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Abstract
This paper presents adaptive, graded and uniform mesh schemes to approximate the
solution of a fractional order advection-diffusion model, which generally shows a
weak singularity at the initial time level. The temporal fractional derivative in the
underlying problem is described in a Caputo form and is discretized by means of
L1 scheme on a nonuniform mesh. The space derivative is discretized on a uniform
mesh employing a fourth-order compact finite difference scheme. The adaptive grid is
generated via equidistribution of a positivemonitor function. Stability and convergence
results for the proposed method on graded mesh are established. Numerical examples
are provided to study the accuracy and efficiency of the proposed techniques and
to support the theoretical results. A discussion about the advantages of the graded
and adaptive meshes over the uniform one is also presented. The CPU times for the
proposed numerical schemes are provided.

Keyword Advection-diffusion equation · Weak regularity · Graded mesh · Adaptive
mesh · Monitor function · Compact difference scheme · Stability · Convergence

1 Introduction

Fractional differential equation has emerged as strong tools in the study of various
physical and biological phenomena and modelling of material system and financial
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processes, for example, see [1–8]. Such equations can be used to simulate practical
phenomenamore accurately then integer order one [32]. The advection-diffusion (AD)
equation is employed in groundwater hydrology research to model the transport of
passive tracers carried by fluid flow in porous medium [9] and in neurology [10]. It
is also used to describe the transport dynamics in complex systems. In this study, we
consider the following time-fractional advection-diffusion (TFAD) equation:

Dα
t χ(x, t) − a

∂2χ(x, t)

∂x2
+ b

∂χ(x, t)

∂x
= f (x, t), α ∈ (0, 1), (x, t) ∈ (0, 1) × (0, T ], (1)

subject to the IC (initial condition)

χ(x, 0) = g(x) (2)

and BCs (boundary conditions)

χ(0, t) = 0, χ(1, t) = 0. (3)

Here, a and b are real positive constants, f (x, t) ∈ C([0, 1] × [0, T ]) and g(x) ∈
C[0, 1]. Further, Dα

t χ(x, t) denotes the Caputo derivative of order α,which is defined
as [11]:

Dα
t χ(x, t) = 1

�(1 − α)

∫ t

0
(t − s)−α ∂χ(x, s)

∂s
ds, α ∈ (0, 1). (4)

Equation (1) describes how the field variable χ(x, t) in a medium varies under the
influence of advection and diffusion processes. The solution of the problem considered
has a weak singularity at t = 0. The regularities of the solution satisfy

∣∣∣∣∂χ(x, t)

∂t

∣∣∣∣ ≤ Ĉ1(1 + tα−1), ∀ t ∈ (0, T ], (5)

∣∣∣∣∂
kχ(x, t)

∂xk

∣∣∣∣ ≤ Ĉ2 for k = 0, 1, 2, 3, 4, 5, 6, (6)

where Ĉ1 and Ĉ2 are constants independent of t and x . In [50], the existence and
uniqueness of the solution to theCaputo time-fractional diffusion equationwithDirich-
let boundary condition have been investigated. The maximum principle was applied
for proving the uniqueness result. Li and Wang [51] prove existence and uniqueness
of the solution to the Caputo time-fractional convection diffusion reaction equation.
Further, the reader can refer to [43, 52]. Due to the weak singularity and nonlocal-
ity character of the time-fractional operator, it is very difficult in obtaining the exact
solution of time-fractional model problems.Many powerful computational techniques
have been used in recent years by researchers to approximate the solutions of several
time-fractional problems, for instance, see [33–38, 40, 41]. On the other hand, various
numerical schemes were used for solving the TFAD equations. Zhuang et al. [13]
designed an implicit meshless scheme for solving the time-dependent fractional AD
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equation with the Caputo time derivative. In this method, the L1 method is employed
for approximation of Caputo temporal fractional derivative on uniformmesh, while an
implicit meshless approach based on the moving least squares technique is employed
for discretization of space derivative. Azin et al. [14] developed a hybrid numerical
scheme based onChebyshev cardinal functions and themodifiedLegendre functions to
approximate the solution of (1) over a bounded time domain and an unbounded space
domain. Li et al. [15] proposed a series of high-order numerical schemes on uniform
mesh to solve Caputo-type advection-diffusion equation. The authors first constructed
a series of high-order numerical algorithms to approximate the Caputo derivative and
then derived a high-order finite difference scheme for solving Caputo-type advection-
diffusion equation. In [16], Cao et al. presented a new high-order difference scheme on
uniform mesh to solve Caputo-type AD equation. Mardani [17] proposed a meshless
method, which is based on themoving least square (MLS) approximation, for solving a
time-fractional advection-diffusion model with variable coefficients. In this approach,
the time-fractional derivative (TFD) is approximated by a finite difference scheme on
uniformmesh. It is important to point out that in [13–17], numerical schemes based on
uniform mesh (simpler mesh) are designed to approximate the time-fractional deriva-
tive. Further, the weak singularity was not considered in these papers. The optimal
rate of convergence in time direction was obtained by considering the exact solution
which is smooth enough. Moreover, various numerical techniques were proposed for
solving the time-fractional diffusion and reaction-diffusion problems, see [21–31] and
their references. The authors of these papers ignored weak singularity at t = 0 and
considered numerical examples with smooth analytical solutions to show that their
methods have the optimal order convergence in the time direction. Furthermore, most
of the above-stated methods are of lower orders of convergence in space direction.

In the current work, we aim to develop robust numerical techniques for solving (1)–
(3) subjected to both smooth and nonsmooth analytical solutions. We derive graded
and adaptive mesh numerical schemes for (1)–(3). In these methods, the Caputo time-
fractional derivative is approximated by means of L1 scheme on nonuniform grids and
the space derivatives are approximated by using a compact finite difference (CFD)
scheme on uniform mesh. The graded and adaptive meshes on the time domain are
constructed to overcome the weak singularity at t = 0, which produce a fine mesh
near t = 0. The adaptive mesh is generated via equidistribution of a monitor func-
tion [18–20]. The theoretical results on the stability and convergence for the graded
mesh technique are introduced. We consider three test problems to demonstrate the
efficiency and accuracy of the suggested method and to support the theoretical results.
The comparison between the results obtained with graded and adaptive meshes and
those obtained with the uniform mesh is presented. The CPU times for the proposed
techniques are provided. Numerical methods based on graded mesh or adaptive mesh
were proposed in [42–49] to solve various kinds of boundary value problems for
ordinary differential equation or partial differential equations.

The outline of this paper is as follows: Section 2 contains the description of the
discretization scheme on the graded mesh. The adaptive mesh generation algorithm is
described in Section 3. The proposed method on graded mesh is analyzed rigorously
for the stability and convergence in Section 4. In Section 5, three test problems are
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solved and the numerical results are presented to show the robustness of proposed
numerical algorithms. Finally, the conclusions are discussed in Section 6.

2 Derivation of a gradedmesh numerical scheme

In this section, a gradedmesh technique is derived for solving the TFADmodel (1)–(3).

2.1 Time discretization

We discretize (1)–(3) over the domain [0, T ], where T > 0. Let tm = T (m/N )r ,

m = 0, 1, ...,N be the temporal grid points, whereN be a positive integer and r is the
grading parameter. Let the temporal mesh size be τm = tm − tm−1, m = 1, 2, ...,N .
If r = 1, then the mesh is uniform. We approximate the Caputo TFD by employing
the L1 scheme on the nonuniform mesh as follows

Dα
t χ(x, tm) = 1

�(1 − α)

m∑
k=1

∫ tk

tk−1

(tm − s)−α ∂χ(x, s)

∂s
ds

= 1

�(2 − α)

m∑
k=1

[
(tm − tk−1)

1−α − (tm − tk)
1−α

]
δ−
t χ(x, tk) + R̂m , (7)

where δ−
t χ(x, tk) = χ(x,tk )−χ(x,tk−1)

τk
with τk = tk − tk−1, ∀ 1 ≤ k ≤ N and R̂m is

the truncation error.

Lemma 1 ([12]) Assume that the solution of TFAD problem satisfies (5). Then, we
have the following bound for each (x, tm) ∈ (0, 1) × (0, T ):

|R̂m | ≤ m−min{2−α,rα}, m = 1, 2, ...,N . (8)

Considering (1) at t = tm yields

Dα
t χ(x, tm) = a

∂2χ(x, tm)

∂x2
− b

∂χ(x, tm)

∂x
+ f (x, tm), 1 ≤ m ≤ N . (9)

Equations (2) and (3) can be expressed as follows

χ(x, t0) = g(x), (10)

χ(0, tm) = 0, χ(1, tm) = 0, 1 ≤ m ≤ N . (11)

2.2 Spatial discretization

Here, we discretize (9)–(11) in space direction by means of a fourth-order CFD tech-
nique. We introduce uniform spatial grids with spatial step �x on the interval [0, 1]
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such that {0 = x0 < x1 < .. < xn < ..... < xM = 1}, where xn = n�x,
n = 0, 1, ...,M and M is the number of mesh elements.

The second-order central finite difference approximation δ2xv(xn) for v′′(xn) is
defined by

δ2xv(xn) = v(xn−1) − 2v(xn) + v(xn+1)

�x2
, n = 1, 2, ...,M − 1. (12)

The second-order central difference approximation δxv(xn) for v′(xn) is defined by

δxv(xn) = v(xn+1) − v(xn−1)

2�x
, n = 1, 2, ...,M − 1. (13)

Denote F(xn) = Fn, F ′(xn) = F ′
n, v(xn) = vn, v′(xn) = v′

n and v′′(xn) = v′′
n .

Theorem 1 Suppose the solution v(x) belongs to the function space C6[0, 1]. The
fourth-order compact difference scheme for the problem

− a
∂2v(x)

∂x2
+ b

∂v(x)

∂x
= F(x), 0 < x < 1, (14)

is given by

(−a + p�x2)δ2xvn + bδxvn = �x2

12
δ2x Fn + q�x2δx Fn + Fn + O(�x4), (15)

where p = − b2
12a and q = − b

12a .

Proof Inserting the Taylor’s series expansions for vn+1 and vn−1 into (12) and (13)
yields

v′′
n = δ2xvn − T̂1, (16)

where

T̂1 = �x2

12
v(4)
n + �x4

360
v(6)
n + O(�x6)

and
v′
n = δxvn − T̂2, (17)

where

T̂2 = �x2

6
v(3)
n + �x4

120
v(5)
n + O(�x6).

Using (16) and (17), we obtain the following difference approximation for (14) at
x = xn :

− aδ2xvn + bδxvn + T̂3 = Fn, (18)

where
T̂3 = aT̂1 − bT̂2. (19)
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To obtain a fourth-order scheme, one needs to approximate v
(3)
n and v

(4)
n in (19). For

this purpose, we differentiate (14) w.r.t. x and then set x = xn to get

− av(3)
n + bv′′

n = F ′
n . (20)

Further, differentiating twice (14) w.r.t. x and then setting x = xn produces

− av(4)
n + bv(3)

n = F ′′
n . (21)

Using (20) in (21), we obtain

v(4)
n = b2

a2
v′′
n − b

a2
F ′
n − F ′′

n

a
. (22)

By (22) and (20), it follows from (19) that

T̂3 = − b2

12a
�x2v′′

n − �x2

12
F ′′
n − b�x2

12a
F ′
n + O(�x4). (23)

Using (16) and (17) in (23) gives

T̂3 = −b2�x2

12a
δ2xvn − �x2

12
δ2x Fn − b�x2

12a
δx Fn + O(�x4). (24)

Inserting (24) into (18) produces the following fourth-order CFD approximation for
the problem (14):

(−a + p�x2)δ2xvn + bδxvn = �x2

12
δ2x Fn + q�x2δx Fn + Fn + O(�x4), (25)

which completes the proof. ��
Now, let

Ĝ(x, t) = Dα
t χ(x, t). (26)

At the point (xn, tm), (26) leads to

Ĝ(xn, tm) = Dα
t χ(xn, tm). (27)

Using (7) in (27), we get

Ĝ(xn, tm) = 1

�(2 − α)

m∑
k=1

[
(tm − tk−1)

1−α − (tm − tk)
1−α

]
δ−
t χ(xn, tk)

= B
[
βm,1χ(xn, tm) +

m−1∑
k=1

[
βm,k+1 − βm,k

]
χ(xn, tm−k) − βm,mχ(xn, t0)

]
, (28)
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where

B = 1

�(2 − α)
, βm,k = (tm − tm−k)

1−α − (tm − tm−k+1)
1−α

τm−k+1
. (29)

When l = 1, we obtain βm,1 = τ−α
m . By (27), it follows from (9) that

− a
∂2χ(xn, tm)

∂x2
+ b

∂χ(xn, tm)

∂x
= f (xn, tm) − Ĝ(xn, tm). (30)

By means of Theorem 1, equation (30) at the point (xn, tm) can be written as

(−a + p�x2)δ2xχ(xn, tm) + bδxχ(xn, tm) = �x2

12
δ2x ( f (xn, tm) − Ĝ(xn, tm))

+ q�x2δx ( f (xn, tm) − Ĝ(xn, tm))

+ f (xn, tm) − Ĝ(xn, tm) + O(�x4).

(31)

We denote χm
n = χ(xn, tm) and f mn = f (xn, tm), 0 ≤ m ≤ N ; 0 ≤ n ≤ M. Thus,

by (28) and (31), one has

( −a

�x2
− b

2�x
+ p + Bβm,1

12
− βm,1Bq�x

2

)
χm
n−1 +

(
2a

�x2
− 2p + 5βm,1B

6

)
χm
n

+
( −a

�x2
+ b

2�x
+ p + βm,1B

12
+ βm,1qB�x

2

)
χm
n+1 = B

m−1∑
k=1

[
βm,k − βm,k+1

] [(
1

12
− q�x

2

)

χm−k
n−1 + 5

6
χm−k
n +

(
1

12
+ q�x

2

)
χm−k
n+1

]
+ Bβm,m

[(
1

12
− q�x

2

)
χ0
n−1 + 5

6
χ0
n +

(
1

12
+ q�x

2

)
χ0
n+1

]

+
(

1

12
− q�x

2

)
f mn−1 + 5

6
f mn +

(
1

12
+ q�x

2

)
f mn+1 + R̂m

n , n = 1, 2, ...,M − 1, m ≥ 1,

(32)

where R̂m
n represents the truncation error at (xn, tm), which is defined by

|R̂m
n | ≤ Ĉ(m−min{2−α,rα} + �x4), (33)

where Ĉ is a positive constant. Equation (11) is discretized as

χm
0 = 0, χm

M = 0, m ≥ 1. (34)

The IC (10) is discretized as

χ0
n = g(xn) = gn, n = 0, 1, 2, ...,M. (35)
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Denoting χ̂m
n as an approximation ofχm

n andneglecting R̂m
n in (32) yields the following

finite difference discretization for (1)-(3):
( −a

�x2
− b

2�x
+ p + βm,1B

12
− βm,1Bq�x

2

)
χ̂m
n−1 +

(
2a

�x2
− 2p + 5βm,1B

6

)
χ̂m
n

+
( −a

�x2
+ b

2�x
+ p + βm,1B

12
+ βm,1Bq�x

2

)
χ̂m
n+1 = B

m−1∑
k=1

[
βm,k − βm,k+1

] [(
1

12
− q�x

2

)

χ̂m−k
n−1 + 5

6
χ̂m−k
n +

(
1

12
+ q�x

2

)
χ̂m−k
n+1

]
+ Bβm,m

[(
1

12
− q�x

2

)
χ̂0
n−1 + 5

6
χ̂0
n +

(
1

12
+ q�x

2

)
χ̂0
n+1

]

+
(

1

12
− q�x

2

)
f mn−1 + 5

6
f mn +

(
1

12
+ q�x

2

)
f mn+1, n = 1, 2, ...,M − 1, m ≥ 1,

(36)

with
χ̂m
0 = 0, m ≥ 1, (37)

χ̂m
M = 0, m ≥ 1, (38)

χ̂0
n = gn, n = 0, 1, 2, ...,M. (39)

3 An adaptive numerical method

An adaptive mesh technique for solving the TFAD model (1)–(3) is presented in this
section. We note that the graded mesh technique for solving the problem considered
is defined by (32) and the complete discrete method based on adaptive grid can be
obtained by altering the truncation error term in (32) with the truncation error term
given in (42). The truncation error R̄m for TFD in (7) relative to the adaptive mesh is
defined by

|R̄m | ≤ C max
1≤k≤m

(τk)
1−α

∫ tk

tk−1

∣∣∣∣∂
2χ(x, s)

∂t2

∣∣∣∣ ds . (40)

Taking into account (40) and (31), we obtain
( −a

�x2
− b

2�x
+ p + Bβm,1

12
− βm,1Bq�x

2

)
χm
n−1 +

(
2a

�x2
− 2p + 5βm,1B

6

)
χm
n

+
( −a

�x2
+ b

2�x
+ p + βm,1B

12
+ βm,1qB�x

2

)
χm
n+1 = B

m−1∑
k=1

[
βm,k − βm,k+1

] [(
1

12
− q�x

2

)

χm−k
n−1 + 5

6
χm−k
n +

(
1

12
+ q�x

2

)
χm−k
n+1

]
+ Bβm,m

[(
1

12
− q�x

2

)
χ0
n−1 + 5

6
χ0
n +

(
1

12
+ q�x

2

)
χ0
n+1

]

+
(

1

12
− q�x

2

)
f mn−1 + 5

6
f mn +

(
1

12
+ q�x

2

)
f mn+1 + R̄m

n , n = 1, 2, ...,M − 1, m ≥ 1.

(41)

The truncation error R̄m
n in (41) is defined by

|R̄m
n | ≤ C

(
max

1≤m≤N ,1≤n≤M
τ1−α
m

∫ tm

tm−1

∣∣∣∣∂
2χ(xn, s)

∂t2

∣∣∣∣ ds + �x4
)

. (42)
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where C denotes a positive constant. Denoting χ̄m
n as an approximation of χm

n and
neglecting R̄m

n in (41) yields the following numerical scheme for (1)–(3):
( −a

�x2
− b

2�x
+ p + βm,1B

12
− βm,1Bq�x

2

)
χ̄m
n−1 +

(
2a

�x2
− 2p + 5βm,1B

6

)
χ̄m
n

+
( −a

�x2
+ b

2�x
+ p + βm,1B

12
+ βm,1Bq�x

2

)
χ̄m
n+1 = B

m−1∑
k=1

[
βm,k − βm,k+1

] [(
1

12
− q�x

2

)

χ̄m−k
n−1 + 5

6
χ̄m−k
n +

(
1

12
+ q�x

2

)
χ̄m−k
n+1

]
+ Bβm,m

[(
1

12
− q�x

2

)
χ̄0
n−1 + 5

6
χ̄0
n +

(
1

12
+ q�x

2

)
χ̄0
n+1

]

+
(

1

12
− q�x

2

)
f mn−1 + 5

6
f mn +

(
1

12
+ q�x

2

)
f mn+1, n = 1, 2, ...,M − 1, m ≥ 1.

(43)

with
χ̄m
0 = 0, m ≥ 1, (44)

χ̄m
M = 0, m ≥ 1, (45)

χ̄0
n = gn, n = 0, 1, 2, ...,M. (46)

3.1 Algorithm for adaptive mesh generation

Here we present an algorithm for generating the adaptive grid and for approximating
the solution of (1)–(3) on the adaptive grid by employing (43)–(46).

Since the solution χ(x, t) of the problem (1) shows a weak singularity at t = 0, a
nonuniform adaptive time grid is generated by means of equidistribution of a positive
monitor function, which is defined by (48). This kind of monitor function (48) has
been employed in [18–20, 39]. Let 	N = {0 = t0 < t1 < ... < tm < ... < tN = T }
be the time mesh. The time mesh 	N is called equidistributed if

∫ tm

tm−1

M̂(μ)dμ = 1

N
∫ T

0
M̂(μ)dμ, m = 1, 2, ....N . (47)

The monitor function M̂(μ) in (47) is approximated by

M̂m
n = M̂(xn, tm) = 1 +

√∣∣δ2t χ̂m
n

∣∣, t ∈ (tm−1, tm). (48)

In above equation, δ2t χ̂
m
n denotes the central difference approximation of χ̂ (xn, t) on

nonuniform temporal mesh. The following algorithm is proposed to solve (47):

Step I
Consider ĵ = 0,where ĵ represents the iteration number. Take the uniform temporal

mesh 	M,N ,(0) = {(xn, t (0)m )| 0 ≤ n ≤ M, 0 ≤ m ≤ N } as the initial value for the
iteration. Go to the step II with ĵ = 0.
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Step II
Solve (43)–(46) for {χ̄m,(ĵ )

n } on 	M,N ,(ĵ ) = {(xn, t (ĵ )
m )|0 ≤ n ≤ M, 0 ≤ m ≤

N }. Set τ(ĵ )
m = t (ĵ )

m − t (ĵ )
m−1 for each m. Compute

ξ
m,(ĵ )
n =

m∑
k=1

τ
(ĵ )
k M̂k,(ĵ )

n (49)

and pick out j such that

ξ
N ,(ĵ )
j = max

1≤n<M
{
ξ
N ,(ĵ )
n

}
. (50)

The monitor function M̂k,(ĵ )
n in (49) was evaluated at the k-th grid point of the current

grids. We set M̂0,(ĵ )
n = M̂1,(ĵ )

n and M̂N ,(ĵ )
n = M̂N−1,(ĵ )

n .

Step III
Choose a constant ψ̂ > 1. If

max1≤m≤N τ
(ĵ )
m M̂m,(ĵ )

j

ξ
N ,(ĵ )
j

≤ ψ̂

N , (51)

then go to step V, else continue step IV.

Step IV
Set I (ĵ )

m = mξ
N ,(ĵ )
j /N , m = 0, 1, ...,N . Interpolate (I (ĵ )

m , t (ĵ+1)
m ) to (ξ

m,(ĵ )
j , t (ĵ )

m ).
Generate a new mesh

	M,N ,(ĵ+1) =
{(
xn, t

(ĵ+1)
m

)|0 ≤ n ≤ M, 0 ≤ m ≤ N }
. (52)

Step V
Set 	M,N ,∗ = 	M,N ,(ĵ ) and {χ̄m,∗

n } = {χ̄m,(ĵ )
n }, then stop.

Remark 1 It is observed that the coefficient matrix of (36)–(39) or (43)–(46) is strictly
diagonally dominant with nonpositive off-diagonal elements and positive diagonal
elements. Hence, the systems defined by (36)–(39) and (43)–(46) are solvable.

4 Stability and convergence

In this section, we study the stability and convergence for the numerical scheme (36)–
(39).
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4.1 Stability

Here, we present the stability bound of the present numerical scheme (36) for the
considered time-fractional problem. We introduce L∞-norm for any mesh function
Um
n , as follows

||Um ||∞ = max
0≤n≤M

|Um
n | and ||U ||∞ = max

0≤m≤N
max

0≤n≤M
|Um

n |. (53)

Lemma 2 The solution of (36) satisfies

||χm ||∞ ≤ 1

βm,1

[
1

B || f m ||∞+βm,m ||χ̂0||∞+
m−1∑
k=1

(βm,k−βm,k+1)||χ̂m−k ||∞
]
, (54)

for m = 1, 2, . . . ,N .

Proof Fix m ∈ {1, 2, ...,N }. Choose n0 such that |χ̂m
i0

| = max
0≤n≤M

|χ̂m
n | = ||χ̂m ||∞.

Then, (36) at the mesh point (xi0 , tm) is
( −a

�x2
− b

2�x
+ p + βm,1B

12
− βm,1Bq�x

2

)
χ̂m
i0−1 +

(
2a

�x2
− 2p + 5βm,1B

6

)
χ̂m
i0

+
( −a

�x2
+ b

2�x
+ p + βm,1B

12
+ βm,1Bq�x

2

)
χ̂m
i0+1 = B

m−1∑
k=1

[
βm,k − βm,k+1

] [(
1

12
− q�x

2

)

χ̂m−k
i0−1 + 5

6
χ̂m−k
i0

+
(

1

12
+ q�x

2

)
χ̂m−k
i0+1

]
+ Bβm,m

[(
1

12
− q�x

2

)
χ̂0
i0−1 + 5

6
χ̂0
i0 +

(
1

12
+ q�x

2

)
χ̂0
i0+1

]

+
(

1

12
− q�x

2

)
f mi0−1 + 5

6
f mi0 +

(
1

12
+ q�x

2

)
f mi0+1.

(55)

By taking L∞-norm in (55) one has

(
2a

�x2
− 2p + 5βm,1B

6

)
||χ̂m ||∞ ≤

(
2a

�x2
− 2p − βm,1B

6

)
||χ̂m ||∞

+ || f m ||∞ + βm,mB||χ̂0||∞ + B
m−1∑
k=1

(βm,k − βm,k+1)||χ̂m−k ||∞.

(56)

Equation (56) simplifies to

||χm ||∞ ≤ 1

βm,1

[
1

B || f m ||∞ + βm,m ||χ̂0||∞ +
m−1∑
k=1

(βm,k − βm,k+1)||χ̂m−k ||∞
]
.

Thus, we get the desired result. ��
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Lemma 3 The following properties hold for the coefficients βm,k defined in (29):

(i) βm,k+1 ≤ βm,k

(i i)
(tm − tm−k)

−α

�(1 − α)
≤ βm,k ≤ (tm − tm−k+1)

−α

�(1 − α)
.

Proof Using the mean value theorem one can prove (i). Then, using (i) one can obtain
(ii).

Let us define real numbers Dm,i , for m = 1, 2, ...,N and i = 1, 2, ...,m − 1 such
that

Dm,m = 1, Dm,i =
m−i∑
k=1

τα
m−k(βm,k − βm,k+1)Dm−k,i . (57)

In view of Lemma 3, it can be seen that Dm,i > 0 for all m and i . ��
Lemma 4 The solution of (36) satisfies

||χ̂m ||∞ ≤ ||χ̂0||∞ + 1

βm,1B
m∑
i=1

Dm,i || f i ||∞, (58)

for m = 1, 2, . . . ,N .

Proof We use mathematical induction on m to prove the lemma. For m = 1, (54)
reduces to

||χ1||∞ ≤ 1

β1,1

[
β1,1||χ0||∞ + 1

B || f 1||∞
]

= ||χ0||∞ + D1,1

Bβ1,1
|| f 1||∞.

Thus, (58) is valid for m = 1. Next, we assume that (58) holds true for all 1 ≤ m ≤
j − 1, that is,

||χ̂m ||∞ ≤ ||χ̂0||∞ + 1

βm,1B
m∑
i=1

Dm,i || f i ||∞, for 1 ≤ m ≤ j − 1. (59)

Now, we prove that the assertion (58) is valid for m = j . Considering (54) at m = j ,
yields

||χ̂ j ||∞ ≤ 1

β j,1

[
1

B || f j ||∞ + β j, j ||χ̂0||∞ +
j−1∑
k=1

(β j,k − β j,k+1)||χ̂ j−k ||∞
]
. (60)

Taking into account (59), it follows from (60) that

||χ̂ j ||∞ ≤ 1

β j,1

[
1

B || f j ||∞ + β j, j ||χ̂0||∞ +
j−1∑
k=1

(β j,k − β j,k+1)

(
||χ̂0||∞ + 1

Bβ j−k,1

j−k∑
i=1

Dj−k,i || f i ||∞
)]

.
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The above equation simplifies to

||χ̂ j ||∞ ≤ 1

β j,1

[
1

B || f j ||∞ + β j ,1||χ̂0||∞ + 1

B
j−1∑
k=1

1

β j−k,1
(β j,k − β j,k+1)

j−k∑
i=1

Dj−k,i || f i ||∞
]
.

Now arranging the terms we get

||χ̂ j ||∞ ≤ 1

Bβ j,1
|| f j ||∞ + ||χ̂0||∞ + 1

Bβ j,1

j−1∑
i=1

|| f i ||∞
j−i∑
k=1

1

β j−k,1
(β j,k − β j,k+1)Dj−k,i

= 1

Bβ j,1
|| f j ||∞ + ||χ̂0||∞ + 1

Bβ j,1

j−1∑
i=1

|| f i ||∞
j−i∑
k=1

τα
j−k(β j,k − β j,k+1)Dj−k,i .

(61)

Using (57) in (61), one has

||χ̂ j ||∞ ≤ 1

Bβ j,1
|| f j ||∞ + ||χ̂0||∞ + 1

Bβ j,1

j−1∑
i=1

|| f i ||∞Dj,i .

In view of (57), the above equation can be written as

||χ̂ j ||∞ ≤ Di,i

Bβ j,1
|| f j ||∞ + ||χ̂0||∞ + 1

Bβ j,1

j−1∑
i=1

|| f i ||∞Dj,i . (62)

Equation (62) simplifies to

||χ̂ j ||∞ ≤ ||χ̂0||∞ + 1

Bβ j,1

j∑
i=1

Dj,i || f i ||∞.

Thus, (58) is valid for m = j . Therefore, the assertion (58) is valid for all value of m.
��
Lemma 5 Let the parameter λ satisfy λ ≤ rα and the real number Dm,i be defined by
(57). Then, for 1 ≤ m ≤ N , we have

τα
m

m∑
i=1

i−λDm,i ≤ T αN−λ

1 − α
. (63)

Proof One can prove the lemma following the arguments used in Lemma 4.3 of [12].��
Theorem 2 The solution of (36) satisfies

||χ̂m ||∞ ≤ ||χ̂0||∞ + �(1 − α)T α|| f ||∞.
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Proof From lemma 4, we have

||χ̂m ||∞ ≤ ||χ̂0||∞ + 1

Bβm,1

m∑
i=1

Dm,i || f i ||∞ = ||χ̂0||∞ + 1

Bβm,1

m∑
i=1

Dm,i max
0≤n≤M

| f in |

≤ max
0≤i≤N

[
max

0≤n≤M
| f in |

]
1

Bβm,1

m∑
i=1

Dm,i .

(64)

Setting λ = 0 in (63), one has

τα
m

m∑
i=1

Dm,i ≤ T α

1 − α
. (65)

Using (65) in (64) yields

||χ̂m ||∞ ≤ ||χ̂0||∞ + �(2 − α)
T α

1 − α
|| f ||∞.

The above equation implies that

||χ̂m ||∞ ≤ ||χ̂0||∞ + �(1 − α)T α|| f ||∞. (66)

We now state and prove the main stability theorem. ��
Theorem 3 The numerical scheme defined by (36) is unconditionally stable.

Proof Let χ̃m
n be the approximate solution of (36). The error ēmn = χ̃m

n − χ̂m
n , n =

0, 1, ..,M; m = 0, 1, ..,N satisfies
( −a

�x2
− b

2�x
+ p + βm,1B

12
− βm,1Bq�x

2

)
ēmn−1 +

(
2a

�x2
− 2p + 5βm,1B

6

)
ēmn

+
( −a

�x2
+ b

2�x
+ p + βm,1B

12
+ βm,1Bq�x

2

)
ēmn+1 = B

m−1∑
k=1

[
βm,k − βm,k+1

] [(
1

12
− q�x

2

)
ēm−k
n−1

+ 5

6
ēm−k
n +

(
1

12
+ q�x

2

)
ēm−k
n+1

]
+ Bβm,m

[(
1

12
− q�x

2

)
ē0n−1 + 5

6
ē0n +

(
1

12
+ q�x

2

)
ē0n+1

]
,

n = 1, 2, ..,M − 1, m = 1, 2, ..,N − 1.
(67)

Taking into account Lemma 2 and Theorem 2, one has

||ēm ||∞ ≤ ||ē0||∞, 1 ≤ m ≤ N , (68)

where ||ēm ||∞ = max
1≤n≤M−1

|ēmn |. This demonstrates that the proposed numerical

scheme (36) is unconditionally stable. ��
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5 Convergence analysis

In this section, we study the convergence analysis of the numerical scheme based on
graded mesh described by (36). Let emn = χm

n − χ̂m
n for 0 ≤ n ≤ M and 0 ≤ m ≤ N .

Then, subtracting (36) from (33), one obtain the following error equation
( −a

�x2
− b

2�x
+ p + βm,1B

12
− βm,1Bq�x

2

)
emn−1 +

(
2a

�x2
− 2p + 5βm,1B

6

)
emn

+
( −a

�x2
+ b

2�x
+ p + βm,1B

12
+ βm,1Bq�x

2

)
emn+1 = B

m−1∑
k=1

[
βm,k − βm,k+1

] [(
1

12
− q�x

2

)
em−k
n−1

+ 5

6
em−k
n +

(
1

12
+ q�x

2

)
em−k
n+1

]
+ Bβm,m

[(
1

12
− q�x

2

)
e0n−1 + 5

6
e0n +

(
1

12
+ q�x

2

)
e0n+1

]
+ R̂m

n ,

n = 1, 2, ..,M − 1, m = 1, 2, ..,N − 1,
(69)

where R̂m
n is defined by (33). As the error terms at initial time level are zero, it follows

from (69) that

( −a

�x2
− b

2�x
+ p + βm,1B

12
− βm,1Bq�x

2

)
emn−1 +

(
2a

�x2
− 2p + 5βm,1B

6

)
emn

+
([ −a

�x2
+ b

2�x
+ p + βm,1B

12
+ βm,1Bq�x

2

)
emn+1 = B

m−1∑
k=1

[
βm,k − βm,k+1

] [(
1

12
− q�x

2

)

em−k
n−1 + 5

6
em−k
n +

(
1

12
+ q�x

2

)
em−k
n+1

]
+ R̂m

n , n = 1, 2, ...,M − 1, m ≥ 1.

(70)

Considering similar arguments as used in Lemma 2, we can obtain the following result

(
2a

�x2
− 2p + 5βm,1B

6

)
||em ||∞ ≤

(
2a

�x2
− 2p − βm,1B

6

)
||em ||∞

+ B
[ m−1∑

k=1

(βm,k − βm,k+1)||em−k ||∞
]

+ ||R̂m ||∞,

(71)

which is equivalent to

||em ||∞ ≤ 1

βm,1B ||R̂m ||∞ + 1

βm,1

m−1∑
k=1

(βm,k − βm,k+1)||em−k ||∞. (72)

Lemma 6 The solution of (70) satisfies

||em ||∞ ≤ 1

Bβm,1

m∑
i=1

Dm,i ||R̂i ||∞. (73)
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Proof We use induction on m to prove the result. When m = 1, (72) reduces to

||e1||∞ ≤ 1

Bβ1,1
||R̂1||∞,

which suggests that (73) holds true for m = 1. Let’s assume that (73) holds true for
1 ≤ m ≤ j − 1, that is

||em ||∞ ≤ 1

Bβm,1

m∑
i=1

Dm,i ||R̂i ||∞, for 1 ≤ m ≤ j − 1. (74)

Now, we prove that (73) holds true for m = j . Considering (72) at m = j yields

||e j ||∞ ≤ 1

β j,1B ||R̂ j ||∞ + 1

β j,1

j−1∑
k=1

(β j,k − β j,k+1)||e j−k ||∞. (75)

Taking into account (74), it follows from (75) that

||e j ||∞ ≤ 1

Bβ j,1

[
||R̂ j ||∞ +

j−1∑
k=1

(β j,k − β j,k+1)
1

β j−k,1

j−k∑
i=1

Dj−k,i ||R̂i ||∞
]

≤ 1

Bβ j,1

[ j−1∑
k=1

j−k∑
i=1

1

β j−k,1
(β j,k − β j,k+1)Dj−k,i ||R̂i ||∞ + ||R̂ j ||∞

]

≤
j−1∑
i=1

1

Bβ j,1
||R̂i ||∞

j−i∑
k=1

1

β j−k,1
(β j,k − β j,k+1)Dj−k,i + 1

Bβ j,1
||R̂ j ||∞.

The last inequality is equivalent to

||e j ||∞ ≤
j−1∑
i=1

1

Bβ j,1
||R̂i ||∞

j−i∑
k=1

τα
j−k(β j,k − β j,k+1)Dj−k,i + 1

Bβ j,1
||R̂ j ||∞.

(76)

Using (57) in (76), one has

||e j ||∞ ≤
j−1∑
i=1

1

Bβ j,1
||R̂i ||∞Dj,i + 1

Bβ j,1
||R̂ j ||∞.

The above equation simplifies to

||e j ||∞ ≤ 1

Bβ j,1

j∑
i=1

Dj,i ||R̂i ||∞.

123



Numerical Algorithms

Fig. 1 The generation of temporal mesh points for different α: Top: Graded mesh, Bottom: Adapted mesh
(at last time level)

Thus, (73) is valid for m = j . Therefore, the conclusion of Lemma 6 is proved. We
now state and prove the main convergence theorem. ��

Theorem 4 Let χ(x, t) be the exact solution of (1)–(3) and χ̂n
m be the discrete solution

of (36)–(39). Then, there exist a constant C∗ independent of �x and βm,1 such that

||em ||∞ ≤ C∗ (
N−min{2−α, rα} + �x4

)
.

Fig. 2 The generation of adapted
moving meshes for α = 0.1
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Fig. 3 The generation of adapted
moving meshes for α = 0.4

Proof From lemma 6, we have

||em ||∞ ≤ 1

Bβm,1

m∑
i=1

Dm,i ||R̂i ||∞. (77)

In view of (33), (77) yields

||em ||∞ ≤ 1

Bβm,1

m∑
i=1

Dm,i Ĉ

(
�x4 + i−min{2−α,rα}

)
. (78)

Taking into account (63), it follows from (78) that

||em ||∞ ≤ �(2 − α)Ĉ

[
�x4T α

1 − α
+ N−min{2−α,rα}T α

1 − α

]

≤ �(1 − α)T αĈ

(
�x4 + N−min{2−α,rα}

)

= C∗
(
N−min{2−α,rα} + �x4

)
.

Fig. 4 The generation of adapted
moving meshes for α = 0.6
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Fig. 5 3D plots of numerical solutions on adapted, graded and uniformmeshes for Example 1 when α = 0.1

Hence, Theorem 4 is proved. ��

6 Numerical results

Here, three numerical examples of the form (1)–(3) are presented to illustrate the
efficiency and robustness of proposed methods. It is worth mentioning that the exact
solution to the first test problem has a weak singularity at the initial time t = 0, while

Fig. 6 3D plots of numerical solutions on graded, adapted and uniformmeshes for Example 1 when α = 0.8
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Table 4 The ROC in space for
graded mesh with
r = (2 − α)/α, when α = 0.8
andN = 12000 for example 1

M L∞ error Order L2 error Order

4 0.0032 4.0002 0.0023 4.0219

8 1.9997e−04 4.0013 1.4158e−04 4.0070

16 1.2487e−05 4.0165 8.8060e−06 4.0038

32 7.7156e−07 5.4892e−07

the solution of second one is smooth and the exact solution to the third problem is
not known. We calculate the L∞ norm error and the maximum L2 norm error in the
computed solution corresponding to the graded mesh using the following formulae

LN ,M∞ = max
0≤m≤N ,0≤n≤M

|χ̂m
n − χ(xn, tm)| (79)

and

LN ,M
2 = max

0≤m≤N

(
�x

M−1∑
n=1

(χ̂m
n − χ(xn, tm))2

) 1
2

, (80)

where χ̂m
n andχ(xn, tm) respectively denotes the computed solution and exact solution.

We compare the numerical results obtained with the graded and adaptive meshes with
the results obtained with the uniform mesh.

Example 1 Let us consider (1)–(3) with a = b = 1, g(x) = 4x2(1 − x)2 and T = 1.
The analytical solution is given by

χ(x, t) = (2x(1 − x))2(tα + sin(x)). (81)

The solution of above problem exhibits a weak singularity at t = 0. The right-hand
side source function f (x, t) can be obtained by inserting (81) into left-hand side of
(1).

The presented schemes are employed to approximate the solution of this problem
for various values of α,N andM. Figure1 shows the formation of mesh points at final
time level corresponding to the adaptive mesh technique and graded mesh technique
for α = 0.1, 0.4, and 0.6, when N = M = 64. As it can be seen in Fig. 1 that
the concentration of mesh points near t = 0 for α = 0.1 is higher than that for
α = 0.6. Figs. 2, 3 and 4 show the time evolution of mesh geometry on the adaptive
mesh technique for α = 0.1, α = 0.4 and α = 0.6, respectively. It can be noted from
the figures that the number of iterations (NOI) increases as α decreases. In particular,

Table 5 The ROC in space for
adaptive mesh, when α = 0.8
andN = 12000 for example 1

M L∞ error Order L2 error Order

4 0.0032 4.0002 0.0023 4.0219

8 1.9997e−04 4.0010 1.4158e−04 4.0064

16 1.2489e−05 4.0047 8.8097e−06 4.0194

32 7.7801e−07 5.4325e−07

123



Numerical Algorithms

Fig. 7 Maximum absolute errors on adapted, graded and uniform meshes for α = 0.4

the NOI (within given tolerance) for α = 0.1, α = 0.4 and α = 0.6 are 24, 7 and
4 respectively. The 3D plots of the numerical results on graded, adapted and uniform
grids for α = 0.1 and 0.8 are depicted in Figs. 5 and 6, respectively. One can observe
from the Figures that there is an initial layer in the solution profile which is consistent
with (5). Further, one can observe from Figs. 5 and 6 that as α decreases the layer at
t = 0 becomes sharper.

Next, we calculate the L∞ norm errors of presented schemes in time direction for
different values of α. Table 1 lists the L∞ norm errors, the rate of convergence (ROC)
and CPU time corresponding to the graded mesh with r = 2(2−α)/α, adaptive mesh
and uniform mesh for α = 0.4, 0.6 and 0.8. It can be noted from the tables that the

Fig. 8 Maximum absolute errors on adapted, graded and uniform meshes for α = 0.6
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Fig. 9 Maximum absolute errors on adapted, graded and uniform meshes for α = 0.8

scheme based on graded mesh yields much better accuracy (in temporal direction)
as compared to the methods on adapted and uniform grids. Further, the method with
adaptive mesh produces an approximation to the solution of the TFAD equation using
more computational resources, both in terms of storage and CPU time. Moreover,
we have calculated the errors on the graded mesh with r = (2 − α)/α and r =
(2 − α)/(2α), as listed in Tables 2 and 3, respectively for different values of α.
One can observe from Tables 1, 2, and 3 that in the case of grading parameter r =
(2 − α)/(2α), the rate of convergence is (2 − α)/2, while for r = 2(2 − α)/α and
r = (2 − α)/α, the optimal rate (2 − α) is obtained. Further, the method on graded
mesh with r = 2(2 − α)/α produces more accurate solution than the method with

Fig. 10 3D plots of absolute errors on adapted, graded and uniform meshes for α = 0.8
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Table 6 The ROC in time for uniform mesh for example 2

α = 0.4 α = 0.6 α = 0.8
N = M L∞ error Order L∞ error Order L∞ error Order

128 1.2560e−05 1.5702 5.6247e−05 1.3867 2.2853e−04 1.1935

256 4.2297e−06 1.5780 2.1510e−05 1.3915 9.9921e−05 1.1964

512 1.4167e−06 1.5835 8.1991e−06 1.3945 4.3602e−05 1.1980

1024 4.7271e−07 3.1187e−06 1.9006e−05

r = (2 − α)/α. Furthermore, the uniform mesh method fails to provide an optimal
(2 − α)−th order of convergence in time.

Next, we calculate the convergence rates of proposed schemes in space with respect
to L∞ and L2 norm errors. To do so, we calculate the errors for various values ofM
by fixingN (viz. N = 12000). Table 4 lists the L2 norm and L∞ norm errors and the
rates of convergence obtained by the method on graded mesh with r = (2− α)/α for
α = 0.8. Table 5 lists the L2 norm and L∞ norm errors and the rates of convergence
obtained by the method on adapted mesh for α = 0.8. The tables indicate that the
computed solution converges to the exact solution with fourth-order accuracy and
confirm that the numerical results are in agreement with the theoretical results in
Theorem 4. The L∞ norm errors obtained on graded mesh with r = (2 − α)/α,

adapted grid and uniform grid for α = 0.4, 0.6 and 0.8, are depicted in Figs. 7, 8
and 9, respectively. From the figures, one can observe that the error decreases with the
increase inM,N and the schemebased on gradedmesh yieldsmuchbetter accuracy as
compared to the methods on adapted and uniform grids. The 3D plots of the absolute
errors (in time) obtained by the methods on graded, adapted and uniform grids for

Table 7 The ROC in time for adapted mesh, graded mesh with r = (2 − α)/α and uniform mesh for
example 3

Graded mesh Uniform mesh Adapted mesh
α N = M L∞ error Order L∞ error Order L∞ error Order

0.4 64 5.1901e−03 1.4658 0.0308 0.3068 7.0928e−04 1.3867

128 1.8790e−03 1.5134 0.0249 0.3306 2.7126e−04 1.4698

256 6.5820e−04 1.5317 0.0198 0.3532 9.7932e−05 1.5205

512 2.2765e−04 0.0155 3.4136e−05

0.6 64 5.1980e−03 1.3309 1.4512e−02 0.5825 1.5212e−03 1.2755

128 2.0761e−03 1.3562 9.6892e−03 0.5942 6.2839e−04 1.3211

256 8.0485e−04 1.3671 6.4181e−03 0.5976 2.5149e−04 1.3525

512 3.1094e−04 4.2415e−03 9.8490e−05

0.8 64 5.5986e−03 1.1741 5.4361e−03 0.7953 2.7984e−03 1.1439

128 2.4811e−03 1.1877 3.1325e−03 0.8007 1.2664e−03 1.1556

256 1.0892e−03 1.1924 1.7983e−03 0.8067 5.6846e−04 1.1766

512 4.7661e−04 1.0281e−03 2.5149e−04
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Fig. 11 3D plots of numerical solutions on adapted, graded and uniform meshes for Example 3 when
α = 0.1

α = 0.8 are shown in Fig. 10 when M = N = 64. It can be observed from the
Figures that the error increases towards t = 0 and the present method with graded
grid gives far better results as compared to the method with adapted grid or uniform
grid.

Example 2 Consider (1)–(3) with a = b = 1, g(x) = 4x2(1 − x)2, and T = 1. The
exact solution of this problem is χ(x, t) = (2x(1−x))2(t3+α +sin(x)). This example
has a smooth solution at t = 0.

The proposed scheme based on uniform mesh is employed to approximate the
solution of this problem for several values of α, M and N . The L∞ errors for α =
0.4, 0.6 and 0.8 are reported in Table 6. One can conclude from the table that the
uniform mesh method has an optimal rate convergence (i.e., (2−α)) in time direction
in the case when the exact solution to the TFAD problem is smooth.

Example 3 Consider (1)–(3) with a = b = 1, g(x) = sin x, T = 1 and f (x, t) =
(1 + t4)(x2 − πx) + t2. The exact solution of this problem is not known.

The proposed schemes on graded mesh with r = (2 − α)/α, adapted mesh and
uniform mesh are employed to approximate the solution of this problem for several

Table 8 The ROC in space for adapted mesh, graded mesh with r = (2 − α)/α and uniform mesh, when
N = 12000 for example 3

Graded mesh Uniform mesh Adapted mesh
α M L∞ error Order L∞ error Order L∞ error Order

0.8 4 0.0022 4.0436 0.0022 4.0436 0.0022 4.0436

8 1.3340e−04 3.9901 1.3340e−04 3.9901 1.3340e−04 3.9975

16 8.3951e−06 8.3952e−06 8.3522e−06
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values of α,M andN . The L∞ errors for α = 0.4, 0.6 and 0.8 are reported in Table 7.
One can observe from the table that the graded and adaptive mesh methods yield the
optimal rate of convergence O(N−(2−α)) in time, while the uniform mesh yields the
suboptimal order convergence, that is, the order is close to α. Table 8 presents the
L∞ norm errors and the corresponding rates of convergence in space obtained by the
methods on adapted mesh, graded mesh with r = (2 − α)/α and uniform mesh for
α = 0.8.The table indicates that the computed solution converges to the exact solution
with fourth-order accuracy. The 3D plots of the numerical solutions on graded, adapted
and uniform grids for α = 0.1 are depicted in Fig. 11. One can observe from the Figure
that there is an initial layer in the solution profile.

7 Conclusions

In this article, efficient and robust numerical schemes based on graded and adaptive
meshes have been developed for solving the TFAD model with weakly singular solu-
tion. The temporal derivative is described in the sense of Caputo. We have constructed
adaptive moving mesh algorithm and graded mesh technique to deal with the weak
singularity at the initial time. The space derivative is discretized by a high-order dif-
ference scheme. It has been shown that the graded mesh method is unconditionally
stable. Convergence result of the method based on graded mesh has been established.
Three numerical examples were solved to demonstrate the applicability and efficiency
of proposed methods. The computed results suggest that the method based on graded
or adapted mesh well approximate the solution of a given TFAD problem and yields
the optimal (2 − α)−th order of convergence in time. The results obtained with the
graded or adaptive mesh are better as compared to those obtained with the uniform
mesh in terms of numerical accuracy. The uniform mesh method has the α−th order
of convergence in time in the case when the solution is nonsmooth. The method with
adaptive grid produces an approximation to the solution of the TFAD problem using
more computational resources. In the subsequent paper, we will design and analyze
robust numerical scheme based on adaptive and gradedmeshes for the efficient numer-
ical solution of a TFAD model with variable coefficients.
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