by the Filon quadrature rule reads

∫ h

0

∫ τ2

0
F(τ1, τ2)e

iω(n1τ1+n2τ2)dτ1dτ2 ≈
∫ h

0

∫ τ2

0
p(τ1, τ2)e

iω(n1τ1+n2τ2)dτ1dτ2,

and the integral on the right-hand side can be computed explicitly. Similarly, we
proceed with the triple integral. Function F(τ1, τ2, τ3) := Fn(h, τ1, τ2, τ3), n ∈ N3

is approximated by linear function p at the vertices of the simplex σ3(h): (0, 0, 0),
(0, 0, h), (0, h, h), (h, h, h),

F(τ1, τ2, τ3) ≈ p(τ1, τ2, τ3) = F(0, 0, 0) + a3,1τ1 + a3,2τ2 + a3,3τ3.

Then we have

∫ h

0

∫ τ3

0

∫ τ2

0
F(τ1, τ2, τ3)e

iω(n1τ1+n2τ2+n3τ3)dτ1dτ2dτ3

≈
∫ h

0

∫ τ3

0

∫ τ2

0
p(τ1, τ2, τ3)e

iω(n1τ1+n2τ2+n3τ3)dτ1dτ2dτ3.

The precise formulas for determining the coefficients ai, j are presented in the
Appendix A.

The proposed algorithm for computing the successive approximation of the solution
u can be expressed in the following form:

uk+1 =
(
ehL +

∑

n1

∫ h

0

(
a1,0 + a1,1τ + a1,2τ

2 + a1,3τ
3) en1iω(τ+tk )dτ
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+
∑

n1,n2

∫ h

0

∫ τ2

0
(a2,0 + a2,1τ1 + a2,2τ2)e

iω(n1(τ1+tk )+n2(τ2+tk ))dτ1dτ2 (16)

+
∑

n1,n2,n3

∫ h

0

∫ τ3

0

∫ τ2

0
(a3,0 + a3,1τ1 + a3,2τ2 + a3,3τ3)e

iω(n1(τ1+tk )+n2(τ2+tk )+n3(τ3+tk ))dτ1dτ2dτ3

)
uk

tk+1 = tk + h, k = 0, 1, . . . , K − 1,

where u0 = u0, t0 = 0, tK = t�, n1, n2, n3 ∈ {−N ,−N + 1, . . . ,−1, 1, . . . , N }
and the coefficients ai, j are chosen so that the corresponding polynomial satisfies the
Hermite interpolation conditions. Each of the integrals appearing in the scheme is
computed explicitly. Furthermore, the expression ehL and the coefficients ai, j of the
interpolating polynomials, after spatial discretization, can be computed very efficiently
and accurately using spectral methods [20] and/or splitting methods [16].

4 Local error analysis

The entire error of the method comes from two sources: the approximation of each
integral from the partial sum of the Neumann series, and the error associated with
the truncation of the Neumann expansion. In [18], the authors provide the asymptotic
expansion of integral I [Fn, σd(h)] from the Neumann series (14), where Fn is the
function of the form (13), for the special case when the potential function f has
positive frequencies, specifically when f takes the form

f (x, t) =
N∑

n=1

αn(x, t)e
inωt , ω � 1, N ∈ N. (17)

In such a situation, each integral I [Fn, σd(h)] satisfies the nonresonance condi-
tion and therefore can be approximated by the partial sum S(d)

r (h) of the asymptotic
expansion

I [Fn, σd(h)] =
∫

σd (h)

F(h, τ )eiωn
T τdτ = S(d)

r (h) + E (d)
r (h), r ≥ d,

where E (d)
r (h) = O(ω−r−1) is the error related to approximation of integral

I [Fn, σd(h)] by sum S(d)
r (h) ∼ O(ω−d). A similar result was first obtained in [14],

where the authors provided the asymptotic expansion of a multivariate highly oscil-
latory integral over a regular simplex. However, in our analysis, the non-oscillatory
function Fn is vector-valued rather than real-valued. We begin the error analysis of
the proposed numerical method by considering function f from equation (1) in the
form (17). Recall that ‖ ‖ denotes the standard norm of L2(�) space. In the follow-
ing estimations, C is some constant that depends on functions αn , initial condition
u[t](0) of equation (9), their derivatives, solution u, differential operator L and t�, but
it is independent of the time step h and the oscillatory parameter ω. Let us also note
that since by Assumption 1, the function f ∈ C4

([0, t�], H8p(�)
)
, we can apply

the Sobolev embedding theorem to conclude that ‖ f (s)‖∞ < ∞ for all s ∈ [0, t�].
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Therefore, the norm of product of two functions f and u can easily be estimated as
‖ f (s)u(s)‖ ≤ ‖ f (s)‖∞‖u(s)‖, ∀s ∈ [0, t�].

4.1 Positive frequencies

Lemma 1 Let F(τ ) be a 4 times continuously differentiable, vector-valued function,
and let p(τ ) be a cubic Hermite interpolation polynomial such that p(0) = F(0),
p(h) = F(h), p′(0) = F ′(0), p′(h) = F ′(h). Then the error of the Filon method
satisfies ∥∥∥∥

∫ h

0
(F − p)(τ )ein1ωτdτ

∥∥∥∥ ≤ C min

{
h5,

1

ω3 ,
h3

ω2

}
.

Proof The estimation that the error is bounded by Cω−3 directly follows from well-
known results concerning Filon quadrature, as described in [14]. By using the Taylor
series with the remainder in integral form, one can show that ‖F(τ ) − p(τ )‖ ≤ Ch4

and ‖F ′′(τ ) − p′′(τ )‖ ≤ Ch2. Therefore, by using integration by parts, we have

∥∥∥∥
∫ h

0
(F(τ ) − p(τ ))ein1ωτdτ

∥∥∥∥ = 1

(n1ω)2

∥∥∥∥
∫ h

0
(F ′′(τ ) − p′′(τ ))ein1ωτdτ

∥∥∥∥ ≤ C
h3

ω2 ,

which completes the proof. ��
Lemma 2 Let F(τ1, τ2) be a vector-valued function of class C2 and p(τ1, τ2) be a
linear function that satisfies the conditions: p(0, 0) = F(0, 0), p(0, h) = F(0, h),
p(h, h) = F(h, h). Let numbers n1 > 0, n2 > 0. Then

∥∥∥∥
∫ h

0

∫ τ2

0
(F − p)(τ1, τ2)e

iω(n1τ1+n2τ2)dτ1dτ2

∥∥∥∥ ≤ C min

{
h4,

h2

ω2 ,
1

ω3

}
.

Proof Since vector (n1, n2) satisfies the nonresonance condition, the approximated
integral I [F, σ2(h)] can be expanded asymptotically I [F, σ2(h)] ∼ O(ω−2), and
therefore the Filonmethod provides that the error satisfy I [(F− p), σ2(h)] = O(ω−3)

[14]. As in the case in the proof of Lemma 1, by using the Taylor series with the
remainder in integral form,wehave the estimations‖F(τ1, τ2)−p(τ1, τ2)‖ ≤ Ch2 and
‖∂1τ1 (F(τ1, τ2) − p(τ1, τ2)) ‖ ≤ Ch. For simplicity, let us assume that n1 = n2 = 1.
Using integration by parts, we get

∥∥∥∥
∫ h

0

∫ τ2

0
(F− p)(τ1, τ2)e

iω(τ1+τ2)dτ1dτ2

∥∥∥∥ ≤ 1

ω

∥∥∥∥
∫ h

0
(F− p)(τ2, τ2)e

2iωτ2 − (F− p)(0, τ2)e
iωτ2 dτ2

∥∥∥∥

+ 1

ω2

∥∥∥∥
∫ h

0
∂1τ1 (F− p)(τ2, τ2)e

2iωτ2 −∂1τ1 (F− p)(0, τ2)e
iωτ2 dτ2

∥∥∥∥

+ 1

ω2

∥∥∥∥
∫ h

0

∫ τ2

0
∂2τ1 (F− p)(τ1, τ2)e

iω(τ1+τ2)dτ1dτ2

∥∥∥∥ .

The second and third term on the right side of the above inequality are bounded by
Ch2ω−2, where C is some constant independent of h and ω. In the case of the first
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expression, we again apply integration by parts and the definition of the polynomial
p, and thus get the following

1

ω

∥∥∥∥
∫ h

0
(F − p)(τ2, τ2)e

2iωτ2 − (F − p)(0, τ2)e
iωτ2dτ2

∥∥∥∥

≤ 1

2ω2

∥∥∥∥
∫ h

0
∂1τ2 (F − p)(τ2, τ2)e

2iωτ2dτ2

∥∥∥∥ + 1

ω2

∥∥∥∥
∫ h

0
∂1τ2 (F − p)(0, τ2)e

iωτ2dτ2

∥∥∥∥ ≤ C
h2

ω2 ,

which concludes the proof. ��
In a similar vein, we estimate the error of the Filon method for the triple integral

Lemma 3 Let F(τ1, τ2, τ3) be a vector valued function of class C2 and p(τ1, τ2, τ3)
be a linear function approximating F such that p(0, 0, 0) = F(0, 0, 0), p(0, 0, h) =
F(0, 0, h), p(0, h, h) = F(0, h, h), p(h, h, h) = F(h, h, h). Let numbers
n1, n2, n3 > 0. Then the error of the Filon method can be estimated as follows

∥∥∥∥
∫ h

0

∫ τ3

0

∫ τ2

0
(F − p)(τ1, τ2, τ3)e

iω(n1τ1+n2τ2+n3τ3)dτ1dτ2dτ3

∥∥∥∥ ≤ C min

{
h5,

h3

ω2 ,
1

ω4

}
.

To complete the analysis of the local error, we need to estimate the truncation error
of the Neumann series. We write the solution of (10) as

u[t](h) =
r∑

d=0

T d
t e

hLu[t](0)
︸ ︷︷ ︸

=:u[r ][t](h)

+
∞∑

d=r+1

T d
t e

hLu[t](0)
︸ ︷︷ ︸

=:R[r+1][t](h)

= u[r ][t](h) + R[r+1][t](h),

where, in our considerations, we take r = 3.

Lemma 4 Let the function f fromequation (10)be of the form (17). Then the remainder
R[4][t](h) of the Neumann series (11) satisfied the following estimate

‖R[4][t](h)‖ ≤ C min

{
h4,

h2

ω2 ,
1

ω4

}
,

where constant C depends on functions αn, u[t](0) their derivatives, solution u, oper-
ator L and t�, but is independent of time step h and parameter ω.

Proof By using the basic properties of the operator norm and the fact that ‖ f ‖∞ < ∞
we have

∥∥∥R[4][t](h)

∥∥∥ =
∥∥∥∥∥

∞∑

d=4

T d
t e

hLu[t](0)
∥∥∥∥∥ =

∥∥∥∥∥T
4
t

∞∑

d=0

T d
t e

hLu[t](0)
∥∥∥∥∥

= ‖T 4
t u[t](h)‖ ≤ Ch4 sup

s∈[0,h]
‖u[t](s)‖.

123



Numerical Algorithms

Let us now denote by Tt the operator Tt = ∑∞
d=0 T

d
t . On the other hand, we

estimate

∥∥∥R[4][t](h)

∥∥∥ =
∥∥∥∥∥∥

∞∑

d=4

T d
t ehLu[t](0)

∥∥∥∥∥∥
=

∥∥∥∥∥∥

∞∑

d=0

T d
t T 4

t e
hLu[t](0)

∥∥∥∥∥∥
=

∥∥∥Tt T
4
t e

hLu[t](0)
∥∥∥

≤ sup
‖v[t](h)‖≤1

‖Ttv[t](h)‖‖T 4
t e

hLu[t](0)‖.

Expression T 4
t e

hLu[t](0) is a sum of highly oscillatory integrals over a 4-
dimensional simplex which satisfy the nonresonance condition and therefore
‖T 4

t e
hLu[t](0)‖ = O(ω−4). In addition, by using basic properties of the operator

norm and the simple inequality ‖uv‖L2 ≤ ‖u‖L2‖v‖∞, we have

‖T 4
t e

hLu[t](0)‖ =
∥∥∥∥
∫ h

0
e(h−τ4)L f [t](τ4)

∫ τ4

0
e(τ4−τ3)L f [t](τ3)T 2eτ3Lu[t](0)dτ3dτ4

∥∥∥∥

≤
∫ h

0

∥∥∥∥e
(h−τ4)L f [t](τ4)

∫ τ4

0
e(τ4−τ3)L f [t](τ3)T 2eτ3Lu[t](0)dτ3

∥∥∥∥ dτ4

≤ C1

∫ h

0

∥∥∥∥
∫ τ4

0
e(τ4−τ3)L f [t](τ3)T 2eτ3Lu[t](0)dτ3

∥∥∥∥ dτ4

≤ C1

∫ h

0

∫ τ4

0

∥∥∥e(τ4−τ3)L f [t](τ3)T 2eτ3Lu[t](0)
∥∥∥ dτ3dτ4

≤ C2
1

∫ h

0

∫ τ4

0

∥∥∥T 2eτ3Lu[t](0)
∥∥∥ dτ3dτ4,

where the constant C1 > 0 depends on the norm of the semigroup operator
{etL}t∈[0,t�] and the supremum norm of the function f . Since term T 2eτ3Lu[t](0)
satisfies

∥∥T 2eτ3Lu[t](0)∥∥ = O(ω−2), we obtain the estimate

‖T 4
t e

hLu[t](0)‖ ≤ C
h2

ω2 .

Moreover, it can be observed that expression Ttv[t](h), where ‖v[t](h)‖2 ≤ 1 is
the solution of the integral equation

ψ[t](h) = v[t](h) +
∫ h

0
e(h−τ)L f [t](τ )ψ[t](τ )dτ.

By Grönwall’s inequality, expression ψ = Ttv[t](h) is also bounded in L2 norm
for any function v[t](h) such that ‖v[t](h)‖2 ≤ 1. Using the boundedness of operator
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Tt , we can estimate
∥∥∥∥∥

∞∑

d=4

T d
t e

hLu[t](0)
∥∥∥∥∥ ≤ C min

{
h4,

h2

ω2 ,
1

ω4

}
.

which completes the proof. ��
Let us emphasize that the time derivatives of the solution of the highly oscillatory

equation (10) do not appear in the above estimates, which means that the constant C
is independent of the parameter ω.

By collecting the estimations of integrals presented in Lemmas 1, 2, 3, and esti-
mation of the remainder of the Neumann series in Lemma 4, one can provide the
following local error bound of the scheme.

Theorem 1 Let Assumption 1 be satisfied and let the potential function f be of the
form (17). Then the local error of the numerical scheme (16) satisfies the following
estimate in the L2 norm

‖u(t0 + h) − u1‖ ≤ C min

{
h4,

h2

ω2 ,
1

ω3

}
,

where constant C is independent of time step h and parameter ω.

4.2 The case involving negative frequencies

The situation becomes more complicated when we perform the error analysis of the
proposed numerical integrator for potential function f in the general form (3). Let
n = (n1, . . . , nd) ∈ Nd , where set Nd is defined in (12). Coordinates of n may
satisfy

n j + n j−1 + · · · + nr+1 + nr = 0,

for certain 1 ≤ j < r ≤ d, and therefore n is orthogonal to the boundary of simplex
σd(h). Vector n does not satisfy the nonresonance condition, and, as a result, sim-
ple integration by parts does not yield error estimates similar to those presented in
Lemmas 1, 2, and 3. In this case, we still obtain the fourth-order local error estimate
of the numerical scheme ‖u(t0 + h) − u1‖ ≤ Ch4, where C is independent of ω and
h, but we wish to derive a numerical scheme whose accuracy improves significantly
with increasing ω.

At this stage, we consider two bivariate integrals from the Neumann series,
I [Fn1, σ2(h)] and I [Fn2 , σ2(h)], where n1 = (−n, n) and n2 = (n,−n). Vectors
n1, n2 ∈ N2 are orthogonal to the boundary of simplex σ2(h). By integration by parts
one can show that I [Fn1 , σ2(h)] ∼ O(ω−1), I [Fn2 , σ2(h)] ∼ O(ω−1) but sum of the
integrals satisfies

(
I [Fn1, σ2(h)] + [Fn2 , σ2(h)]) ∼ O(ω−2) [18]. We exploit this fact

by imposing an additional interpolation condition to construct Filon’s quadrature rule
for the sum of two bivariate integrals that do not satisfy the nonresonance condition.
We also assume that coefficients of function f satisfy α−n = αn, ∀n ∈ N1, therefore
Fn1 = Fn2 =: Fn.
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Theorem 2 Let coefficients α−n = αn, ∀n ∈ N1 and consider function Fn of the form
(13), i.e. Fn(τ1, τ2) = e(h−τ2)Lαn[t](τ2)e(τ2−τ1)Lαn[t](τ1)eτ1Lu[t](0). Let polyno-
mial p(τ1, τ2) = b0 + b1τ1 + b2τ2 + b3τ1τ2 satisfies the following interpolation
conditions

p(0, 0) = Fn(0, 0), p(0, h) = Fn(0, h), p(h, h) = Fn(h, h),

and ∫ h

0
∂1τ1 p(τ2, τ2)dτ2 =

∫ h

0
∂1τ1Fn(τ2, τ2)dτ2. (18)

Then

∥∥∥∥
∫ h

0

∫ τ2

0
(Fn − p)(τ1, τ2)e

iωn(τ1−τ2) + (Fn − p)(τ1, τ2)e
iωn(−τ1+τ2)dτ1dτ2

∥∥∥∥

≤ C min

{
h4,

h2

ω2 ,
1

ω3

}
.

Proof For simplicity,we can assumen = 1. It follows from the previous considerations
that (Fn − p) = O(h2), ∂1τ1(Fn − p) = O(h) and ∂1τ2(Fn − p) = O(h). Integration
by parts and application of interpolation conditions gives

∥∥∥∥
∫ h

0

∫ τ2

0
(Fn− p)(τ1, τ2)e

iω(τ1−τ2) + (Fn − p)(τ1, τ2)e
iω(−τ1+τ2)dτ1dτ2

∥∥∥∥

≤ 1

ω

(∥∥∥∥
∫ h

0
(Fn− p)(τ2, τ2)− (Fn − p)(0, τ2)e

−iωτ2 dτ2−
∫ h

0
(Fn− p)(τ2, τ2)−(Fn− p)(0, τ2)e

iωτ2 dτ2

∥∥∥∥

)

+ 1

ω2

∥∥∥∥
∫ h

0
∂1τ1 ((Fn − p)(τ2, τ2))dτ2

∥∥∥∥ + 1

ω2

∥∥∥∥
∫ h

0
∂1τ1 ((Fn − p)(0, τ2))e

−iωτ2 dτ2

∥∥∥∥

+ 1

ω2

∥∥∥∥
∫ h

0
∂1τ1 ((Fn − p)(τ2, τ2))dτ2

∥∥∥∥ + 1

ω2

∥∥∥∥
∫ h

0
∂1τ1 ((Fn − p)(0, τ2))e

iωτ2 dτ2

∥∥∥∥

+ 1

ω2

∥∥∥∥
∫ h

0

∫ τ2

0
∂2τ1 (Fn− p)(τ1, τ2)e

iω(τ1−τ2)dτ1dτ2

∥∥∥∥+ 1

ω2

∥∥∥∥
∫ h

0

∫ τ2

0
∂2τ1 (Fn− p)(τ1, τ2)e

iω(−τ1+τ2)dτ1dτ2

∥∥∥∥

≤ 1

ω2

∥∥∥∥
∫ h

0
∂1τ2 (Fn− p)(0, τ2)e

−iωτ2 dτ2

∥∥∥∥ + 1

ω2

∥∥∥∥
∫ h

0
∂1τ2 (Fn − p)(0, τ2)e

iωτ2 dτ2

∥∥∥∥ + C min

{
h2

ω2 ,
1

ω3

}

≤ C min

{
h2

ω2 ,
1

ω3

}
,

which completes the proof. ��
Since the function Fn is non-oscillatory, we can compute the integral (18) efficiently

and effortlessly, using methods such as Gauss-Legendre quadrature.
In the case when function f is of the form (3), and the coefficients of f satisfy

α−n = αn, ∀n ∈ N1, the improved scheme reads

uk+1 =
(
ehL +

∑

n1

∫ h

0

(
a1,0 + a1,1τ + a1,2τ

2 + a1,3τ
3) en1iω(τ+tk )dτ
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+
∑

n1+n2 �=0

∫

σ2(h)

(a2,0 + a2,1τ1 + a2,2τ2)e
iω(n1(τ1+tk )+n2(τ2+tk ))dτ1dτ2

+
N∑

n=1

∫

σ2(h)

(b0 + b1τ1 + b2τ2 + b3τ1τ2)(e
iωn(τ1−τ2) + eiωn(−τ1+τ2))dτ1dτ2

+
∑

n1,n2,n3

∫

σ3(h)

(a3,0 + a3,1τ1 + a3,2τ2 + a3,3τ3)e
iω(n1(τ1+tk )+n2(τ2+tk )+n3(τ3+tk ))dτ1dτ2dτ3

)
uk ,

tk+1 = tk + h.

5 Application of themethod to the wave equation

The proposed numerical scheme can be successfully applied to partial differential
equations with the second-time derivative. Consider the equation

∂t t u = Lu(x, t) + f (x, t)u(x, t), t ∈ [0, t�], x ∈ � ⊂ R
m, (19)

u(x, 0) = u1(x), ∂t u(x, 0) = u2(x),

u = 0 on ∂� × [0, t�],
with function f given in (3). We write (19) as a first-order system

∂t

[
u
v

]
=

[
0 I
L 0

] [
u
v

]
+ f

[
0 0
I 0

] [
u
v

]
,

where v = ∂t u. Thus

∂t

[
u
v

]

︸︷︷︸
ϕ

=
[
0 I
L 0

]

︸ ︷︷ ︸
A

[
u
v

]
+

N∑

n=1

einωt
[
0 0
αn 0

]

︸ ︷︷ ︸
βn

[
u
v

]

and therefore

∂tϕ = Aϕ + hϕ, ϕ(x, 0) = [u1(x), u2(x)], A(u, v) = (v,Lu), βn(u, v) = (0, uαn),

(20)
where h(x, t) = ∑N

n=1 e
inωtβn(x, t) is a highly oscillatory function and ϕ is a vector

valued function. Suppose that L is a second-order differential operator which has
symmetric form

Lu =
m∑

i, j=0

∂x j
(
ai j∂x j u

) − cu,

where functions ai j = a ji , i, j = 1, . . . ,m and c ≥ 0. By applying Duhamel’s
formula we write (20) as

ϕ(t) = et Aϕ0 +
∫ t

0
e(t−τ)Ah(τ )ϕ(τ)dτ. (21)
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Operator A : D(A) := [
H2(�) ∩ H1

0 (�)
] × H1

0 (�) → H1
0 (�) × L2(�) is the

infinitesimal generator of a strongly continuous semigroup {et A} on H1
0 (�) × L2(�)

[9]. One can show that the Neumann series converges absolutely and uniformly in the
norm of space H1

0 (�) × L2(�) to the solution of equation (21) [18].

6 Numerical examples

In this chapter, we employ the proposed numerical integrator to solve highly oscillatory
heat equations and wave equations. For each equation, it is possible to determine the
analytical solution, enabling accurate comparisons with the numerical approximation.
The L2 norm of the error is considered in any presented example. In our numerical
experiments, to find an approximate solution, we use the Fourier and Chebyshev
spectral methods, as described in [19, 20]. In Examples 1, 3 and 4 we used M = 100
spatial grid points. Example 2 concerns a two-dimensional case, in which we used
M = 20 grid points.

Example 1 The heat equation.
Consider the equation

∂t u = ∂2xxu + f (x, t)u(x, t), t ∈ [0, 1], x ∈ (0, 2π),

u(x, 0) = u0(x), (22)

u(0, t) = 0 = u(2π, t),

with initial condition u0
u0(x) = sin(x),

and function f

f (x, t) = 1 − (−i + t(ω − 3i)) cos(x)

ω︸ ︷︷ ︸
α1

eiωt + sin(x)2t2

ω2
︸ ︷︷ ︸

α2

e2iωt .

The potential function f involves time-dependent coefficients α1 and α2 The solu-
tion to (22) is

u(x, t) = eie
iωt cos(x)t/ω sin(x).

Figure 1 displays the error of the method for equation (22).

Example 2 Two-dimensional heat equation.

∂t u(x, y, t) = ∂2xxu(x, y, t) + ∂2yyu(x, y, t) + f (x, y, t)u(x, y, t), t ∈ [0, 1], x ∈ �,

u(x, y, 0) = u0(x, y), (23)
u(x, y, t) = 0 on ∂�,
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Fig. 1 Numerical approximation of the solution to equation (22). Error versus time step (left graph) and
error versus parameter ω (right graph)

where domain � = [−1, 1] × [−1, 1]. The initial condition is

u0(x, y) = sin(πx) sin(π y)ecos(πx) cos(π y)/ω,

and function f

f (x, y, t) = 2π2+ (6π2 + iω) cos(πx) cos(π y)

ω︸ ︷︷ ︸
α1

eiωt + 0.5π2(−1 + cos(2πx) cos(2π y))

ω2
︸ ︷︷ ︸

α2

e2iωt .

The solution to equation (23) reads

u(x, y, t) = sin(πx) sin(π y) exp(exp(iωt) cos(πx) cos(π y)/ω).

Figure 2 presents the error of the proposed method applied to equation (23).

Fig. 2 Numerical approximation of the solution to equation (23). Error versus time step (left graph) and
error versus parameter ω (right graph)
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Example 3 The wave equation with nonresonance points.

∂t t u = ∂xxu + f (x, t)u(x, t), t ∈ [0, 1], x ∈ (−L, L), L = 8,

u(x, 0) = u0(x), ∂t u(x, 0) = v0(x), (24)

u(−L, t) = u(L, t),

∂t u(−L, t) = ∂t u(L, t),

where initial conditions

u0(x) = e−x2(1/2+1/ω2), v0(x) = − ix2

ω
u0(x),

and function f

f (x, t) = 1 − x2 + 2 + x2(−4 + ω2)

ω2 eiωt − x2(4 + x2ω2)

ω4 e2iωt .

The solution to (24) is

u(x, t) = e−x2/2e−eitωx2/ω2
.

Figure 3 illustrates the error associated with the approximation of the solution to
equation (24).

Example 4 The wave equation with resonance points.
In the last example, consider now the wave equation with potential function f with
negative frequencies

∂t t u = ∂xxu + f (x, t)u(x, t), t ∈ [0, 1], x ∈ (−L, L), L = 8,

u(x, 0) = e−x2(1/2+1/ω2), ∂t u(x, 0) = 0, (25)

u(−L, t) = u(L, t),

∂t u(−L, t) = ∂t u(L, t),

Fig. 3 Numerical approximation of the solution to equation (24). Error versus time step (left graph) and
error versus ω (right graph)
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where function f takes the form

f (x, t) = 1 − x2 + (2 + x2ω2 − 4x2) cos(ωt)

ω2 − 4x2 cos2(ωt)

ω4 + x4 sin2(ωt)

ω2 .

The solution of (25) is equal to

u(x, t) = e− cos(ωt)x2/ω2
e−x2/2.

Figure 4 presents the error of the proposed method for equation (25).

The Neumann series converges for all variables t , unlike the Magnus expansion,
which converges only locally. Therefore, in the proposed scheme, any time step can be
taken to find an approximate solution. In Fig. 5, we illustrate the error of themethod for
all four examples with step size h = 1, where ω ranges from 5 to 1000. In each graph
of error versus time step h, it can be observed that the proposed method is effective
for both small (ω = 5) and large (ω = 200) oscillatory parameter ω.

6.1 Comparison with other methods

In this section, we compare the proposed numerical method (denoted as NF3) with
selected existing methods. For this purpose, we used schemes based on the Magnus
expansion: the exponential fourth-order method (denoted as M4) and the exponential
midpoint method of order two (denoted as M2). Both integrators are described in
detail in [11]. Each scheme was applied to equations (22), (23), and (24), where in
each case the parameter ω = 500. As is well known, the methods M4 and M2 are
very effective for nonoscillatory equations. However, for a large parameter ω which
accounts for the oscillation of the equation, their effectiveness is limited. The proposed
NF3 method performs particularly well in a highly oscillatory regime. The results of
the comparisons are shown in Fig. 6.

Fig. 4 Numerical approximation of the solution to equation (25). Error versus time step (left figure) and
error versus ω (right figure)
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Fig. 5 The error of approximating the solutions of equations (22), (23), (24), and (25), for ω ranging from
5 to 1000, with step sizes h = 1

Fig. 6 Comparison of the proposed method NF3 with the exponential 4th order method (M4) and the
exponential 2nd order midpoint method (M2). The numerical schemes have been applied to the equations
(22), (23) and (24), where ω = 500. Top row presents accuracy of schemes and the bottom row time of
computation in seconds
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7 Conclusion

The paper proposed a numerical integrator designed for linear partial differential equa-
tions with a highly oscillatory potential function of type (3). The numerical scheme is
constructed by expanding the solution into the Neumann series. Subsequently, the first
three integrals of the Neumann series are approximated using the Filon method. The
classical and asymptotic order of the scheme is 3, which is confirmed by numerical
experiments. The method is effective for both small and large values of the oscillatory
parameter ω.

There are possible modifications of the proposed integrator. For integrals from the
Neumann series, different extensions of the Filonmethod can be applied. For example,
the nonoscillatory integrands can be approximated not only at points that are the ends
of the integration interval but also at intermediate points. This should further improve
the accuracy of the method.

Appendix A

In this section, we provide precise calculations for approximating highly oscillatory
integrals: univariate, bivariate, and trivariate, from the Neumann series.

Univariate integral
Consider the following integral

∫ h

0
e(h−τ)Lαn1[t](τ )eτLu[t](0)en1iωτdτ.

We denote F(τ ) := e(h−τ)Lαn1[t](τ )eτLu[t](0). Function F is approximated by
using Hermite interpolation F(0) = p(0), F(h) = p(h), F ′(0) = p′(0), F ′(h) =
p′(h). The polynomial p approximating function F is equal to

p(τ ) = F(0) + τ F ′(0) + τ 2

h2
(3F(h) − 3F(0) − 2hF ′(0) − hF ′(h))

+τ 3

h3
(hF ′(h) − 2F(h) + 2F(0) + hF ′(0)),

= F(0) + a1,1τ + a1,2τ
2 + a1,3τ

3,

where

a1,1 = F ′(0),

a1,2 = 1

h2
(3F(h) − 3F(0) − 2hF ′(0) − hF ′(h)),

a1,3 = 1

h3
(hF ′(h) − 2F(h) + 2F(0) + hF ′(0)).
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If function αn1 is dependent on time, then

F(0) = ehLαn1 [t](0)u[t](0), F ′(0) =
(
−ehLad1L(αn1 [t](0)) + ehLαn1 [t]′(0)

)
u[t](0),

F(h) = αn1 [t](h)ehLu[t](0), F ′(h) =
(
−ad1L(αn1 [t](h))ehL + αn1 [t]′(h)ehL

)
u[t](0),

where ad1L
(
α
) = [L, α

]
and [X ,Y ] ≡ XY − Y X is the commutator of X and Y .

Approximation of the univariate integral is as follows

∫ h

0
F(τ )en1iωτdτ ≈

∫ h

0

(
F(0) + a1,1τ + a1,2τ

2 + a1,3τ
3
)
en1iωτdτ.

Bivariate integral with nonresonnce points
We approximate the following bivariate integral

∫ h

0

∫ τ2

0
F(τ1, τ2)e

iω(n1+n2)dτ1dτ2,

where F(τ1, τ2) := e(h−τ2)Lαn2 [t](τ2)e(τ2−τ1)Lαn1[t](τ1)eτ1Lu[t](0). Function F is
interpolated in the nodes (0, 0), (h, h), (0, h), and F(0, 0) = p(0, 0), F(0, h) =
p(0, h), F(h, h) = p(h, h), where p(τ1, τ2) is a linear polynomial that approximate
function F

F(τ1, τ2) = F(0, 0) + a2,1τ1 + a2,2τ2︸ ︷︷ ︸
p(τ1,τ2)

+O(h2),

where

a2,1 = 1

h
(F(h, h) − F(0, h)), a2,2 = 1

h
(F(0, h) − F(0, 0)),

and

F(0, 0) = ehLαn2 [t](0)αn1[t](0)u[t](0), F(0, h) = αn2 [t](h)ehLαn1 [t](0)u[t](0),
F(h, h) = αn2 [t](h)αn1[t](h)ehLu[t](0).

Approximation of the bivariate integral reads

∫ h

0

∫ τ2

0
F(τ1, τ2)e

iω(n1τ1+n2τ2)dτ1dτ2

≈
∫ h

0

∫ τ2

0
(F(0, 0) + a2,1τ1 + a2,2τ2)e

iω(n1τ1+n2τ2)dτ1dτ2.

Bivariate integrals with resonnce points
Consider the following sum of two integrals with resonnce points (n,−n) and (−n, n)

∫ h

0

∫ τ2

0
F(τ1, τ2)e

iωn(τ1−τ2)dτ1dτ2 +
∫ h

0

∫ τ2

0
F(τ1, τ2)e

iωn(−τ1+τ2)dτ1dτ2,
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where F(τ1, τ2) := e(h−τ2)Lαn[t](τ2)e(τ2−τ1)Lαn[t](τ1)eτ1Lu[t](0). The bivariate
integrals with resonance points necessitate the imposition of an additional interpo-
lating condition. Let p(τ1, τ2) = F(0, 0) + b1τ1 + b2τ2 + b3τ1τ2, be a polynomial
with coefficients b j defined by the formulas

b1 = 1

h
(F(0, h) − F(0, 0)),

b2 = 1

h
(2X + F(0, h) − F(h, h)),

b3 = 2

h2
(F(h, h) − F(0, h) − X),

where

X =
∫ h

0
∂1τ1F(τ2, τ2)dτ2

=
∫ h

0
e(h−τ2)Lαn[t](τ2)

(
−ad1L(αn[t](τ2)) + αn[t]′(τ2)

)
eτ2Lu[t](0)dτ2.

Polynomial p satisfies the conditions

p(0, 0) = F(0, 0),

p(0, h) = F(0, h),

p(h, h) = F(h, h),
∫ h

0
∂1τ1 p(τ2, τ2)dτ2 =

∫ h

0
∂1τ1F(τ2, τ2)dτ2.

The Filon quadrature reads

∫ h

0

∫ τ2

0
F(τ1, τ2)

(
eiωn(τ1−τ2) + eiωn(−τ1+τ2)

)
dτ1dτ2

≈
∫ h

0

∫ τ2

0
p(τ1, τ2)

(
eiωn(τ1−τ2) + eiωn(−τ1+τ2)

)
dτ1dτ2.

Trivariate integral
The last integral to be approximated is

∫ h

0

∫ τ3

0

∫ τ2

0
F(τ1, τ2, τ3)e

iω(τ1n1+τ2n2+τ3n3)dτ1dτ2dτ3,

where F(τ1, τ2, τ3) = e(h−τ3)Lαn3 [t](τ3)e(τ3−τ2)Lαn2 [t](τ2)e(τ2−τ1)αn1[t](τ1)
eτ1Lu[t](0). Function F is interpolated in the nodes (0, 0, 0), (0, 0, h), (0, h, h),
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(h, h, h) and F(0, 0, 0) = p(0, 0, 0), F(0, 0, h) = p(0, 0, h), F(0, h, h) =
p(0, h, h), F(h, h, h) = p(h, h, h).

F(τ1, τ2, τ3) ≈ p(τ1, τ2, τ3) = F(0, 0, 0) + a3,1τ1 + a3,2τ2 + a3,3τ3,

where

a3,3 = 1

h
(F(0, 0, h) − F(0, 0, 0)),

a3,2 = 1

h
(F(0, h, h) − F(0, 0, h)),

a3,1 = 1

h
(F(h, h, h) − F(0, h, h)),

and

F(0, 0, 0) = ehLαn3[t](0)αn2 [t](0)αn1[t](0)u[t](0),
F(0, 0, h) = αn3 [t](h)ehLαn2 [t](0)αn1[t](0)u[t](0),
F(0, h, h) = αn3 [t](h)αn2 [t](h)ehLαn1[t](0)u[t](0),
F(h, h, h) = αn3 [t](h)αn2 [t](h)αn1[t](h)ehLu[t](0).

Approximation of the trivariate integral is

∫ h

0

∫ τ3

0

∫ τ2

0
F(τ1, τ2, τ3)e

iω(τ1n1+τ2n2+τ3n3)dτ1dτ2dτ3

≈
∫ h

0

∫ τ3

0

∫ τ2

0
(F(0, 0, 0)+ a3,1τ1+ a3,2τ2 + a3,3τ3)e

iω(τ1n1+τ2n2+τ3n3)dτ1dτ2dτ3.
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