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Abstract
In this paper, we derive a new exponential wave integrator sine pseudo-spectral (EWI-
SP)method for the higher-orderBoussinesq equation involving the higher-order effects
of dispersion. The method is fully-explicit and it has fourth order accuracy in time and
spectral accuracy in space. We rigorously carry out error analysis and establish error
bounds in the Sobolev spaces. The performance of the EWI-SP method is illustrated
by examining the long-time evolution of the single solitarywave, single wave splitting,
and head-on collision of solitarywaves.Numerical experiments confirm the theoretical
results.

Keywords Error estimate · Exponential integrator · Higher-order Boussinesq
equation · Sine pseudo-spectral method · Long-time dynamics

1 Introduction

In this paper, we study the higher-order Boussinesq (HBq) equation

utt = uxx + η1uxxtt − η2uxxxxtt + ( f (u))xx (1.1)

with initial and homogeneous boundary conditions. Here, u(x, t) denotes the unknown
function, η1 and η2 are real positive constants.We consider a single power-type nonlin-
earity as f (u) = u p. TheHBq equationwas first derived byRosenau for the continuum
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limit of a dense chain of particles with elastic couplings in [1]. The propagation of
longitudinal waves in an infinite elastic medium with nonlinear and non-local prop-
erties is also described by the HBq equation in [2]. Choosing the parameter η2 = 0,
(1.1) reduces the improved Boussinesq (IBq) equation

utt = uxx + η1uxxtt + ( f (u))xx , (1.2)

which models the water wave problem with zero surface tension [3]. The most well-
known classical Boussinesq equation [4] is given by

utt = uxx + αuxxxx + (u2)xx . (1.3)

When α = −1, (1.3) is called the “good” Boussinesq equation, and when α = 1,
it is known as the “bad” Boussinesq equation. Bogolubsky revealed that contrary to
the “good” Boussinesq equation, the “bad” Boussinesq equation is unstable under
short-wave perturbation and has no local well-posedness result in [5]. The improved
Boussinesq equation has been shown as an approach for the “bad”Boussinesq equation
by replacing the term uxxxx with uxxtt , which is physically stable [5, 6].

Assume that u and all its derivatives converge to zero as x → ±∞. For the solutions
of the HBq equation subjected to these boundary conditions, the conserved quantity
(mass) is given in [7] as

M(t) =
∫ ∞

−∞
vt dx, (1.4)

where u = vx .
Regarding the existence of local/global solutions of theCauchy problem concerning

(1.1), the authors in [2] used the fixed-point technique for the initial data in Hs with
s > 1/2. The local and global existence of solutions to the initial and boundary
value problems corresponding to the initial data in (i) the Sobolev space W 3,∞(0, 1)
for the nonlinear function f (s) ∈ C1(R) with f (0) = 0 and (ii) the Sobolev space
Hm+3(0, 1), m ≥ 1 for the nonlinear function f (s) ∈ Cm(R) with f (0) = 0 are
established in [8]. Considering a general nonlinearity, the group classification and
exact solutions of the HBq equation are obtained in [9].

From the numerical point of view, a variety of numerical schemes for approximating
the time evolution of the solutions of the “good” Boussinesq equation have been
proposed including the finite difference methods [10, 11], pseudo-spectral methods
[12, 13], splitting methods [14] and the exponential wave integrators [15]. There
are also a large number of studies in the literature on the IBq equation involving
finite difference methods [10, 16], finite element methods [17, 18], spectral methods
[19], meshless methods [20], Runge–Kutta type exponential integrators [21], energy
preserving methods [22, 23] and exponential wave integrators [24]. To the best of our
knowledge, there is only one numerical study [7] in the literature considering the HBq
equation. The convergence of the semi-discrete scheme is only proved in [7] and the
authors focus on the quadratic nonlinearity.

The exponential wave integrator pseudo-spectral method has recently become very
popular for solving time-dependent PDEs due to its superior properties. The method
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can be implemented efficiently by applying the fast discrete Fourier or Sine transform
for the spatial discretization combined with an exponential wave integrator based on
some efficient quadrature rules. Bao andDong proposed amethod based on the Fourier
pseudo-spectral approach to spatial discretization followed by a Gautschi-type expo-
nential integrator for the Klein-Gordon equation in the non-relativistic limit regime
[25]. Zhao studied an exponential wave integrator sine pseudo-spectral method for
solving the Klein-Gordon-Zakharov system in [26] and an exponential wave inte-
grator Fourier pseudo-spectral method for solving symmetric regularized-long-wave
equation in [27]. The numerical method is based on a Deuflhard-type and Gautschi-
type exponential wave integrator for temporal integrations, respectively. Exponential
wave integrator methods are also applied successfully for the nonlinear Schrödinger
equation [28], the extended Fisher-Kolmogorov equation [29]. As far as we know,
the methods given in above mentioned studies have second-order accuracy in time
and spectral accuracy in space. A fourth-order exponential wave integrator Fourier
pseudo-spectralmethod for the nonlinearDirac equation and thenonlinear Schrödinger
equation are proposed in [30] and [31], respectively. For approximating the integral
terms, the authors in [30, 31] use the Simpson quadrature formula. However, the
proposed schemes are implicit schemes that require solving a nonlinear system for
each step. Ji and Zhang presented a fourth-order exponential wave integrator Fourier
pseudo-spectral method for solving the Klein-Gordon equation in [32]. The scheme
is explicit and the corrected trapezoidal formula is used for approximating the inte-
gral term. They proved the fourth-order convergence in time under the restriction
τ ≤ πh

3
√
2π2+h2

, where τ is the time step and h is the spatial step size. Wang and
Zhao introduce a group of symmetric Gautschi-type exponential wave integrators
for the Klein-Gordon equation [33] in nonrelativistic limit regime. The scheme has
fourth-order convergence in time. However, this scheme involves a rather compli-
cated procedure due to the approximation of the second-order time derivative of the
nonlinear function.

To the best of our knowledge, the exponential wave integrator methods applied to
“good” Boussinesq [15] and Improved Bousinesq equation [24] are both second-order
accurate in time. In order to demonstrate higher-order calculations for the Boussinesq-
type equations, we derive a new fourth-order accurate scheme in time. The scheme
is easy to implement since it is explicit. We also avoid the approximation of the time
derivative of nonlinear function only except for initial time. Most of the studies in the
literature focus on the only convergence of the semi-discrete scheme, conservation
properties, and stability analysis. Our aim is to prove error analysis of the exponential
wave integrator sine pseudo-spectral method for the higher-order Boussinesq equation
involving the higher-order effects of dispersion. We obtain optimal error estimates of
the fully discrete scheme in the Sobolev space Hm .

This article is outlined as follows. In Sect. 2, we propose a new exponential inte-
grator sine pseudo-spectral method for the HBq equation. In Sect. 3, the error estimate
is proved in detail. Sect. 4 is devoted to the numerical accuracy of the method. The
scheme is tested for various problems, like the propagation of the single solitary wave,
single wave splitting, and head-on collision of two solitary waves. Throughout this
article, we use the notation A � B to represent that there exists a generic constant
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C > 0, which is independent of the time step τ and spatial step size h, such that
|A| ≤ CB.

2 Numerical methods

In this section,we solve theHBq equation by combining a sine pseudo-spectralmethod
for spatial derivatives with the fourth-order exponential wave integrator for temporal
derivatives. We consider the HBq equation on a bounded domain � = (a, b) with
initial and homogeneous boundary conditions given by

⎧⎪⎨
⎪⎩
utt = uxx + η1uxxtt − η2uxxxxtt + ( f (u))xx , x ∈ �, t > 0,

u(x, 0) = u0(x), ut (x, 0) = u1(x),

u(a, t) = u(b, t) = 0, t ≥ 0,

(2.1)

where f ∈ C∞(R, R). The space interval is chosen large enough so that the truncation
error is negligible.

Now, we start introducing some notations employed throughout the paper. The
interval [a, b] is divided into M equal subintervals with grid spacing h = (b− a)/M ,
where M is a positive integer. The spatial grid points are given by x j = a + jh,
j = 0, 1, 2, . . . , M . The time interval [0, T ] is divided into N equal subintervals with
time step τ = T /N and temporal grid points tn = nτ , n = 0, . . . , N . Denote

XM := {u = (u0, u1, . . . , uM ) ∈ R
M+1|u0 = uM = 0},

YM := span{sin(μl(x − a)), l = 1, 2, . . . , M − 1},

with μl = lπ
b−a . For a general function u(x) on � = [a, b] and a vector u ∈ XM , let

PM : L2(�) → YM be the standard L2-projection operator and IM : C0(�) → YM

or IM : XM → YM be the trigonometric interpolation operator as

(PMu)(x) =
M−1∑
l=1

ûl sin(μl(x − a)), (IMu)(x) =
M−1∑
l=1

ũl sin(μl(x − a)), (2.2)

where ûl and ũl are the sine and discrete sine transform coefficients, respectively,
given by

ûl = 2

b − a

∫ b

a
u(x) sin(μl(x − a))dx, ũl = 2

M

M−1∑
j=1

u j sin

(
jlπ

M

)
, (2.3)

with u j = u(x j ) when involved. The sine pseudo-spectral approximation

uM (x, tn + s) =
M−1∑
l=1

ûl(tn + s) sin(μl(x − a)), x ∈ �, s ∈ R (2.4)
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for the solution of (2.1) satisfies

∂ssuM (x, tn + s) = ∂xxuM (x, tn + s) + η1∂xxssuM (x, tn + s)

−η2∂xxxxssuM (x, tn + s)

+∂xx PM ( f (uM (x, tn + s)). (2.5)

Substituting (2.4) into (2.5) and noticing the orthogonality of sin(μl(x − a)) for
l = 1, ..., M − 1, one gets

d2

ds2
ûl(tn + s) + θ2l ûl(tn + s) + θ2l (̂ f nM )l(s) = 0, s ∈ R (2.6)

where f nM (x, s) = PM f (uM (x, tn + s)) and θl = μl/

√
1 + η1μ

2
l + η2μ

4
l .

By using the well-known variation of the parameters formula, the general solution
of the (2.6) is given by

ûl(tn + s) = cos (θl s )̂ul(tn) + sin (θl s)

θl
û′
l(tn) − θl

∫ s

0
sin

(
θl(s − ω)

)
(̂ f nM )l(ω)dω.

(2.7)
Differentiating (2.7) with respect to s, we obtain

û′
l(tn+s) = −θl sin(θl s )̂ul(tn)+cos(θl s )̂u

′
l(tn)−θ2l

∫ s

0
cos

(
θl(s − ω)

)
(̂ f nM )l(ω)dω.

(2.8)
Plugging s = 2τ and replacing n by n − 1, one gets

ûl(tn+1) = cos (2θlτ )̂ul(tn−1) + sin (2θlτ)

θl
û′
l(tn−1)

−θl

∫ 2τ

0
sin (θl(2τ − ω))

̂
( f n−1

M )l(ω)dω. (2.9)

In order to obtain the fourth-order accuracy method, we approximate the integral term
in (2.9) by the Simpson rule as

∫ 2τ

0
sin

(
θl(2τ −ω)

) ̂
( f n−1

M )l(ω)dω≈ τ

3

[
sin (2θlτ)

̂
( f n−1

M )l(0)+4 sin (θlτ)(̂ f nM )l(0)
]

(2.10)

noticing that ̂
( f n−1

M )l(τ ) = (̂ f nM )l(0). Similarly, plugging s = 2τ and replacing n by
n − 1 in (2.8), we obtain

û′
l(tn+1) = −θl sin(2θlτ )̂ul(tn−1) + cos(θl s )̂u

′
l(tn−1)

−θ2l

∫ 2τ

0
cos(θl(2τ − ω))

̂
( f n−1

M )l(w)dω. (2.11)
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Applying Simpson’s rule for approximating the integration in (2.11) yields

∫ 2τ

0
cos

(
θl (2τ − ω)

) ̂
( f n−1

M )l (ω)dω ≈ τ

3

[
cos (2θlτ)

̂
( f n−1

M )l (0)

+4 cos (θlτ)(̂ f nM )l(0) + ̂
( f n+1

M )l (0)
]
. (2.12)

In practice, computing the continuous sine coefficients in (2.9)-(2.12) is difficult.
Therefore, we replace the continuous sine coefficients with the discrete sine coeffi-
cients as in (2.2) and (2.3). Now, we introduce the fourth-order EWI-SP scheme: Let
unj and u̇nj ( j = 0, 1, . . . , M, n = 0, 1, . . .) be the approximations to u(x j , tn) and

ut (x j , tn), respectively. Setting u0j = u0(x j ), u̇0j = u1(x j ), the numerical approxima-

tions un+1, u̇n+1 ∈ XM are computed as

un+1
j =

M−1∑
l=1

˜un+1
l sin

(
jlπ

M

)
, u̇n+1

j =
M−1∑
l=1

˜u̇n+1
l sin

(
jlπ

M

)
, (2.13)

where the discrete sine coefficients are computed as follows for n ≥ 1:

˜un+1
l = cos (2θlτ)

˜un−1
l + sin (2θlτ)

θl

˜u̇n−1
l − θlτ

3

[
sin (2θlτ)

˜f n−1
l + 4 sin (θlτ) f̃ nl

]
,

˜u̇n+1
l = −θl sin (2θlτ)

˜un−1
l + cos (2θlτ)

˜u̇n−1
l

−θ2l τ

3

[
cos (2θlτ)

˜f n−1
l + 4 cos (θlτ) f̃ nl + ˜f n+1

l

]
, (2.14)

with

ũnl = 2

M

M−1∑
j=1

unj sin

(
jlπ

M

)
, ˜̇unl = 2

M

M−1∑
j=1

u̇nj sin

(
jlπ

M

)
, f̃ nl = 2

M

M−1∑
j=1

f (unj ) sin

(
jlπ

M

)
.

(2.15)

In order to start the iteration, we need the initial values u1 and u̇1.
Computation of ûl(t1): If we differentiate (2.6) with respect to s, we obtain

d3

ds3
ûl(tn + s) + θ2l

d

ds
ûl(tn + s) + θ2l

d

ds
(̂ f nM )l(s) = 0, s ∈ R. (2.16)

By using (2.6) and (2.16) in Taylor’s expansion, the fourth-order approximation can
be written as

ûl(t1) = ûl(0) + τ û′
l(0) − θ2l τ 2

2

[
ûl(0) + ̂( f 0M )l(0)

]
− θ2l τ 3

6

[
û′
l(0) + ̂( f 0M )

′
l(0)

]
+ τ 4

24
û′′′′
l (sl,1),

(2.17)
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where sl,1 ∈ (0, τ ). Since f ∈ C∞(R, R), the sine coefficients ̂( f 0M )
′
l(0) for

l = 0, 1, . . . M − 1 are computed as

̂( f 0M )
′
l(0) =

̂
[
f ′(uM (x, 0)

)
∂suM (x, 0)

]
l
. (2.18)

Computation of û′
l(t1): Approximating ûl(t0) and ûl(t2) by using Taylor’s expansion

around t1, and taking their difference, one can get

ûl(t2) − ûl(0) = 2τ û′
l(t1) + τ 3

3
û′′′
l (t1) + τ 5

60
û′′′′′
l (sl,2), (2.19)

where sl,2 ∈ (0, 2τ). Using

û′′′
l (t1) = û′′

l (t2) − û′′
l (0)

2τ
− τ 2

6
û′′′′′
l (sl,3), (2.20)

where sl,3 ∈ (0, 2τ), (2.19) becomes

ûl(t2) − ûl(0) = 2τ û′
l(t1) + τ 2

6

[̂
u′′
l (t2) − û′′

l (0)
] + τ 5

60
û′′′′′
l (sl,2) − τ 5

18
û′′′′′
l (sl,3).

(2.21)
By (2.6)

û′′
l (t2) − û′′

l (0) = −θ2l

[
ûl(t2) − ûl(0) + ̂( f 2M )l(0) − ̂( f 0M )l(0)

]
,

we obtain

û′
l(t1) =

( 1

2τ
+ θ2l τ

12

)[
ûl(t2)− ûl(0)

]
+ θ2l τ

12

[
̂( f 2M )l(0)− ̂( f 0M )l(0)

]
+ 7τ 4

360
û′′′′′
l (sl,4),

(2.22)
where sl,4 ∈ (0, 2τ).

By replacing the continuous sine coefficients with the discrete sine coefficients, the
discrete sine coefficients at the first time step are obtained as follows:

ũ1l = ũ0l + τ ˜̇u0l − θ2l τ 2

2

[
ũ0l + f̃ 0l

]
− θ2l τ 3

6

[˜̇u0l + ˜̇f 0l
]
,

˜̇u1l =
( 1

2τ
+ θ2l τ

12

)(
ũ2l − ũ0l

)
+ θ2l τ

12

(
f̃ 2l − f̃ 0l

)
, (2.23)

where

˜̇f 0l = 2

M

M−1∑
j=1

[
f ′(u0j )u̇0j

]
sin

(
jlπ

M

)
. (2.24)
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To summarize, the scheme is based on the following steps:

Step 1: The discrete sine coefficients ũ0l ,
˜̇u0l , f̃ 0l , ˜̇f 0l are found by using the formulas

(2.15) and (2.24).
Step 2: ũ1l is computed by using (2.23).

Step 3: f̃ 1l is calculated by using (2.15) after constructing the approximate solution
u1.

Step 4: ũ2l is evaluated by using (2.14).

Step 5: f̃ 2l is obtained by using (2.15) after constructing the approximate solution u2.

Step 6: ˜̇u1l and ˜̇u2l are evaluated by using (2.23) and (2.14), respectively, and then u̇1

and u̇2 are constructed.
Step 7: un and u̇n can be found for n ≥ 3 by using (2.13)-(2.15).

3 Error estimates

In this section, we give the error analysis for the fully discretized scheme (2.14) and
(2.23). We denote the standard Sobolev space by Hm(�). We define its subspace
Hm ∩ H1

0 as

H̃m(�) = {u ∈ Hm(�) : u(2k)(a) = u(2k)(b) = 0, k ∈ N, 0 ≤ 2k < m},

for some integer m ≥ 1. For any function u(x) =
∞∑
l=1̂

ul sin(μl(x − a)) ∈ H̃m(�), we

define its norm as

‖u‖2m =
∞∑
l=1

(
1 + |μl |2

)m |̂ul |2. (3.1)

Particularly, for m = 0, the space is exactly L2(�) and the corresponding norm is
denoted as ‖ · ‖. In order to obtain the convergence of the fully discrete scheme, we
need the following auxiliary lemmas.

Lemma 3.1 [26] For any 0 ≤ μ ≤ k with k > 1/2, there exists a constant C such
that

‖u − PMu‖μ ≤ Chk−μ‖u‖k, ‖u − IMu‖μ ≤ Chk−μ‖u‖k, ∀u ∈ H̃ k(�). (3.2)

Lemma 3.2 [34] For m > 1/2, Hm(R) is an algebra with respect to the product of
functions. That is, if u, v ∈ Hm(R) then uv ∈ Hm(R) and

‖uv‖m ≤ C‖u‖m‖v‖m . (3.3)

Lemma 3.3 [35] For any function g ∈ C∞(C, C) and σ > 1/2, there exists a nonde-
creasing function χg : R

+ → R
+ such that

‖g(u)‖σ ≤ ‖g(0)‖σ + χg(‖u‖L∞)‖u‖σ , ∀u ∈ Hσ . (3.4)
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For all v,w ∈ Bσ
R := {u ∈ Hσ : ‖u‖σ ≤ R}, we have

‖g(v) − g(w)‖σ ≤ α(g, R)‖v − w‖σ , (3.5)

where α(g, R) = ‖g′(0)‖σ +Rχg′(cR) is nondecreasing with respect to R, with c > 0
being the constant for the Sobolev imbedding ‖ · ‖L∞ ≤ c‖ · ‖σ .

For simplicity of notation, we denote the interpolations of the numerical solutions
by

unI (x) = IM (un)(x), u̇nI (x) = IM (u̇n)(x), x ∈ (a, b),

and the error functions by

en(x) = u(x, tn) − unI (x), ėn(x) = ∂t u(x, tn) − u̇nI (x), x ∈ (a, b).

Theorem 3.1 Let the solution of theHBqequation (2.1) satisfy the regularity properties
u ∈ C1

([0, T ]; H̃m+σ
) ∩ C5

([0, T ]; H̃m
)
(m > 1

2 , σ > 0). Then, there exist h0 > 0
and 0 < τ0 ≤ 1 such that when τ ≤ τ0 and h ≤ h0, the numerical solutions un and
u̇n obtained from the EWI-SP scheme (2.13)-(2.15) with (2.23) and (2.24) converge
to the solution of the problem (2.1) with the convergence rate

‖en‖m + ‖ėn‖m � τ 4 + hσ , n = 0, 1, . . . , N , (3.6)

with ‖∂kt u‖L∞([0,T ];Hm ) ≤ Kk for (k = 0, 1, . . . , 5) and ‖∂kt u‖L∞([0,T ];Hm+σ ) ≤ Rk

for (k = 0, 1). Furthermore, we have

‖unI ‖m ≤ K0 + 1, ‖u̇nI ‖m ≤ K1 + 1. (3.7)

Proof We give the proof for (3.6) and (3.7) by mathematical induction. For n = 0,
noticing that e0 = u0 − IM (u0), ė0 = u1 − IM (u1), applying Lemma 3.1, one gets

‖e0‖m + ‖ė0‖m � hσ . (3.8)

There exists a constant h1 >0 such that, when 0 <h ≤h1, the inequality (3.7) is valid
for n = 0. Assuming (3.6) and (3.7) are true for n ≤k< T /τ , we show that (3.6) and
(3.7) are valid for n = k+1. The projected error functions are introduced by

enM (x) = PM (en(x)) =
M−1∑
l=1

ênl sin(μl(x − a)),

ėnM (x) = PM (ėn(x)) =
M−1∑
l=1

̂̇enl sin(μl(x − a)),

where the corresponding coefficients in the frequency satisfy

ênl = ûl(tn) − ũnl ,
̂̇enl = ûl

′(tn) − ˜̇unl .
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We define the local truncation errors

ξn(x) =
M−1∑
l=1

ξ̂nl sin(μl(x − a)), ξ̇n(x) =
M−1∑
l=1

̂̇ξnl sin(μl(x − a)),

where

ξ̂nl = ûl(tn+1) − cos(2θlτ )̂ul(tn−1) − sin(2θlτ)

θl
û′
l(tn−1)

+θlτ

3

[
sin(2θlτ)

̂f n−1
l (0) + 4 sin(θlτ) f̂ nl (0)

]
,

̂̇ξnl = û′
l(tn+1) + θl sin(2θlτ )̂ul(tn−1) − cos(2θlτ )̂u′

l(tn−1)

+θ2l τ

3

[
cos(2θlτ)

̂f n−1
l (0) + 4 cos(θlτ) f̂ nl (0) + ̂f n+1

l (0)
]
, (3.9)

for n ≥ 1 and

ξ̂0l = ûl(t1) − ûl(0) − τ û′
l(0) + θ2l τ 2

2

[
ûl(0) + f̂ 0l (0)

]
+ θ2l τ 3

6

[
û′
l(0) + ̂( f 0l )

′
(0)

]
,

̂̇ξ0l = û′
l(t1) −

( 1

2τ
+ θ2l τ

12

)[
ûl(t2) − ûl(0)

]
− θ2l τ

12

[
f̂ 2l (0) − f̂ 0l (0)

]
, (3.10)

with f̂ nl (s) = ̂f (u(tn + s))l .
If we subtract (2.14) and (2.23) from (3.9) and (3.10) respectively, the resulting

error equations for n ≥ 1 become

̂en+1
l = cos(2θlτ)

̂en−1
l + sin(2θlτ)

θl

̂ėn−1
l + ξ̂nl

−θlτ

3

[
sin(2θlτ)

̂
ηn−1
l + 4 sin(θlτ)η̂nl

]
(3.11)

̂ėn+1
l = −θl sin(2θlτ)

̂en−1
l + cos(2θlτ)

̂ėn−1
l

+ ̂̇ξnl − θ2l τ

3

[
cos(2θlτ)

̂
ηn−1
l + 4 cos(θlτ)η̂nl + ̂

ηn+1
l

]
. (3.12)

and

ê1l = ê0l + τ ̂̇e0l + ξ̂0l − θ2l τ 2

2

[
ê0l + η̂0l

]
− θ2l τ 3

2

[̂̇e0l + ̂̇η0l
]
, (3.13)

̂̇e1l =
( 1

2τ
+ θ2l τ

12

)(
ê2l − ê0l

)
+ ̂̇ξ0l + θ2l τ

12

[
η̂2l − η̂0l

]
, (3.14)
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where the nonlinear errors are

ηn(x) =
M−1∑
l=1

η̂nl sin(μl(x − a)), η̇0(x) =
M−1∑
l=1

̂̇η0l sin(μl(x − a))

with η̂nl = f̂ nl (0) − f̃ nl and ̂̇η0l = ̂( f 0l )′(0) − ˜̇f 0l .
Step 1: Estimation of local truncation errors

Substituting (2.9) and (2.11) into (3.9), (2.17) and (2.22) into (3.10) respectively, the
resulting truncation errors for n ≥ 1 become

ξ̂nl = −θl

∫ 2τ

0
sin

(
θl(2τ − ω)

)̂f n−1
l (ω)dω

+θlτ

3

[
sin(2θlτ)

̂f n−1
l (0) + 4 sin(θlτ) f̂ nl (0)

]
,

̂̇ξnl = −θ2l

∫ 2τ

0
cos

(
θl(2τ − ω)

)̂f n−1
l (ω)dω

+θ2l τ

3

[
cos(2θlτ)

̂f n−1
l (0) + 4 cos(θlτ) f̂ nl (0) + ̂f n+1

l (0)
]

(3.15)

and

ξ̂0l = τ 4

24
û′′′′
l (sl,1),

̂̇ξ0l = 7τ 4

360
û′′′′′
l (sl,4).

It is clear that
‖ξ0‖2m + ‖ξ̇0‖2m � τ 8. (3.16)

Thus, the local truncation errors in (3.15) actually come from the error using the
Simpson rule. By the standard error formula of the Simpson rule for a general function
v(s) ∈ C4[0, 2τ ]

∫ 2τ

0
v(s)ds − τ

3

[
v(0) + 4v(τ) + v(2τ)

] = −8τ 5

45
v(4)(c), c ∈ (0, 2τ),

the local truncation errors (3.15) become

ξ̂nl = 8θl
45

τ 5
(

d4

dω4

[
sin

(
θl(2τ − ω)

) ̂
( f n−1

l )(ω)
]∣∣∣∣

ω=sl,5

)

= 8θl
45

τ 5
[
θ4l sin

(
θl(2τ − sl,5)

)
f̂ n−1
l (sl,5) + 4θ3l cos

(
θl(2τ − sl,5)

) ̂
( f n−1

l )
′
(sl,5)

−6θ2l sin
(
θl(2τ − sl,5)

) ̂
( f n−1

l )
′′
(sl,5) − 4θl cos

(
θl(2τ − sl,5)

) ̂
( f n−1

l )
′′′
(sl,5)

+ sin
(
θl(2τ − sl,5)

) ̂
( f n−1

l )
′′′′

(sl,5)

]
,
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̂̇ξnl = 8θ2l
45

τ 5
(

d4

dω4

[
cos

(
θl(2τ − ω)

) ̂
( f n−1

l )(ω)
]∣∣∣∣

ω=sl,6

)

= 8θ2l
45

τ 5
[
θ4l cos

(
θl(2τ − sl,6)

)
f̂ n−1
l (sl,6) − 4θ3l sin

(
θl(2τ − sl,6)

) ̂
( f n−1

l )
′
(sl,6)

−6θ2l cos
(
θl(2τ − sl,6)

) ̂
( f n−1

l )
′′
(sl,6) + 4θl sin

(
θl(2τ − sl,6)

) ̂
( f n−1

l )
′′′
(sl,6)

+ cos
(
θl(2τ − sl,6)

) ̂
( f n−1

l )
′′′′

(sl,6)

]

where sl,5, sl,6 ∈ (0, 2τ). Since η1 and η2 are positive real numbers, we have
|θl | ≤ 1/

√
η1. Applying Young’s inequality to the above equations, we deduce

|ξ̂nl |2 ≤ Cτ 10
[∣∣ f̂ n−1

l (sl,5)
∣∣2 + ∣∣ ̂

( f n−1
l )

′
(sl,5)

∣∣2 + ∣∣ ̂
( f n−1

l )
′′
(sl,5)

∣∣2

+∣∣ ̂
( f n−1

l )
′′′
(sl,5)

∣∣2 + ∣∣ ̂
( f n−1

l )
′′′′

(sl,5)
∣∣2

]
,

| ̂̇ξnl |2 ≤ Cτ 10
[∣∣ f̂ n−1

l (sl,6)
∣∣2 + ∣∣ ̂

( f n−1
l )

′
(sl,6)

∣∣2 + ∣∣ ̂
( f n−1

l )
′′
(sl,6)

∣∣2

+∣∣ ̂
( f n−1

l )
′′′
(sl,6)

∣∣2 + ∣∣ ̂
( f n−1

l )
′′′′

(sl,6)
∣∣2

]
.

Using the assumptions ‖∂kt u‖L∞([0,T ];Hm ) ≤ Kk for (k = 0, 1, . . . , 4) and
f ∈ C∞(R, R), it follows that

‖ξn‖2m + ‖ξ̇n‖2m ≤ C( f , K0, K1, K2, K3, K4)τ
10 � τ 10 (3.17)

for n ≥ 1.
Step 2: Estimation of nonlinear errors

Now, we show that η̇0 and ηn are bounded in Hm with m > 1/2. We use
Lemmas 3.1−3.3 and unI , u(·, tn) ∈ Bm

K0+1 to obtain

‖η̇0‖m =
∥∥∥IM (

f ′(u0I )u̇0I
) − PM

(
f ′(u(·, 0))∂t u(·, 0))

∥∥∥
m

≤
∥∥∥IM

[
f ′(u0I )u̇0I − f ′(u(·, 0))u̇0I

]∥∥∥
m

+
∥∥∥IM

[
f ′(u(·, 0))u̇0I − f ′(u(·, 0))∂t u(·, 0)

]∥∥∥
m

+
∥∥∥IM (

f ′(u(·, 0))∂t u(·, 0)) − PM
(
f ′(u(·, 0))∂t u(·, 0))

∥∥∥
m
,

≤ C
∥∥∥ f ′(u0I )u̇0I − f ′(u(·, 0))u̇0I

∥∥∥
m

+ C
∥∥∥ f ′(u(·, 0))u̇0I − f ′(u(·, 0))∂t u(·, 0)

∥∥∥
m

+Chσ
∥∥∥ f ′(u(·, 0))∂t u(·, 0)

∥∥∥
m+σ

≤ C‖u̇0I ‖m
∥∥∥ f ′(u0I ) − f ′(u(·, 0))

∥∥∥
m

+ C
∥∥∥ f ′(u(·, 0))

∥∥∥
m

∥∥∥u̇0I − ∂t u(·, 0)
∥∥∥
m

+Chσ
∥∥∥ f ′(u(·, 0))

∥∥∥
m+σ

∥∥∥∂t u(·, 0)
∥∥∥
m+σ
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≤ Cα
(
f ′, K0 + 1

)
‖u̇0I ‖m‖u0I − u(·, 0)‖m

+C
[
‖ f ′(0)‖m + χ f ′

(‖u(·, 0)‖L∞
)‖u(·, 0)‖m

]
‖u̇0I − ∂t u(·, 0)‖m

+Chσ
[
‖ f ′(0)‖m+σ + χ f ′

(‖u(·, 0)‖L∞
)‖u(·, 0)‖m+σ

]
‖∂t u(·, 0)‖m+σ

≤ Cα
(
f ′, K0 + 1

)
‖u̇0I ‖m‖e0M‖m + C

[
‖ f ′(0)‖m + χ f ′ (cK0)K0

]
‖ė0M‖m

+Chσ
[
‖ f ′(0)‖m+σ + χ f ′ (cR0)R0

]
R1,

≤ C( f , K0)
(‖e0M‖m + ‖ė0M‖m

) + C( f , R0, R1)h
σ . (3.18)

On the other hand,

‖ηn‖m =
∥∥∥IM(

f (unI )
) − PM

(
f (u(·, tn))

)∥∥∥
m

≤
∥∥∥IM

[
f (unI ) − f (u(·, tn))

]∥∥∥
m

+
∥∥∥IM(

f (u(·, tn))
) − PM

(
f (u(·, tn))

)∥∥∥
m

≤ C
∥∥∥ f

(
unI

) − f
(
u(·, tn)

)∥∥∥
m

+ Chσ
∥∥∥ f

(
u(·, tn)

)∥∥∥
m+σ

≤ Cα
(
f , K0 + 1

)
‖unI − u(·, tn)‖m

+Chσ
(
‖ f (0)‖m+σ + χ f

(‖u(·, tn)‖L∞
)‖u(·, tn)‖m+σ

)

≤ Cα
(
f , K0 + 1

)
‖enM‖m + C( f , R0)h

σ .

In order to estimate ‖ηn+1‖m , we need to find an upper bound for ‖un+1
I ‖m . It follows

that

‖un+1
I ‖m ≤ ‖un−1

I ‖m + 2τ‖u̇n−1
I ‖m + Cτ

(
‖IM ( f (un−1

I ))‖m + ‖IM ( f (unI ))‖m
)

≤ K0 + 2τK1 + Cτ
(
‖ f (un−1

I )‖m + ‖ f (unI )‖m
)

≤ K0 + 2τK1 + Cτ

(
2‖ f (0)‖m + χ f (c‖un−1

I ‖m)‖un−1
I ‖m + χ f (c‖unI ‖m)‖unI ‖m

)

≤ C( f , K0, K1).

Therefore, we deduce that

‖ηn+1‖m � ‖en+1
M ‖m + hσ . (3.19)

Step 3: Error equations
From (3.13), one gets

|ê1l |2 � (1 + τ 2 + τ 4)|ê0l |2 + (τ 2 + τ 4 + τ 6)|̂̇e0l |2 + |ξ̂0l |2 + τ 4|η̂0l |2 + τ 6| ̂̇η0l |2.

123



Numerical Algorithms

Substituting (3.11) with n = 1 into (3.14) yields

̂̇e1l =
(
1 + θ2l τ 2

6

)[
−

(
1 − cos (2θlτ)

2θlτ

)
θl ê0l +

(
sin (2θlτ)

2θlτ

)̂̇e0l + 1

2τ
ξ̂1l

−θ2l τ

3

(
sin (2θlτ)

2θlτ

)
η̂0l − 2θ2l τ

3

(
sin (θlτ)

θlτ

)
η̂1l

]
+ ̂̇ξ0l + θ2l τ

12

[
η̂2l − η̂0l

]
.

This implies that

|̂̇e1l |2 � (1 + τ 2 + τ 4)
(
θ2l |ê0l |2 + |̂̇e0l |2

) + | ̂̇ξ0l |2 +
( 1

τ 2
+ 1 + τ 2

)
|ξ̂1l |2

+(τ 2 + τ 4 + τ 6)|η̂0l |2 + (τ 2 + τ 4 + τ 6)|η̂1l |2 + τ 2|η̂2l |2.

Hence,

θ2l |ê1l |2 + |̂̇e1l |2 � (1 + τ 2 + τ 4 + τ 6)
(
θ2l |ê0l |2 + |̂̇e0l |2

) + |ξ̂0l |2 + | ̂̇ξ0l |2

+
( 1

τ 2
+ 1 + τ 2

)
|ξ̂1l |2 + (τ 2 + τ 4 + τ 6)|η̂0l |2

+(τ 2 + τ 4 + τ 6)|η̂1l |2 + τ 2|η̂2l |2 + τ 6| ̂̇η0l |2
�

(
θ2l |ê0l |2 + |̂̇e0l |2

) + |ξ̂0l |2 + | ̂̇ξ0l |2 + 1

τ 2
|ξ̂1l |2

+τ 2
(|η̂0l |2 + |η̂1l |2 + |η̂2l |2

) + τ 6| ̂̇η0l |2 (3.20)

for τ ≤ 1. Applying the triangle and Young’s inequalities to (3.11) and (3.12), we
obtain

|̂en+1
l |2 ≤ (

1 + τ
) ∣∣θl cos(2θlτ)

̂en−1
l + sin(2θlτ)

̂ėn−1
l

∣∣2
θ2l

+C

(
1 + 1

τ

)[
|ξ̂nl |2 + τ 2

(|̂ηn−1
l |2 + |η̂nl |2

)]
,

|̂ėn+1
l |2 ≤ (

1 + τ
)∣∣ − θl sin(2θlτ)

̂en−1
l + cos(2θlτ)

̂ėn−1
l

∣∣2
+C

(
1 + 1

τ

)[
| ̂̇ξnl |2 + τ 2

(|̂ηn−1
l |2 + |η̂nl |2 + |̂ηn+1

l |2)
]

for n ≥ 1. Hence,

θ2l |̂en+1
l |2 + |̂ėn+1

l |2 ≤ (1 + τ)
(
θ2l |̂en−1

l |2 + |̂ėn−1
l |2) + C

(
1

τ
+ 1

)(|ξ̂nl |2 + | ̂̇ξnl |2)

+(τ + τ 2)
(|̂ηn−1

l |2 + |η̂nl |2 + |̂ηn+1
l |2). (3.21)
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Moreover, we define

En =
M−1∑
l=1

(
1 + |μl |2

)m(
θ2l |ênl |2 + |̂̇enl |2

)
. (3.22)

It is easy to see that

E0 � ‖e0M‖2m + ‖ė0M‖2m � ‖e0‖2m + ‖ė0‖2m � h2σ , (3.23)

by Lemma 3.1 and (3.8). Combining the inequalities (3.16), (3.17) and

‖η̇0‖2m � h2σ , ‖ηn‖2m � En + h2σ , (3.24)

one can estimate

E1 � E0 +‖ξ0‖2m +‖ξ̇0‖2m + 1

τ 2
‖ξ1‖2m+ τ 2

(‖η0‖2m+ ‖η1‖2m+ ‖η2‖2m
)+ τ 6‖η̇0‖2m

� τ 8 + (1 + τ 2 + τ 6)h2σ + τ 2(E1 + E2)

� τ 8 + h2σ + τ 2E2. (3.25)

for 0 < τ ≤ τ1. Using (3.21), we obtain

En+1 ≤ (1+ τ)En−1 +C

(
1

τ
+ 1

)(‖ξn‖2m + ‖ξ̇n‖2m
) + (τ + τ 2)

(‖ηn−1‖2m + ‖ηn‖2m + ‖ηn+1‖2m
)

for n ≥ 1. This implies that

En+1 − En−1 � τEn−1 + 1

τ

(‖ξn‖2m + ‖ξ̇n‖2m
) + τ

(‖ηn−1|2m + ‖ηn‖2m + ‖ηn+1‖2m
)
.

(3.26)
Substituting (3.17) and (3.24) into (3.26), we get

En+1 − En−1 � τ
(En−1 + En + En+1) + τ 9 + τh2σ .

Summing the above inequalities from n = 1 to n = k such that k ≤ T /τ , one can
find

Ek+1 + Ek − E1 − E0 � kτ 9 + kτh2σ + τ

k+1∑
n=0

En

� τ 8 + h2σ + τ

k+1∑
n=0

En .
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In view of (3.23), (3.25), one may estimate

Ek+1 � E0 + E1 + τ 8 + h2σ + τ

k+1∑
n=0

En − Ek

� τ 8 + h2σ + τ

k∑
n=0

En + τ 2E2 + τEk+1

� τ 8 + h2σ + τ

k∑
n=0

En (3.27)

for 0 < τ ≤ τ2. When the discrete Gronwall’s Lemma is applied to (3.27), we finally
show that

Ek+1 �
(
τ 8 + h2σ

)
exp

( k∑
n=0

τ
)

� τ 8 + h2σ . (3.28)

Moreover, using Lemma 3.1 and (3.28), we deduce that

‖ek+1‖m + ‖ėk+1‖m � ‖ek+1
M ‖m + ∥∥u(·, tk+1) − PM

(
u(·, tk+1)

)∥∥
m

+‖ėk+1
M ‖m + ∥∥∂t u(·, tk+1) − PM

(
∂t u(·, tk+1)

)∥∥
m

� τ 4 + hσ .

There exist sufficiently small h2 and τ3 such that the following inequalities hold

‖uk+1
I ‖m ≤ ‖ek+1

M ‖m + ‖u(·, tk+1)‖m ≤ K0 + 1,

‖u̇k+1
I ‖m ≤ ‖ėk+1

M ‖m + ‖∂t u(·, tk+1)‖m ≤ K1 + 1,

when 0 < h ≤ h2 and 0 < τ ≤ τ3. The proof of the Theorem 3.1 is completed by
choosing h0 = min{h1, h2} and τ0 = min{1, τ1, τ2, τ3}. �

4 Numerical experiments

To investigate the performance of the proposed EWI-SP method, we now consider the
propagation of a single solitary wave, the single wave splitting, the head-on collision
of two solitary waves. For all the numerical experiments, we choose the nonlinear
function f (u) = u p with p = 2 or p = 3. To quantify the error, we use the following
error function

eτ,h(tn) = ∥∥unτ,h − u(·, tn)
∥∥
1 + ∥∥u̇nτ,h − ∂t u(·, tn)

∥∥
1,

where unτ,h and u̇nτ,h are the numerical solutions obtained by the EWI-SP method.
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4.1 Single solitary wave

The exact solitary wave solution of the HBq equation is given in [7] as

u(x, t) = A
[
sech

(
B(x − ct − x0)

)] 4
p−1

, (4.1)

where

A =
[
η21c

2(p + 1)(p + 3)(3p + 1)

2η2(p2 + 2p + 5)2

] 1
p−1

, B =
[

η1(p − 1)2

4η2(p2 + 2p + 5)

] 1
2

, (4.2)

c2 =
(
1 −

[
4η21(p + 1)2

η2(p2 + 2p + 5)2

])−1

. (4.3)

Here, A is amplitude, B is the inverse width of the solitary wave and c represents the
velocity of the solitary wave at x0 with c2 > 1.

The problem is solved on the space interval � = (−400, 400) for times up to
T = 10. We choose the parameters η1 = η2 = 1 with x0 = 0 taking the initial
condition corresponding to the exact solitary wave solution in (4.1)-(4.3). To test
whether the EWI-SP method exhibits the expected convergence rate in the space,
we perform some numerical experiments for various values of h and a fixed value
of time step τ . We take a tiny time step τ = 0.005 so that the temporal error is
negligible. In the left panel of Fig. 1, we present the variation of the error with different
values of h. As is seen from the figure, the error decays very rapidly when the spatial
step size h decreases. This numerical experiment shows that the EWI-SP method
converges rapidly to the accurate solution in space, which is indicative of exponential
convergence. In order to confirm the temporal error bound given in Theorem 3.1, the
computations are performed for fixed value h = 0.5 and various values of the time
step τ . The right panel of Fig. 1 shows the temporal errors of the EWI-SP method.
As we expected, the scheme has fourth-order accuracy in time, which agrees with the
theoretical result in Theorem 3.1.

0.25 0.5 1 2 4 8 16

10-12

10-9

10-6

10-3

100

10-2 10-1
10-12

10-9

10-6

4

Fig. 1 The spatial errors (left panel) and the temporal errors (right panel) of the EWI-SP method for the
solution under different grid spacing and time steps
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-5

0

5
10-11

0 20 40 60 80 100
0

6
10-12

Fig. 2 Conservation of mass (left panel) and long-time errors (right panel) of the EWI-SP method by
choosing h = 0.5 and τ = 0.005

The evolution of the change for the conserved quantity M is depicted in the left
panel of Fig. 2. This figure illustrates that the EWI-SP method preserves conserved
quantity very well. Next, we investigate the long-time behavior of the EWI-SPmethod
up to T = 100. The right panel of Fig. 2 shows that the error is about 10−12, even
for the cubic nonlinearity. It can be observed that the EWI-SP method is reliable for
long-time dynamics.

4.2 Single wave splitting

In these numerical experiments, we set η1 = η2 = 1. The initial data

u0(x) = 15

38
sech4

(√
13

26
x

)
, u1(x) = 0

are chosen for quadratic nonlinearity. We take the following initial data

u0(x) =
√

5

14
sech2

(√
5

10
x

)
, u1(x) = 0

for cubic nonlinearity. The computations are performed on the domain
� = (−400, 400) up to T = 60 with h = 0.5 and τ = 0.005. In the left panel

of Fig. 3, we show the dynamics of the solitary wave with amplitude A = 15

38
and the

null initial velocity for quadratic nonlinearity. Snapshots of the solutions at different
times are illustrated in the right panel of Fig. 3. We observe that the initial stationary
wave splits up into two smaller diverging waves, one traveling towards the left and
the other one to the right and the splitting leads to the creation of secondary solitary
waves.

123



Numerical Algorithms

-100 -50 0 50 100

0

0.2

0.4

Fig. 3 The contour plot of single wave splitting for the quadratic nonlinearity (left panel), snapshots of the
solitary wave at different times (right panel)

-100 -50 0 50 100

0

0.3

0.6

Fig. 4 The contour plot of single wave splitting for the cubic nonlinearity (left panel), snapshots of the
solitary wave at different times (right panel)

15 30 45 60
-5

0

5
10-11

Fig. 5 The evolution of the change in the conserved quantityM for the single wave splitting
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The dynamic of the solitary wave with the amplitude

√
5

14
and the null initial

velocity is depicted in Fig. 4 for cubic nonlinearity. We observe that the dynamics are
similar to quadratic nonlinearity. However, the secondary waves between the twomain
splitting waves become more discernible when the power of nonlinearity increases.

Since an analytical solution is not available for the singlewave splitting experiments,
we cannot present the errors for this experiment. However, we present the evolution of
the change in the conserved quantityM as a numerical check of the proposed scheme
in Fig. 5. The conserved quantity remains constant in time and this behavior provides
a valuable check on the numerical results.

4.3 Head-on collision

In these numerical experiments, we use the initial data
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for quadratic nonlinearity and
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√
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+
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10
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for cubic nonlinearity by taking η1 = η2 = 1. The computations are performed on the
domain � = (−400, 400) up to T = 72 with h = 0.5 and τ = 0.005. In the left panel
of Fig. 6, we show the head-on collision of two solitary waves with equal amplitudes
for quadratic nonlinearity. We see the oscillating secondary waves. Therefore, the
interaction is inelastic. The numerical solution at different times is shown in the right
panel of Fig. 6. The collision occurs at around t = 35.08 with the largest amplitude
which is smaller than the sum of the two initial amplitudes. We observe that the small
secondary waves are emitted after collision time.We also compute that the amplitudes
of secondary waves are smaller than 0.006.
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Fig. 6 The surface plot of the head-on collision of two solitary waves for the quadratic nonlinearity (left
panel), snapshots of the solution at different times (right panel)

-100 -50 0 50 100

0

0.6

1.2

Fig. 7 The surface plot of the head-on collision of two solitary waves for the cubic nonlinearity (left panel),
snapshots of the solution at different times (right panel)
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Fig. 8 The evolution of the change in the conserved quantity M for the head-on collision of two solitary
waves

123



Numerical Algorithms

The head-on collision of two solitary waves for cubic nonlinearity is illustrated in
Fig. 7, we see that the collision is inelastic and the interaction is similar to quadratic
nonlinearity. We observe that the amplitudes of secondary waves are smaller than
0.0098. We also observe that the amplitudes of secondary waves which occur after
the collision are less than 2% of the amplitude of the waves at the initial time for both
quadratic and cubic nonlinearity. Figure 8 shows that the conserved quantities for the
head-on collision of two solitary waves remain constant in time for both cases. These
results provide a valuable check on the numerical results.
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