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Abstract
For Hamiltonian systems with non-canonical structure matrices, a new family of
fourth-order energy-preserving integrators is presented. The integrators take a form of
a combination of Runge–Kutta methods and continuous-stage Runge–Kutta methods
and feature a set of free parameters that offer greater flexibility and efficiency. Specif-
ically, we demonstrate that by carefully choosing these free parameters, a simplified
Newton iteration applied to the integrators of order four can be parallelizable. This
results in faster and more efficient integrators compared with existing fourth-order
energy-preserving integrators.

Keywords Energy-preservation · Poisson system · Parallelism

Mathematics Subject Classification (2010) 65L05 · 65L06 · 65P10

1 Introduction

In this paper, we are concerned with the numerical integration of a system of ordinary
differential equations (ODEs) of the form

d

dt
y = S(y)∇H(y), y(0) = y0 ∈ R

d , (1.1)

where y : [0, T ) → R
d is a dependent variable, S : Rd → R

d×d is a skew-symmetric
matrix function, and H : Rd → R is a real-valued function, which we call energy.
The two functions S and H are assumed to be sufficiently regular. Along the solution
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to (1.1), the function H is constant:

d

dt
H(y(t)) = ∇H(y(t))� ẏ(t) = ∇H(y(t))�S(y(t))∇H(y(t)) = 0,

where the dot stands for the differentiation with respect to t . Conversely, a system
of ODEs having a first-integral can always be formulated in the form of (1.1) with
an appropriate skew-symmetric matrix function S(y) [14], although the expression of
S(y) might not be unique. When S(y) is constant and in particular S = J−1 with

J =
[

O −I
I O

]
,

the system is called a Hamiltonian system and the corresponding H is often referred
to as the Hamiltonian. In more general cases, where S depends on y, if the Poisson
bracket satisfies the Jacobi identity, the system is called a Poisson system (see, e.g., [8,
Chapter VII.2]). In this paper, we always call the system of the form (1.1) a Poisson
system, even if the Poisson bracket does not satisfy the Jacobi identity, bearing in
mind that this terminology is just for convenience only. Furthermore, depending on
the structure of S(y), the system of the form (1.1) exhibits rich geometric properties,
such as symplecticity.

This paper focuses on energy-preserving integrators, which are a typical branch
of geometric numerical integrators [8]. In this paper, an energy-preserving integrator
refers to a one-stepmethod y0 �→ y1, where y1 ≈ y(h), such that H(y1) = H(y0). For
such a method, H(yn) = H(y0) holds even if the step-size h is controlled adaptively.

The projection method is a relatively simple method. The projection method, while
conceptually straightforward, encompasses a variety of approaches for projecting solu-
tions onto the appropriate manifold. The effectiveness of this method, particularly
concerning long-term behavior, may depend on both the selected projection tech-
nique and the underlying integrator [8, Chapter IV.4]. Therefore, caution is advised in
employing the projection method. 1 A more sophisticated and systematic approach is
called the discrete gradient method, which was first formulated by Gonzalez [6] (see
also McLachlan, Quispel, and Robidoux [9]), although a similar idea had been known
for quite some time. The discrete gradient method usually produces a second-order
energy-preserving integrator. The average vector field (AVF) method, proposed by
Quispel and McLaren [15], is a subclass of the discrete gradient method, which is a
B-series method and of order two when S is a constant skew-symmetric matrix. Over
the past decade, extensions of the AVF method to higher order have been extensively
studied. For a constant S, Hairer proposed the AVF collocation method [7] and Brug-
nano, Iavernaro, and Trigiante proposed the Hamiltonian boundary value method [3].
These methods are based on so-called continuous-stage Runge–Kutta methods. Also
worth mentioning is a relatively new work [5], which establishes a general theory on
the order theory for discrete gradient methods.

1 It is worth noting that the projection concept retains its utility. Additionally, wemention the work [13] that
shows the equivalence between projection methods and the discrete gradient methods mentioned below.
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Roughly speaking, the computational cost of the AVF collocation method is almost
the same as the Gauss method of the same order. Miyatake and Butcher [12] char-
acterize the condition for the continuous-stage Runge–Kutta (CSRK) method being
energy-preserving in terms of the symmetry of an s × s matrix M defining the CSRK
method and find that the order condition can also be characterized in terms of M−1.
The discussions using M seem fruitful in that one can construct an integrator with
an intended order with some degrees of freedom. By manipulating the remaining
parameters to enhance the integrator, for example, parallelizable integrators can be
constructed.

For Poisson systems, efforts developing energy-preserving methods have also been
devoted, and the aforementionedmethods have been extended to this general class. For
example, the AVF collocation method is extended to Poisson systems by introducing
a new class of integration methods, which is a generalization of the CSRK method to
partitioned systems [4] (see [1, 2] for the extension of the Hamiltonian boundary value
method to the Poisson systems).We refer to this new class of integration method as the
partitioned continuous-stage Runge–Kutta (PCSRK) method. The s-degree PCSRK
method2 is characterized by the s × s matrices Mi (i = 1, . . . , s) and the nodes ci

(i = 1, . . . , s). The results given in [11] suggest that a PCSRK method is energy-
preserving if all Mi are symmetric, but it is not clear if the order condition is concisely
characterized in terms of thematrices Mi and nodes ci , as is clearly done for the CSRK
methods. This task does not seem so trivial; there are several difficulties associated
with it. For example, recall that for the constant S, the order condition is characterized
in terms of the inverse of M ; however, for Poisson systems, although the highest order
of the s-degree PCSRK methods is 2s [4], the corresponding Mi ’s are singular. Thus,
one cannot expect that the order conditions are characterized in terms of the inverse
of Mi ’s. Other difficulties are discussed in Remark 3.1.

Taking the above backgrounds into consideration, we focus only on fourth-order
methods and address the following issues.

– The fourth-order PCSRK method exists with s = 2 [4], which is unique if the
degree is restricted to s = 2. In this paper, we set s = 3 and characterize the
method for being order 4 in terms of M1, M2, M3 and c1, c2, c3. The key idea is to
require that the PCSRKmethod be reduced to the CSRKmethod discussed in [12]
when S is constant, and themethod is symmetric, and simplify the order conditions
for the bi-colored rooted trees with three vertices having a black root. This can be
viewed as a three-degree PCSRK method with some degrees of freedom, and the
parameters can be devised from another perspective.

– As discussed in [12], an advantage of a numerical method with some degrees of
freedom is that much more efficient variants may be able to be explored. Clearly,
in general, the larger the degrees of the CSRKmethods are, the more expensive the
computational cost becomes. However, this is not always the case; for example,
if the matrix M has a specific eigenstructure, the method can be implemented
in a parallel architecture with almost the same cost as the case s = 1, though
the memory usage grows. We show that a similar structure holds for the PCSRK
methods.

2 The degree plays a similar role to the stages of (partitioned) Runge–Kutta methods.
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– Based on the above two points, we develop three-degree PCSRK integrators with
some degrees of freedom, which are energy-preserving for Poisson systems, of
order four, and efficiently implemented in a parallel architecture. The proposed
integrators are reduced to the ones developed in [12] with similar properties for
Hamiltonian systems.

The paper is organized as follows. In Section 2, after reviewing energy-preserving
CSRKmethods for constant S and their properties, we also discuss the formulation of
energy-preserving PCSRKmethods for general cases. We develop a family of energy-
preserving PCSRK integrators in Section 3.We discuss the implementation issues and
optimal parameter choices in Section 4. Concluding remarks are given in Section 5.

2 Preliminaries

2.1 Hamiltonian systems and CSRKmethods

Let us consider the system

d

dt
y = S∇H(y), y(0) = y0 ∈ R

d , (2.1)

where S is a constant skew-symmetric matrix, but not necessarily J−1. Hamiltonian
systems are a typical example of this class. The average vector field (AVF) method
reads

y1 = y0 + h
∫ 1

0
f ((1 − τ)y0 + τ y1) dτ, (2.2)

where f (y) = S∇H(y). This method is of second-order and energy-preserving
H(y1) = H(y0). The method can be regarded as a continuous-stage Runge–Kutta
method.

Definition 2.1 (CSRK methods) Let Aτ,ζ be a polynomial in τ and ζ . Assume that
A0,ζ = 0. The polynomial degree of Aτ,ζ in τ is denoted by s. Let Bζ be defined
by Bζ = A1,ζ . Define an s-degree polynomial Yτ (τ ∈ [0, 1]) and y1 such that they
satisfy

Yτ = y0 + h
∫ 1

0
Aτ,ζ f (Yζ ) dζ,

y1 = y0 + h
∫ 1

0
Bτ f (Yτ ) dτ.

A one-step method y0 �→ y1 is called an s-degree continuous-stage Runge–Kutta
(CSRK) method.
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The above definition does not specify the order of Aτ,ζ in terms of ζ , but let us
focus on Aτ,ζ which is a polynomial of degree s in τ and s − 1 in ζ . Such Aτ,ζ will
be denoted by

Aτ,ζ =
[
τ τ 2

2 · · · τ s

s

]
M

⎡
⎢⎢⎢⎣

1
ζ
...

ζ s−1

⎤
⎥⎥⎥⎦

with a constant matrix M ∈ R
s×s so that the polynomial is identified with the matrix

M . When s = 1 and M = 1, the method reduces to the AVF method.
A sufficient condition for energy preservation can be characterized in terms of M .

Theorem 2.1 ([10, 12], see also [17])When applied to (2.1), a CSRK method is energy-
preserving if M is symmetric.

The symmetry of M means (∂/∂τ)Aτ,ζ is symmetric. The condition is also neces-
sary under a mild condition [12].

Several characterizations of the order conditionswith respect to M are given in [12].
We note that the discussion there is based on the simplifying assumptions (see also [7]).
A CSRK method is energy-preserving and of order at least p = 2η if the symmetric
matrix M ∈ R

s×s satisfies

[ 1
k

1
k+1 · · · 1

k+s−1

]
M = iTk , k = 1, . . . , η,

where ik denotes the k-th column of the s × s identity matrix. If we choose η = s the
method with ⎡

⎢⎢⎢⎣
1 1

2 · · · 1
s

1
2

1
3 · · · 1

s+1
...

...
. . .

...
1
s

1
s+1 · · · 1

2s−1

⎤
⎥⎥⎥⎦ M = Is

is of order 2s and coincides with the AVF collocation method of order 2s [7]. For
example, when s = 2, we have

M =
[
4 −6

−6 12

]
. (2.3)

As another illustrative example, when s = 3, the above characterization indicates that
the method with ⎡

⎣1 1
2

1
3

1
2

1
3

1
4

1
3

1
4 α

⎤
⎦ M = I3, α ∈ R (2.4)

is of order four as η = 2 except for α = 1/5. In this way, one can construct high-
order energy-preserving integrators with some degrees of freedom. When α �= 7/36,
by introducing a new variable (parameter) α̃ = 1/(36α − 7) the matrix M can be
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expressed more explicitly as

M =
⎡
⎣ α̃ + 4 −6α̃ − 6 6α̃

−6α̃ − 6 36α̃ + 12 −36α̃
6α̃ −36α̃ 36α̃

⎤
⎦ .

2.2 Poisson systems and PCSRKmethods

Note that the AVF method (2.2) is not energy-preserving when applied to (1.1) with
a non-constant S(y). A straightforward modification

y1 = y0 + S
( y1 + y0

2

) ∫ 1

0
∇H((1 − τ)y0 + τ y1) dτ (2.5)

is energy-preserving, symmetric, and thus of order two. Here, S(y) is discretized by
using the mid-point rule to ensure the method is symmetric. Other choices, such as
S(y0) and S(y1), still guarantee the energy-preservation, though the resulting integrator
is of order one. It should be noted that in (2.5) ∇H(y) term is discretized in a CSRK
manner while S(y) in a standard RK manner. This observation leads to the following
class of numerical integrators applied to a partitioned system

d

dt
y = S(z)∇H(y), y(0) = y0,

d

dt
z = S(z)∇H(y), z(0) = z0.

Definition 2.2 (PCSRK methods) Let Ai,τ, j,ζ ( j = 1, . . . , s) be a polynomial in τ

and ζ with the property Ai,0, j,ζ = 0. Ai,τ, j,ζ is assumed to be independent of i ;
thus, it is often denoted by Aτ, j,ζ . Âi,τ, j,ζ is defined by Ai,ci , j,ζ with s distinct nodes
0 ≤ c1 < · · · < cs ≤ 1. Let B j,ζ = B̂ j,ζ = A1, j,ζ . Define an s-degree polynomial
Yτ (τ ∈ [0, 1]), Z1, . . . , Zs , y1, and z1 such that they satisfy

Yτ = y0 + h
s∑

j=1

∫ 1

0
Ai,τ, j,ζ S(Z j )∇H(Yζ ) dζ, (2.6)

Zi = z0 + h
s∑

j=1

∫ 1

0
Âi,τ, j,ζ S(Z j )∇H(Yζ ) dζ, (2.7)

y1 = y0 + h
s∑

i=1

∫ 1

0
Bi,τ S(Zi )∇H(Yτ ) dτ,

z1 = z0 + h
s∑

i=1

∫ 1

0
B̂i,τ S(Zi )∇H(Yτ ) dτ

123



Numerical Algorithms (2024) 96:1269–1293 1275

with y0 = z0. A one-step method y0 �→ y1 is called an s-degree partitioned CSRK
(PCSRK) method.

We note that by definition Zi = Yci and y1 = z1; thus, the scheme can be written
in a more compact form

Yτ = y0 + h
s∑

j=1

∫ 1

0
Ai,τ, j,ζ S(Yc j )∇H(Yζ ) dζ,

y1 = y0 + h
s∑

i=1

∫ 1

0
Bi,τ S(Yci )∇H(Yτ ) dτ.

The expression in Definition 2.2 is useful for discussing the order conditions.
As Ai,τ, j,ζ depends on τ , j , and ζ , but does not depend on i , it is convenient to

express it as

Ai,τ, j,σ =
[
τ τ 2

2 · · · τ s

s

]
M j

⎡
⎢⎢⎢⎣

1
ζ
...

ζ s−1

⎤
⎥⎥⎥⎦

by using constant matrices M j ∈ R
s×s for j = 1, . . . , s. For example, the second-

order method proposed by Cohen and Hairer [4] is given by

M1 =
[

2 + √
3 −(3 + √

3)
−(3 + √

3) 6

]
, M2 =

[
2 − √

3
√
3 − 3√

3 − 3 6

]

and c1, c2 = 1/2 ∓ √
3/6. We observe that

M1 + M2 =
[
4 −6

−6 12

]
,

which coincides with M in (2.3). Thus, the method is reduced to the AVF collocation
method [7] when S is constant. It should be noted that both M1 and M2 are singu-
lar while M1 + M2 is nonsingular. This indicates that one cannot expect that Mi is
characterized as the inverse of some matrices.

Sufficient conditions of PCSRKmethods to be energy-preserving are characterized
in terms of Ai,τ, j,ζ , or equivalently, the Mi matrices.

Theorem 2.2 ([11]) When applied to (1.1), a PCSRK method is energy-preserving if
all Mi ’s are symmetric

The conditions for symmetry are also characterized as follows.

Theorem 2.3 (cf. [4])
A PCSRK method is symmetric if Ai,1−τ,s+1− j,1−ζ + Ai,τ, j,ζ = B j,ζ and cs+1−i =

1 − ci .

Order conditions will be discussed in the next section.
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3 A family of fourth-order energy-preserving integrators

In this section, we derive a family of fourth-order energy-preserving PCSRKmethods.
Specifically, we set s = 3 and aim to derive a 3-degree PCSRK integrator with some
free parameters.

We begin with a few remarks on order conditions. In the formulation of the PCSRK
method (Definition 2.2), it is not necessary to calculate z1, because only y1 is required
as an output to proceed with the subsequent steps. The expression for y1 is given as a
P-series:

y1 = y0 +
∑

τ∈TPy

h|τ |

σ(τ)
φ(τ)F(τ )(y0, y0),

where φ, σ and F are the elementary weights, symmetry, and elementary differentials,
respectively. The symbol TPy denotes the set of bi-colored trees with black roots, i.e.,

TPy = { , , , , , , , , , , . . . }.

For more details about the order conditions with bi-colored trees, refer to [8].
A PCSRK method is of order p if it satisfies

φ(τ) = e(τ ) for τ ∈ TPy, |τ | ≤ p,

where |τ | denotes the order of τ , i.e., the number of vertices of τ . Here, e(τ ) for the
mono-colored trees is defined by

e(∅) = e( ) = 1, e(τ ) = 1

|τ |e(τ1) · · · e(τm) for τ = [τ1, . . . , τm]

and e(τ ) for the bi-colored trees takes the same value with the mono-colored trees.

Remark 3.1 Since checking all the order conditions is an immense task, one approach
to avoid checking every condition relies on the simplifying assumptions. For the
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PCSRK methods, the simplifying assumptions are given as follows:

B(ρ)

s∑
i=1

∫ 1

0
Bi,τ Ck−1

i,τ Ĉl
i dτ = 1

k + l
, 1 ≤ k + l ≤ ρ,

C(η)

s∑
j=1

∫ 1

0
Ai,τ, j,σ Ck−1

j,σ Ĉl
j dσ = 1

k + l
Ck+l

i,τ , 1 ≤ k + l ≤ η,

Ĉ(η)

s∑
j=1

∫ 1

0
Âi,τ, j,σ Ck−1

j,σ Ĉl
j dσ = 1

k + l
Ĉk+l

i,τ , 1 ≤ k + l ≤ η,

D(ξ)

s∑
i=1

∫ 1

0
Bi,τ Ck−1

i,τ Ĉl
i Ai,τ, j,σ dτ = B j,σ

k + l
(1 − Ĉk+l

j,σ ), 1 ≤ k + l ≤ ξ,

D̂(ξ)

s∑
i=1

∫ 1

0
Bi,τ Ck−1

i,τ Ĉl
i Âi,τ, j,σ dτ = B j,σ

k + l
(1 − Ĉk+l

j,σ ), 1 ≤ k + l ≤ ξ,

where

Ci,τ =
s∑

j=1

∫ 1

0
Ai,τ, jσ dσ, Ĉi,τ =

s∑
j=1

∫ 1

0
Âi,τ, jσ dσ

As discussed in [4], a method satisfying B(ρ), C(η), hC(η), D(ξ), D̂(ξ) has the
order at least p = min(ρ, 2η + 2, ξ + η + 1).

Utilizing simplifying assumptions is effective for deriving energy-preservingCSRK
methods with some degrees of freedom for Hamiltonian systems. However, there is a
subtle yet crucial difference between CSRK methods applied to Hamiltonian systems
and PCSRKmethods applied to Poisson systems. For Hamiltonian systems, if a CSRK
method is energy-preserving, i.e., M = MT, then B(1) implies that B(ρ) is satisfied
for all ρ = 1, 2, . . . . In other words, a consistent energy-preserving CSRK method
automatically guarantees B(ρ). This is a very important property, which further sim-
plifies the discussions using simplifying assumptions. However, this is not the case
for Poisson systems.

Now, we set s = 3, and our strategy is as follows. First, as a sufficient condition
for the method to be energy-preserving and of order 4, we require that the method
coincides with the 3-degree energy-preserving CSRK methods (2.4). We also require
the sufficient conditions for being energy-preserving (Theorem 2.2) and symmetric
(Theorem 2.3). The remaining task is to ensure the order conditions for the trees with
three vertices and characterize M1, M2, M3 and c1, c2, c3 satisfying all assumptions
and requirements as simply as possible.

As a sufficient condition, we require that

M = M1 + M2 + M3 =
⎡
⎣ α̃ + 4 −6α̃ − 6 6α̃

−6α̃ − 6 36α̃ + 12 −36α̃
6α̃ −36α̃ 36α̃

⎤
⎦ . (3.1)
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In addition to this, we require that M1, M2, M3 are symmetric, and the method
itself is symmetric. Under the assumption that M1, M2, M3 are symmetric,
Theorem 2.3 indicates that the method is symmetric if

⎡
⎣1 1 1
0 −1 −2
0 0 1

⎤
⎦ M3

⎡
⎣1 0 0
1 −1 0
1 −2 1

⎤
⎦ = M1,

and c2 = 1/2, c1 + c3 = 1. Note that M2 can be arbitrary as long as it is symmetric.
To ensure that the method is of order 4, the method needs to satisfy the order

conditions for the trees , , , , . Note that the order conditions for and
are automatically satisfied because assuming (3.1) means that the method is already
of order at least 4 when applied to a Hamiltonian system. More precisely, the order
conditions for the trees of order up to 4 which have only black nodes are automatically
satisfied.

The assumptions of the following proposition aid in constructing the intended inte-
grators.

Proposition 3.1 Assume that a 3-degree PCSRK method satisfies

Mi = MT
i , i = 1, 2, 3, (3.2)⎡

⎣1 1
2

1
3

1
2

1
3

1
4

1
3

1
4 α

⎤
⎦M = I3, α ∈ R, M = M1 + M2 + M3, (3.3)

⎡
⎣1 1 1
0 −1 −2
0 0 1

⎤
⎦ M3

⎡
⎣1 0 0
1 −1 0
1 −2 1

⎤
⎦ = M1, (3.4)

c1 + c3 = 1, c2 = 1
2 , (3.5)

(c1M1 + c2M2 + c3M3)

⎡
⎣ 1
1/2
1/3

⎤
⎦ =

⎡
⎣0
1
0

⎤
⎦ , (3.6)

[
1 1/2 1/3

]
(c21M1 + c22M2 + c23M3)

⎡
⎣ 1
1/2
1/3

⎤
⎦ = 1

3 . (3.7)

Then, when applied to Poisson systems, the method is energy-preserving, symmetric,
and of order at least 4.

Proof From Theorem 2.2, the condition (3.2) ensures the energy-preservation. The
condition (3.3) guarantees that the method is of order at least 4 when applied to the
cases where S is constant, indicating that for Poisson systems, the order conditions for

, , , , , , , are automatically satisfied. The conditions (3.4) and (3.5)
relate to the method being symmetric, suggesting that only trees with three vertices
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must be taken into account to guarantee that the method is of order at least 4. Let φ

be the elementary differentials. It remains to show that φ( ) = φ( ) = 1/3

and φ( ) = φ( ) = φ( ) = 1/6. We notice that from (3.2) and (3.3) that
Bi,τ = [1, τ, τ 2]Mi [1, 1/2, 1/3]T, Ci,τ = τ .

: From (3.6), we see that

φ( ) =
3∑

i=1

∫ 1

0
Bi,τ Ci,τ Ĉi,τ dτ

=
∫ 1

0

[
τ τ 2 τ 3

]
(c1M1 + c2M2 + c3M3)

⎡
⎣ 1
1/2
1/3

⎤
⎦ dτ

=
∫ 1

0

[
τ τ 2 τ 3

] ⎡
⎣0
1
0

⎤
⎦ dτ =

∫ 1

0
τ 2 dτ = 1/3.

: From (3.7), we see that

φ( ) =
3∑

i=1

∫ 1

0
Bi,τ Ĉ2

i,τ dτ

=
∫ 1

0

[
1 τ τ 2

]
(c21M1 + c22M2 + c23M3)

⎡
⎣ 1
1/2
1/3

⎤
⎦ dτ

= [
1 1

2
1
3

]
(c21M1 + c22M2 + c23M3)

⎡
⎣ 1
1/2
1/3

⎤
⎦ = 1/3.

: From (3.6) and
∑3

i=1 Bi,τ = 1, we see that

φ( ) =
3∑

i, j=1

∫ 1

0

∫ 1

0
Bi,τ Ai,τ, j,σ Ĉ j,σ dτdσ

=
∫ 1

0

∫ 1

0

[
1 τ 2

2
τ 3

3

]
(c1M1 + c2M2 + c3M3)

⎡
⎣ 1

σ

σ 2

⎤
⎦ dτdσ

=
∫ 1

0

[
1 τ 2

2
τ 3

3

]
(c1M1 + c2M2 + c3M3)

⎡
⎣ 1
1/2
1/3

⎤
⎦ dτ

=
∫ 1

0

[
1 τ 2

2
τ 3

3

] ⎡
⎣0
1
0

⎤
⎦ dτ =

∫ 1

0

τ 2

2 dτ = 1
6 .
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: From (3.3) and (3.7), we see that

φ( ) =
3∑

i, j=1

∫ 1

0

∫ 1

0
Bi,τ Âi,τ, j,σ C j,σ dτdσ

=
3∑

i=1

∫ 1

0

∫ 1

0

[
1 τ τ 2

]
Mi

⎡
⎣ 1
1/2
1/3

⎤
⎦[

ci
c2i
2

c3i
3

]
M

⎡
⎣ σ

σ 2

σ 3

⎤
⎦ dτdσ

=
3∑

i=1

∫ 1

0

[
1 τ τ 2

]
Mi

⎡
⎣ 1
1/2
1/3

⎤
⎦[

ci
c2i
2

c3i
3

]
M

⎡
⎣1/2
1/3
1/4

⎤
⎦ dτ

=
3∑

i=1

∫ 1

0

[
1 τ τ 2

]
Mi

⎡
⎣ 1
1/2
1/3

⎤
⎦[

ci
c2i
2

c3i
3

] ⎡
⎣0
1
0

⎤
⎦ dτ

= 1
2

∫ 1

0

[
1 τ τ 2

]
(c21M1 + c22M2 + C2

3 M3)

⎡
⎣ 1
1/2
1/3

⎤
⎦ dτ

= 1
2

∫ 1

0

[
1 τ τ 2

]
⎡
⎣0
0
1

⎤
⎦ dτ = 1

2

∫ 1

0
τ 2 dτ = 1

6 .

: From (3.6) and (3.7), we see that

φ( ) =
3∑

i, j=1

∫ 1

0

∫ 1

0
Bi,τ Âi,τ, j ,σ Ĉ j ,σ dτdσ

=
3∑

i=1

∫ 1

0

∫ 1

0

[
1 τ2 τ3

]
Mi

⎡
⎣ 1
1/2
1/3

⎤
⎦[

ci
c2i
2

c3i
3

]
(c1M1 + c2M2 + c3M3)

⎡
⎣ 1

σ

σ 2

⎤
⎦ dτdσ

=
3∑

i=1

∫ 1

0

[
1 τ2 τ3

]
Mi

⎡
⎣ 1
1/2
1/3

⎤
⎦[

ci
c2i
2

c3i
3

]
(c1M1 + c2M2 + c3M3)

⎡
⎣ 1
1/2
1/3

⎤
⎦ dτ

=
3∑

i=1

∫ 1

0

[
1 τ2 τ3

]
Mi

⎡
⎣ 1
1/2
1/3

⎤
⎦[

ci
c2i
2

c3i
3

] ⎡
⎣0
1
0

⎤
⎦ dτ = 1/6.

�
The condition (3.6) comprises three equations. However, they are not independent

under (3.3), (3.4), and (3.5): they actually impose only a single constraint. We explain
this in detail below.

Using M = M1 + M2 + M3 and (3.5), we observe that

c1M1 + c2M2 + c3M3 = 1
2 M + (c1 − 1

2 )M1 + ( 12 − c1)M3.

123



Numerical Algorithms (2024) 96:1269–1293 1281

Applying (3.3) and (3.4), which yields M[1, 1/2, 1/3]T = [1, 0, 0]T, we obtain

(c1M1 + c2M2 + c3M3)

⎡
⎣ 1
1/2
1/3

⎤
⎦ =

⎡
⎣1/2

0
0

⎤
⎦ + (c1 − 1

2 )(M1 − M3)

⎡
⎣ 1
1/2
1/3

⎤
⎦

=
⎡
⎣1/2

0
0

⎤
⎦ + (c1 − 1

2 )

⎡
⎣0 1 1
0 −2 −2
0 0 0

⎤
⎦ M3

⎡
⎣ 1
1/2
1/3

⎤
⎦ .

Here, we used

M1

⎡
⎣ 1
1/2
1/3

⎤
⎦ =

⎡
⎣1 1 1
0 −1 −2
0 0 1

⎤
⎦ M3

⎡
⎣1 0 0
1 −1 0
1 −2 1

⎤
⎦

⎡
⎣ 1
1/2
1/3

⎤
⎦ =

⎡
⎣1 1 1
0 −1 −2
0 0 1

⎤
⎦ M3

⎡
⎣ 1
1/2
1/3

⎤
⎦ .

As a result, the condition (3.6) can be rewritten as

(c1 − 1
2 )

⎡
⎣0 1 1
0 −2 −2
0 0 0

⎤
⎦ M3

⎡
⎣ 1
1/2
1/3

⎤
⎦ =

⎡
⎣−1/2

1
0

⎤
⎦ ,

and the first and second constraints (rows) are evidently compatible. Consequently,
we only need to consider

(2c1 − 1)[0, 1, 1]M3

⎡
⎣ 1
1/2
1/3

⎤
⎦ = −1. (3.8)

The remaining task is to determine or characterize M1, M2, M3 and c1, c2, c3 so
that they satisfy the conditions (3.2)–(3.7). The condition (3.7) can be rewritten as

(2c1 − 1)2
[
1 1

2
1
3

]
M3

⎡
⎣ 1
1/2
1/3

⎤
⎦ = 1

6 . (3.9)

It is found that the symmetric matrix M3 satisfying (3.8) and (3.9) can be expressed
as

M3 =
⎡
⎢⎣

1
6(2c1−1)2

+ 1
2c1−1 − 1

2c1−1 0

− 1
2c1−1 0 0
0 0 0

⎤
⎥⎦ + γ1

⎡
⎣ 1 −3 3

−3 0 0
3 0 0

⎤
⎦ + γ2

⎡
⎣ 1 −2 0

−2 4 0
0 0 0

⎤
⎦

+ γ3

⎡
⎣ 3 −5 0

−5 0 6
0 6 0

⎤
⎦ + γ4

⎡
⎣ 2 −3 0

−3 0 0
0 0 9

⎤
⎦ .
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We can set c1 < 1/2 arbitrary as long as c1 �= 0, and γ1, γ2, γ3, γ4 are arbitrary
real numbers. Accordingly, M1 is determined from (3.4). Thus, we can regard c1,
γ1, γ2, γ3, γ4 and α in (3.3) as free parameters of the fourth-order methods.

Remark 3.2 The exploration of PCSRK methods with a degree greater than three,
which are energy-preserving andhave an order of at least four, is a challenge.Of course,
formulating the conditions corresponding to (3.2)–(3.7) is relatively straightforward.
However, special attention must be paid to the (3.6)-type condition due to the fact that

(c1M1 + · · · + cs Ms)

⎡
⎢⎢⎢⎢⎢⎣

1
1/2
1/3
...

1/s

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0
1
0
...

0

⎤
⎥⎥⎥⎥⎥⎦

. (3.10)

This equation no longer represents a single constraint. For example, when s = 4 or 5,
the condition implies two independent constraints. This condition corresponds to the
simplifying assumption C(η) with k = 2 and l = 1, which allows for a reduction in
the number of order conditions. Specifically, in the above derivation, C(η) with k = 2
and l = 1 constitutes a single constraint, which simplifies the calculation. When
s > 3, it is crucial to carefully consider whether to employ the assumption or treat

φ( ), φ( ), and φ( ) independently. The advantage of imposing (3.10) lies in the
fact that the condition for Mi remains linear.

The author believes that a similar approach might help us construct higher-order
methods. However, in order to streamline the derivation process, simplifying assump-
tions or their variants should be incorporated. Some challenges to address include
expressing these assumptions in terms of the Mi matrices.

This paper has been focusing on the derivation of 3-degree fourth-order methods
due to their apparent practical utility.

Remark 3.3 The discussion presented above pertains to the case where Ci,τ = τ .
However, more general cases can also be examined, as has been discussed for Hamil-
tonian systems [12]. Further exploration of these cases is not pursued here due to
the cumbersome nature of the presentation and the limited practical advantages they
appear to offer compared to the methods derived above.

Remark 3.4 A function C(y) is referred to as a Casimir function if the condition
∇C(y)TB(y) = 0 holds for all y. In cases where the Casimir takes the quadratic form
C(y) = yT Ay with a symmetric constant matrix A, the s-degree 2s-order PCSRK
method [4] exactly inherits the Casimir. However, the newly introduced fourth-order
integrators cannot generally preserve the Casimir. This limitation may be considered
a potential drawback of the new family.
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4 Parameter selection

This section addresses implementation concerns. We begin by outlining a strategy for
implementing PCSRK methods in a general context and then proceed to investigate
parallelizable integrators. As shown below, the parallelizability is characterized in
terms of only α. We also investigate the choice of other parameters.

4.1 Solving the nonlinear equations system

Let us express Yτ as

Yτ = y0l0(τ ) +
s∑

i=1

Yci li (τ ),

where li (τ ) is defined by

li (τ ) =
s∏

j=0, j �=i

τ − c j

ci − c j
, i = 0, 1, . . . , s

with c0 = 0. Note that Yci = Zi . We now regard (2.6) and (2.7) as a system of
nonlinear equations in terms of Yc1 , . . . , Ycs :

Yci = y0 + h
s∑

j=1

∫ 1

0
Ai,ci , j,σ S(Yci )∇H(Yσ ) dσ, i = 1, . . . , s.

It is not necessary to evaluate (2.6) at c1, . . . , cs as long as it is evaluated at s distinct
points; however, c1, . . . , cs are considered to avoid cumbersome presentation. Let

Y =
⎡
⎢⎣

Yc1
...

Ycs

⎤
⎥⎦ ∈ R

s N .

Then, we are concerned with solving

Φ(Y ) = Y − es ⊗ y0 − h

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

s∑
j=1

∫ 1

0
A1,c1, j,σ S(Yci )∇H(Yσ ) dσ

...
s∑

j=1

∫ 1

0
As,cs , j,σ S(Yci )∇H(Yσ ) dσ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

Note here that

∇Yc j

(
S(Yci )∇H(Yσ )

) ≈ S(y0)∇2H(Yσ )l j (σ ) ≈ S(y0)∇2H(y0)l j (σ ).
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In the first “≈," the term involving ∇Yc j
S(Yci ) is omitted to avoid that tensors appear,

by taking in mind that even if we care about such a term, the following discussion
remains true. Thus, we have

Φ ′(Y ) ≈ Is N − h

⎡
⎢⎢⎣

∑s
j=1

∫ 1
0 A1,c1, j,σ S(y0)∇2H(y0)l1(σ ) dσ · · · ∑s

j=1

∫ 1
0 A1,c1, j,σ S(y0)∇2H(y0)ls(σ ) dσ

.

.

.
. . .

.

.

.∑s
j=1

∫ 1
0 As,cs , j,σ S(y0)∇2H(y0)l1(σ ) dσ · · · ∑s

j=1

∫ 1
0 As,cs , j,σ S(y0)∇2H(y0)ls(σ ) dσ

⎤
⎥⎥⎦

= Is N − hE ⊗ J0,

where

Ei j =
s∑

k=1

∫ 1

0
A1,ci ,k,σ l j (σ ) dσ =

∫ 1

0

( s∑
k=1

A1,ci ,k,σ

)
l j (σ ) dσ (4.1)

and
J0 = S(y0)∇2H(y0)

denotes an approximate Jacobian matrix. Therefore, a simplified Newton-like method
gives the iteration formula

(Is N − hE ⊗ J0)ρ
l = −Φ(Y l), Y l+1 = Y l + ρl , l = 0, 1, 2, . . . . (4.2)

4.2 Parallelizable integrators

As is the case with implicit Runge–Kutta methods and continuous-stage Runge–Kutta
methods, if the matrix E has only real, distinct eigenvalues, the linear system (4.2) of
size s N can be computed efficiently by using parallel architectures. If all eigenvalues
of E are real and distinct, there exists a matrix T such that

T −1ET = diag(λ1, . . . , λs), λ1, . . . , λs ∈ R.

Let Q = (Is N − hE ⊗ J0) and define Q := (T −1 ⊗ IN )Q(T ⊗ IN ). Then, it follows
that

Q = diag(IN − hλ1 J0, . . . , IN − hλs J0),

which is block diagonal. Therefore, ρl can be calculated based on

Φ(Yl) = (T −1 ⊗ IN )Φ(Y l),

Qρl = −Φ(Y l),

ρl = (T −1 ⊗ IN )ρl .

The key point is that the linear system for ρl of size s N consists of s linear systems of
size N . Thus, the most computationally heavy part in updating Yl can be computed in
parallel. We note that T is a 3-by-3 matrix and thus the explicit computation of T −1

and the multiplication of T −1 ⊗ IN with a vector are not particularly challenging.
We note that E is identical to that appearing in the study of energy-preserving

methods for Hamiltonian system [12].
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Theorem 4.1 ([12]) The eigenvalues of the matrix E defined in (4.1) are independent
of the ci values.

This theorem indicates that the parallelizability does not depend on the ci val-
ues. If the method is parallelizable when applied to Hamiltonian systems, it is also
parallelizable to Poisson systems.

For the method satisfying the assumptions in Proposition 3.1, according to [12,
Section 5.3.1], the corresponding E has real and distinct eigenvalues if

− α̃

300
>

1

6
22/3 + 5

24
21/3 + 1

4
≈ 0.7770503941 with α̃ = 1

36α − 7
. (4.3)

4.3 Discussion for the accuracy

For parallelizable fourth-order integrators, the most computationally demanding
aspect is solving linear systems of size d. In contrast, for the energy-preserving 2-
degree PCSRK method, one needs to solve a linear system of size 2d. When dealing
with dense coefficient matrices, direct solvers are often preferred for solving such
linear systems. The computational complexity of direct solvers is proportional to the
cube of the size of the linear systems.

Considering this, we assume that our parallelizable integrators are eight times faster
than the 2-degree PCSRK method. However, we note that this is not always the case,
as actual computational costs can vary significantly based on the specific problem and
the choice of linear solver.

We compare the coefficients of elementary differentials with trees of order 5 for
the P-series expansions of the exact solution, 2-degree PCSRK method (AVF(4)), and
the proposed method. Table 1 compares the coefficients for the trees for which every
vertex is black. Clearly, for both AVF(4) and the proposed methods, the coefficients

for the trees , , , differ from those for the exact solution.
However, the proposed method exhibits an interesting property for the coefficients

for the bi-colored tree. Tables 2, 3, 4, 5, 6, 7, 8, 9, and 10 show the coefficients for
bi-colored trees with black roots with the following quantities:

(2c1 − 1)2(γ1 + γ3 + γ4)

120
, (A)

c21
12

− c1
12

+ 5

24
, (B)

5

72
− α̃

1800
, (C)

c1(c1 − 1)α̃

180
, (D)

(2c1 − 1)(2γ3 + 3γ4)

1440
, (E)
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c1(c1 − 1)(2c1 − 1)(2γ3 + 3γ4)

144
, (F)

c1(c1 − 1)(2c1 − 1)2(γ1 + γ3 + γ4)

24
, (G)

(2c1 − 1)2(4γ2 + 12γ3 + 9γ4)

288
, (H)

We note that for AVF(4), even for the trees of the form , , , , ,

some coefficients for the trees with white nodes differ from the exact ones. In contrast,
for the proposed method, if the parameters satisfy

(A) = 1

180
, (B) = 1

5
, (E) = −(F) = (G) = − 1

360
, (H) = 1

80
, (4.4)

all coefficients are exact. These conditions are compatible by choosing the parameters
satisfying

c1 = 1

2
−

√
15

10
,

γ1 + γ3 + γ4 = 10

9
,

2γ3 + 3γ4 = 20√
15

,

4γ2 + 12γ3 + 9γ4 = 6.

For the proposed method, only the coefficients for the bi-colored trees of the shape

, , , that are expressed in terms of (C) or (D) cannot coincide with the
exact ones if α̃ is in the range of (4.3).

We also note that, apart from constructing efficient fourth-order integrators, if we
set α̃ = 5 all the coefficients for the trees with 5 vertices can be exact. However,
the condition (4.4) indicates that there remains one degree of freedom. Therefore, 3-
degree sixth-order integrators are not unique, which suggests that there exists a family
of s-degree 2s-order energy-preserving integrators (for s = 1 and 2, such integrators
are unique).
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4.4 Numerical verification

As a simple test confirming the order of accuracy and the effect of the choice of
parameters for the proposed method, we employ the Lotka–Volterra system

S(y) =
⎡
⎣ 0 cy1y2 bcy1y3

−cy1y2 0 −y2y3
−bcy1y3 y2y3 0

⎤
⎦ ,

H(y) = aby1 + y2 − ay3 + ν log y2 − μ log y3.

For the numerical experiment, the parameters were set to a = −2, b = −1, c = −0.5,
ν = 1,μ = 2, and the initial values y0 = (1.0, 1.9, 0.5). In the numerical experiment,
a high-order quadrature with the tolerance 10−12 is used to approximate the integrals
appearing in the integrator.

The integrator actually preserves theHamiltonian H(y). For instance, when the step
size is set to h = 0.05, the error between true and numerical Hamiltonians grows as the
time integrationproceeds due to the rounding errors and the use of quadrature; however,
at t = 10, this error remains below 10−12. This level of accuracy is noteworthy,
actually highlighting the energy preservation, especially when compared to the error
in the Casimir invariant at the same point in time, which exceeds 0.01.

We now check that the proposed integrator is actually of order 4. We set γ1, . . . , γ4
to

(γ1, γ2, γ3, γ4) =
(10
3

− 2
√
15

3
,
23

2
− 2

√
15,−20

3
+ 2

√
15

3
,
40

9

)
. (4.5)

This choice corresponds to the 6th order integrator presented in [4] when α̃ = 5. In
Fig. 1, the error behavior of the proposed method with this choice of parameters and
α̃ = −234 are compared with the 2nd and 4th order integrators proposed in [4]. This
figure supports that the proposed integrator actually attains the 4th-order accuracy.
While the error of the proposed method is substantially bigger than that of AVF(4),
efficiency could still favor the proposed method if its computation is more than twice
as fast as AVF(4).

Remark 4.1 We discuss the efficiency of our proposed method in more detail. It has
been observed that to achieve a comparable level of accuracy, the proposed method
necessitates nearly halving the step size. This suggests that if the computation time
per time step of the proposed method is at least twice as fast as that of AVF(4), then
the proposed method is considered to be more efficient.

A comparative analysis of the two methods is provided. We examine a scenario
where the linear system of size 2d, required for solving AVF(4), is solved using
a direct method on a single core. Conversely, three linear systems of size d for the
proposedmethod are solved using the same directmethod but potentially by three cores
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Fig. 1 Error at t = 1 of numerical solutions for the Lotka–Volterra system. The proposed method with the
parameters (4.5) and α̃ = −234 is compared with the 2nd and 4th order methods proposed in [4]. Dashed
and dotted lines show the slope for the 2nd and 4th-order convergence, respectively

in parallel. Assuming that the simplified Newton iterations for both methods demand
a nearly identical number of iterations to the convergence, the proposed method is
approximately eight times faster because the computational cost of a direct solver
typically scales with the cube of the system size.

However, it is important to note that such estimations are contingent upon the
specifics of the problem and the selection of linear solvers. In the case of AVF(4),
further parallelization might be achievable. Nonetheless, most techniques for par-
allelization can also be applied to the proposed method. Therefore, expecting the
proposed method to compute a single step at least twice as fast as AVF(4) appears to
be a reasonable assumption in most instances, particularly for large-scale problems.

5 Concluding remarks

In this paper, we have shown a family of fourth-order energy-preserving integrators
based on the partitioned CSRK methods. The integrators can be implemented in a
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parallel architecture if one of the parameters is chosen such that it satisfies a certain
inequality. Actual implementation must tailored to the problem at hand and it is antic-
ipated that these integrators, with their parallelizability, will demonstrate substantial
efficiency when applied to large-scale problems. A more detailed evaluation of their
performance in large-scale contexts will be the subject of forthcoming research, as
similar evaluation was studied for the CSRK methods [16].

Appendix A. Coefficients of the elementary differentials

We present the coefficients of the elementary differentials, which were used in
Section 4.3. The Julia code employed for verifying these coefficients is available
on GitHub. This code can be accessed at the following repository: https://github.com/
yutomiyatake/EP_fourth_Poisson.

Table 1 Coefficients of the elementary differentials with trees of order 5 for the P-series expansions of the
exact solution, the fourth-order AVF collocation method, and the proposed method

t

Exact solution 1
5

1
10

1
15

1
30

1
20

1
20

1
40

1
60

1
120

AVF(4) 1
5

1
10

5
72

5
144

1
20

1
20

1
40

1
72

1
144

Difference 0 0 1
360

1
720 0 0 0 − 1

360 − 1
720

Proposed 1
5

1
10

120θ+5
72

12θ+5
144

1
20

1
20

1
40

1−12θ
72

1−12θ
144

Difference 0 0 60θ+1
360

60θ+1
720 0 0 0 − 60θ+1

360 − 60θ+1
720

Table 2 Coefficients of the
elementary differentials with

trees of the shape with
the black root for the P-series
expansions of the exact solution,
the fourth-order AVF collocation
method, and the proposed
method

t

Exact solution 1
5

1
5

1
5

1
5

1
5

AVF(4) 1
5

7
36

7
36

7
36

7
36

Proposed 1
5

1
5 (A) + 7

36 (B) (B)

Table 3 Coefficients of the elementary differentials with trees of the shape with the black root for
the P-series expansions of the exact solution, the fourth-order AVF collocation method, and the proposed
method

t

Exact solution 1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

AVF(4) 1
10

1
10

7
72

1
10

7
72

7
72

1
10

7
72

7
72

7
72

7
72

7
72

Proposed 1
10

1
10

(A)
2 + 7

72
1
10

(A)
2 + 7

72
(B)
2

1
10

(A)
2 + 7

72
(B)
2

(A)
2 + 7

72
(B)
2

(B)
2
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Table 4 Coefficients of the elementary differentials with trees of the shape with the black root for
the P-series expansions of the exact solution, the fourth-order AVF collocation method, and the proposed
method

t

Exact solution 1
15

1
15

1
15

1
15

1
15

1
15

1
15

1
15

1
15

AVF(4) 5
72

5
72

5
72

5
72

5
72

5
72

5
72

5
72

5
72

Proposed (C) (C) (D) + 5
72 (E) + 5

72 (D) + 5
72 (E) + 5

72 −(F) + 5
72 − (A)

2 + 5
72 (G)+ 5

72

t

Exact solution 1
15

1
15

1
15

AVF(4) 5
72

5
72

5
72

Proposed − (A)
2 + 5

72 −(F) + 5
72 (G) + 5

72

Table 5 Coefficients of the elementary differentials with trees of the shape with the black root for
the P-series expansions of the exact solution, the fourth-order AVF collocation method, and the proposed
method

t

Exact
solution

1
30

1
30

1
30

1
30

1
30

1
30

1
30

1
30

1
30

1
30

AVF(4) 5
144

5
144

5
144

5
144

5
144

5
144

5
144

5
144

5
144

5
144

Proposed (C)
2

(C)
2

(D)
2 + 5

144
−(A)
4 + 5

144
(C)
2

(D)
2 + 5

144
−(A)
4 + 5

144
(C)
2

(G)
2 + 5

144
(D)
2 + 5

144

t

exact
solution

1
30

1
30

1
30

1
30

1
30

1
30

AVF(4) 5
144

5
144

5
144

5
144

5
144

5
144

Proposed −(A)
4 + 5

144
(G)
2 + 5

144
−(A)
4 + 5

144
(D)
2 + 5

144
(G)
2 + 5

144
(G)
2 + 5

144

Table 6 Coefficients of the elementary differentials with trees of the shape with the black root for
the P-series expansions of the exact solution, the fourth-order AVF collocation method, and the proposed
method

t

Exact solution 1
20

1
20

1
20

1
20

1
20

1
20

1
20

1
20

1
20

AVF(4) 1
20

7
144

1
20

7
144

7
144

7
144

7
144

7
144

7
144

Proposed 1
20

(A)
4 + 7

144
1
20

(A)
4 + 7

144
(B)
4

(A)
4 + 7

144
(A)
4 + 7

144
(B)
4

(B)
4

123



Numerical Algorithms (2024) 96:1269–1293 1291

Table 7 Coefficients of the elementary differentials with trees of the shape with the black root for
the P-series expansions of the exact solution, the fourth-order AVF collocation method, and the proposed
method

t

Exact solution 1
20

1
20

1
20

1
20

1
20

1
20

1
20

1
20

AVF(4) 1
20

1
20

1
18

1
18

1
18

1
18

1
18

1
18

Proposed 1
20

1
20 2(E) + 1

18 (E) + 1
18 −(H) + 1

16 −(B) + 1
4 −(H) + 1

16 −(B) + 1
4

Table 8 Coefficients of the elementary differentials with trees of the shape with the black root for
the P-series expansions of the exact solution, the fourth-order AVF collocation method, and the proposed
method

t

Exact solution 1
40

1
40

1
40

1
40

1
40

1
40

1
40

1
40

1
40

1
40

AVF(4) 1
40

1
40

1
36

1
36

1
40

1
36

1
36

1
36

1
36

1
36

Proposed 1
40

1
40 (E)+ 1

36 − (H)
2 + 1

32
1
40 (E)+ 1

36− (H)
2 + 1

32
1
40 − (B)

2 + 1
8 (E) + 1

36

t

Exact solution 1
40

1
40

1
40

1
40

1
40

1
40

AVF(4) 1
36

1
36

1
36

1
36

1
36

1
36

Proposed − (H)
2 + 1

32 − (B)
2 + 1

8− (H)
2 + 1

32− (B)
2 + 1

8 (E)+ 1
36 − (B)

2 + 1
8

Table 9 Coefficients of the elementary differentials with trees of the shape with the black root for
the P-series expansions of the exact solution, the fourth-order AVF collocation method, and the proposed
method

t

Exact solution 1
60

1
60

1
60

1
60

1
60

1
60

1
60

1
60

AVF(4) 1
72

1
72

1
72

1
72

1
72

1
72

1
72

1
72

Proposed −(C) + 1
12 −(C) + 1

12 −(D) + 1
72 −(E) + 1

72 −(D) + 1
72 −(E) + 1

72 (F) + 1
72

(A)
2 + 1

72

t

Exact solution 1
60

1
60

1
60

1
60

AVF(4) 1
72

1
72

1
72

1
72

Proposed −(G) + 1
72

(A)
2 + 1

72 (F)+ 1
72 −(G) + 1

72
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Table 10 Coefficients of the elementary differentials with trees of the shape with the black root for
the P-series expansions of the exact solution, the fourth-order AVF collocation method, and the proposed
method

t

Exact
solution

1
120

1
120

1
120

1
120

1
120

1
120

1
120

1
120

AVF(4) 1
144

1
144

1
144

1
144

1
144

1
144

1
144

1
144

Proposed − (C)
2 + 1

24 − (C)
2 + 1

24 − (D)
2 + 1

144
(A)
4 + 1

144 − (C)
2 + 1

24 − (D)
2 + 1

144
(A)
4 + 1

144 − (C)
2 + 1

24

t

Exact
solution

1
120

1
120

1
120

1
120

1
120

1
120

1
120

1
120

AVF(4) 1
144

1
144

1
144

1
144

1
144

1
144

1
144

1
144

Proposed − (G)
2 + 1

144 − (D)
2 + 1

144
(A)
4 + 1

144 − (G)
2 + 1

144
(A)
4 + 1

144 − (D)
2 + 1

144 − (G)
2 + 1

144 − (G)
2 + 1

144
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