
Numerical Algorithms (2024) 96:1295–1329
https://doi.org/10.1007/s11075-024-01781-4

ORIG INAL PAPER

High-order linearly implicit exponential integrators
conserving quadratic invariants with application to scalar
auxiliary variable approach

Shun Sato1

Received: 21 August 2023 / Accepted: 11 February 2024 / Published online: 29 February 2024
© The Author(s) 2024, corrected publication 2024

Abstract
This paper proposes a framework for constructing high-order linearly implicit expo-
nential integrators that conserve a quadratic invariant. This is then applied to the scalar
auxiliary variable (SAV) approach. Quadratic invariants are significant objects that are
present in various physical equations and also in computationally efficient conservative
schemes for general invariants. For instance, the SAV approach converts the invari-
ant into a quadratic form by introducing scalar auxiliary variables, which have been
intensively studied in recent years. In this vein, Sato et al. (Appl. Numer. Math. 187,
71-88 2023) proposed high-order linearly implicit schemes that conserve a quadratic
invariant. In this study, it is shown that their method can be effectively merged with
the Lawson transformation, a technique commonly utilized in the construction of
exponential integrators. It is also demonstrated that combining the constructed expo-
nential integrators and the SAV approach yields schemes that are computationally less
expensive. Specifically, the main part of the computational cost is the product of sev-
eral matrix exponentials and vectors, which are parallelizable. Moreover, we conduct
some mathematical analyses on the proposed schemes.

Keywords Ordinary differential equations · Quadratic invariants ·
Geometric numerical integration · Exponential integrators ·
Scalar auxiliary variable approach

Mathematics Subject Classification (2010) 65L05 · 65M06 · 65P10

B Shun Sato
shun@mist.i.u-tokyo.ac.jp

1 Department of Mathematical Informatics, Graduate School of Information Science and Technology,
The University of Tokyo, Bunkyo-ku, Tokyo 1138656, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-024-01781-4&domain=pdf

1296 Numerical Algorithms (2024) 96:1295–1329

1 Introduction

In this paper, we consider ordinary differential equations (ODEs)

ẏ = S(y)∇V (y), (1)

on a finite-dimensional real Hilbert space (X , 〈·, ·〉X), where y : [0, T) → X is a
dependent variable, S : X → L(X) is a “skew-symmetric matrix function” (L(X)

denotes the space of linear operators on X), i.e., 〈x, S(z)y〉X = −〈S(z)x, y〉X holds
for all x, y, z ∈ X , V : X → R is a differentiable function, and∇V : X → X denotes
the gradient of V with respect to the inner product of X . Although the methods in
this paper can be applied even when X is infinite-dimensional, we limit ourselves to
finite-dimensional cases for the sake of mathematical analysis (see Remark 4).

The class of ODEs in the form (1) includes many examples: Hamiltonian systems,
Poisson systems, and spatial discretization of variational partial differential equations
(PDEs) (see, e.g., [1]). These ODEs satisfy the conservation law with respect to V :

d

dt
V (y(t)) = 〈∇V (y(t)), ẏ(t)〉X = 〈∇V (y(t)), S(y(t))∇V (y(t))〉X = 0,

where the last equality holds due to the skew-symmetry of S(y(t)).
Since this conservation law is an important property of the differential equation (1),

numerical methods that preserve it have been studied in the literature, for example,
the discrete gradient method [2–4] for the gradient ODEs and the discrete variational
derivative method [5, 6] (see also [7]) for variational PDEs. In addition, Cohen and
Hairer [8] proposed a high-order extension of the discrete gradient method.

Since these conservative numerical schemes are fully implicit, several techniques
have been devised to reduce computational cost. For example, Besse [9] and Zhang,
Pérez-García, and Vázquez [10] proposed linearly implicit conservative schemes
for the nonlinear Schrödinger equation. For polynomial invariants, Matsuo and
Furihata [11] proposed multistep linearly implicit DVDM (see also Dahlby and
Owren [12]). Recently, Yang and Han [13] proposed the invariant energy quadra-
tization (IEQ) approach, and Shen et al. [14] proposed the scalar auxiliary variable
(SAV) approach (see also [15] and the references therein). The SAV approach employs
scalar auxiliary variables to convert the invariant into a quadratic form, which is then
preserved by a linearly implicit scheme (see Sect. 2.4 for details).

Although the above computationally inexpensive methods differ, they have in com-
mon that they attribute the invariant to a quadratic function in some way. Given this,
Sato et al. [16] recently proposed a framework for constructing high-order and linearly
implicit schemes conserving a quadratic invariant.

Exponential integrators (cf. [17]) are efficient numerical methods for solving semi-
linear differential equations, and combining it with geometric numerical integration
has also been studied. Celledoni et al. [18] deal with L2 norm conservation for the
Schrödinger equation and derive the condition to preserve it in exponential Runge–
Kutta methods. Mei et al. [19] deal with (1) with V (y) = 1

2 〈y, y〉X and construct
conservative exponential integrators. Some researchers deal with the equation in the

123

Numerical Algorithms (2024) 96:1295–1329 1297

form ẏ = J (Ly + ∇E(y)), where J is skew-symmetric, L is symmetric, and E is a
function: Li andWu [20] propose second-order exponential discrete gradient schemes;
Mei et al. [21] discuss how to design high-order conservative schemes based on Li and
Wu [20], modified differential equation, and order condition in terms of B-series; and
Li [22] proposes a multistep linearly implicit conservative exponential scheme based
on polarization.

Combinations of exponential integrators and the SAV approach have also been
investigated [23–26]. In particular, Jiang et al. [27] propose high-order linearly implicit
structure-preserving exponential integrators for the nonlinear Schrödinger equation
based on the SAV approach and the Lawson transformation [28]. They also men-
tion that the same method can be applied to some general differential equations, and
numerically confirm the superiority of their method. However, no theoretical guaran-
tee of high accuracy is given. In this paper, we reveal that linearly implicit high-order
conservative schemes proposed by Sato et al. [16] can be combined with exponential
integrators (Sect. 3). The resulting scheme, although linearly implicit, is computation-
ally not very cheap, since it includes matrix exponentials in the coefficient matrix.
However, when combined with the SAV approach, its structure can be exploited to
provide a computationally efficient implementation (Sect. 4). Specifically, the main
part of the computational cost is a few products of matrix exponential functions and
vectors with the size of the dimension of the given differential equation. Furthermore,
these products can be computed in parallel. Theoretical guarantees such as accuracy
are also provided, albeit being limited to finite dimensions. (The relationship with [27]
is discussed in Remark 6.)

Here,we note a limitation of the proposedmethod: it cannot be applied to dissipative
systems. In many cases, if a conservative numerical method can be constructed, a dis-
sipative numerical method, one that replicates the dissipation law, can be constructed
correspondingly: [16] can also be applied to dissipative cases. However, this is not the
case for the proposed method in the present paper. The proposed method is essentially
driven by the fact that under a mild assumption, the quadratic invariants are invariant
by the Lawson transformation (see Lemma 4), and the extension to dissipative cases
is nontrivial (see Remark 2).

The remainder of the paper is organized as follows. In Sect. 2, we briefly review the
canonical Runge–Kutta methods, linearly implicit high-order conservative schemes
proposed by Sato et al. [16], the Lawson transformation, and the SAV approach. The
contents in Sects. 3 and 4 are already described above. The proposed schemes are
numerically examined in Sect. 5.

2 Preliminaries

2.1 Runge–Kutta methods and quadratic invariants

For the autonomous system
ẏ = f (y),

123

1298 Numerical Algorithms (2024) 96:1295–1329

general Runge–Kutta methods that compute an approximation y1 ≈ y(h) from y0 =
y(0) can be written as

{
Yi = y0 + h

∑
j∈[s] ai j f (Y j)

(
i ∈ [s]),

y1 = y0 + h
∑

i∈[s] bi f (Yi),

where [s] := {1, 2, . . . , s}. Throughout this paper, the fixed step size is considered,
but as is common in the context of conservative methods, variable step sizes can also
be employed without difficulty.

A subclass of Runge–Kutta methods preserves all quadratic invariants.

Proposition 1 (Cooper [29]) Runge–Kutta methods satisfying

bi ai j + b j a ji = bi b j i, j ∈ [s] (2)

automatically preserve all quadratic invariants.

TheRunge–Kuttamethods satisfying (2) are said to be canonical (see [30] for details
on canonical Runge–Kutta methods). Note that a canonical Runge–Kutta methodmust
be implicit, yet diagonally implicit Runge–Kutta methods can be canonical.

For example, the second-order Gauss, fourth-order Gauss, and third-order diago-
nally implicit canonical Runge–Kutta methods are as follows:

1
2

1
2
1

,

1
2 −

√
3
6

1
4

1
4 −

√
3
6

1
2 +

√
3
6

1
4 +

√
3
6

1
4

1
2

1
2

,

α
2

α
2 0 0

3
2α α α

2 0
1
2 + α α α 1

2 − α

α α 1 − 2α

,

where α = 1
3

(
2 + 1

21/3
+ 21/3

)
.

2.2 High-order linearly implicit schemes that conserve quadratic invariants

In this section, we briefly review the high-order linearly implicit schemes for the
gradient system (1) with a quadratic invariant V proposed by [16].

Definition 1

Step 0 Prepare Y (0)
i ≈ y(ci h) and set k = 1.

Step 1 Solve the linear equation system

Y (k)
i = y0 + h

∑
j∈[s]

ai j S
(

Y (k−1)
j

)
∇V

(
Y (k)

j

) (
i ∈ [s]) (3)

to obtain Y (k)
i ’s. If some criteria hold, go to Step 2. Otherwise, set k = k + 1

and repeat Step 1.

123

Numerical Algorithms (2024) 96:1295–1329 1299

Step 2 Output

y(k)
1 = y0 + h

∑
j∈[s]

b j S
(

Y (k−1)
j

)
∇V

(
Y (k)

j

)
.

Theorem 2 Suppose that A and b satisfy (2), and V is quadratic. Then, the solution

y(k)
1 of Definition 1 satisfies V

(
y(k)
1

)
= V (y0) for any h > 0.

Theorem 3 Assume the following conditions:

(A1) Y (0)
i satisfies

∥∥Y (0)
i − y(ci h)

∥∥X ≤ Chq for each i ∈ [s].
(A2) S : X → L(X) is Lipschitz continuous.
(A3) The base Runge–Kutta method is of order p.

Then, the numerical solution y(k)
1 of the scheme defined by Definition 1 satisfies

∥∥y(k)
1 − y(h)

∥∥X ≤ C ′hmin{p,q+k−1}+1

for sufficiently small h > 0, i.e., the scheme with k iteration is of ordermin{p, q+k−1}.
Here, C ′ is a constant depending only on the exact solution y, k, S, V , A, b, and the
constant C in (A1).

Remark 1 In view of Theorem 3, k = p − q + 1 is a natural choice as the crite-
rion in Step 1 of Definition 1. In addition, there are several other possibilities. As
shown in [16, Theorem 4.1], Y (k)

i linearly coverges to the corresponding inner stage
of the base Runge–Kutta method. Based on this fact, one can choose k so that the
update

∥∥Y (k)
i − Y (k−1)

i

∥∥X is sufficiently small. Another possibility is to choose k so

that
∥∥y(k)

1 − y(k−1)
1

∥∥X , an approximation of the local error, is sufficiently small (note

that, when k ≤ p − q + 1, y(k)
1 and y(k−1)

1 are approximations of y(h) with differ-
ent order of accuracy, which are known to be useful to approximate the local error).
However, in the numerical experiments in Sect. 5, we simply choose some fixed k to
verify the theoretical order of accuracy.

2.3 Lawson transformation

We briefly review the Lawson transformation [28] which is useful to construct expo-
nential integrators. For the ODE in the form

ẏ = My + f (y), (4)

we consider the transformation w(t) = exp(−t M)y(t) to obtain

ẇ = exp(−t M) f (exp(t M)w(t)) , (5)

where exp denotes the matrix exponential function. It is known that, when M has large
eigenvalues, the transformed system (5) is easier to solve numerically than the original
ODE. Therefore, a good approach to solve the system (4) is to apply a numerical

123

1300 Numerical Algorithms (2024) 96:1295–1329

method to (5) and use the inverse transformation to return to the original variable. If
a Runge–Kutta method is adopted as the numerical method, the resulting numerical
method is written as

⎧⎪⎪⎨
⎪⎪⎩

Yi = exp(ci hM)y0 + h
∑
j∈[s]

ai j exp((ci − c j)hM) f (Y j) (i ∈ [s]),

y1 = exp(hM)y0 + h
∑
i∈[s]

bi exp ((1 − ci)hM) f (Yi) .
(6)

Hereafter, the scheme is designated the Lawson method.

2.4 Scalar auxiliary variable approach

In this section, we review the scalar auxiliary variable (SAV) approach for the Hamil-
tonian system

u̇ = J∇H(u) (7)

on a finite-dimensional real Hilbert space (V, 〈·, ·〉), where u : [0, T) → V is a
dependent variable, J ∈ L(V) is a (constant) skew-symmetric linear operator, and
H : V → R is written in the form

H(u) = 1

2
〈Lu, u〉 + E(u),

where L ∈ L(V) is symmetric.
Here, for brevity, we assume that the function E : V → R is bounded from below,

i.e.,α := − inf E(u)+ε is finite (see [15] for unbounded cases).Using this assumption,
we introduce a scalar auxiliary variable r := √

E(u) + α. Then, (7) is rewritten as

{
u̇ = J (Lu + 2rφ(u)) ,

ṙ = 〈φ(u),u̇〉, (8)

where φ(u) := ∇E(u)/
(
2
√

E(u) + α
)
.

The system (8) has a quadratic modified invariant V (u, r) = 1
2 〈Lu, u〉 + r2 − α.

Since quadratic invariants are much easier to preserve in numerical schemes than
general invariants, this property enables us to construct computationally efficient con-
servative schemes (see, e.g., [14]).

A comprehensive way to construct conservative schemes based on the SAV
approach is given in [15]; the reformulated system (8) can be rewritten for it to be
regarded as a special case of (1). To this end, the inner product space X is defined
by X = V × R, and the associated inner product is defined as 〈(x1, r1),(x2, r2)〉X =
〈x1,x2〉 + r1r2. Then, the system (8) can be written as

d

dt

[
u
r

]
=
[

I φ(u)

1

]∗ [J
0

] [
I φ(u)

1

]
∇V (u, r), (9)

123

Numerical Algorithms (2024) 96:1295–1329 1301

where the superscript ∗ denotes the adjoint.
Since the scheme in Sect. 2.2 can be applied to this system, such reformulation

enables the construction of high-order linearly implicit schemes that conserve the
modified invariant V . However, high-order schemes require solving large linear equa-
tion systems (see Appendix 4 for details).

3 Exponential Runge–Kutta methods conserving quadratic invariants

Let us consider the system

ẏ = My + S(y)∇V (y), (10)

where S : X → L(X) is a skew-symmetric matrix function, and V is a quadratic
function (V (y) = 1

2 〈y, Qy〉X). We further assume that V is also an invariant of the
linear part ẏ = My. In Sect. 3.1, we show that the Lawson method based on the
canonical Runge–Kutta method conserves the quadratic invariant V . Then, Sect. 3.2
shows that the combination of the Lawson transformation and the scheme defined
by Definition 1 yields a linearly implicit exponential integrators that conserves the
quadratic invariant V . Although the linearly implicit exponential integrators are not
always computationally efficient, but as we will see in Sect. 4, it works very well with
the SAV approach.

3.1 Lawson transformation and quadratic invariants

The following lemma, which is a slight extension of [20, Lemma 2.2], is crucial in
constructing conservative schemes (see Remark 2).

Lemma 4 Let V : X → R be a quadratic function, i.e., V (y) = 1
2 〈y, Qy〉X , where

Q ∈ L(X) is symmetric. Then, V is an invariant of the linear ODE ẏ = My if and
only if (exp (t M))∗ Q exp (t M) = Q holds for any t ∈ R.

Proof Since y(t) = exp(t M)y(0) holds for a solution of the linear ODE ẏ = My,
V (y(t)) can be written as

V (y(t)) = 1

2
〈exp(t M)y(0), Q exp(t M)y(0)〉X

= 1

2

〈
y(0),(exp(t M))∗ Q exp(t M)y(0)

〉
X .

Therefore, V is an invarint, i.e., V (y(t)) = V (y(0)) holds for any t ∈ R and initial
value y(0), if and only if (exp (t M))∗ Q exp (t M) = Q holds for any t ∈ R. �

Assumption that V is an invariant of the linear ODE ẏ = My may seem restrictive,
but there are many examples satisfying this assumption. For example, since the differ-
ence operators often commute with each other, ODEs obtained by a finite difference
discretization of PDEs often satisfy this assumption. Moreover, as shown in Sect. 4,
ODEs obtained by the SAV approach satisfy this assumption.

123

1302 Numerical Algorithms (2024) 96:1295–1329

Remark 2 In [20], it is assumed that “M = SQ holds with a skew-symmetric matrix
S” instead of “V is an invariant.” The latter condition is weaker in the sense that,
even when V is an invariant of the linear ODE ẏ = My, we cannot conclude the
existence of a skew-symmetric matrix S that satisfies M = SQ; the pair

Q =
⎡
⎣1 1

0

⎤
⎦ , M =

⎡
⎣ 1

−1
1

⎤
⎦

is a counterexample.
The lemma in [20] also deals with dissipative cases. Lemma 4 can also be extended

to the dissipative cases. Under the setting of Lemma 4, if V is a weak Lyapunov
function, then (exp (t M))∗ Q exp (t M) ≤ Q holds for any t > 0. However, extending
the following theorem to dissipative systems is nontrivial and will be the subject of
future research.

By using the lemma above, we show a sufficient condition for conserving quadratic
invariants.

Theorem 5 Suppose that V is a quadratic invariant of the semilinear ODE (4). Assume
that V is also an invariant of the linear part ẏ = My. In addition, we assume (A, b)

satisfies (2). Then, the solution y1 of the Lawson method (6) satisfies V (y1) = V (y0).

Proof Using the Lawson transformation w(t) = exp (−t M) y(t) and Lemma 4, we
see

V (y(t)) = 1

2
〈y(t), Qy(t)〉X

= 1

2
〈exp (t M) y(t), Q exp (t M) 〉X y(t)

= 1

2
〈w(t), Qw(t)〉X .

Since this implies the transformed ODE (5) also has a quadratic invariant in the
form 1

2 〈w, Qw〉X , a canonical RK method applied to the system (5) preserves the
invariant (Proposition 1). �

3.2 Linearly implicit exponential integrators conserving quadratic invariants

As shown in the previous section, a class of Lawson methods automatically preserves
quadratic invariants under the additional assumption that the linear part also preserves
the invariants. However, since all canonical RK methods are implicit, the resulting
schememust be fully implicit. Therefore, in this section, we construct linearly implicit
schemes conserving quadratic invariants. To this end,we apply the schemes introduced
in Sect. 2.2 instead of the Lawson methods.

For (10), the Lawson transformation w(t) = exp (−t M) y(t) gives

ẇ = exp(−t M)S (exp(t M)w(t)) Q exp(t M)w(t).

123

Numerical Algorithms (2024) 96:1295–1329 1303

Using Lemma 4 and (exp(t M))−1 = exp(−t M), we can further rewrite the equa-
tion as

ẇ = exp(−t M)S (exp(t M)w(t)) (exp(−t M))∗ ∇V (w(t)).

Since the map w �→ exp(−t M)S (exp(t M)w) (exp(−t M))∗ is a skew-symmetric
matrix function, we can apply the scheme in Sect. 2.2. The inverse transformation
reads the following scheme.

Definition 2

Step 0 Prepare Y (0)
i ≈ y(ci h) and set k = 1.

Step 1 Solve the linear equation system

Y (k)
i = exp(ci hM)y0+h

∑
j∈[s]

ai j exp
(
(ci − c j)hM

)
S
(

Y (k−1)
j

)
∇V

(
Y (k)

j

)
(i ∈ [s]) (11)

to obtain Y (k)
i ’s. If some criteria hold, go to Step 2. Otherwise, set k = k + 1

and repeat Step 1.
Step 2 Output

y(k)
1 = exp(hM)y0 + h

∑
j∈[s]

b j exp
(
(1 − c j)hM

)
S
(

Y (k−1)
j

)
∇V

(
Y (k)

j

)
.

Similar to Theorem 5, the discrete conservation law for the scheme above can be
proved.

Theorem 6 Suppose that V is a quadratic invariant of the semilinear ODE (4). Assume
that V is also an invariant of the linear part ẏ = My. In addition, we assume (A, b)

satisfies (2). Then, the solution y(k)
1 of the scheme defined by Definition 2 satisfies

V
(

y(k)
1

)
= V (y0).

Moreover, Theorem 3 implies the following theorem showing the accuracy of the
scheme defined by Definition 2. Although the proof of Theorem 7 is similar to that
for Theorem 3, we present the complete proof here for the reader’s convenience.

Theorem 7 Assume the following conditions:

(A1) Y (0)
i satisfies

∥∥Y (0)
i − y(ci h)

∥∥X ≤ Chq for each i ∈ [s].
(A2) S : X → L(X) is L S-Lipschitz continuous.
(A3) The base Runge–Kutta method is of order p.

Then, the numerical solution y(k)
1 of the scheme defined by Definition 2 satisfies

∥∥∥y(k)
1 − y(h)

∥∥∥X ≤ C ′hmin{p,q+k−1}+1

for sufficiently small h > 0, i.e., the scheme with k iteration is of ordermin{p, q+k−1}.
Here, C ′ is a constant depending only on the exact solution y, k, M, S, V , A, b, and
the constant C in (A1).

123

1304 Numerical Algorithms (2024) 96:1295–1329

Proof Due to the assumption (A1), there exists a function y(0) : [0, h] → X satisfying
y(0)(ci h) = Y (0)

i and supt∈[0,h]
∥∥y(0)(t) − y(t)

∥∥X ≤ Chq . Then, the scheme defined
by Definition 2 can be regarded as the usual Runge–Kutta method corresponding to
A, b for the system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẇ(1)(t) = exp(−t M)S
(
exp(t M)w(0)(t)

)
(exp(−t M))∗ ∇V (w(1)(t)),

ẇ(2)(t) = exp(−t M)S
(
exp(t M)w(1)(t)

)
(exp(−t M))∗ ∇V (w(2)(t)),

...

ẇ(k)(t) = exp(−t M)S
(
exp(t M)w(k−1)(t)

)
(exp(−t M))∗ ∇V (w(k)(t)),

wherew(0)(t) = exp(−t M)y(0)(t). Otherwise expressed, the scheme can be regarded
as the usual Lawson method for the system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẏ(1)(t) = My(1) + S
(
y(0)(t)

)∇V (y(1)(t)),

ẏ(2)(t) = My(2) + S
(
y(1)(t)

)∇V (y(2)(t)),
...

ẏ(k)(t) = My(k) + S
(
y(k−1)(t)

)∇V (y(k)(t)),

where y(i)(t) = exp(t M)w(i)(t) for i = 1, . . . , k. Therefore, it is sufficient to prove∥∥y(k)(h) − y(h)
∥∥X ≤ C (k)hq+k .

To this end, we prove

sup
t∈[0,h]

∥∥∥y(j)(t) − y(t)
∥∥∥X ≤ C (j)hq+ j (j = 1, . . . , k)

by induction, where C (j) := (
2L SCy

) j
C (Cy := supt∈[0,h]

∥∥∇V (y(t))
∥∥X). We

assume that supt∈[0,h]
∥∥y(j−1)(t) − y(t)

∥∥X ≤ C (j−1)hq+ j−1 holds so that

C (j−1)
S := sup

t∈[0,h]

∥∥∥S
(

y(j−1)(t)
)∥∥∥X

≤ ∥∥S(y0)
∥∥X + L S

(
C (j−1)hq+ j−1 + sup

t∈[0,h]
∥∥y(t) − y0

∥∥X
)

< ∞,

123

Numerical Algorithms (2024) 96:1295–1329 1305

where
∥∥S(y0)

∥∥X denotes the operator norm of S(y0) with respect to the inner product
of X . Then, we see

sup
t∈[0,h]

∥∥∥y(j)(t) − y(t)
∥∥∥X

= sup
t∈[0,h]

∥∥∥∥
∫ t

0

(
My(j)(r) + S

(
y(j−1)(r)

)
∇V

(
y(j)(r)

)
− My(r) − S(y(r))∇V (y(r))

)
dr
∥∥∥X

≤ h
∥∥M
∥∥X sup

t∈[0,h]

∥∥∥y(j)(t) − y(t)
∥∥∥X

+ sup
t∈[0,h]

∥∥∥∥
∫ t

0

(
S
(

y(j−1)(r)
)

∇V
(

y(j)(r)
)

− S
(

y(j−1)(r)
)

∇V (y(r))
)
dr
∥∥∥X

+ sup
t∈[0,h]

∥∥∥∥
∫ t

0

(
S
(

y(j−1)(r)
)

∇V (y(r)) − S(y(r))∇V (y(r))
)
dr
∥∥∥X

≤ h
(∥∥M

∥∥X + C(j−1)
S

∥∥Q
∥∥X) sup

t∈[0,h]

∥∥∥y(j)(t) − y(t)
∥∥∥X + L SC(j−1)Cyhq+ j .

Since we assume that h is sufficiently small, in particular, h ≤ (2
∥∥M
∥∥X +

2M (j−1)
S

∥∥Q
∥∥X)−1 holds, we see

sup
t∈[0,h]

∥∥∥y(j)(t) − y(t)
∥∥∥X ≤ 2L SC (j−1)Cyhq+ j .

Thus, by induction, we obtain supt∈[0,h]
∥∥y(j)(t) − y(t)

∥∥X ≤ C (j)hq+ j (j =
1, . . . , k). Since it implies

∥∥y(k)(h) − y(h)
∥∥X ≤ C (k)hq+k , the theorem holds. �

Remark 3 In the above and subsequent theorems, we assume the global Lipschitz
continuity of S for the sake of brevity. However, this can be relaxed to the local
Lipschitz continuity.

Remark 4 As can be seen from the proof above, even if X is infinite-dimensional, the
same theorem holds if

∥∥S(y0)
∥∥X ,

∥∥M
∥∥X , and

∥∥Q
∥∥X are bounded.

4 Application to the SAV approach

The scheme defined in Definition 2 generally requires solving linear equations that
involvematrix exponential functions,which is computationally somewhatmore expen-
sive than the usual linearly implicit schemes from [16]. However, combining it to the
SAV system (9) produces a scheme that is computationally extremely inexpensive.
Specifically, the main part of each iteration is the product of a matrix exponential
function and a vector O(s) times, which can be computed in parallel. The computa-
tional cost of the scheme can be the same level as that of explicit exponential integrators
(see Appendix 3). When an efficient implementation of the matrix exponential func-
tion is available, the proposed scheme in this section overwhelms the linearly implicit
scheme defined in Definition 1 in terms of computational efficiency (see Fig. 2).

123

1306 Numerical Algorithms (2024) 96:1295–1329

4.1 Simple case (9)

The SAV system (9) can be rewritten as

d

dt

[
u
r

]
=
[

J Jφ(u)

− (Jφ(u))∗ 〈φ(u), Jφ(u)〉
] [

Lu
2r

]
.

Recall that J ∈ L(V), L ∈ L(V), φ : V → V is a function defined as
φ(u) = ∇E(u)/

(
2
√

E(u) + α
)
, and this systemhas the quadratic invariantV (u, r) =

1
2

〈
Lu, u

〉+ r2 − α. Since the skew-symmetry of J implies
〈
φ(u), Jφ(u)〉 = 0, it can

be rewritten as

d

dt

[
u
r

]
=
[

J L
0

] [
u
r

]
+
[

Jφ(u)

− (Jφ(u))∗
]

∇V (u, r), (12)

which is a special case of (10) with

y =
[

u
r

]
, M =

[
J L

0

]
, S(u) =

[
Jφ(u)

− (Jφ(u))∗
]

, Q =
[

L
2

]
.

Note that the linear part ẏ = My preserves V :

d

dt
V (y(t)) = 〈My, ẏ

〉
X = 〈Lu,J Lu

〉 = 0.

Therefore, we can apply the scheme defined by Definition 2 for (12). In this case,
the linear equation system (11) reads

[
U (k)

i

R(k)
i

]
=
[
exp (ci h J L)

1

] [
u0

r0

]

+ h
∑
j∈[s]

ai j

[
exp
(
(ci − c j)h J L

)
1

]⎡⎣ Jφ
(

U (k−1)
j

)
−
(

Jφ
(

U (k−1)
j

))∗

⎤
⎦
[

LU (k)
j

2R(k)
j

]
,

whereU (k)
i ∈ V and R(k)

i ∈ R are the inner stages with respect to u and r , respectively.
This linear equation, expressed element by element, is as follows:

U (k)
i = exp (ci h J L) u0 + 2h

∑
j∈[s]

ai j R(k)
j exp

(
(ci − c j)h J L

)
Jφ
(

U (k−1)
j

)
,

R(k)
i = r0 − h

∑
j∈[s]

ai j

〈
Jφ
(

U (k−1)
j

)
, LU (k)

j

〉
.

123

Numerical Algorithms (2024) 96:1295–1329 1307

By substituting the first equation into the second equation, we obtain a linear equa-
tion

R(k)
i = r0 − h

∑
�∈[s]

ai�

〈
Jφ
(

U (k−1)
�

)
, L exp (c�h J L) u0

〉

− 2h2
∑
j∈[s]

⎛
⎝∑

�∈[s]
ai�a� j

〈
Jφ
(

U (k−1)
�

)
, L exp

(
(c� − c j)h J L

)
Jφ
(

U (k−1)
j

)〉⎞⎠ R(k)
j

only on {R(k)
i }s

i=1. To reduce the number of computations of the matrix exponential
function, we use Lemma 4, i.e., the relation L exp (t J L) = (exp (−t J L))∗ L , and
obtain

R(k)
i =r0+h

∑
�∈[s]

ai�

〈
ψ

(k−1)
� , Lu0

〉
−2h2

∑
j∈[s]

⎛
⎝∑

�∈[s]
ai�a� j

〈
ψ

(k−1)
� , Lψ

(k−1)
j

〉⎞⎠ R(k)
j ,

whereψ
(k−1)
j :=exp

(−c j h J L
)

Jφ
(

U (k−1)
j

)
. By introducing R(k) =

[
R(k)
1 . . . R(k)

s

]T
,

the linear equation can be simplified to

(
Is + 2h2A(A ◦ �)

)
R(k) = r01s − h Aν, (13)

where Is ∈ R
s×s denotes the identity matrix, A = (ai j) ∈ R

s×s , ◦ denotes the

Hadamard product, � ∈ R
s×s is defined by �i, j =

〈
ψ

(k−1)
i , Lψ

(k−1)
j

〉
, 1s ∈ R

s

denotes all one vector of size s, and ν ∈ R
s is defined by νi =

〈
ψ

(k−1)
i , Lu0

〉
.

Another note on the implementation should address the fact that r (k)
1 can be com-

puted without
{

U (k)
i

}s

i=1
:

r (k)
1 = r0 + h

∑
i∈[s]

bi

〈
Jφ
(

U (k−1)
i

)
, LU (k)

i

〉
= r0 +

∑
i, j∈[s]

biωi j

(
R(k)

j − r0
)

,

where ωi j denotes the (i, j) element of the inverse matrix of A. Consequently, we
propose the following scheme.

Definition 3

Step 0 Prepare U (0)
i ≈ u(ci h) and set k = 1.

Step 1 Compute {ψ(k−1)
i }s

i=1 by

ψ
(k−1)
i = exp (−ci h J L) Jφ

(
U (k−1)

i

)
. (14)

123

1308 Numerical Algorithms (2024) 96:1295–1329

Solve the linear equation (13) to obtain R(k). If some criteria hold, go to Step 2.
Otherwise, compute {U (k)

i }s
i=1 by

U (k)
i = exp (ci h J L)

⎛
⎝u0 + 2h

∑
j∈[s]

ai j R(k)
j ψ

(k−1)
j

⎞
⎠ , (15)

set k = k + 1 and repeat Step 1.
Step 2 Output

u(k)
1 = exp (h J L)

⎛
⎝u0 + 2h

∑
j∈[s]

b j R(k)
j ψ

(k−1)
j

⎞
⎠ ,

r (k)
1 = r0 +

∑
i, j∈[s]

biωi j

(
R(k)

j − r0
)

.

Note that, in many cases, the computation of (14) and (15) is the most compu-
tationally expensive part. However, efficient algorithms for computing the matrix
exponential and vector products are known. Moreover, since the computation of
ψ

(k−1)
1 , ψ

(k−1)
2 , . . . , ψ

(k−1)
s by using (14) can be done independently, they can be

trivially parallelized. Similarly, the computation of U (k)
i ’s by (15) can be parallelized.

See Appendix 3 for more details on the computational cost.
The scheme defined by Definition 3 has a unique solution if and only if the linear

equation (13) has a unique solution, which is satisfied for small step size h. The step
size restriction depends largely on the nature of J and L (see Remark 5).

Theorem 8 Suppose that the step size h satisfies

h max

{
1, exp

(
cmaxh

2
λmax(L J − J L)

)}
<

1

‖A‖2‖J‖√2‖L‖ supi

∥∥∥φ (U (k−1)
i

)∥∥∥ ,

(16)
where λmax(L J − J L) denotes the maximum eigenvalue of L J − J L, cmax = maxi ci ,
and ‖A‖2 denotes the spectral norm of A ∈ R

s×s . Then, the linear (13) has a unique
solution.

Proof The linear (13) has a unique solution if and only if thematrix Is +2h2A (A ◦ �)

is nonsingular. Then,
∥∥2h2A (A ◦ �)

∥∥
2 < 1 is a sufficient condition for the solution’s

unique existence.

123

Numerical Algorithms (2024) 96:1295–1329 1309

Since we have
∥∥A ◦ �

∥∥
2 ≤ ∥∥A

∥∥
2

∥∥�∥∥2 (cf. [31]), we evaluate the norm ∥∥�∥∥2:

‖�‖2 = sup
x∈Rs

∑
i, j∈[s] xi x j

〈
ψ

(k−1)
i , Lψ

(k−1)
j

〉
‖x‖22

≤ ‖L‖ sup
x∈Rs

∑
i, j∈[s] xi x j

∥∥∥ψ(k−1)
i

∥∥∥∥∥∥ψ(k−1)
j

∥∥∥
‖x‖22

= ‖L‖max
i

∥∥∥ψ(k−1)
i

∥∥∥2
= ‖L‖max

i

∥∥∥exp(−ci h J L)Jφ
(

U (k−1)
i

)∥∥∥2

≤ ‖L‖‖J‖2
(

sup
t∈[0,cmaxh]

∥∥∥exp (−t J L)

∥∥∥
)2

max
i

∥∥∥φ (U (k−1)
i

)∥∥∥2.
Note that ‖exp (t(−J L))‖ ≤ exp (tω(−J L)) holds for any t ≥ 0 (cf. [32]), where
ω(−J L) denotes the numerical abscissa of the matrix −J L . Since ω(−J L) =
λmax

(1
2 (−J L + (−J L)∗)

) = λmax
(1
2 (L J − J L)

)
holds, we have

sup
t∈[0,cmaxh]

‖exp (−t J L)‖2 ≤ max {1, exp (cmaxhλmax(L J − J L))} ,

which implies the theorem. �

Remark 5 The step size restriction (16) may seem severe. Of course, this is true
when λmax (L J − J L) is positive, and the above argument only shows the unique
existence for very small step sizes. However, when L and J commute, we have
λmax (L J − J L) = 0, and the step size restriction is rather mild. The commutativity
of L and J is sometimes assumed in the literature (cf. [33], see also Sect. 5).

Theorem 6 implies the following theorem showing the discrete conservation law
with respect to the modified invariant V .

Theorem 9 (Conservation law) The solution
(

u(k)
1 , r (k)

1

)
of the scheme defined by

Definition 3 satisfies V
(

u(k)
1 , r (k)

1

)
= V (u0, r0).

Theorem 7 implies the following theorem showing the accuracy of the scheme
defined by Definition 3.

Theorem 10 (Accuracy) Assume the following conditions:

(A1) U (0)
i satisfies

∥∥U (0)
i − u(ci h)

∥∥ ≤ Chq for each i ∈ [s].
(A2) φ : V → V is Lipschitz continuous.
(A3) The base Runge–Kutta method is of order p.

123

1310 Numerical Algorithms (2024) 96:1295–1329

Then, the numerical solution
(

u(k)
1 , r (k)

1

)
of the scheme defined by Definition 3 satisfies

∥∥∥u(k)
1 − u(h)

∥∥∥ ≤ C ′hmin{p,q+k−1}+1,

∣∣∣r (k)
1 − r(h)

∣∣∣ ≤ C ′hmin{p,q+k−1}+1

for sufficiently small h > 0, i.e., the scheme with k iteration is of ordermin{p, q+k−1}.
Here, C ′ is a constant depending only on the exact solution u, k, J , L, φ, A, b, and
the constant C in (A1).

Proof It is sufficient to prove

∥∥∥∥
[

Jφ(u1)

− (Jφ(u1))
∗

]
−
[

Jφ(u2)

− (Jφ(u2))
∗

]∥∥∥∥
X

= ‖Jφ(u1) − Jφ(u2)‖.
(17)

In general, for any v ∈ V , we see

∥∥∥∥
[

v

− (v)∗
]∥∥∥∥X = sup

w∈V,ρ∈R

√
ρ2‖v‖2 + (〈v, w〉)2√

‖w‖2 + ρ2
= ‖v‖ sup

w∈V,ρ∈R

√
ρ2 + ‖w‖2√
‖w‖2 + ρ2

= ‖v‖,

which proves (17). �

Remark 6 The scheme defined by Definition 3 includes the schemes proposed in [27]
as special cases. In [27], they focus on the cases U (0)

i computed by the extrapolation

or U (0)
i = u0. In addition, the intended implementation is also somewhat different: for

example, their algorithm requires ks(s − 1) computations of the product of the matrix
exponential functions and vectors, while it is reduced to (2k − 1)s in Definition 3 by
introducing ψ(k−1).

Moreover, the consequences of Theorem 10 are consistent with the accuracy con-
firmed numerically in [27]. For example, from numerical experiments in [27, Remark
3.6], the authors predict that the scheme has fourth-order accuracy when the base RK
method is a fourth-order Gauss method, U (0)

i = u0 (i.e., q = 1), and k = 4.

4.2 Multiple scalar auxiliary variables

As shown in [15], when E is unbounded, two scalar auxiliary variables are needed.
The scheme described in the previous section can be extended to this case.

Let us consider the Hamiltonian system (7) with

H(u) = 1

2
〈Lu, u〉 + EL(u) − EU(u),

123

Numerical Algorithms (2024) 96:1295–1329 1311

where EX : V → R are bounded from below, i.e., αX := − inf EX(u) + εX
is finite (X ∈ {L,U}). Then, by introducing rX := √

EX(u) + αX, φX(u) :=
∇EX(u)/

(
2
√

EX(u) + αX
)
, and V (u, rL, rU) = 1

2 〈Lu, u〉 + r2L − r2U, we obtain

d

dt

⎡
⎣ u

rL
rU

⎤
⎦ =

⎡
⎣J L

0
0

⎤
⎦
⎡
⎣ u

rL
rU

⎤
⎦+

⎡
⎣ JφL JφU

− (JφL)∗ 0 〈φL, JφU〉
− (JφU)∗ −〈φL, JφU〉 0

⎤
⎦∇V (u, rL, rU),

(18)

which is a special case of (10) (φX(u) is abbreviated to φX).
Therefore, we can apply the scheme defined by Definition 2. In addition, by

introducing ψX
i := exp (−ci h J L) JφX

(
U (k−1)

i

)
, the techniques to reduce the com-

putational cost in Sect. 4.1 can also be used in this case (see Appendix 1 for details).

Then, the linear equation system with respect to R(k)
L =

[
R(k)
L,1 . . . R(k)

L,s

]T
and

R(k)
U =

[
R(k)
U,1 . . . R(k)

U,s

]T
can be written as

⎡
⎣ Is + 2h2A

(
A ◦ �LL

)
2h A� − 2h2A

(
A ◦ �LU

)
2h A� + 2h2A

(
A ◦ �UL

)
Is − 2h2A

(
A ◦ �UU

)
⎤
⎦
[

R(k)
L

R(k)
U

]
=
[

rL,01s − h AνL

rU,01s − h AνU

]

(19)

where �LL, �LU, �UL, �UU ∈ R
s×s are defined by �XY

i, j = 〈
ψX

i , LψY
j

〉
for X,Y ∈

{L,U} (note that �LU = (
�LU

)T
holds), � ∈ R

s×s is a diagonal matrix defined

by �i i =
〈
φL

(
U (k−1)

i

)
, JφU

(
U (k−1)

i

)〉
, and νL, νU ∈ R

s are defined by νXi =〈
ψX

i , Lu0

〉
. Consequently, we obtain the following scheme:

Definition 4

Step 0 Prepare U (0)
i ≈ u(ci h) and set k = 1.

Step 1 Compute {ψX
i }s

i=1 by

ψX
i = exp (−ci h J L) JφX

(
U (k−1)

i

)
.

Solve the linear equation system (19) to obtain R(k)
L and R(k)

U . If some criteria

hold, go to Step 2. Otherwise, compute {U (k)
i }s

i=1 by

U (k)
i = exp (ci h J L)

⎛
⎝u0 + 2h

∑
j∈[s]

ai j

(
R(k)
L, jψ

L
j − R(k)

U, jψ
U
j

)⎞⎠ ,

set k = k + 1 and repeat Step 1.

123

1312 Numerical Algorithms (2024) 96:1295–1329

Step 2 Output

u(k)
1 = exp (h J L)

⎛
⎝u0 + 2h

∑
j∈[s]

b j

(
R(k)
L, jψ

L
j − R(k)

U, jψ
U
j

)⎞⎠ ,

r (k)
X,1 = rX,0 +

∑
i, j∈[s]

biωi j

(
R(k)
X, j − r0

)
.

The scheme defined by Definition 4 has properties similar to the scheme defined by
Definition 3. Here, we only provide the results, and the proof is given in Appendix 2.
In particular, for the uniqueness and existence, only the case L J = J L is presented
here, while the general case is presented in Theorem 14.

Theorem 11 Suppose that L J = J L holds. If h satisfies

h <

√
1 + 4‖L‖

Cφ
− 1

4‖A‖2‖J‖‖L‖ , Cφ := max
i∈[s],X∈{L,U}

∥∥∥φX

(
U (k−1)

i

)∥∥∥2,
the linear equation (19) has a unique solution.

Theorem 12 (Conservation law) The solution
(

u(k)
1 , r (k)

L,1, r (k)
U,1

)
of the scheme defined

by Definition 4 satisfies V
(

u(k)
1 , r (k)

L,1, r (k)
U,1

)
= V (u0, rL,0, rU,0).

Theorem 13 (Accuracy) Assume the following conditions:

(A1) U (0)
i satisfies

∥∥U (0)
i − u(ci h)

∥∥ ≤ Chq for each i ∈ [s].
(A2) φX : V → V is Lipschitz continuous and bounded.
(A3) The base Runge–Kutta method is of order p.

Then, the numerical solution
(

u(k)
1 , r (k)

L,1, r (k)
U,1

)
of the scheme defined by Definition 4

satisfies ∥∥∥u(k)
1 − u(h)

∥∥∥ ≤ C ′hmin{p,q+k−1}+1,

∣∣∣r (k)
L,1 − rL(h)

∣∣∣ ≤ C ′hmin{p,q+k−1}+1,

∣∣∣r (k)
U,1 − rU(h)

∣∣∣ ≤ C ′hmin{p,q+k−1}+1

for a sufficiently small h > 0, i.e., the scheme with k iteration is of order min{p, q +
k − 1}. Here, C ′ is a constant depending only on the exact solution u, k, J , L, φX, A,
b, and the constant C in (A1).

123

Numerical Algorithms (2024) 96:1295–1329 1313

5 Numerical experiments

We employ the sixth-order Gauss method as the base RKmethod. The initial approxi-
mation U (0)

i ≈ u(ci h) is computed by the Lawson transformation and the continuous
explicit RK (CERK) method with order 1, 2, . . . , 5 (q = 2, 3, . . . , 6). All numerical
experiments are performed in Julia (Version 1.8.0) on a PC with Apple M1 Ultra and
128GB RAM. The numerical experiments in this paper are not parallelized. We leave
it to future work.

5.1 Modified Korteweg–deVries equation

Let us consider the modified Korteweg–de Vries (mKdV) equation (on S := R/LZ):

ut = −∂x
δH
δu

, H(u) =
∫ (

−1

2
(ux)

2 + 1

2
u4
)
dx .

We employ an energy-preserving spatial discretization

u̇k = −δx

(
δ2x uk + 2(uk)

3
)

, H(u) = −1

2

N∑
k=1

(δx uk)
2 �x + 1

2

N∑
k=1

(uk)
4�x, (20)

where δx denotes the Fourier-spectral difference operator (see, e.g., [34] for details
on the difference operator). The inner product is defined as 〈v,w〉 =∑N

k=1 vkwk�x .
Then, ∇H(u) = δ2x uk + 2(uk)

3 holds.
Then, E(u) := 1

2

∑N
k=1(uk)

4�x is bounded from below so that we can use the
scheme defined by Definition 3. Note that the product of the matrix exponential func-
tion etδ3x and a vector can be computed by the FFT. In numerical experiments, we use
the exact solution dn(x − (2 − m)t | m) with the spatial period L = 2K (m) and
temporal period T = L/|2 − m|, where dn is one of the Jacobi elliptic functions and
K denotes the complete elliptic integral of the first kind. We choose the parameters
m = 0.1 (L ≈ 3.225, T ≈ 1.697) and N = 16.

Figure1 summarizes the relative errors. They decrease along the reference lines
drawn based on Theorem 10. Figure2 compares the computational cost of the pro-
posed scheme with the scheme defined by [16] (see Appendix 4 for details) and an
explicit Lawson method (corresponds to a seven stage sixth-order explicit Runge–
Kutta method [35]). Note that all schemes have sixth order. The proposed scheme is
more efficient than the scheme defined by [16]. However, the proposed scheme is less
efficient than the explicit Lawson method for such a short time interval. As shown
in the next example, the proposed scheme is more efficient than the explicit Lawson
method for a long time interval (this advantage is typical in the comparison between
conservative and non-conservative schemes).

123

1314 Numerical Algorithms (2024) 96:1295–1329

Fig. 1 Relative errors of the numerical solution for the mKdV equation

5.2 Korteweg–deVries equation

Let us consider the Korteweg–de Vries (KdV) equation (on S := R/LZ):

ut = ∂x
δH
δu

, H(u) =
∫ (

1

2
(ux)

2 − u3
)
dx .

We employ an energy-preserving spatial discretization

u̇k = δx

(
−δ2x uk − 3(uk)

2
)

, H(u) = 1

2

N∑
k=1

(δx uk)
2 �x +

N∑
k=1

(uk)
3�x . (21)

123

Numerical Algorithms (2024) 96:1295–1329 1315

Fig. 2 Comparison of the computational efficiency of several schemes for themKdVequation. In the legend,
“proposedi” denotes the sixth-order scheme defined byDefinition 3with q = i and k = 6−i , “LI5” denotes
the sixth-order scheme defined by [16] (1) with q = 5 and k = 2, and “Lawson6” denotes a seven stage
sixth-order explicit Lawson method. Note that, the proposed schemes and the scheme defined by [16] are
applied to the SAV systems (12) and (9), respectively, and the explicit Lawson method is directly applied
to the system (20). Each scheme is computed 30 times, and the mean values and the standard deviations of
the computational times are shown

Since
∑N

k=1(uk)
3�x is unbounded, we employ the scheme defined byDefinition 4.

We define

EL(u) :=
N∑

k=1

(
(uk)

4 − (uk)
3
)

�x, EU(u) :=
N∑

k=1

(uk)
4 �x

similarly to [15]. In the numerical experiments below, we use the exact solution
2m (cn(x − ct | m))2, where c = 4(2m − 1) and cn is a Jacobi elliptic function.
We choose the parameters m = 0.1 (L = 2K (m) ≈ 3.225, T = L/|c| ≈ 1.008) and
N = 64.

Figure 3 summarizes the relative errors. They decrease along the reference lines.
To confirm the long-term behavior of the proposed scheme, we conducted the

numerical experiments over 32 periods. Figure 4 shows the evolution of relative errors
of the invariant H , modified invariant V , and I (u) := 1

2

∑
(uk)

2 �x corresponding
to the another invariant I(u) := ∫ (12u2

)
dx of the KdV equation.

As for the modified invariant V , as expected, it is very well preserved. The relative
errors for the original invariants H and I are also small.

There, the proposed scheme (q = 6 and k = 1) with h = T /64 ≈ 0.01575 is
applied to the SAV system (12), and the explicit Lawson method with h = T /512 ≈
0.001968 is directly applied to the system (21). We employ the small step size for the
Lawson method because numerical solutions computed with h = T /256 diverged.
Even in the step size employed in the figure, the behavior of the relative errors of H
suggests that it is expected to diverge after a slightly long run. In the current setup,

123

1316 Numerical Algorithms (2024) 96:1295–1329

Fig. 3 Relative errors of the numerical solution for the KdV equation

Fig. 4 Evolution of the relative errors of invariants of the KdV equation. In the figure, H , V , and I denote
the invariant, the modified invariant, and the other invariant, respectively. The proposed scheme employed
the step size h = T /64 ≈ 0.01575, and the Lawsonmethod employed the step size h = T /512 ≈ 0.001968

123

Numerical Algorithms (2024) 96:1295–1329 1317

the relative errors of numerical solutions itself at the final time are approximately
5.39 × 10−7 for the proposed scheme and 8.33 × 10−7 for the Lawson method. The
computational time of the proposed scheme is 0.678 s, and that of the Lawson method
is 0.882 s (they are mean values of 30 computations, with a standard deviation of about
0.01 for both methods).

5.3 Sine-Gordon equation

Let us consider the sine-Gordon (sG) equation (on S := R/LZ):

utt − uxx + sin u = 0.

By introducing a new variable v := ut , we obtain the following first-order system:

∂

∂t

[
u
v

]
=
[
0 1

−1 0

][δH
δu
δH
δv

]
, H(u, v) =

∫ (
1

2
(ux)

2 + 1

2
v2 − cos u

)
dx .

We employ an energy-preserving spatial discretization

d

dt

[
uk

vk

]
=
[
0 1

−1 0

] [
vk

−δ2x uk + sin uk

]
,

H(u, v) =
N∑

k=1

(
1

2
(δx uk)

2 + 1

2
(vk)

2 − cos uk

)
�x .

Since E(u) = ∑N
k=1 cos uk�x is bounded, we employ the scheme defined by

Definition 3.
In this case, since we employ the Fourier spectral difference δx which can be

diagonalized by the Fourier transform matrix F , i.e., δx = F∗ (i�) F (� ∈ R
N×N is

a diagonal matrix), we have

(J L)2m =
[

F
F

]∗ [
(−1)m�2m

(−1)m�2m

] [
F

F

]
,

(J L)2m+1 =
[

F
F

]∗ [
(−1)m�2m

(−1)m+1�2m+2

] [
F

F

]

123

1318 Numerical Algorithms (2024) 96:1295–1329

for all m = 0, 1, Therefore, we have

exp(t J L) =
[

F
F

]∗ [cos(t�) fsG(t,�)

−� sin(t�) cos(t�)

] [
F

F

]
,

where fsG(t,�) is a diagonal matrix defined by (fsG(t,�))i i = �−1
i i sin (t�i i) if

�i i �= 0 and (fsG(t,�))i i = t otherwise.
In numerical experiments, we use the exact solution [36]

u(t, x) = 4 arctan
(
γ 2cn(β1x | k1)cn(β2t | k2)

)
,

where k21 = γ 2

1+γ 2

(
1 + 1

β1(1+γ 2)

)
, k22 = γ 2

1+γ 2

(
1 − 1

β2(1+γ 2)

)
, β2

2 = β2
1 + 1−γ 2

1+γ 2 , β1

and γ are parameters (we choose γ = 0.1 and β1 = 1 in the numerical experiments
below). This solution has the spatial period L = 4K (k21) and the temporal period
T = 4K (k22). In the numerical experiment, we choose N = 16.

Figrure 5 summarizes the relative errors. The errors achieved higher orders of
convergence than expected by Theorem 10. From the numerical results, the order of
accuracy seems to be min{p, q + 2k − 1}. In fact, this can be proved by using the
specific form of the sine-Gordon equation (see Appendix 5). There, we show that the
order of accuracy with respect to u is min{p, q + 2k − 1}, while that with respect to
v and r is min{p, q + 2k − 2}.

Fig. 5 Relative errors of the numerical solution with respect to u for the sG equation

123

Numerical Algorithms (2024) 96:1295–1329 1319

Appendix 1. Derivation of the scheme defined by Definition 4

When we apply the scheme defined by (2) to the equation (18), the linear equation
system (11) reads

U (k)
i = exp (ci h J L) u0

+ 2h
∑
j∈[s]

ai j exp
(
(ci − c j)h J L

) (
R(k)
L, j JφL

(
U (k−1)

j

)
− R(k)

U, j JφU

(
U (k−1)

j

))
,

R(k)
L,i = rL,0 − h

∑
j∈[s]

ai j

〈
JφL

(
U (k−1)

j

)
, LU (k)

j

〉

− 2h
∑
j∈[s]

ai j R(k)
U, j

〈
φL

(
U (k−1)

j

)
, JφU

(
U (k−1)

j

)〉
,

R(k)
U,i = rU,0 − h

∑
j∈[s]

ai j

〈
JφU

(
U (k−1)

j

)
, LU (k)

j

〉

− 2h
∑
j∈[s]

ai j R(k)
L, j

〈
φL

(
U (k−1)

j

)
, JφU

(
U (k−1)

j

)〉
.

By introducing ψX
i = exp (−ci h J L) JφX

(
U (k−1)

i

)
, we see

〈
JφX

(
U (k−1)

i

)
, LU (k)

i

〉
=
〈
ψX

i , (exp (ci h J L))∗ LU (k)
i

〉
=
〈
ψX

i , L exp (−ci h J L) U (k)
i

〉

=
〈
ψX

i , L

⎛
⎝u0 + 2h

∑
j∈[s]

ai j

(
R(k)
L, j ψ

L
j − R(k)

U, j ψ
U
j

)⎞⎠〉

= 〈ψX
i ,Lu0

〉+ 2h
∑
j∈[s]

ai j

(
R(k)
L, j

〈
ψX

i , LψL
j
〉− R(k)

U, j

〈
ψX

i , LψU
j
〉)

.

Therefore, we obtain the linear equation system

R(k)
L,i = rL,0 − h

∑
�∈[s]

ai�
〈
ψL

� , Lu0
〉− 2h2

∑
j∈[s]

⎛
⎝∑

�∈[s]
ai�a� j 〈ψL

� , LψL
j 〉
⎞
⎠ R(k)

L, j

− 2h
∑
j∈[s]

⎛
⎝ai j 〈φL

(
U (k−1)

j

)
, JφU

(
U (k−1)

j

)
s〉 − h

∑
�∈[s]

ai�a� j 〈ψL
� , LψU

j 〉
⎞
⎠ R(k)

U, j ,

R(k)
U,i = rU,0 − h

∑
�∈[s]

ai�〈ψU
� , Lu0〉 + 2h2

∑
j∈[s]

⎛
⎝∑

�∈[s]
ai�a� j 〈ψU

� , LψU
j 〉
⎞
⎠ R(k)

U, j

− 2h
∑
j∈[s]

⎛
⎝ai j 〈φL

(
U (k−1)

j

)
, JφU

(
U (k−1)

j

)
〉 + h

∑
�∈[s]

ai�a� j 〈ψU
� , LψL

j 〉
⎞
⎠ R(k)

L, j .

123

1320 Numerical Algorithms (2024) 96:1295–1329

Appendix 2. Proofs of theorems in 4.2

Theorem 11 is a corollary of the following theorem.

Theorem 14 Suppose that the step size h satisfies

h + 2h2‖A‖2‖J‖‖L‖max

{
1, exp

(
cmaxh

2
λmax(L J − J L)

)}
<

1

2‖A‖2‖J‖Cφ

.

Then, the linear equation (19) has a unique solution.

Proof Since the coefficient matrix of the linear equation (19) can be written as

I2s + 2h

[
A�

A�

]
+ 2h2

⎡
⎣A

(
A ◦ �LL

)
−A

(
A ◦ �LU

)
A
(

A ◦ �UL
)

−A
(

A ◦ �UU
)
⎤
⎦ ,

it is sufficient to evaluate the spectral norms of the second and the third terms. The
second term can be evaluated as

∥∥∥∥
[

A�

A�

]∥∥∥∥
2

= ‖A�‖2 ≤ ‖A‖2 max
i

∣∣∣〈φL (U (k−1)
i

)
, JφU

(
U (k−1)

i

)〉∣∣∣ ≤ ‖A‖2‖J‖Cφ.

The third term can be evaluated as∥∥∥∥
[

A
(

A ◦ �LL
) −A

(
A ◦ �LU

)
A
(

A ◦ �UL
) −A

(
A ◦ �UU

)]∥∥∥∥ =
∥∥∥∥
[

A
A

]([
A −A
A −A

]
◦
[
�LL �LU

�UL �UU

])∥∥∥∥
2

≤ ‖A‖2 (2‖A‖2)
∥∥∥∥
[
�LL �LU

�UL �UU

]∥∥∥∥
2

,

and ∥∥∥∥
[
�LL �LU

�UL �UU

]∥∥∥∥
2

≤ ‖L‖‖J‖2Cφ max

{
1, exp

(
cmaxh

2
λmax(L J − J L)

)}

holds, which can be shown in a manner similar to the proof of Theorem 8. �

Next, we prove Theorem 13.

Proof of Theorem 13 It is sufficient to prove that the skew-symmetric matrix function

SMSAV(u) :=
⎡
⎣ JφL(u) JφU(u)

− (JφL(u))∗ 0 〈φL(u), JφU(u)〉
− (JφU(u))∗ −〈φL(u),JφU(u)〉 0

⎤
⎦

is Lipschitz continuous.

123

Numerical Algorithms (2024) 96:1295–1329 1321

For any v1, v2 ∈ V and ρ ∈ R, we have

∥∥∥∥
⎡
⎣ v1 v2

−v∗
1 ρ

−v∗
2 −ρ

⎤
⎦∥∥∥∥ ≤

∥∥∥∥
⎡
⎣ v1 v2

−v∗
1−v∗
2

⎤
⎦∥∥∥∥+

∥∥∥∥
⎡
⎣O

ρ

−ρ

⎤
⎦∥∥∥∥

≤
√

‖v1‖2 + ‖v2‖2 + |ρ|
≤ ‖v1‖ + ‖v2‖ + |ρ|.

Therefore, we see

‖SMSAV(u1) − SMSAV(u2)‖ ≤ ‖JφL(u1) − JφL(u2)‖ + ‖JφU(u1) − JφU(u2)‖
+ |〈φL(u1),JφU(u1)〉 − 〈φL(u2),JφU(u2)〉|

≤ ‖J‖‖φL(u1) − φL(u2)‖ + ‖J‖‖φU(u1) − φU(u2)‖
+ 1

2

∣∣〈φL(u1) − φL(u2), J (φU(u1) + φU(u2))
〉∣∣

+ 1

2

∣∣〈φL(u1) + φL(u2), J (φU(u1) − φU(u2))
〉∣∣

≤ ‖J‖
(
1 + ‖φU(u1) + φU(u2)‖

2

)
‖φL(u1) − φL(u2)‖

+ ‖J‖
(
1 + ‖φL(u1) + φL(u2)‖

2

)
‖φU(u1) − φU(u2)‖,

which shows the Lipschitz continuity of SMSAV under the assumption (A2). �

Appendix 3. Computational efficiency of the scheme defined by
Definition 3

In this section, we evaluate the computational efficiency of the scheme defined by
Definition 3 in terms of the number of the computation of the product of matrix expo-
nential and vector. To this end, we consider the explicit Lawson method and the four
types of the initial approximation. Before evaluating the computational efficiency, we
summarize the number of stages of the explicit Runge–Kutta and continuous explicit
Runge–Kutta (CERK) methods achieving the order p in Table 1.

Let us list the four types of initial approximation. To achieve the order p, we consider
the Gauss method with s = �p/2� stages as the base Runge–Kutta method. Then, to
minimize the number of iterations in Definition 3, we choose k = p − q + 1. Recall
that Steps 1 and 2 in Definition 3 require the computation of the product of matrix
exponential and vector (2k − 1)s + 1 times in sequential computation and 2k times
in parallel computation. Below, NS and NP denote the number of the computation of
the product of matrix exponential and vector in sequential and parallel computation,
respectively.

123

1322 Numerical Algorithms (2024) 96:1295–1329

Table 1 The number of stages of
the explicit RK and CERK
methods achieving the order p

Methods\order 1 2 3 4 5 6 7 8

Explicit RK 1 2 3 4 6 7 9 11

Continuous explicit RK 1 2 4 6 8 11 15 −
The written number is the minimum number of stages achieving the
order p (cf. [37–39]) except for seventh-order CERK, where we refer
to the 15 stage method by Verner [39]. (Eighth-order CERK is omitted
since we do not use it later.)

• Proposed (I): the simplest initial approximation U (0)
i = u0. In this case, since

q = 1 holds, we choose k = p. Then, NS = (2p − 1)s + 1 and NP = 2p hold.
• Proposed (II): an accurate initial approximation using continuous explicit Runge–
Kutta methods with the Lawson transformation. In this case, since q = p holds,
we choose k = 1. Then, NS = 2(s∗ − 1) + 2s + 1 and NP = 2(s∗ − 1) + 3 hold,
where s∗ is the number of stages of the continuous explicit Runge–Kutta method
achieving the order p − 1 (see Table 1).

• Proposed (III): initial approximation using extrapolation of inner stages in the
previous step (p ≥ 2). The inner stages of the Gauss method are (s + 1)th order
approximations, the order of approximation is at most (s + 1)th order. Therefore,
let us construct the extrapolation satisfying q = s + 1 and k = p − s. However,
since U (i)

k is not computed at the last iteration in Definition 3, the situation is a bit
complicated. First, when p = 2, we have s = 1 and k = 1. In this case, to construct
a second-order approximation, we employ the extrapolation using the input u0 and
u1 in the previous step. Therefore, NS = NP = 2 hold. Next, when p = 3, we
have s = 2 and k = 1. In this case, to construct a third-order approximation, we
employ the extrapolation using the input u0, u1, and one of the inner stages in the
previous step. Therefore, NS = 4 and NP = 3 hold. Finally, when p ≥ 4, we have
k ≥ 2. In this case, we can use U (k−1)

i ’s which are computed in the previous step.
Therefore, NS = (2p − 2s − 1)s + 1 and NP = 2(p − s) hold.

• Proposed (IV): initial approximation using extrapolation of several previous steps.
In this case, by using sufficiently many previous steps, we can construct the extrap-
olation satisfying q = p so that k = 1. Then, we have NS = s + 1 and NP = 2
hold.

We compare the computational efficiency of the proposed methods with that of the
explicit Lawson method in Table 2. Note that the explicit Lawson method requires the
product of the matrix exponential and vector 2s − 1 times.

As shown in Table 2, the computational efficiency of the proposed method largely
depends on the choice of the initial approximation. In particular, the extrapolation
methods (III) and (IV) are much more efficient than the other methods. However, as
reported in [27], the extrapolation method (III) causes the instability in the numerical
solution. We expect worse stability for the extrapolation method (IV). In this sense,
we believe the methods (I) and (II) (numerically tested in Sect. 5) are better to use
in practice. As summarized in Table 2, the proposed method (I) is better in parallel
computation, while the proposed method (II) is better in sequential computation.

123

Numerical Algorithms (2024) 96:1295–1329 1323

Table 2 The number of the
computation of the product of
matrix exponential and vector

Methods\order 1 2 3 4 5 6 7 8

Explicit Lawson 1 3 5 7 11 13 17 21

Proposed (Is) 2 4 11 15 28 34 53 61

Proposed (Ip) 2 4 6 8 10 12 14 16

Proposed (IIs) 2 3 7 11 17 21 29 37

Proposed (IIp) 2 3 5 9 13 17 23 31

Proposed (IIIs) − 2 4 7 10 16 21 29

Proposed (IIIp) − 2 3 4 4 6 6 8

Proposed (IVs) − 2 3 3 4 4 5 5

Proposed (IVp) − 2 2 2 2 2 2 2

The symbol (Is) and (Ip) denote the proposed method (I) in sequential
and parallel computation, respectively. The other symbols have the
same meaning

Appendix 4. Application of the scheme by [16] to the SAV system (18)

In this section, we consider the scheme by [16] (i.e., Definition 1) applied to the SAV
system (18).

In this case, the (3) reads

⎡
⎢⎣U (k)

i

R(k)
L,i

R(k)
U,i

⎤
⎥⎦ =

⎡
⎣ u0

rL,0
rU,0

⎤
⎦+ h

∑
j∈[s]

ai j

⎡
⎢⎢⎣

J LU (k)
j + 2R(k)

L, j J φ̂L, j − 2R(k)
U, j J φ̂U, j

−
〈
J φ̂L, j ,LU (k)

j

〉
− 2RU, j

〈
φ̂L, j ,J φ̂U, j

〉
−
〈
J φ̂U, j , LU (k)

j

〉
− 2RL, j

〈
φ̂L, j ,J φ̂U, j

〉
⎤
⎥⎥⎦ , (22)

where φ̂
(k−1)
X, j = φX

(
U (k−1)

j

)
for X ∈ {L,U}. Let U (k) denote the vector[

U (k)
1 · · · U (k)

s

]T
. Then, the first equation in the above equation can be written as

(Is ⊗ IV −h A⊗ J L)U (k) = 1s ⊗u0+2 h
∑
j∈[s]

A j ⊗ J φ̂
(k−1)
L, j −2 h

∑
j∈[s]

A j ⊗ J φ̂
(k−1)
U, j ,

where⊗ denotes theKronecker product, Is ∈ R
s×s is the identitymatrix, IV ∈ L(V) is

the identity operator, A ∈ R
s×s is thematrixwith the entriesai j , A j = [a1 j · · · as j

]T ∈
R

s is the vector, and 1s ∈ R
s is the vector with the entries 1. Since the linear equation

in the form
(Is ⊗ IV − h A ⊗ J L)x = w ⊗ v

123

1324 Numerical Algorithms (2024) 96:1295–1329

can be efficiently solved (cf. [40, IV.8]), it is computationally inexpensive to compute

⎡
⎢⎣

ũ1
...

ũs

⎤
⎥⎦ = (Is ⊗ IV − h A ⊗ J L)−1 (1s ⊗ u0) , (23)

⎡
⎢⎢⎣

φ̃X
j1
...

φ̃X
js

⎤
⎥⎥⎦ = (Is ⊗ IV − h A ⊗ J L)−1

(
A j ⊗ J φ̂

(k−1)
X, j

)
. (24)

By using this, U (k)
i can be written as

U (k)
i = ũi + 2h

∑
j∈[s]

R(k)
L, j φ̃

L
j i − 2h

∑
j∈[s]

R(k)
U, j φ̃

U
j i . (25)

Then, by using the above equation, the second and the third equations in (22) can
be simplified into

[
Is + 2h2A�̃LL −2h2A�̃LU + 2h A�

2h2A�̃UL + 2h A� Is − 2h2A�̃UU

][
R(k)
L

R(k)
U

]
=
[

rL,01s

rU,01s

]
− h

[
AνL
AνU

]
,

(26)

where R(k)
X =

[
R(k)
X,1 · · · R(k)

X,s

]T
, �̃XY ∈ R

s×s is defined by
(
�̃XYi j

)
=
〈
Lφ̂X,i , φ̃

Y
j i

〉
,

� ∈ R
s×s is a diagonal matrix defined by �i i =

〈
φ̂L,i ,J φ̂U,i

〉
, νX ∈ R

s is defined by

(νX)i =
〈
Lφ̂X,i , ũi

〉
. Consequently, we obtain the following scheme:

Definition 5

Step 0 Prepare U (0)
i ≈ u(ci h) and set k = 1.

Step 1 Compute ũi and φ̃X
i j for i, j ∈ [s] by (23) and (24). Solve the linear equation

system (26) to obtain R(k)
L and R(k)

U . Compute {U (k)
i }s

i=1 by (25). If some
criteria hold, go to Step 2. Otherwise, set k = k + 1 and repeat Step 1.

Step 2 Output

⎡
⎣ u1

rL,1
rU,1

⎤
⎦ =

⎡
⎢⎣u(k)

0

r (k)
L,0

r (k)
U,0

⎤
⎥⎦+ h

∑
j∈[s]

b j

⎡
⎢⎣

J LU (k)
j + 2R(k)

L, j J φ̂L, j − 2R(k)
U, j J φ̂U, j

−〈J φ̂L, j ,LU (k)
j 〉 − 2RU, j 〈φ̂L, j ,J φ̂U, j 〉

−〈J φ̂U, j ,LU (k)
j 〉 − 2RL, j 〈φ̂L, j ,J φ̂U, j 〉

⎤
⎥⎦ .

123

Numerical Algorithms (2024) 96:1295–1329 1325

Appendix 5. The error behavior of the proposed scheme
for the sine-Gordon equation

In this section, we consider the ODE⎧⎪⎨
⎪⎩

u̇(t) = v(t),

v̇(t) = δ2x u(t) + 2r(t)φ (u(t)) ,

ṙ(t) = −〈φ (u(t)) ,v(t)〉
(27)

given by a spatial discretization of the sine-Gordon equation.

Theorem 15 Let (u, v, r) be the solution of the ODE (27). Assume the following con-
ditions:

(A1) U (0)
i satisfies

∥∥U (0)
i − u(ci h)

∥∥ ≤ Chq for each i ∈ [s].
(A2) α in the definition of φ satisfies α ≥ 2N�x .
(A3) The base Runge–Kutta method is of order p.

Then, the solution (u(k)
1 , v

(k)
1 , r (k)

1) of the scheme defined by Definition 3 satisfies

∥∥∥u(k)
1 (h) − u(h)

∥∥∥ ≤ C ′hmin{p,q+2k−1}+1,∥∥∥v(k)
1 (h) − v(h)

∥∥∥ ≤ C ′hmin{p,q+2k−2}+1,∥∥∥r (k)
1 (h) − r(h)

∥∥∥ ≤ C ′hmin{p,q+2k−2}+1

for a sufficiently small step size h > 0, Here, C ′ is a constant depending only on the
exact solution (u, v, r), k, N , A, b, and the constant C in (A1).

Proof In this case, the coupled system considered in the proof of Theorem 7 reads

⎧⎪⎨
⎪⎩

u̇(i)(t) = v(i)(t),

v̇(i)(t) = δ2x u(i)(t) + 2r (i)(t)φ
(
u(i−1)(t)

)
,

ṙ (i)(t) = −〈φ (u(i−1)(t)
)
,v(i)(t)〉

for i = 1, 2, . . . , k. According to the proof of Theorem 7, it is sufficient to show that
supt∈[0,h]

∥∥u(i)(t) − u(t)
∥∥ ≤ C ′′hq+2k , supt∈[0,h]

∥∥v(i)(t) − v(t)
∥∥ ≤ C ′′hq+2k−1 and

supt∈[0,h]
∣∣r (i)(t) − r(t)

∣∣ ≤ C ′′hq+2k−1.

First, we introduce several bounds with respect to φ. Since E
(
u(i)(t)

) = ∑N
k=1

cos
(

u(i)
k (t)

)
�x ≥ −N�x and

∥∥sin (u(i)(t)
)∥∥ =

√∑N
k=1

∣∣∣sin (u(i)
k

)∣∣∣�x ≤ √
N�x

hold, we see

∥∥∥φ (u(i)(t)
)∥∥∥ = 1

2
√

E
(
u(i)(t)

)+ α

∥∥∥sin (u(i)(t)
)∥∥∥ ≤

√
N�x

2
√

α − N�x
,

123

1326 Numerical Algorithms (2024) 96:1295–1329

which implies supt∈[0,h] ‖φ
(
u(i)(t)

)‖ ≤ 1/2 by choosing α = 2N�x . In addition,
under the setting α = 2N�x , for any v,w ∈ R

N , we see

‖φ(v) − φ(w)‖
=
∥∥∥ 1

2
√

E(v) + α
sin(v) − 1

2
√

E(w) + α
sin(w)

∥∥∥
≤ 1

2
√

E(v) + α
‖sin(v) − sin(w)‖ +

∣∣∣ 1

2
√

E(v) + α
− 1

2
√

E(w) + α

∣∣∣‖sin(w)‖

≤ 1√
N�x

‖v − w‖ +
√

N�x

2

∣∣∣ E(v) − E(w)√
(E(v) + α) (E(w) + α)

(√
E(v) + α + √

E(w) + α
) ∣∣∣

≤ 1√
N�x

‖v − w‖ + 1

4N�x

∣∣∣ N∑
k=1

(cos vk − coswk) �x
∣∣∣

= 1√
N�x

‖v − w‖ + 1

2N�x

∣∣∣ N∑
k=1

sin
vk + wk

2
sin

vk − wk

2
�x
∣∣∣

≤ 1√
N�x

‖v − w‖ + 1

2N�x

∥∥∥sin v + w

2

∥∥∥∥∥∥sin v − w

2

∥∥∥
≤ 5

4
√

N�x
‖v − w‖.

Therefore, the map φ is Lipschitz continuous with the Lipschitz constant Lφ :=
5/(4

√
N�x).

Let us introduce E (i)
u := supt∈[0,h]

∥∥u(i)(t) − u(t)
∥∥, E (i)

v := supt∈[0,h]
∥∥v(i)(t)

−v(t)
∥∥ and E (i)

r := supt∈[0,h]
∣∣r (i)(t) − r(t)

∣∣. Then, by introducing Cv :=
supt∈[0,h]

∥∥v(t)
∥∥ and Cr := supt∈[0,h]

∣∣r(t)
∣∣, we see

E(i)
u = sup

t∈[0,h]

∥∥∥∥
∫ t

0

(
v(i)(τ) − v(τ)

)
dτ

∥∥∥∥
≤ hE(i)

v ,

E(i)
v = sup

t∈[0,h]

∥∥∥∥
∫ t

0

(
δ2x u(i)(τ) + 2r (i)(τ)φ

(
u(i−1)(τ)

)
− δ2x u(τ) − 2r(τ)φ (u(τ))

)
dτ

∥∥∥∥
≤ h
∥∥δ2x∥∥E(i)

u + 2 sup
t∈[0,h]

∥∥∥∥
∫ t

0

(
r (i)(τ) − r(τ)

)
φ
(

u(i−1)(τ)
)
dτ

∥∥∥∥
+ 2 sup

t∈[0,h]

∥∥∥∥
∫ t

0
r(τ)

(
φ
(

u(i−1)(τ)
)

− φ (u(τ))
)
dτ

∥∥∥∥
≤ h
∥∥δ2x∥∥E(i)

u + hE(i)
r + 2hCr Lφ E(i−1)

u ,

E(i)
r = sup

t∈[0,h]

∣∣∣∣
∫ t

0

(
−〈φ (u(i−1)(τ)

)
, v(i)(τ)

〉+ 〈φ (u(τ)), v(τ)
〉)
dτ

∣∣∣∣ (28)

≤ h

2
E(i)

v + hCv Lφ E(i−1)
u .

123

Numerical Algorithms (2024) 96:1295–1329 1327

The inequalities on E (i)
v and E (i)

r imply

(
1 − h2

2

)
E (i)

v ≤ h‖δ2x‖E (i)
u + hLφ (2Cr + hCv) E (i−1)

u .

Therefore, when h ≤ 1, we see

E (i)
v ≤ 2h

∥∥δ2x∥∥E (i)
u + 2hLφ (2Cr + hCv) E (i−1)

u . (29)

This inequality and E (i)
u ≤ hE (i)

v imply

(
1 − 2h

∥∥δ2x∥∥) E (i)
u ≤ 2h2Lφ (2Cr + hCv) E (i−1)

u .

Therefore, when h ≤ (4∥∥δ2x∥∥)−1
, we see

E (i)
u ≤ 4h2Lφ (2Cr + hCv) E (i−1)

u ,

which implies E (i)
u ≤ C (k)hq+2k , where C (k) = (

4Lφ (2Cr + Cv)
)k . This fact and

inequalities (29) and (28) show the theorem. �

As indicated in the proof above, the same argument holds true for the nonlinear

Klein–Gordon equation with a general potential function when φ is Lipschitz contin-
uous.

Acknowledgements Wewould like to thank Editage (www.editage.com) for English language editing. The
author would also like to thank the anonymous referees for their helpful comments.

Author contribution S.S. wrote the whole manuscript.

Funding Open Access funding provided by The University of Tokyo. The author is supported by a Japan
Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (B) (No. 20H01822) and
a JSPS Grant-in-Aid for Early-Career Scientists (No. 22K13955).

Data Availability The code and data that support the findings of this paper are available from the corre-
sponding author upon reasonable request.

Declarations

Conflict of interest The author declares no competing interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

www.editage.com
http://creativecommons.org/licenses/by/4.0/

1328 Numerical Algorithms (2024) 96:1295–1329

References

1. Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D., O’Neale, D., Owren, B., Quispel, G.R.:
Preserving energy resp. dissipation in numerical PDEs using the “average vector field” method. J.
Comp. Phys. 231, 6770–6789 (2012)

2. Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6, 449–467 (1996)
3. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Unified approach to Hamiltonian systems, Poisson

systems, gradient systems with Lyapunov functions or first integrals. Phys. Rev. Lett. 81, 2399–2403
(1998)

4. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients.
Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 357, 1021–1045 (1999)

5. Furihata, D.: Finite difference schemes for ∂u/∂t = (∂/∂x)αδG/δu that inherit energy conservation
or dissipation property. J. Comput. Phys. 156(1), 181–205 (1999). https://doi.org/10.1006/jcph.1999.
6377

6. Furihata, D., Mori, M.: General derivation of finite difference schemes by means of a discrete variation
(in Japanese). Trans. Japan Soc. Indust. Appl. 8(3), 317–340 (1998)

7. Furihata, D., Matsuo, T.: Discrete variational derivative method-a structure-preserving numerical
method for partial differential equations. CRC Press, Boca Raton (2011)

8. Cohen, D., Hairer, E.: Linear energy-preserving integrators for Poisson systems. BIT 51(1), 91–101
(2011). https://doi.org/10.1007/s10543-011-0310-z

9. Besse, C.: A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42(3),
934–952 (2004). https://doi.org/10.1137/S0036142901396521

10. Zhang, F., Pérez-García, V.M., Vázquez, L.: Numerical simulation of nonlinear Schrödinger systems:
a new conservative scheme. Appl. Math. Comput. 71(2–3), 165–177 (1995)

11. Matsuo, T., Furihata, D.: Dissipative or conservative finite-difference schemes for complex-valued
nonlinear partial differential equations. J. Comput. Phys. 171(2), 425–447 (2001). https://doi.org/10.
1006/jcph.2001.6775

12. Dahlby, M., Owren, B.: A general framework for deriving integral preserving numerical methods for
PDEs. SIAM J. Sci. Comput. 33(5), 2318–2340 (2011). https://doi.org/10.1137/100810174

13. Yang,X., Han,D.: Linearly first- and second-order, unconditionally energy stable schemes for the phase
field crystal model. J. Comput. Phys. 330, 1116–1134 (2017). https://doi.org/10.1016/j.jcp.2016.10.
020

14. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput.
Phys. 353, 407–416 (2018). https://doi.org/10.1016/j.jcp.2017.10.021

15. Kemmochi, T., Sato, S.: Scalar auxiliary variable approach for conservative/dissipative partial differ-
ential equations with unbounded energy functionals. BIT 62, 903–930 (2022)

16. Sato, S., Miyatake, Y., Butcher, J.C.: High-order linearly implicit schemes conserving quadratic invari-
ants. Appl. Numer. Math. 187, 71–88 (2023). https://doi.org/10.1016/j.apnum.2023.02.005

17. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010). https://doi.
org/10.1017/S0962492910000048

18. Celledoni, E., Cohen, D., Owren, B.: Symmetric exponential integrators with an application to the
cubic Schrödinger equation. Found. Comput. Math. 8, 303–317 (2008)

19. Mei, L., Huang, L., Huang, S.: Exponential integrators with quadratic energy preservation for linear
Poisson systems. J. Comput. Phys. 387, 446–454 (2019)

20. Li, Y.-W., Wu, X.: Exponential integrators preserving first integrals or Lyapunov functions for conser-
vative or dissipative systems. J. Sci. Comput. 38(3), 1876–1895 (2016)

21. Mei, L., Huang, L., Wu, X.: Energy-preserving exponential integrators of arbitrarily high order for
conservative or dissipative systems with highly oscillatory solutions. J. Comput. Phys. 442, 110429
(2021). https://doi.org/10.1016/j.jcp.2021.110429

22. Li, L.: A new symmetric linearly implicit exponential integrator preserving polynomial invariants or
Lyapunov functions for conservative or dissipative systems. J. Comput. Phys. 449, 110800 (2022).
https://doi.org/10.1016/j.jcp.2021.110800

23. Jiang, C., Wang, Y., Cai, W.: A linearly implicit energy-preserving exponential integrator for the
nonlinear Klein-Gordon equation. J. Comput. Phys. 419, 109690 (2020)

24. Cui, J., Xu, Z.,Wang, Y., Jiang, C.:Mass- and energy-preserving exponential Runge-Kutta methods for
the nonlinear Schrödinger equation. Appl. Math. Lett. 112, 106770 (2021). https://doi.org/10.1016/j.
aml.2020.106770

123

https://doi.org/10.1006/jcph.1999.6377
https://doi.org/10.1006/jcph.1999.6377
https://doi.org/10.1007/s10543-011-0310-z
https://doi.org/10.1137/S0036142901396521
https://doi.org/10.1006/jcph.2001.6775
https://doi.org/10.1006/jcph.2001.6775
https://doi.org/10.1137/100810174
https://doi.org/10.1016/j.jcp.2016.10.020
https://doi.org/10.1016/j.jcp.2016.10.020
https://doi.org/10.1016/j.jcp.2017.10.021
https://doi.org/10.1016/j.apnum.2023.02.005
https://doi.org/10.1017/S0962492910000048
https://doi.org/10.1017/S0962492910000048
https://doi.org/10.1016/j.jcp.2021.110429
https://doi.org/10.1016/j.jcp.2021.110800
https://doi.org/10.1016/j.aml.2020.106770
https://doi.org/10.1016/j.aml.2020.106770

Numerical Algorithms (2024) 96:1295–1329 1329

25. Xu,Z.,Cai,W., Song,Y.,Wang,Y.:Explicit high-order energy-preserving exponential timedifferencing
method for nonlinear Hamiltonian PDEs. Appl. Math. Comput. 404, 126208 (2021)

26. Fu, Y., Hu, D., Xu, Z.: High-order explicit conservative exponential integrator schemes for fractional
Hamiltonian PDEs. Appl. Numer. Math. 172, 315–331 (2022). https://doi.org/10.1016/j.apnum.2021.
10.011

27. Jiang, C., Cui, J., Qian, X., Song, S.: High-order linearly implicit structure-preserving exponential
integrators for the nonlinear Schrödinger equation. J. Sci. Comput. 90(1), 66–27 (2022). https://doi.
org/10.1007/s10915-021-01739-x

28. Lawson, J.D.: Generalized Runge-Kutta processes for stable systems with large Lipschitz constants.
SIAM J. Numer. Anal. 4(3), 372–380 (1967)

29. Cooper, G.J.: Stability of Runge-Kutta methods for trajectory problems. IMA J. Numer. Anal. 7(1),
1–13 (1987). https://doi.org/10.1093/imanum/7.1.1

30. Butcher, J.C.: B-series—algebraic analysis of numerical methods. Springer Series in Computational
Mathematics, vol. 55, p. 310. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70956-3

31. Horn, R.A., Johnson, C.R.: Topics in matrix analysis, p. 607. Cambridge University Press, Cambridge
(1991). https://doi.org/10.1017/CBO9780511840371

32. Trefethen, L.N., Embree,M.: Spectra and pseudospectra, p. 606. Princeton University Press, Princeton,
NJ (2005)

33. Shen, X., Leok, M.: Geometric exponential integrators. J. Comput. Phys. 382, 27–42 (2019). https://
doi.org/10.1016/j.jcp.2019.01.005

34. Fornberg, B.: A practical guide to pseudospectral methods. Cambridge Monographs on Applied and
Computational Mathematics, vol. 1, p. 231. Cambridge University Press, Cambridge (1996). https://
doi.org/10.1017/CBO9780511626357

35. Butcher, J.C.: On Runge-Kutta processes of high order. J. Austral. Math. Soc. 4, 179–194 (1964)
36. Marchesoni, F.: Exact solutions of the sine-Gordon equation with periodic boundary conditions. Progr.

Theoret. Phys. 77(4), 813–824 (1987). https://doi.org/10.1143/PTP.77.813
37. Zhang, D.K.: Discovering new Runge-Kutta methods using unstructured numerical search (2019)
38. Owren, B., Zennaro, M.: Continuous explicit Runge-Kutta methods. In: Computational Ordinary Dif-

ferential Equations (London, 1989). Inst. Math. Appl. Conf. Ser. New Ser., vol. 39, pp. 97–105. Oxford
Univ. Press, New York, ??? (1992)

39. Verner, J.H.: Differentiable interpolants for high-order Runge-Kutta methods. SIAM J. Numer. Anal.
30(5), 1446–1466 (1993). https://doi.org/10.1137/0730075

40. Hairer, E., Wanner, G.:Solving ordinary differential equations. II, Stiff and Differential-algebraic Prob-
lems. Springer Series in Computational Mathematics, vol. 14, p. 614. Springer, Berlin (2010). https://
doi.org/10.1007/978-3-642-05221-7

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1016/j.apnum.2021.10.011
https://doi.org/10.1016/j.apnum.2021.10.011
https://doi.org/10.1007/s10915-021-01739-x
https://doi.org/10.1007/s10915-021-01739-x
https://doi.org/10.1093/imanum/7.1.1
https://doi.org/10.1007/978-3-030-70956-3
https://doi.org/10.1017/CBO9780511840371
https://doi.org/10.1016/j.jcp.2019.01.005
https://doi.org/10.1016/j.jcp.2019.01.005
https://doi.org/10.1017/CBO9780511626357
https://doi.org/10.1017/CBO9780511626357
https://doi.org/10.1143/PTP.77.813
https://doi.org/10.1137/0730075
https://doi.org/10.1007/978-3-642-05221-7
https://doi.org/10.1007/978-3-642-05221-7

	High-order linearly implicit exponential integrators conserving quadratic invariants with application to scalar auxiliary variable approach
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Runge–Kutta methods and quadratic invariants
	2.2 High-order linearly implicit schemes that conserve quadratic invariants
	2.3 Lawson transformation
	2.4 Scalar auxiliary variable approach

	3 Exponential Runge–Kutta methods conserving quadratic invariants
	3.1 Lawson transformation and quadratic invariants
	3.2 Linearly implicit exponential integrators conserving quadratic invariants

	4 Application to the SAV approach
	4.1 Simple case (9)
	4.2 Multiple scalar auxiliary variables

	5 Numerical experiments
	5.1 Modified Korteweg–de Vries equation
	5.2 Korteweg–de Vries equation
	5.3 Sine-Gordon equation

	Appendix 1. Derivation of the scheme defined by Definition 4
	Appendix 2. Proofs of theorems in 4.2
	Appendix 3. Computational efficiency of the scheme defined by Definition 3
	Appendix 4. Application of the scheme by SMB2023 to the SAV system (18)
	Appendix 5. The error behavior of the proposed scheme for the sine-Gordon equation
	Acknowledgements
	References

