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Abstract
A new approach for numerical solving initial value problems for systems of second-
order nonlinear ordinary differential equations with a singularity of the first kind at
the start point x = 0 is proposed. By substitution of the independent variable x = et ,
we reduce the original initial value problem on the interval [0, a] to the equivalent one
on the interval (−∞, ln a]. For solving this initial value problem at the grid node t0
of finite grid {tn ∈ (−∞, ln a], n = 0, 1, ..., N , tN = ln a}, new fourth-order explicit
Runge-Kutta-type methods have been constructed. For finding the solution in other
nodes of the grid, we can apply any of the standard Runge-Kutta methods or linear
multistep ones, using the solution at the point t0, calculated by the constructed in this
article methods, as an initial condition. For the proposed approach, a new effective
numerical algorithm with a given tolerance has been developed.
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1 Introduction

The initial value problems (IVPs) for nonlinear singular equations of Lane-Emdem
type
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u(0) = A,
du(0)

dx
= 0.

are encountered in many scientific and engineering fields [3, 12]. Several approximate
analytical methods for solving such singular nonlinear problems have been proposed:
Adomian’s decomposition method [25], perturbation technique based on an artificial
parameter [2], linearization technique [18], homotopy perturbation method [17], inte-
gral transformmethod [13] etc.Mainly, thesemethods can be used for finding solutions
only in a small vicinity of the point x = 0. Moreover, in the general case, there are
no methods that would allow us to find an approximate analytical solution of singular
IVPs for systems of nonlinear ODEs.

Standard numerical methods for solving this type of problem often also work badly
since the equation has a singularity at x = 0. In [9, 11] it was established that the
application of Runge-Kutta and linear multistep methods to singular IVPs leads to
order reduction of these methods. This fact does not allow for the correct using any
of the known algorithms for practical error estimation and automatic selection of step
size.Moreover, in [11] it was shown that in a general case, the order of arbitrary s-stage
explicit Runge-Kutta methods is at most two.

It should be noted that for solving singular IVPs collocation methods (see, e.g., [1,
10, 14]) may be used. Typically, collocation methods are applied to singular boundary
value problems (BVPs), which are more difficult for numerical solving than IVPs.
However, it is well known (see [6, p. 212], Theorem 7.7) that for IVPs the collocation
methods are equivalent to implicit Runge-Kutta methods. Last time also hybrid block
methods were developed [20–23], which allow solving the IVPs for the Lane-Emden
problemwith a variable step size. However, the above-mentioned methods are implicit
and require big computational costs for solving systems of nonlinear algebraic equa-
tions by Newton’s iterative method, especially in the case of systems of ODEs of large
dimensions. A nonlinear explicit one-step numerical schemes for IVPs with other
types singularities are considered in [19]. We refer readers to [21, 22] and references
therein to introduce present trends in solving the considered problem in more detail.

In this paper, we consider the next singular IVP

1

xλ

d

dx

[
xλK (x)

du

dx

]
= − f (x, u), x ∈ (0, a], (1)

f (x, u) : [0, a] × R
s → R

s, u : [0, a] → R
s, K (x) ∈ R

s×s,

u(0) = A,
du(0)

dx
= 0, (2)

where Rs is the space of s-measurable vectors with a scalar product (u, v) and norm
‖u‖ = (u, u)1/2, λ > 0, c1‖u‖ ≤ (K (x)u, u) ∀x ∈ [0, a], u ∈ R

s, c1 > 0.
Note that the last condition implies that there exists an inverse matrix K−1(x) and
‖K−1(x)‖ ≤ 1/c1. It is known (see [24]) that the solutions u(x) and K (x) dudx of the
problem (1), (2) are continuous if K (x) = {ki j (x)}si, j=1, f (x, u) = { fi (x, u)}si=1
satisfy the conditions

ki j (x) ∈ C1[0, a], fi (x, u) ∈ C([0, a],Rs),
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‖ f (x,U1) − f (x,U2)‖ ≤ L‖U1 −U2‖, U1,U2 ∈ R
s .

The problem (1), (2) arises when axial or central symmetry is used for reducing
systems of partial differential equations to ordinary ones and it includes at least all
systems of the Lane-Embden type equations. The interest in this problem is connected
also with the fact that three-point difference schemes of high-order accuracy (see [5,
15]) for solving singular BVPs require the solution of the associated singular IVPs.

In our article, we present an approach that allows us to construct explicit fourth-
order Runge-Kutta methods that do not lose their order in the solution of the singular
problem (1)–(2). For the constructed methods, we developed an effective numerical
algorithm for solving the problem (1)–(2) with a given tolerance. We also compared
the efficiency of our methods with the implicit Runge-Kutta methods of collocation
type, namely with one of the best codes RADAU5 (see [7]). The performed numerical
experiments demonstrate a significant advantage of our approach over the implicit
Runge-Kutta methods.

The organization of this paper is as follows: In Sect. 2, using the substitution x = et

we reduce the problem (1), (2) to an IVP on an infinite interval (−∞, ln a]. For finding
the numerical solution of this IVP near the singularity point, i.e., at the node t0 of some
finite irregular grid {tn ∈ (−∞, ln a], n = 0, 1, ..., N , tN = ln a} similarly to [16] we
construct the Taylor series method and 3-stage Runge-Kutta type method of order 4.
For finding the numerical solution at other points of nodes of the grid we apply the
standard explicit four-order Runge-Kutta methods. In Sect. 3, we prove this approach
allows for guaranteeing the fourth order of accuracy on the entire interval. In Sect. 4, the
algorithm for error estimation and step size selection for numerical solving IVPs near
the singular point with a given tolerance which is based on Richardson extrapolation is
described. The effectiveness of the presented approach is demonstrated by numerical
examples in Sect. 5.

2 Construction of Runge-Kutta typemethods near the singular point

The problem (1), (2) can be rewritten in the following form

du(x)

dx
= K−1(x)w(x), (3)

dw(x)

dx
= − f (x, u) − λ

x
w(x), 0 < x ≤ a, (4)

u(0) = A, w(0) = 0. (5)

We assume that the solution of the problem (3)–(5) exists, is unique and has the
necessary properties of smooth.

Using the substitution x = et we reduce the problem (3)–(5) to the following one

dU (t)

dt
= et K̃−1(t)W (t), (6)

dW (t)

dt
= −et f̃ (t,U ) − λW (t), −∞ < t ≤ ln a, (7)
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lim
t→−∞U (t) = A, lim

t→−∞ W (t) = 0, (8)

where U (t) = u(et ),W (t) = w(et ), K̃ (t) = K (et ), f̃ (t,U ) = f (et ,U ).

On the semi-infinite interval (−∞, b], b ≤ ln a we choose the finite irregular grid
ˆ̄ωh = {tn ∈ (−∞, b], n = 0, 1, ..., N , tN = b} with the step sizes hn = tn − tn−1 >

0, n = 1, 2, ..., N . Further on, we will use such a grid near the singularity point.
We postulate the next inequalities at the first node of the grid ˆ̄ωh

b − 1

hmin
≤ t0 ≤ b − 1

hmax
, (9)

where hmax = max
1≤n≤N

hn, hmin = min
1≤n≤N

hn . The inequalities

b − hmaxN ≤ t0 = b − h1 − h2 − ... − hN ≤ b − hminN

and (9) imply the following ones

hmin ≤ 1

b − t0
≤ 1

Nhmin
,

1

Nhmax
≤ 1

b − t0
≤ hmax.

Due to the conditions C1 ≤ hmax/hmin ≤ C2, which are satisfied for arbitrary finite
grids, we further obtain the inequalities

hmax

C2
≤ hmin ≤ 1√

N
, C2hmin ≥ hmax ≥ 1√

N
,

where C1 and C2 are real constants. It follows that

hmax ≤ C2√
N

, hmin ≥ 1

C2
√
N

, b − C2
√
N ≤ t0 ≤ b −

√
N

C2
. (10)

Note that from (10) we have hmax → 0, t0 → −∞ as N → ∞. As an example, the
next equidistant grid

ω̄h = {tn = b − √
N + nh, n = 0, 1, ..., N , h = 1√

N
}. (11)

satisfies the conditions (10) with C1 = C2 = 1.
Based on (3)–(5), the following statement can be proved.

Lemma 1 Suppose that f (x, u) = { fi (x, u)}si=1 : fi (x, u) ∈ C (m) ([0, x0] × �λ([0,
x0], rλ)) , K (x) = {ki j (x)}si, j=1 : ki j (x) ∈ C (m−1)[0, x0]. Then following relations
are satisfied

w(x0) = − h0
1 + λ

f (0, A) −
m∑
i=2

hi0
(i − 1)!(i + λ)

di−1 f (x, u)

dxi−1

∣∣∣∣
x=0
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+ hm+1
0

(m + 1)!
dm+1w(ξ1)

dxm+1 , h0 = x0 = et0 , ξ1 = θ1h0, |θ1| < 1, (12)

u(x0) =A − h20
2(1 + λ)

K−1(0) f (0, A)

−
m∑
i=3

hi0
i !

⎡
⎣ i−2∑

j=0

(
i − 1

j

)
i − j − 1

i − j − 1 + λ

d j

dx j
K−1(x)

∣∣∣∣
x=0

di− j−2 f (x, u)

dxi− j−2

∣∣∣∣
x=0

⎤
⎦

+ hm+1
0

(m + 1)!
dm+1u(ξ2)

dxm+1 , ξ2 = θ2h0, |θ2| < 1, (13)

where

(
i

j

)
are binomial coefficients,

�λ([0, x0], rλ) =
{
u(x) = {ui (x)}si=1 : ui (x),

s∑
i=1

ki j (x)
dui
dx

∈ C[0, x0],

‖u − u0‖∗
1,∞,[0,x0] ≤ rλ

}
, ‖u‖0,∞,[0,x0] = max

x∈[0,x0]
‖u(x)‖,

‖u‖∗
1,∞,[0,x0] = max

{
‖u‖0,∞,[0,x0],

∥∥∥∥K (x)
du

dx

∥∥∥∥
0,∞,[0,x0]

}
,

rλ is a real positive number.

Notice that the formulas (12), (13) hold only near the singularity point x = 0. The
proof of the lemma is based on the fact that in Taylor’s formula, the limits as x → 0
of all singular at a point x = 0 derivatives of functions w(x) can be calculated. For
more details see please [16].

For the problem (3)–(5), we construct 3-stage explicit Runge-Kutta type methods
which have the fourth order near the singularity point x = 0 the following form

g1 = − f (0, A),

g2 = − f
(
c2h0, A + h20a21K

−1(0)g1
)

,

g3 = − f
(
c3h0, A + h20

[(
a31K

−1(0) + r31K
−1(c2h0)

)
g1 + a32K

−1(0)g2
])

,

y0 = A + h20

[(
d1K

−1(0) + p1K
−1(c2h0) + q1K

−1(c3h0)
)
g1+

+
(
d2K

−1(0) + p2K
−1(c2h0)

)
g2 + d3K

−1(0)g3
]
,

v0 = h0(b1g1 + b2g2 + b3g3),
(14)

where c2, c3, a21, a31, r31, a32, d1, p1, q1, d2, p2, d3, b1, b2, b3 are real coefficients.
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Then we compare the Taylor expansions for numerical solution y0, v0 and for exact
solution u0, w0 (see (13), (12)) and equate equal powers of h0 up to h40. As a result,
we obtain the next system of equations with respect to unknown coefficients:

d1 + p1 + q1 + d2 + p2 + d3 = 1

2(1 + λ)
,

(d2 + p2)c2 + d3c3 = 1

3(2 + λ)
,

(d2 + p2)c
2
2 + d3c

2
3 = 1

4(3 + λ)
, (15)

b1 + b2 + b3 = 1

1 + λ
,

b2c2 + b3c3 = 1

2 + λ
,

b2c
2
2 + b3c

2
3 = 1

3 + λ
,

b2c
3
2 + b3c

3
3 = 1

4 + λ
,

(16)

b3a32c2 = 1

3(4 + λ)(2 + λ)
,

b3r31c2 = 1

3(4 + λ)(1 + λ)
,

(17)

(p1 + p2)c2 + q1c3 = 1

3(1 + λ)
,

(p1 + p2)c
2
2 + q1c

2
3 = 1

4(1 + λ)
,

(18)

p2c
2
2 = 1

4(2 + λ)
, (19)

a21 = c22
2(1 + λ)

, r31 + a31 + a32 = c23
2(1 + λ)

. (20)

This system has the solution

c3 = λ2 + 6λ + 12

(λ + 3)(λ + 4)
, c2 = 3(λ + 2)

4(λ + 3)
, b1 = (6 − λ)(λ + 4)

3(λ + 1)(λ + 2)2(λ2 + 6λ + 12)
,

b2 = 64(λ + 3)

3(λ + 2)2(λ2 + 6λ + 24)
, b3 = (λ + 3)(λ + 4)2

(λ2 + 6λ + 12)(λ2 + 6λ + 24)
.
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a21 = 9(λ + 2)2

32(λ + 1)(λ + 3)2
, a32 = 4(λ2 + 6λ + 12)(λ2 + 6λ + 24)

9(λ + 2)2(λ + 4)3
,

r31 = 4(λ2 + 6λ + 12)(λ2 + 6λ + 24)

9(λ + 1)(λ + 2)(λ + 4)3
,

a31 = − (λ2 + 6λ + 12)(7λ5 + 90λ4 + 672λ3 + 2736λ2 + 5184λ + 3456)

18(λ + 1)(λ + 2)2(λ + 3)2(λ + 4)3
.

d2 = − 4(λ + 3)

9(λ + 2)3
, p1 = −4(λ + 3)(3λ3 + 23λ2 + 54λ + 24)

9(λ + 1)(λ + 2)3(λ2 + 6λ + 24)
,

p2 = 4(λ + 3)2

9(λ + 2)3
, q1 = (λ + 3)(λ + 4)2

(λ + 1)(λ2 + 6λ + 24)(λ2 + 6λ + 12)
.

d1 = λ5 + 18λ4 + 126λ3 + 408λ2 + 600λ + 288

18(λ + 1)(λ + 2)3(λ2 + 6λ + 12)
, d3 = 0.

3 Error estimation and convergence for Runge-Kutta typemethods

The IVP (6)–(8) can be rewritten in the following form

dZ(t)

dt
= F(t, Z), −∞ < t ≤ ln a,

lim
t→−∞ Z(t) =

(
A
0

)
,

(21)

where

Z(t) =
(
U (t)
W (t)

)
, F(t, Z) =

(
et K̃−1(t)W (t)

−et f̃ (t,U ) − λW (t)

)
.

Then the numerical solution of problem (21) at the grid nodes ˆ̄ωh can be obtained by
a step-by-step procedure

Y0 =

⎛
⎜⎜⎝

A + h20
[(
d1K−1(0) + p1K−1(c2h0) + q1K−1(c3h0)

)
g1+

+ (
d2K−1(0) + p2K−1(c2h0)

)
g2 + d3K−1(0)g3

]

h0(b1g1 + b2g2 + b3g3)

⎞
⎟⎟⎠ , (22)

Yn+1 = Yn + hn+1�(tn,Yn, hn+1), n = 0, 1, ..., N − 1, (23)

where

Yn =
(
yn
vn

)
, n = 0, 1, ..., N , h0 = et0 ,

�(tn,Yn, hn+1) = b1k1 + b2k2 + b3k3 + b4k4,
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k1 = F (tn,Yn) ,

k2 = F (tn + c2hn+1,Yn + hn+1a21k1) ,

k3 = F (tn + c3hn+1,Yn + hn+1(a31k1 + a32k2)) ,

k4 = F (tn + c4hn+1,Yn + hn+1(a41k1 + a42k2 + a43k3)) .

Let the conditions

c1‖u‖ ≤ (K (x)u, u), ∀x ∈ [0, a], u ∈ R
s, c1 > 0,

‖ f (x,U1) − f (x,U2)‖ ≤ L‖U1 −U2‖, ∀x ∈ [0, a], U1,U2 ∈ R
s

and assumptions of Lemma 1 be fulfilled.
If conditions (15)–(20) and the order conditions for (23)

b1 + b2 + b3 + b4 = 1, b2c2 + b3c3 + b4c4 = 1

2
,

b2c
2
2 + b3c

2
3 + b4c

2
4 = 1

3
, b2c

3
2 + b3c

3
3 + b4c

3
4 = 1

4
,

b3c3a32c2 + b4c4(a42c2 + a43c3) = 1

8
,

b3c3a32c
2
2 + b4c4(a42c

2
2 + a43c

2
3) = 1

12
,

b4a43a32c2 = 1

24
, c2 = a21,

c3 = a31 + a32, c4 = a41 + a42 + a43

are satisfied then the method (22), (23) is of order 4.
Let (Z ,Y )R2s = (U ,Y (1))+ (W ,Y (2)) be a scalar product of vectors Z = (U ,W ),

Y = (Y (1),Y (2)) ∈ R
2s and ‖Z‖R2s = (Z , Z)

1/2
R2s is the norm of vector Z ∈ R

2s .
For the fourth-order method (22), the local error estimations, which follow from the
relations y0 − u0 = O(h50), v0 − w0 = O(h50) and the analogous relations for the
standard Runge-Kutta methods, have the following form

‖e0‖R2s = ‖Y0 − Z0‖R2s ≤ Ch50,

‖en‖R2s = ‖Zn−1 − Zn + hn�(tn−1, Zn−1, hn)‖R2s ≤ Ch5n, n = 1, 2, ..., N ,

(24)

where the constant C is independent of hn .
Taking into account the equality

(F(t, Z1) − F(t, Z2), Z1 − Z2)R2s = et
(
U1 −U2, K̃

−1(t)(W1 − W2)
)

− et
(
f̃ (t,U1) − f̃ (t,U2),W1 − W2

)
− λ‖W1 − W2‖2,
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the Cauchy-Schwarz inequality, the Lipschitz condition for function f̃ (t,U ) =
f (et ,U ), the condition ‖K̃−1(t)‖ = ‖K−1(et )‖ ≤ 1

c1
and the inequality |ab| ≤

1
2 (a

2 + b2) we obtain

(F(t, Z1) − F(t, Z2), Z1 − Z2)R2s ≤ et |(U1 −U2, K̃
−1(t)(W1 − W2)|

+ et |( f̃ (t,U1) − f̃ (t,U2),W1 − W2)|
≤ et‖K̃−1(t)‖‖U1 −U2‖‖W1 − W2‖ + et‖ f̃ (t,U1) − f̃ (t,U2)‖‖W1 − W2‖
≤
(
1

c1
+ L

)
et‖U1 −U2‖‖W1 − W2‖ ≤ Let‖Z1 − Z2‖2R2s ,

where L = 1
2 (1/c1 + L).

Now, we can prove the next theorem.

Theorem 1 Suppose that l(t) = Let is one-sided Lipschitz constant for F in the
neighborhood � = {(t, Z(t))|t0 ≤ t ≤ ln a} of the exact solution Z(t) of the problem
(21) and the local error estimates (24) are valid. Then the global error E = YN − ZN

can be estimated by

‖E‖R2s ≤ h4CeLa [a + E1 (Lx0) − E1 (La)] , (25)

where h = max{h0, hmax}, x0 = et0 , E1(x) is the following exponential integral

E1(x) =
∫ ∞

1

e−t x

t
dt .

Proof From Theorem 10.6 (see [6, p. 61]) with δ = 0 we have

‖En‖R2s ≤ eL(a−etn )‖en‖R2s , n = 0, 1, ..., N .

Then we insert it into the estimation for the global error

‖E‖R2s ≤
N∑

n=0

‖En‖R2s .

Taking into account that x0 = et0 , we get

‖E‖R2s ≤ h4C
(
h0e

L(a−et0 ) + h1e
L(a−et1 ) + h2e

L(a−et2 ) + ... + hN

)

≤ h4C

(
x0e

L(a−et0 ) +
∫ ln a

t0
eL(a−et )dt

)

≤ h4C
{
x0e

L(a−et0 ) + eLa [E1 (Lx0) − E1 (La)]
}

≤ h4CeLa [a + E1 (Lx0) − E1 (La)] .

��
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From the inequality (25) it follows that the method (22) is convergent of the fourth
order for fixed tn, n = 0, 1, ..., N as N → ∞.

4 Algorithm for numerical solving singular IVPs

In this section, we describe the algorithm that automatically selects the node t0 =
b − √

N of the grid (11) and the step size h0 = et0 to achieve a prescribed tolerance
of the local error.

Using a fixed Runge-Kutta-type method of order 4 (14) for a given N and b =
ln a with a step h0 = eb−

√
N we find a solution of IVP (6)–(8) y0, v0 at the point

t0 = b − √
N . Based on point (t0, y0, v0) and step size h = 1/

√
N , we compute two

steps, using a fixed standard Runge-Kutta method of order 4, and obtain the numerical
solution of IVP (6)–(8) yh1 , vh1 , y

h
2 , vh2 at points t1 = t0 + h, t2 = t1 + h respectively.

Starting from point (t0, y0, v0), we also compute one step with step size 2h = 2/
√
N

to obtain the solution y2h2 , v2h2 at the point t2 = t0 + 2h. Then, according to the
Richardson extrapolation algorithm, the error estimations of yh2 , vh2 are as follows

err1,i = 1

15
|yh2,i − y2h2,i |, err2,i = 1

15
|vh2,i − v2h2,i |, i = 1, 2, ..., s.

We want these errors to satisfy the componentwise conditions

err1,i ≤ Atol + max
(
|yh2,i |, |y0,i |

)
Rtol,

err2,i ≤ Atol + max
(
|vh2,i |, |v0,i |

)
Rtol, i = 1, 2, ..., s,

where Atol and Rtol are the desired tolerances prescribed by the user (relative ones
are considered for Atol = 0, absolute — for Rtol = 0; usually both tolerances are
different from zero). Then, if the componentwise conditions are fulfilled, the computed
step is accepted. Otherwise, the step is rejected and the computations are repeated with
Nnew = 4N , bnew = t2.

With increasing N the grid node t0 = b − √
N approaches the point t = −∞. At

the same time step size h = 1/
√
N decreases. Due to this reason, we used the local

Richardson’s strategy for practical error estimation and step size selection, and not
some other approach.

The values

ŷ2 = yh2 + 1

15

(
yh2 − y2h2

)
, v̂2 = vh2 + 1

15

(
vh2 − v2h2

)

Table 1 Numerical results for
problem (26) by our algorithm
and code DOPRI5

Atol Rtol N ST E P N FUN Er CPU (s)

10−4 10−4 21 137 0.494·10−3 0.0001

10−6 10−6 31 197 0.675·10−5 0.0001

10−8 10−8 74 455 0.404·10−7 0.0003
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Table 2 Numerical results for
problem (26) by our algorithm
and code DLSODE

Atol Rtol N ST E P N FUN Er CPU (s)

10−4 10−4 68 98 0.281·10−3 0.0003

10−6 10−6 90 123 0.622·10−5 0.0004

10−8 10−8 147 192 0.775·10−7 0.0005

are approximations of order 5 for u(t0 + 2h) and w(t0 + 2h) correspondingly.
The numerical solutions ŷh2 , v̂h2 or y

h
2 , vh2 at the node t2 = t0+2h, calculated by the

above-described algorithm,we use as initial conditions for solving the problem (6)–(8)
with the same tolerance on interval (t2, ln a]. For this,we can apply the standard explicit
Runge-Kutta methods of order 4 with Richardson strategy or embedded Runge-Kutta
methods 5(4) (see, e.g., [6, pp. 164–168]).

5 Numerical examples

Example 1 Let us consider the singular IVP for system of ODEs

1

x2
d

dx

[
x2

du1
dx

]
= −(6 + 4x4)u1 + 4u1u2,

1

x2
d

dx

[
x2

du2
dx

]
= 6 − 20 ln u1, x ∈ (0; 1],

u1(0) = 1,
du1(0)

dx
= 0,

u2(0) = 0,
du2(0)

dx
= 0

(26)

with the exact solution u1(x) = e−x2 , u2(x) = x2 + x4.

We solved the problem (26) with a given tolerance, using our algorithm near the
singular point. At other points of the interval we applied embedded Dormand-Prince-
5(4) methods [4] (code DOPRI5 [6]) and Adams methods with functional iteration
(code DLSODE [8]) accordingly. The results of the solving are given in Tables 1 and 2.

Table 3 Numerical results for problem (26) by implicit Runge-Kutta method (code RADAU5)

Atol Rtol N ST E P N FUN N J AC NDEC Er CPU (s)

10−4 10−4 21 237 17 20 0.746·10−4 0.0005

10−6 10−6 47 426 29 46 0.258·10−5 0.0008

10−8 10−8 70 594 44 69 0.475·10−7 0.0012
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Table 4 Numerical results for
problem (27) by our algorithm
and code DOPRI5

Atol Rtol N ST E P N FUN Er CPU (s)

10−4 10−4 20 131 0.199·10−3 0.0001

10−6 10−6 33 209 0.144·10−5 0.0003

10−8 10−8 81 497 0.681·10−8 0.0006

In the tables, NST EP and NFUN denote the number of steps and the number of
right-hand side evaluations of the differential equations,

Er = ‖y − u‖1,∞, ˆ̄ωh
= max

{
‖y − u‖0,∞, ˆ̄ωh

,

∥∥∥∥v − du

dx

∥∥∥∥
0,∞, ˆ̄ωh

}
,

‖y‖0,∞, ˆ̄ωh
= max

0≤n≤N
|yn| yn ≈ u(etn ), vn ≈ du(etn )

dx
,

CPU denotes the time needed to solve the problem.
To compare the results we have solved the problem (26) by implicit Runge-Kutta

(code RADAU5 [7]). The results of the solving are given in Table 3, where N J AC is
the number of Jacobian evaluations, and NDEC is the number of LU-decompositions
of matrices.

The code RADAU5 requires using of the iterative Newton method, and therefore
the Jacobian evaluations and solving systems of linear equations. As a consequence
of it, computational costs to solve the problem (26) for our approach are less than for
implicit Runge-Kutta methods.

Example 2 Consider one more IVP

1

x2
d

dx

[
x2

du1
dx

]
= u21 − u22 − 6u2 + 6 + 6x2,

1

x2
d

dx

[
x2

du2
dx

]
= u22 − u21 + 6u2 + 6 − 6x2, x ∈ (0; 1],

u1(0) = 1,
du1(0)

dx
= 0,

u2(0) = −1,
du2(0)

dx
= 0

(27)

with the exact solution u1(x) = x2 + ex
2
, u2(x) = x2 − ex

2
.

Table 5 Numerical results for
problem (27) by our algorithm
and code DLSODE

Atol Rtol N ST E P N FUN Er CPU (s)

10−4 10−4 72 97 0.375·10−3 0.0003

10−6 10−6 94 134 0.779·10−5 0.0004

10−8 10−8 170 218 0.187·10−6 0.0007
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Table 6 Numerical results for problem (26) by implicit Runge-Kutta method (code RADAU5)

Atol Rtol N ST E P N FUN N J AC NDEC Er CPU (s)

10−4 10−4 21 238 18 20 0.146·10−4 0.0005

10−6 10−6 50 450 32 49 0.403·10−6 0.0010

10−8 10−8 81 693 49 80 0.407·10−8 0.0016

The results of numerical solving of the problem (27) presented in Tables 4, 5, and 6
show the same trend. That is, the approach proposed in the article requires fewer
computing resources compared to implicit methods. This advantage of our algorithm
obviously will only increase when solving singular systems of higher dimensions.

6 Conclusion

Thus, we presented an approach that demonstrates how to construct explicit fourth-
order Runge-Kutta methods that do not lose their order in the numerical solution of
the singular IVP. It allowed us to develop a numerical algorithm for solving IVPs
with a given tolerance. The results of numerical experiments demonstrate that the
combination of presented explicit Runge-Kutta methods for finding the solution near
the singularity point with standard explicit Runge-Kutta or linear multistep ones is a
very effective way for solving singular initial value problems. This approach can be
also generalized for a wider class of IVPs.

Author Contributions Both authors wrote the main manuscript text, prepared all numerical results, and
reviewed the manuscript.

Availability of supporting data Not applicable

Declarations

Ethics approval Not applicable

Consent to participate Not applicable

Consent for publication Not applicable

Conflict of interest The authors declare no competing interests.

References

1. Auzinger, W., Kneisl, G., Koch, O., Weinmüller, E.: A collocation code for singular boundary value
problems in ordinary differential equations. Numer. Algorithms 33, 27–39 (2003)

2. Bender, C., Milton, K., Pinsky, S., Simmons, L.: A new perturbative approach to nonlinear problems.
J. Math. Phys. 30, 1447–1455 (1989)

3. Chandrasekhar, S.: An Introduction to the Study of Stellar Structure. Dover Publications Inc., New
York (1967)

123



Numerical Algorithms

4. Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comp. Appl. Math. 6,
19–26 (1980)

5. Gavrilyuk, I.P., Hermann, M., Makarov, V.L., Kutniv, M.V.: Exact and Truncated Difference Schemes
for Boundary Value ODEs, International Seris of Numerical Mathematics,159. Springer AG, Basel
(2011)

6. Hairer, E., Nørsett, S.P., Wanner, G.: Solving ordinary differential equations I. Nonstiff Problems.
Springer Verlag, Berlin, Heidelberg, New York (1993)

7. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic
Problems. Springer Verlag, Berlin, New York (2002)

8. Hindmarsh, A.S.: LSODE and LSODI, two new initial value ODESolvers. ACM-SIGNUMNewsletter
15, 10–11 (1980)

9. Hoog, F., Weiss, R.: The application of linear multistep methods to singular initial value problems.
Math. Comp. 31, 676–690 (1977)

10. Hoog, F.,Weiss, R.: Collocationmethods for singular boundary value problems. SIAM J. Numer. Anal.
15, 198–217 (1978)

11. Hoog, F., Weiss, R.: The application of Runge-Kutta schemes to singular initial value problems. Math.
Comp. 44, 93–103 (1985)

12. Horedt, G.: Polytropes – Applications in Astrophysics and Related Fields. Kluwer Academic Publish-
ers, Dordrecht (2004)

13. Karimi Vanani, S., Aminataei, A.: On the numerical solution of differential equations of Lane-Emden
type. Comput. Math. Appl. 59, 2815–2820 (2010)

14. Kitzhofer, G., Koch,O., Pulverer, G., Simon, Ch.,Weinmüller, E.: The newMATLABcodeBVPSUITE
for the solution of singular implicit boundary value problems. JNAIAN J. Numer. Anal. Indust. Appl.
Math. 5, 113–134 (2010)

15. Król, M., Kunynets, A.V., Kutniv, M.V.: Exact three-point difference scheme for singular nonlinear
boundary value problems. J. Comput. Appl. Math. 298, 175–189 (2016)

16. Kutniv, M.V., Datsko, B.Y., Kunynets, A.V., Wloch, A.: A new approach to constructing of explicit
one-step methods of high order for singular initial value problems for nonlinear ordinary differential
equations. Appl. Numer. Math. 148, 140–151 (2020)

17. Liao, J.: A new analytic algorithm of Lane-Emden type equations. Appl. Math. Comput. 142, 1–16
(2003)

18. Ramos, J.: Linearization techniques for singular initial-value problems of ordinary differential equa-
tions. Appl. Math. Comput. 161, 525–542 (2005)

19. Ramos, H., Vigo-Aguiar, J.: A new algorithm appropriate for solving singular and singularly perturbed
autonomous initial-value problems. Int. J. Comput. Math. 85, 603–611 (2008)

20. Ramos, H., Rufai, M.: An adaptive pair of one-step hybrid block Nyström methods for singular initial-
value problems of Lane-Emden-Fowler type. Math. Comput. Simul. 193, 497–508 (2022)

21. Rufai, M., Ramos, H.: Numerical solution of second-order singular problems arising in astrophysics
by combining a pair of one-step hybrid block Nyström. Astrophys. Space Sci. 365, 96 (2020)

22. Rufai, M., Ramos, H.: Numerical integration of third-order singular boundary-value problems of
Emden-Fowler type using hybrid block techniques. Commun. Nonlinear Sci. Numer. Simul. 105,
106069 (2022)

23. Rufai, M., Ramos, H.: Solving third-order Lane-Emden-Fowler equations using a variable stepsize
formulation of a pair of block methods. J. Comp. Appl. Math. 420, 114776 (2023)

24. Skrypnik, I.V.: Nonlinear elliptic equations of higher order. NaukowaDumka,Kiev (1973). (in Russian)
25. Wazwaz, A.M.: A new method for solving singular initial value problem in second-order ordinary

differential equations. Appl. Math. Comp. 128, 45–57 (2002)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Explicit numerical methods for solving singular initial value problems for systems of second-order nonlinear ODEs
	Abstract
	1 Introduction
	2 Construction of Runge-Kutta type methods near the singular point
	3 Error estimation and convergence for Runge-Kutta type methods
	4 Algorithm for numerical solving singular IVPs
	5 Numerical examples
	6 Conclusion
	References


