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Abstract
In this paper, we propose a collocation scheme for efficiently solving the mixed
time-fractional Black-Scholes (MTF-BS) model and obtaining the option price. Our
approach involves deriving themixed fractional Black-Scholes (MF-BS) partial differ-
ential equation (PDE) considering the delta hedging strategy and the mixed fractional
GeometricBrownianmotion (MFGBM)model. To simplify the problem,we transform
theMTF-BS PDE into a modified Riemann-Liouville derivative form. Subsequently, a
collocation method is employed to numerically solve the transformed equation, where
the solution is represented as a series of fractional Jaiswal functions with unknown
coefficients. By utilizing operational matrices and collocation points, we convert the
problem into a linear systemof equations, allowing for the examination of convergence
and stability in the Sobolev spaces. Finally, we present four examples to demonstrate
the method’s effectiveness and accuracy.

Keywords Collocation method · Time fractional mixed fractional Black-Scholes
model · Jaiswal polynomials · Long memory property

1 Introduction

Option pricing is a financial concept that involves determining the value of a financial
contract known as an option [1]. The pricing of options is crucial for investors and
traders in the financial markets as it helps them to make informed decisions about
buying, selling, or holding these instruments. By understanding the value of options,
market participants can assess the potential risks and rewards associated with their
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investment strategies. The Black-Scholes (BS) model, developed in the 1970s, is one
of the prominent methodologies used for option pricing [2]. This model takes into
consideration factors such as the asset price, the strike price, the expiration time, the
expected volatility, interest rates, and dividends. By incorporating these variables, the
model generates an estimated value for the option.

Financial models play an important role in option pricing because they help deter-
mine the fair value or theoretical price of an option contract [3, 4]. These models
often use stochastic processes to incorporate uncertainty and randomness into their
calculations. In recent years, various stochastic processes have been used in financial
models. One of the most important ones is fractional Brownian motion (fBm) [5, 6].
The fBm was first introduced by Kolmogorov in 1940, and it is a stochastic process
that is widely employed in financial modeling due to its ability to capture long-range
dependence, self-similarity, and fractal nature in asset price movements over time [7].
Unlike the standard Brownian motion, which assumes independent and identically
distributed increments, the fBm process incorporates memory effects, making it a
suitable tool for modeling financial data with persistent autocorrelation. The process
is parameterized by a Hurst exponent (H), which characterizes the level of dependence
present in the data. If H ∈ ( 12 , 1), the process has long memory [8]. However, since
the fBm process with H �= 1

2 is not a semimartingale, applying the related financial
models creates arbitrage opportunities [9–11]. But Cheridito in 2001 studied the fBm
models and showed how arbitrage can be removed from fBm models [12]. Moreover,
he presented the mfBm, which combines the properties of both the fBm process and
the Brownian motion, in 2009 as [13]:

MH
t = αBt + βBH

t , H ∈ (0, 1), and t ≥ 0, (1)

where α and β are real constants. Cheridito showed that the mfBm process with
H ∈ ( 34 , 1) is equivalent to a martingale, and applying the mixed fractional models for
forecasting the stock price doesn’t create arbitrage opportunities [13]. After that, Zili in
2006 studied the process and presented some stochastic properties and characteristics
of this process [14]. Cai et al. [15], Zhang et al. [16], and Xiao et al. [17] applied the
process in different financial models and showed that the efficiency of the process is
higher than the standard and fBms.

1.1 Themethodology for determining the option price PDE

Here, we obtain the option price PDE under the MFGBM model. Let (�,F ,P) be a
probability space and the dynamic of the asset price satisfies the following equation:

dS(t) = μS(t)dt + σ S(t)dM(t), t ≥ 0, (2)

where μ and σ are constants.
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Lemma 1 Let V(S, t) denotes the value of the option on the underlying asset S at time
t. Then, V(S, t) satisfies in

∂V
∂t

(S, t) + σ 2
1 (t)

2
S(t)2

∂2V
∂S2

(S, t) + r S(t)
∂V
∂S

(S, t) − rV(S, t) = 0. (3)

where

σ 2
1 (t) = 2σ 2

⎛
⎝β2

(
1

2
+ Ht2H−1

)
−
√

2

π

k

σ

√
β2 + β2(dt)2H−1

dt
sign(

∂2V
∂S2

)

⎞
⎠ .

(4)

Proof Let Y denotes a replicating portfolio with the call option V and sell � shares of
the underlying stock S. Then, the portfolio’s price equation satisfies in:

Y (t) = V(S, t) − �(t)S(t), t ≥ 0. (5)

By Proposition 2.9 and Theorem 2.10 from [18] for Y and V , we deduce that

dY (t) = dV(S, t) − �dS(t) − k|νt |St+δt

=
[∂V

∂t
(S, t) + μS(t)

∂V
∂S

(S, t) + β2
(
1

2
+ Ht2H−1

)

σ 2S(t)2
∂2V
∂S2

(S, t) − μS(t)�(t)
]
dt

+ σ S(t)(
∂V
∂S

(S, t) − �(t))dMH
t − k|νt |St+dt . (6)

To derive the PDE, we remove the stochastic part of the (6). Thus, � = ∂V
∂S which

this is the Delta Hedging assumption of Leland and Kabanov strategies [19, 20].
Therefore, we conclude that

dY (t) =
[∂V

∂t
(S, t) + μS(t)

∂V
∂S

(S, t) + β2
(
1

2
+ Ht2H−1

)
σ 2S(t)2

∂2V
∂S2

(S, t)

− μS(t)�(t)
]
dt − k|νt |S(t + dt), (7)

where νt = �(t + dt) − �(t) and k = k0nξ−1/2 is the amount of transaction costs in
which k0 > 0 and ξ ∈ [0, 1/2] are constant and n is the number of revisions. Also,
we have

E(k|νt |S(t + dt)) = k|∂
2V

∂S2
|σ S(t)E (|dM(t)|S(t + dt)) + O(dt).

=
√

2

π
kσ S(t)2

√
β2dt + β2(dt)2H |∂

2V
∂S2

(S, t)| + O(dt). (8)
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By removing the random part of the (7), the expected return of the Hedge portfolio
is equal to the risk-free rate ( r ). Thus, we deduce that

E(dY (t)) = rY (t)dt . (9)

Additionally, one has

E(dY (t)) =
(

∂V
∂t

(S, t) + β2
(
1

2
+ Ht2H−1

)
σ 2S(t)2

∂2V
∂S2

(S, t)

)
dt

−
√

2

π
kσ S(t)2

√
β2dt + β2(dt)2H |∂

2V
∂S2

(S, t)| + O(dt). (10)

By (9) and (10), we deduce that

∂V
∂t

(S, t)+β2
(
1

2
+ Ht2H−1

)
σ 2S(t)2

∂2V
∂S2

(S, t) + r S(t)
∂V
∂S

(S, t)

−
√

2

π
kσ S(t)2

√
β2 + β2(dt)2H−1

dt
|∂

2V
∂S2

(S, t)| − rV(S, t) = 0. (11)

Let us consider

σ 2
1 (t) = 2σ 2

⎛
⎝β2

(
1

2
+ Ht2H−1

)
−
√

2

π

k

σ

√
β2 + β2(dt)2H−1

dt
sign(

∂2V
∂S2

)

⎞
⎠ .

Finally, we obtain

∂V
∂t

(S, t) + σ 2
1 (t)

2
S(t)2

∂2V
∂S2

(S, t) + r S(t)
∂V
∂S

(S, t) − rV(S, t) = 0.

1.2 Fractional model

In light of their vast range of applications, fractional partial differential equations
(FPDEs) have sparked the interest of scientists from a variety of disciplines.Many arti-
cles have investigated fractionalBlack-Scholesmodels.Meihui Zhang et al. focused on
a time-fractional option pricing model with asset-price-dependent variable order and a
fast numerical technique to solve the time-fractional option pricing mode [21]. Fazlol-
lah Soleymani and Shengfeng Zhu introduced a discretization scheme of (2−α) order
for the Caputo fractional derivative utilizing graded meshes along the time dimension
to solve the time-fractional option price PDE [22]. Othermethods are also provided for
the numerical solution of the time-fractional option price PDE [23–39]. H. Mesgarani
et al. investigated the approximation of the solution u(x, t) for the temporal fractional
Black-Scholes model, which involves the Caputo sense time derivative and is subject
to initial and boundary conditions [31]. H. Mesgarani et al. introduced a novel fuzzy
mathematical programming approach initially designed to address problems within
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the framework of linear programming (LP) models [32]. Y. Esmaeelzade Aghdam
et al. combined the composition of orthogonal Gegenbauer polynomials (GB polyno-
mials) and the approximation of the fractional derivative based on theCaputo derivative
for estimating the fractional Black-Scholes model [33]. In the sequel, we consider the
following equation,

∂αV(S, γ )

∂γ β
+ σ 2

1 (γ )

2
S(γ )2

∂2V(S, γ )

∂S(γ )2
+ r S(γ )

∂V(S, γ )

∂S(γ )
− rV(S, γ ) = 0, (12)

where ∂αV(S,γ )

∂γ β is the modified Riemann-Liouville derivative

∂αV(S, γ )

∂γ α
= 1


(1 − α)

d

dγ

∫ T

γ

V(S, ψ) − V(S, T )

(ψ − γ )α
dψ, 0 < α < 1. (13)

For this problem, we consider the initial and boundary conditions as

V(0, γ ) = V1(γ ), V(∞, γ ) = V2(γ ), (14)

V(S, T ) = V3(S). (15)

Assume, S = ex , γ = T − t , and J (x, t) = V(ex , T − t). Then, we have

∂V(S, γ )

∂S
= 1

S

∂J (x, t)

∂x
,

∂2V(S, γ )

∂S2
= − 1

S2
∂J (x, t)

∂x
+ 1

S2
∂2J (x, t)

∂x2
,

∂αV(S, γ )

∂γ α
= − 1


(1 − α)

d

dt

∫ T

0

V(S, T − ψ) − V(S, T )

(T − ψ)β
dψ = − C

0 D
α
t J (x, t),

where
C
0 D

α
t J (x, t) = 1


(1 − α)

∫ t

0
(t − σ)−α ∂J (x, σ )

∂σ
dσ. (16)

So that, we obtain

C
0 D

α
t J (x, t) = p(t)

∂2J (x, t)

∂x2
+ q(t)

∂J (x, t)

∂x
− rJ (x, t), x ∈ R, 0 ≤ t ≤ T ,

(17)

J (−∞, t) = J1(t), J (∞, t) = J2(t), (18)

J (x, 0) = J3(x). (19)

Remark 1 Werestrict the domainof space to afinite interval [c, d]becauseof numerical
limitations and to assess our numerical schemewith artificial exact solutions.We apply
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a source termF(x, t) to problem (17)–(19).As a result,wehave the followingproblem:

C
0 D

α
t J (x, t) =p(t)

∂2J (x, t)

∂x2
+ q(t)

∂J (x, t)

∂x
− rJ (x, t) + F(x, t), x ∈ (c, d), 0 ≤ t ≤ T , (20)

J (c, t) =J1(t), J (d, t) = J2(t), (21)

J (x, 0) =J3(x). (22)

Remark 2 In real-world problems,wehave some limitations on the initial andboundary
conditions. Since the price of the stock changes within a logical interval, we first obtain
the stockprice basedon thefinancialmodel.As a result,we candetermine theminimum
and maximum values of the stock price. With these values, we derive the boundary
conditions for the option price.

1.3 Spectral methods

Spectral methods are a technique used to find the solution to a differential equation
by representing it as a series of well-defined and smooth functions. These methods,
which have gained popularity, are now considered a valid alternative to finite difference
and finite element methods when it comes to numerically solving partial differential
equations. These methods are comprehensive approaches in which the calculation at
any specific location is influenced not only by data from nearby locations but also by
data from the entire region. They are also considered global because they utilize all the
available function values to create the required approximations. Different approaches
used for solving partial differential equations using polynomial spectral methods are
the Galerkin, tau, and collocation method.

1.4 Contribution and structure of the paper

As far as the authors are aware, the numerical solution of the problem (12)–(15)
has not been investigated until now, and this study is the first attempt. We intend
to propose a polynomial collocation scheme based on Jaiswal polynomials to solve
the problem (20)–(22). To overcome this issue, let the solution to the problem be
considered as a series of Jaiswal polynomials with unknown coefficients. By doing
so, we will approximate the problem, and by collocating the resulting equations, we
obtain a linear system of equations. The unknown coefficients are obtained by solving
the resulting system, and the numerical solution of the problem is constructed. The
convergence of the introduced scheme is studied in the Sobolev space. Some instances
are provided to demonstrate the significance of the method.

In the following, the paper’s main contributions is presented:

• Introducing a fast collocation method to solve the model numerically.
• Introducing fractional form of Jaiswal polynomials.
• Computing operational matrices of the fractional jaiswal polynomials.
• Studied error analysis in the Sobolev space.
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• Provided test problems with artificial and non-artificial exact solutions.

The continuation of the article is as follows: In Section 2, we introduce the Jaiswal
polynomials and their fractional form and obtain the operational matrix of these
polynomials. Section3 is devoted to constructing a numerical scheme to address
problem (20)–(22). An analysis of the suggested scheme is discussed in Section 4.
Section5 includes some examples to demonstrate how well the approach works.
Finally, Section 6 concludes the article.

2 Jaiswal polynomials

In this part, we generate fractional Jaiswal functions by employing Jaiswal polynomi-
als, which were initially proposed by D.V. Jaiswal in 1974 [40]. Jaiswal polynomials
can be defined by the following explicit formula.

An(y) =
� n−1

3 �∑
i=0

(−1)i (n − 1 − 2i)!
i !(n − 1 − 3i)! (2y)n−1−3i , n ≥ 1. (23)

For every n ≥ 0, the subsequent relationship is true

yn = 1

2n

� n
3 �∑

t=0

n!(n − 3t + 1)

t !(n − t)!(n − t + 1)
An−3t+1(y). (24)

The process of defining fractional Jaiswal functions involves applying a transfor-
mation y → yh, h ∈ R

+ to (23), in the following manner.

Ah
n(y) =

� n−1
3 r f loor∑
i=0

(−1)i2n−1−3i (n − 1 − 2i)!
i !(n − 1 − 3i)! y(n−1−3i)h, n ≥ 1. (25)

Moreover, we have

ynh = 1

2n

� n
3 �∑

t=0

n!(n − 3t + 1)

t !(n − t)!(n − t + 1)
Ah

n−3t+1(y). (26)

We can represent a continuous function J (x, t) by utilizing fractional Jaiswal
functions, as demonstrated below.

J (x, t) =
∞∑
i=0

∞∑
j=0

bi+1, j+1Ah1
i+1(x)A

h2
j+1(t), (27)
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where h1, h2 ∈ R. We use the truncated series of (27) in order to approximate J (x, t)
as follows:

JNt
Nx

(x, t) =
Nx∑
i=0

Nt∑
j=0

bi+1, j+1Ah1
i+1(x)A

h2
j+1(t) = Ah1

Nx
(x)TMAh2

Nt
(t), (28)

where

M =

⎡
⎢⎢⎢⎣

m11 m12 . . . m1Nt+1
m21 m22 . . . m2Nt+1
...

... . . .
...

mNx+11 mNx+12 . . . mNx+1Nt+1

⎤
⎥⎥⎥⎦

and

Ah1
Nx

(x) = [Ah1
0 (x), . . . ,Ah1

Nx+1(x)]T , Ah2
Nt

(t) = [Ah2
0 (t), . . . ,Ah2

Nt+1(t)]T .

Furthermore, (28) can be expressed in an equivalent manner as provided below:

JNt
Nx

(x, t) = (ZxT h1
Nx

(x))TMZtT h2
Nt

(t), (29)

where Zx and Zt are as follows

(zi, j ) =
⎧⎨
⎩
(i−2� i− j

3 �
� i− j

3 �
)
(−1)�

i− j
3 �2i−3� i− j

3 �, i f i ≥ j, i ≡ j (mod 3),

0, otherwise,

and
T h1
Nx

(x) = [1, xh1 , . . . , xNx h1 ]T , T h2
Nt

(t) = [1, th2 , . . . , tNt h2 ]T .

3 Methodology

In this section,wedevelop anumerical techniqueusingoperationalmatrices to estimate
the (20)–(22). It should be noted that there is not any non-linearity in (4). In fact
sign( ∂2V

∂S2
) is equal ±1. After collocating the approximated model, this term will be a

constant number. To begin, we make an estimation of the Caputu fractional derivative.

C
0 D

α
t J (x, t) ≈ C

0 D
α
t J

Nt
Nx

(x, t) = C
0 D

α
t (ZxT h1

Nx
(x))TMZtT h2

Nt
(t)

= (ZxT h1
Nx

(x))TMZt
C
0 D

β
t T h2

Nt
(t). (30)
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Next, we calculate the expression C
0 D

α
t T

h2
Nt

(t).

C
0 D

α
t T

h2
Nt

(t) =

⎡
⎢⎢⎢⎣

C
0 D

α
t 1

C
0 D

α
t t

h2

...
C
0 D

α
t t

Nt h2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0
1


(1−α)

∫ t
0 (t − σ)−αh2th2−1dσ

...
1


(1−α)

∫ t
0 (t − σ)−αNt h2tNt h2−1dσ

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0

(h2+1)


(h2+1−α)
th2−α

...

(Nt h2+1)


(Nt h2+1−α)
th2−α

⎤
⎥⎥⎥⎥⎦

= DαT h2
Nt

(t), (31)

where

Dβ = t−α

⎛
⎜⎜⎜⎜⎝

0 0 . . . 0
0 
(h2+1)


(h2+1−α)
. . . 0

...
... . . . 0

0 0 . . .

(Nt h2+1)


(Nt h2+1−α)

⎞
⎟⎟⎟⎟⎠

.

We have obtained by substituting (31) for (30)

C
0 D

α
t J (x, t) ≈ (ZxT h1

Nx
(x))TMZtDαT h2

Nt
(t). (32)

Now, we attempt to approximate the first and second derivatives of J (x, t).

J ′(x, t) ≈ J ′Nt
Nx

(x, t) = (ZxT ′h1
Nx

(x))TMZtT h2
Nt

(t)

= (T ′h1
Nx

(x))TZT
x MZtT h2

Nt
(t)

=

⎡
⎢⎢⎢⎣

0
h1xh1−1

...

Nxh1xNx h1−1

⎤
⎥⎥⎥⎦ZT

x MZtT h2
Nt

(t)

= (D1T h1
Nx

(x))TMZtT h2
Nt

(t), (33)

where

D1 = 1

x

⎛
⎜⎜⎜⎝

0 0 . . . 0
0 h1 . . . 0
...

... . . . 0
0 0 . . . Nxh1

⎞
⎟⎟⎟⎠ .
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likewise, one has

J ′′(x, t) ≈ J ′Nt
Nx

(x, t) = (ZxT ′′h1
Nx

(x))TMZtT h2
Nt

(t)

= (T ′′h1
Nx

(x))TZT
x MZtT h2

Nt
(t)

=

⎡
⎢⎢⎢⎣

0
h1(h1 − 1)xh1−2

...

Nxh1(Nxh1 − 1)xNx h1−2

⎤
⎥⎥⎥⎦ZT

x MZtT h2
Nt

(t)

= (D2T h1
Nx

(x))TMZtT h2
Nt

(t), (34)

where

D2 = 1

x2

⎛
⎜⎜⎜⎝

0 0 . . . 0
0 h1(h1 − 1) . . . 0
...

... . . . 0
0 0 . . . Nxh1(Nxh1 − 1)

⎞
⎟⎟⎟⎠ .

Using (32)–(34), we obtain

I1(x, t) = (ZxT h1
Nx

(x))TMZtDαT h2
Nt

(t) − p(t)(D2T h1
Nx

(x))TMZtT h2
Nt

(t)

− q(t)(D1T h1
Nx

(x))TMZtT h2
Nt

(t) + r(ZxT h1
Nx

(x))TMZtT h2
Nt

(t)

− F(x, t) ≈ 0.

(35)

Similarly, (21) and (22) can also be estimated as

I2(x, t) = (ZxT h1
Nx

(c))TMZtT h2
Nt

(t) − J1(t) ≈ 0, (36)

I3(x, t) = (ZxT h1
Nx

(d))TMZtT h2
Nt

(t) − J2(t) ≈ 0, (37)

I4(x, t) = (ZxT h1
Nx

(x))TMZtT h2
Nt

(0) − J3(t) ≈ 0. (38)

Therefore, using the points xi = i+1
Nx

and t j = j
Nt

, we obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I1(xi , t j ) = 0 i = 0, (1),Nx − 2, j = 0, (1),Nt − 1,

I2(t j ) = 0 i = 0, (1),Nt − 1,

I3(t j ) = 0 j = 0, (1),Nt − 1,

I4(xi ) = 0 j = 0, (1),Nx .

(39)

By solving (39) and finding the value of matrixM, we achieve the numerical solu-
tion for (20)–(22). Algorithm 1 outlines the fundamental steps required to implement
the suggested approach.
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Algorithm 1
Input: Nx , Nt ,h1,h2.
Step 1: Define the fractional Jaiswal functions.
Step 2: Create matrices Zx and Zt .

Step 3: Create vectors T h1
Nx

(x) and T h2
Nt

(t).
Step 4: Calculate the operational matrix for the time-fractional Caputo derivative using (32).
Step 5: Find the operational matrix for the first and second-order partial derivatives using (33) and (34).
Step 6: Define the unknown matrix M.
Step 7: Define the collocation points xi = i+1

Nx
and t j = j

Nt
.

Step 8: Construct the linear system of (39).
Step 9: Solve the preceding step’s linear equation system.
Output: Express the solution J (x, t) as an estimation using (28).

Theorem 1 Let J Nt
Nx

(x, t) = BTAh1h2
Nx Nt

(x, t) and J̃ Nt
Nx

(x, t) = B̃TAh1h2
Nx Nt

(x, t) be,
respectively, the exact and numerical solutions of (35), in which

B = [b11, . . . , b1Nt+1, b21, . . . , b2Nt+1, . . . , bNx1, . . . , bNx+1Nt+1]T ,

Ah1h2
Nx Nt

(x, t) = [Ah1
0 Ah2

0 , . . . ,Ah1
0 Ah2

Nt
, . . . ,Ah1

Nx
Ah2

1 , . . . ,Ah1
Nx
Ah2

Nt
]T .

Then, we have

||J Nt
Nx

(x, t) − J̃ Nt
Nx

(x, t)||2 ≤ C3||B − B̃||22
Nx∑
i=0

Nt∑
j=0

( � i
3 �∑

r=0

(−1)r2i−3r (i − 2r)!
r !(i − 3r)!

)2

( � j
3 �∑

r=0

(−1)r2 j−3r ( j − 2r)!
r !( j − 3r)!

)2

,

in which C3 is a constant.

Proof The inequality of Cauchy-Schwarz enables us to acquire

|| J Nt
Nx

(x, t) − J̃ Nt
Nx

(x, t)||22 =
∫ T

0

∫ d

c
|J Nt

Nx
(x, t) − J̃ Nt

Nx
(x, t)|2dxdt

=
∫ T

0

∫ d

c

∣∣∣∣
Nx∑
i=0

Nt∑
j=0

(bi+1, j+1 − b̃i+1, j+1)Ah1
i+1(x)A

h2
j+1(t)

∣∣∣∣
2
dxdt

≤
∫ T

0

∫ d

c

( Nx∑
i=0

Nt∑
j=0

|bi+1, j+1 − b̃i+1, j+1|2
)( Nx∑

i=0

Nt∑
j=0

|Ah1
i+1(x)A

h2
j+1(t)|2

)
dxdt

=
Nx∑
i=0

Nt∑
j=0

|bi+1, j+1 − b̃i+1, j+1|2
Nx∑
i=0

Nt∑
j=0

∫ T

0

∫ d

c
|Ah1

i+1(x)A
h2
j+1(t)|2dxdt

= ||B − B̃||22
Nx∑
i=0

Nt∑
j=0

∫ T

0

∫ d

c

∣∣∣∣
� i3 �∑
r=0

(−1)r 2i−3r (i − 2r)!
r !(i − 3r)! x(i−3r)h1

∣∣∣∣
2∣∣∣∣

� j
3 �∑

r=0

(−1)r 2 j−3r ( j − 2r)!
r !( j − 3r)! t( j−3r)h2

∣∣∣∣
2
dxdt
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≤ C1C2||B − B̃||22
Nx∑
i=0

Nt∑
j=0

∫ T

0

∫ d

c

( � i3 �∑
r=0

(−1)r 2i−3r (i − 2r)!
r !(i − 3r)!

)2( � j
3 �∑

r=0

(−1)r 2 j−3r ( j − 2r)!
r !( j − 3r)!

)2
dxdt

= (d − c)TC1C2||B − B̃||22
Nx∑
i=0

Nt∑
j=0

( � i3 �∑
r=0

(−1)r 2i−3r (i − 2r)!
r !(i − 3r)!

)2( � j
3 �∑

r=0

(−1)r 2 j−3r ( j − 2r)!
r !( j − 3r)!

)2

= C3||B − B̃||22
Nx∑
i=0

Nt∑
j=0

( � i3 �∑
r=0

(−1)r 2i−3r (i − 2r)!
r !(i − 3r)!

)2( � j
3 �∑

r=0

(−1)r 2 j−3r ( j − 2r)!
r !( j − 3r)!

)2
.

This completes the theorem’s proof. 
�

4 Convergence analysis

Therein, we examine the convergence of the suggested approach on the Sobolev space.
Our aim is to demonstrate that as the number of basis functions derived from the
fractional Jaiswal functions increases, the approximate solution gradually approaches
the exact value.Additionally,we define our function space and present several essential
theorems to support our findings. In � = (c, d) × (0, T ) for n ≥ 1 the Sobolev norm
is defined [41]

||J ||Hn (�) =
( n∑

j=0

2∑
i=1

||D( j)
i J ||2L2(�)

) 1
2

, (40)

where D( j)
i J stand for the jth derivative of J with respect to ith variable. The semi-

norm |J |Hn;N (�) are given by [41]

|J |Hn;N (�) =
( n∑

j=min(n,N+1)

2∑
i=1

||D( j)
i J ||2L2(�)

) 1
2

. (41)

Due to brevity, we will assume that h1 = h2 = h and Nx = Nt = N .

Theorem 2 [42] Let J (x, t) ∈ Hn(�) with n ≥ 1. Assume Ph
NJ (x, t) =∑N

i=0
∑N

j=0 bi+1, j+1Ah
i+1(x)Ah

j+1(t) be the best approximation of J . Then,

||J (x, t) − Ph
NJ (x, t)||L2(�) ≤ Ch1−nN 1−n|J |Hn;Nh (�), (42)

and for 1 ≤ s ≤ n,

||J (x, t) − Ph
NJ (x, t)||Hs (�) ≤ Chη(s)−nNη(s)−n|J |Hn;Nh (�), (43)

where

η(s) =
{
0, s = 0,

2s − 1
2 , s ≥ 0,

in which C depends on N and is a positive constant.
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Theorem 3 Assume J (x, t) ∈ Hn(�),n > 0. Then, for 1 ≤ s ≤ n

||C0 Dα
t J (x, t) − C

0 D
α
t (Ph

NJ (x, t))||L2(�)

≤ C(d − c)T 1−αhη(s)−nNη(s)−n|J |Hn;Nh (�)


(2 − α)
. (44)

Proof Using Young’s convolution inequality

||g1 ∗ g2||L2(�) ≤ ||g1||L1(�)||g2||L2(�),

we gain

||C0 Dα
t J (x, t) − C

0 Dα
t (Ph

NJ (x, t))||L2(�) = ||I 1−α(C0 D1
t J (x, t) − C

0 D1
t (Ph

NJ (x, t)))||L2(�)

= || t−α


(1 − α)
∗ (C0 D1

t J (x, t) − C
0 D1

t (Ph
NJ (x, t)))||L2(�)

≤ (d − c)T 1−α


(2 − α)
||C0 D1

t J (x, t) − C
0 D1

t (Ph
NJ (x, t))||L2(�)

≤ (d − c)T 1−α


(2 − α)
||J (x, t) − Ph

NJ (x, t)||Hs (�).

Using Theorem 2, we derive

||C0 Dα
t J (x, t) − C

0 Dα
t (Ph

NJ (x, t))||L2(�) ≤ C(d − c)T 1−βhη(l)−n Nη(l)−n |J |Hn;Nh (�)


(2 − β)
.

Theorem 4 Consider that the previous theorem’s assumptions are true. Then,

||Jx (x, t) − (Ph
NJ (x, t))x ||L2(�) ≤ Chη(s)−nNη(s)−n|J |Hn;Nh (�),

||Jxx (x, t) − (Ph
NJ (x, t))xx ||L2(�) ≤ Chη(s)−nNη(s)−n|J |Hn;Nh (�).

Proof Theorem 3 naturally leads to the proof. In fact

||Jx (x, t) − (Ph
NJ (x, t))x ||L2(�) ≤ ||Jx (x, t) − (Ph

NJ (x, t))x ||Hs (�),

and

||Jxx (x, t) − (Ph
NJ (x, t))xx ||L2(�) ≤ ||Jxx (x, t) − (Ph

NJ (x, t))xx ||Hs(�).

Theorem 5 Assume that, |p(t)| ≤ m1, |q(t)| ≤ m2 andJ (x, t) ∈ Hn(�)with n ≥ 1.
For 1 ≤ s ≤ n, the following inequality is hold

||X (x, t)||L2(�) ≤ C(d − c)T 1−βhη(s)−n Nη(s)−n |J |Hn;Nh (�)


(2 − β)
+ m1Chη(s)−n Nη(s)−n |J |Hn;Nh (�)

+ m2Chη(s)−n Nη(s)−n |J |Hn;Nh (�) + rChη(s)−n Nη(s)−n |J |Hn;Nh (�), (45)
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where X (x, t) is the perturbation term.

Proof The perturbation term satisfies the following equation

C
0 D

α
t Ph

NJ (x, t) =p(t)
∂2Ph

NJ (x, t)

∂x2
+ q(t)

∂Ph
NJ (x, t)

∂x
− rPh

NJ (x, t) + F(x, t) + X (x, t). (46)

According to (20)

C
0 D

α
t (J (x, t) − Ph

NJ (x, t)) =p(t)(
∂2J (x, t)

∂x2
− ∂2Ph

NJ (x, t)

∂x2
)

+ q(t)(
∂J (x, t)

∂x
− ∂Ph

NJ (x, t)

∂x
)

− r(J (x, t) − Ph
NJ (x, t)) − X (x, t).

Due to Theorems 2-4, we have

||X (x, t)||L2(�) ≤ ||p(t)( ∂2J (x, t)

∂x2
− ∂2Ph

NJ (x, t)

∂x2
)||L2(�) + ||q(t)(

∂J (x, t)

∂x
− ∂Ph

NJ (x, t)

∂x
)||L2(�)

+ ||r(J (x, t) − Ph
NJ (x, t))||L2(�) + ||C0 Dα

t (J (x, t) − Ph
NJ (x, t))||L2(�)

≤ m1||( ∂2J (x, t)

∂x2
− ∂2Ph

NJ (x, t)

∂x2
)||L2(�) + m2||( ∂J (x, t)

∂x
− ∂Ph

NJ (x, t)

∂x
)||L2(�)

+ |r |||(J (x, t) − Ph
NJ (x, t))||L2(�) + ||C0 Dα

t (J (x, t) − Ph
NJ (x, t))||L2(�)

≤ C(d − c)T 1−αhη(s)−n Nη(s)−n |J |Hn;Nh (�)


(2 − β)
+ m1Chη(s)−n Nη(s)−n |J |Hn;Nh (�)

+ m2Chη(s)−n Nη(s)−n |J |Hn;Nh (�) + rChη(s)−n Nη(s)−n |J |Hn;Nh (�).


�

The approximation error can be reduced by selecting the number of basis functions
suitably, as seen by the right-hand side of inequality (45). We also need to select the
parameters h1 and h2. properly in order to decrease the method’s error. However, there
is generally no way to select these parameters. So, we can apply the trial-and-error
approach. Typically, parameters h1 and h2 can be taken like 1

a and 1
b so long as the

J (xa, tb) be smooth enough. This can speed up the convergence rate, as demonstrated
in theorem 4.1 of reference [44].

5 Test problems

In this part, we provide four examples for various types of exact solutions to demon-
strate the novel method’s applications and computational performance. MATLAB
2020 is used to perform the computations. In all examples, the following error norm
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is applied to obtain numerical results.

||e||∞ = max
0≤i≤Nx

|J (xi , T ) − J Nt
Nx

(xi , T )|.

In order to validate the theoretical results, we choose a fix Nx properly and
increase the number of basis functions in time direction. In fact, let JNt (x, t) =∑∞

i=0 bNx+1, j+1Ah1
Nx+1(x)A

h2
j+1(t) and ĴNt (x, t) = ∑Nt

i=0 bNx+1, j+1Ah1
Nx+1(x)

Ah2
j+1(t), then we estimate the following error norm

ENt = ||JNt (x, t) − ĴNt (x, t)||2.

A bound similar to reference [45] can be found for the aforementioned error norm.
The convergence rate of the numerical approach was not obtained in the previous

section; nevertheless, it has been experimentally computed in the numerical examples.
An estimate of the convergence rate is calculated as [43]

CR = − log(ENt ) − log(ENt+1)

log(Nt ) − log(Nt + 1)
.

Example 1 In the third example, we have chosen the following problem with exact
solution J (x, t) = x4tα on domain � = [0, 1]2

C
0 Dα

t J (x, t) = p(t)
∂2J (x, t)

∂x2
+ q(t)

∂J (x, t)

∂x
− rJ (x, t) + F(x, t),

where 0 < β < 1, r = 0.5, p(t) = t2, q(t) = t and

F(x, t) = 
(β + 1)x4 − tα
[
p(t)(12x2) + q(t)(4x3) − r x4

]
.

Absolute errors at sample point (xi , ti ) = (0, 0), ( 16 ,
1
6 ), (

1
3 ,

1
3 ), (

1
2 ,

1
2 ), (

2
3 ,

2
3 ), (

5
6 ,

5
6 ), (1, 1) for different value of β are collected in Table 1.We chooseNx = 6,Nt = 3,
h1 = 1, and h2 = α. It is apparent that the absolute errors are approximately zero. The
norm of errors, rate of convergence, and CPU time are provided in Table 2. This table
demonstrates that we get better and better results that validate our theoretical analysis
when we fixNt by an appropriate number of basis functions in the time direction and
increaseNx . Also, the CPU time indicates the procedure is fast and efficient. The plot
of error function depicted in Fig. 1. This picture illustrates how selecting appropriate
values for h1 and h2 may reduce the absolute errors between numerical and exact
solutions. The behavior of solutions at T = 1 for α = 0.2, 0.4, 0.8, 0.9 are illustrated
in Fig. 2. Also, the surface of exact and numerical solutions is portrayed in Fig. 3. We
can see that the two solutions are almost equal.
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Table 1 Absolute errors and
CPU time for β = 0.2, 0.5, 0.8
andNx = 6,Mt = 3 with
h1 = 1, h2 = α

(xi , ti ) α = 0.2 α = 0.5 α = 0.8

(0, 0) 1.3823e − 20 1.2785e − 21 8.6971e − 21

( 16 , 1
6 ) 6.5339e − 15 3.6684e − 16 7.6347e − 16

( 13 , 1
3 ) 3.4851e − 15 2.6281e − 16 1.2013e − 15

( 12 , 1
2 ) 2.8449e − 16 6.2450e − 17 8.8818e − 16

( 23 , 2
3 ) 1.5821e − 15 3.0531e − 16 2.7756e − 17

( 56 , 5
6 ) 9.4369e − 16 2.2204e − 16 7.7716e − 16

(1, 1) 0.0 1.1102e − 16 2.2204e − 16

CPU 0.6168s 0.6478s 0.5783s

Example 2 In this example, we consider the model as follows:

∂αV(s, t)

∂tα
+ σ 2

1 (t)

2
s(t)2

∂2V(s, t)

∂s2
+ rs(t)

∂V(s, t)

∂s
− rV(s, t) = 0,

with terminal and boundary conditions

V(smin, t) = 0, V(smax , t) = smax − Ke−r(T−t), 0 ≤ t ≤ T ,

V(s, T ) = max{s − K , 0}, smin ≤ s ≤ smax.

where

σ 2
1 (t) = 2σ 2

⎛
⎝β2

(
1

2
+ Ht2H−1

)
−
√

2

π

k

σ

√
β2 + β2(dt)2H−1

dt

⎞
⎠ .

The parameters value are, σ = 0.4, r = 0.1, K = 5, k = 0.01, H = 0.8, β = 0.5,
α = 0.5, dt = 0.001, smin = 0.1, smax = 33.33, and T = 1. Changes in the stock price
and the time to maturity can have significant implications for the option value. The
stock price directly impacts the value of a call option. As the stock price increases, the
likelihood of the option being profitable also rises, resulting in a higher option value.
Conversely, a decrease in the stock price diminishes the probability of the option
becoming profitable, leading to a lower option value. Also, the time to maturity plays
a crucial role in determining the option value. As the time to expiration decreases, the

Table 2 Maximum absolute
errors and convergence rate with
Nt = 3, α = 0.5, and
h1 = 1, h2 = α for Example 1

Nx E CR CPU

2 2.4629e − 01 − 0.2141s

3 5.6787e − 02 3.6186 0.7604s

4 1.6681e − 10 68.2897 0.4284s

5 7.4456e − 17 65.5280 0.4552s
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Fig. 1 Surface of error function for α = 0.5 with (Nx ,Nt ) = (4, 4) for (Example 1)

option has less time to move in a favorable direction, resulting in a lower probability of
the option being profitable and consequently reducing its value. Conversely, a longer
time to maturity provides more opportunity for the underlying stock price to fluctuate
favorably, increasing the likelihood of profitability and driving up the option value.
Moreover, whenα −→ 1, theMTF-BS equation convergences to theMF-BS equation.
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Fig. 2 The behavior solutions with (Nx ,Nt ) = (6, 3) and (h1, h2) = (1, α) when α = 0.2, 0.5, 0.8, and
α = 0.9 for (Example 1)
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Fig. 3 Thebehavior of solutions for (Nx ,Nt ) = (6, 3) and (h1, h2) = (1, α)whenα = 0.5 for (Example 1)

Because the exact solution is unknown, we follow the procedure of reference [30, 36]
and estimate error of numerical scheme using the following relation

ENt = ||JNt
N ∗

x
(x, t) − JNt+1

N ∗
x

(x, t)||L2 ,

for a fixed value ofN ∗
x . In Table 3, norm of errors, rate of convergence, and CPU time

provided. It is clear that by selectingNx suitably asNt is increased, the numerical value
of J (x, t) within the domain converge to the exact values. This table exhibits how
the suggested method can generate precise numerical solutions even with a limited
number of basis functions. The experimentally determined convergence rate of the
approach indicates that our results are in good accord with the theoretical results. The
graph of call option prices for European call option with α = 0.5, 0.6, 0.7, 0.8, 0.9, 1
is depicted in Fig. 4. Figure5 shows the surface of numerical solution for α = 0.5
with (Nx ,Nt ) = (10, 5). The graphs in this example demonstrate the efficacy and
usefulness of the numerical method.

Example 3 In this example, we consider the model as follows:

C
0 D

α
t J (s, t) − 1

2
σ 2 ∂2J (s, t)

∂s2
−
(
r − 1

2
σ 2
)

∂J (s, t)

∂s
+ rJ (s, t) = 0, (s, t) ∈ (−Y , Y ) × [0, T ],

with initial and boundary conditions

J (−Y , t) = Ke−r t , J (Y , t) = 0, 0 ≤ t ≤ T ,

J (s, 0) = max{K − Kes, 0}, −Y ≤ s ≤ Y ,

with 0 < α < 1, σ = 0.1, r = 0.01, T = 1, K = 50, and Y = 2. Since an exact
solution for this problem is not easily accessible, we estimate the error of the numerical
scheme by the following relation

ENt = ||JNt
N ∗

x
(x, t) − JNt+1

N ∗
x

(x, t)||L2 ,
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Fig. 4 Call option prices of European call option with α = 0.5, 0.6, 0.7, 0.8, 0.9, 1 for (Example 2)

for a fixed value of N ∗
x . The norm of errors, convergence rate, and CPU time of

the numerical scheme are provided in Table 4 for α = 0.2, 0.8. The error of the
collocation scheme decreases asNt increases, illustrating the accuracy of the proposed
methodology. The accuracy of the method can be improved further by using suitable
parameters. The surface plot of European put option prices computed by the presented
scheme for α = 0.5, (Nx ,Nt ) = (8, 5), and (h1, h2) = (1, α) is demonstrated in
Fig. 6. Our findings in this example show that the suggested approach can solve the
problem effectively.

Fig. 5 Surface of Numerical solution for α = 0.5 with (Nx ,Nt ) = (10, 5) for (Example 2)
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Table 4 Norm of errors, convergence rate, and CPU time for h1 = 1, h2 = α at time t = 1 for Example 3

Nt = 2 Nt = 3 Nt = 4 Nt = 5

α = 0.2,Nx = 2 5.1658e − 06 1.7897e − 06 3.4395e − 07 4.5641e − 08

CR − 2.6143 5.7331 9.0511

CPU 0.5291s 0.9078s 0.6535s 0.8066s

α = 0.8,Nx = 2 2.1029e − 06 3.0881e − 07 7.7661e − 08 3.0813e − 08

CR − 4.7312 4.7982 4.1427

CPU 0.5399s 0.9398s 0.9889s 1.0853s

Example 4 In the last example, we consider the model as follows:
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together initial and boundary conditions

J (−Y , t) = Ke−r t , J (Y , t) = 0, 0 ≤ t ≤ T ,

J (s, 0) = max{K − Kes, 0}, −Y ≤ s ≤ Y ,

Fig. 6 Surface of Numerical solution for α = 0.5 with (Nx ,Nt ) = (8, 5) and (h1, h2) = (1, α) for
(Example 3)
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Table 5 Norm of errors, convergence rate, and CPU time for h1 = 1, h2 = α at time t = 1 for Example 4

Nt = 2 Nt = 3 Nx = 4 Nt = 5

α = 0.2,Nx = 5 1.0202e − 04 1.4682e − 05 1.6622e − 06 6.1916e − 07

CR − 4.7810 7.5725 4.4255

CPU 0.5131s 0.5911s 0.6337s 0.9903s

α = 0.6,Nx = 6 1.2955e − 06 8.8111e − 07 4.0893e − 08 9.3340e − 09

CR − 0.9507 10.6723 5.1352

CPU 0.8275s 0.8727s 0.4209s 0.5443s

with 0 < α < 1, σ = 0.1, r = 0.01, k = 0, H = 0.8, β = 0.5, dt = 0.001, T = 1,
K = 50, and Y = 2.

We estimate the error of the numerical scheme by the following relation

ENt = ||JNt
N ∗

x
(x, t) − JNt+1

N ∗
x

(x, t)||L2 ,

for a fixed value of N ∗
x . In this test problem, the volatility is not a constant. In order

to obtain the numerical results, we fix Nx = 4. For different value of Nt norm of
errors, convergence rate, and CPU time for h1 = 1, h2 = α at time t = 1 are
presented in Table 5. This table demonstrates how, by selecting the proper number of
basis functions, the method’s error tends to be zero. Based on the data in this table,
it can be concluded that the approach used in this study solves the given problem
with remarkable precision. The plot of put option values is demonstrated in Fig. 7.
Overall, these findings show that the mixed time-fractional Black-Scholes European
option pricing model can be solved accurately and effectively using the suggested
collocation method.

Fig. 7 Surface of Numerical solution for α = 0.6 with (Nx ,Nt ) = (4, 6) and (h1, h2) = (1, α) for
(Example 4)
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6 Conclusion

In the paper, we obtained the option price under the MTF-BS model where the stock
price dynamic follows the MFGBM model. The model added the long memory prop-
erty in which the feature is compatible with the real word data behavior.We considered
the fractional form of the problem in the sense of Riemann-Liouville derivative. Since
the option price PDE is non-linear, thus we apply the collocation method to treat the
model numerically. We used the Jaiswal functions as a basis to construct the numer-
ical scheme. We reduced the problem into an algebraic linear system of equations.
Moreover, the convergence of the method is fully discussed in the Sobolev space
framework. An error bound was found for the perturbation term, demonstrating that
the exact solution tends to the exact solution by selecting the number of basis functions
properly. In order to speed up the convergence rate, selecting parameters h1 and h2
are discussed. To demonstrate how effective the approach is, we provided four test
problems and found the option price in different states. For examples where the exact
solution was unknown, the norm of the difference between numerical solutions for
two consecutive Nt is calculated. Also, the method can be used for problems with
non-smooth solutions.
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