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Abstract
In this paper, we extend the utilization of pseudostress-based formulation, recently
employed for solving diverse linear and nonlinear problems in continuum mechanics
via mixed finite element methods, to the weak Galerkin method (WG) framework and
its respective applications. More precisely, we propose and analyze a mixed weak
Galerkin method for a pseudostress formulation of the two-dimensional Brinkman
equations with Dirichlet boundary conditions, then compute the velocity and pressure
via postprocessing formulae. We begin by recalling the corresponding continuous
variational formulation and a summary of the main WG method, including the weak
divergence operator and the discrete space, which are needed for our approach. In par-
ticular, in order to define the weak discrete bilinear form, whose continuous version
involves the classical divergence operator, we propose the weak divergence opera-
tor as a well-known alternative for the classical divergence operator in a suitable
discrete subspace. Next, we show that the discrete bilinear form satisfies the hypothe-
ses required by the Lax–Milgram lemma. In this way, we prove the well-posedness
of the weak Galerkin scheme and derive a priori error estimates for the numerical
pseudostress, velocity, and pressure. Finally, several numerical results confirming the
theoretical rates of convergence and illustrating the good performance of the method
are presented. The results in this work are fundamental and can be extended into more
relevant models.
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1 Introduction and problem statement

1.1 Scope

Incompressible viscous flows occur in various domains, surrounding and traversing
porous media. These domains include the petroleum industry, automotive industry,
underground water hydrology, biomedical engineering, and heat pipe modeling [1–3].
Typically, the Darcy model is useful for simulating slow flow problems [4, 5], but it
does not perform well in describing cavity problems that arise in these applications.
On the other hand, the Stokes–Darcy interfacemodel can describe the flow of a viscous
fluid in porous and cavity media. However, it is not practical due to the lack of accurate
data regarding the number and locations of interfaces between the porous matrix and
vugs. The Brinkman model, suggested by H. C. Brinkman [6] in 1949 [6], addresses
this limitation and is employed to describe transport phenomena within porous media.
The Brinkman model describes the flow of fluid within intricate porous media with
highly variable permeability coefficients. In thismodel, theDarcy equation governs the
flow in some areas, while the Stokes equation governs it in others. Unlike the Stokes–
Darcy interface model, the Brinkman model can effectively model both Stokes and
Darcy flows without relying on complicated interface conditions.

Furthermore, the Brinkman model can be understood mathematically as a combi-
nation of the Darcy and Stokes equations in a parameter-dependent form. The most
significant challenge arises from the high variability in the coefficients of the partial
differential equations (PDEs), which may take very large or very small values. This
negatively impacts the conditioning of the discrete problem, posing a substantial chal-
lenge in designing an efficient and stable algorithm. Considerable works have been
done in the literature to address this challenge, employing two different techniques:
(i) modifying Darcy elements or Stokes elements to obtain new stable Brinkman
elements and (ii) developing new numerical schemes to solve the Brinkman model.
For an overview of the first approach, we refer to the relevant papers [7–11] and
their references. Here, we focus on the second approach. Various numerical meth-
ods are employed within this approach, including pseudostress-based mixed finite
element methods (see, e.g., [12–16]), weak Galerkin methods (see, e.g., [17–19]),
the virtual element technique (see, e.g., [20, 21]), and the discontinuous Galerkin
method (see, e.g., [22–24]). Recently, the development of specific mixed finite ele-
ment methods (FEMs) has emerged as a new research field for solving both linear and
nonlinear problems. These methods employ formulations based on velocity-pressure,
velocity-pseudostress, and velocity-pressure-stress combinations. While the use of
the velocity-pressure formulation for simulating incompressible Newtonian flows has
been extensively discussed (see, e.g., [25, 26]), there is a growing focus on the devel-
opment of numerical schemes grounded in pseudostress or stress formulations (see,
e.g., [27–30]). This heightened attention is largely driven by the interest in addressing
non-Newtonian flows. As a principal benefit, stress-based and pseudostress-based for-
mulations offer a unified structure for general Newtonian flows. Moreover, physical
quantities such as stress can be calculated directly, eliminating the need for taking
derivatives of velocity, which can degrade precision.
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On the other hand, the weak Galerkin method (WG), introduced in [31] for second-
order elliptic equations, approximates the differential operators in the variational
formulation through a framework that emulates the theory of distributions for piece-
wise polynomials. Additionally, the usual regularity of the approximating functions in
this method is compensated by carefully designed stabilizers. In turn, theWGmethods
have been studied for solving various models [17, 18, 18, 19, 31–37], demonstrating
their substantial potential as a formidable numerical method in scientific computing.
The key distinction betweenWGmethods and other existing finite element techniques
lies in their utilization ofweak derivatives andweak continuities in formulating numer-
ical schemes based on conventional weak forms for the underlying PDE problems.
Because of their significant structural pliability, WG methods are aptly suited for a
broad class of PDEs, ensuring the requisite stability and accuracy in approximations.
Although many research works have been studied and analyzed on the WG method
for the Brinkman problem (cf. [17–19]), most existing schemes are extracted by the
Stokes-type (or primal-mixed) formulation, where the velocity and pressure are prin-
ciple unknowns. In the present paper, we are interested in continuing the research line
drawn by Gatica et al. [13] and aim to develop a pseudostress-based weak Galerkin
method for the Brinkman problem.

1.2 Outline and notations

The remainder of the paper is organized as follows. In the rest of this section, we
recall the Brinkman model, provide notational preliminaries, and introduce the corre-
sponding pseudostress-based mixed formulation for the problem under consideration.
Section2 presents theweakGalerkin discretization, introducing themesh structure, the
weak divergence operator, and the construction of the mixed WG space. In Section3,
we prove the existence and uniqueness of the discrete problem and establish error
estimates for the pseudostress. In addition, we present the approximate velocity and
pressure, along with the corresponding error estimates. Finally, in Section4, a set of
numerical tests is reported.

For any vector fields v = (v1, v2)
t and w = (w1, w2)

t, we set the gradient and
divergence operators as

∇v := (∇v1,∇v2) , and div(v) := ∂xv1 + ∂yv2 ,

respectively. In addition, denoting by I the identity matrix of R2, for any tensor fields
τ = (τi j ), ζ = (ζi j ) ∈ R2×2, we write as usual

τt := (τ j i ), tr(τ ) := τ11+τ22, τd := τ − 1

2
tr(τ )I , and τ : ζ :=

2∑

i, j=1

τi jζi j ,

which corresponds, respectively, to the transpose, the trace, and the deviator tensor of
τ , and to the tensorial product between τ and ζ .

Throughout the paper, given a bounded domain �, we let O be any given open
subset of �. By (·, ·)0,O and ‖ · ‖0,O, we denote the usual integral inner product and
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the corresponding norm of L2(O), respectively. For positive integers m and r , we shall
use the common notation for the Sobolev spaces Wm,r (O) with the corresponding
norm and semi-norm ‖ · ‖m,r ,O and | · |m,r ,O, respectively, and if r = 2, we set
Hm(O) := Wm,2(O), ‖ · ‖m,O := ‖ · ‖m,2,O, and | · |m,O := | · |m,2,O. If O = �, the
subscript will be omitted. Furthermore, M and M represent corresponding vectorial
and tensorial counterparts of the scalar functional space M. On the other hand, letting
div be the usual divergence operator div acting along the rows of a given tensor, we
introduce the standard Banach space

H(div;�) :=
{
τ ∈ L

2(�) : div(τ ) ∈ L2(�)
}

,

equipped with the usual norm

‖τ‖div;� := ‖τ‖0,� + ‖div(τ )‖0,�, ∀ τ ∈ H(div;�),

1.3 Themodel problem and its continuous formulation

Consider a spatially bounded domain � ⊂ R2 with a Lipschitz continuous boundary
∂� and an outward-pointing unit normal n.We focus on the Brinkman problem, which
describes the flow of a fluidwith velocity field u and the pressure p in a porousmedium
characterized by dynamic viscosity ν > 0, permeability coefficient κ > 0, following
the problem setup from [18]. More precisely, given the body force term f ∈ L2(�) and
a suitable boundary data g ∈ H1/2(∂�), the problem is cast in the following strong
form:

λu − ν div(∇u) + ∇ p = f in �,

div(u) = 0 in �,

u = g on ∂� ,

(1.1)

In addition, in order to guarantee the uniqueness of the pressure, this unknown will
be sought in the space

L2
0(�) :=

{
q ∈ L2(�) :

∫

�

p = 0
}

. (1.2)

Note that, due to the incompressibility of the fluid (cf. second row of (1.1)), g must
satisfy ∫

�

g · n = 0 .

For the subsequent analysis, we assume that coefficients ν and λ are piecewise con-
stants and positive.

Next, to obtain a formulation independent of velocity and pressure variables, the
first step is to rewrite (1.1) so that stress is the only unknown in the equation. To
achieve this, we introduce a tensor field denoted by σ , represented as

σ := ν∇u − pI in � . (1.3)
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In thisway, applying the trace operator to both sides of the above equation, and utilizing
the incompressibility condition div(u) = 0, one arrives at

p = −1

2
tr(σ ) in � . (1.4)

which allows us to eliminate the pressure variable from the formulation. In turn,
according to (1.4), the assumption (1.2) becomes

∫

�

tr(σ ) = 0 . (1.5)

Hence, after replacing back (1.3) in (1.1), gathering the resulting equation and (1.5),
we have the following problem, which contains unknowns σ and u.

Problem 1 (Model problem) Find σ and u such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λu − div(σ ) = f in �,

σd = ν ∇u in �,
∫

�

tr(σ ) = 0 .

supplied with the following boundary condition

u = g on ∂� .

Here, in order to deal with the null mean value of tr(σ ) (cf. third row of Problem 1),
we introduce the subspace of H(div;�) given by

H0(div;�) :=
{
τ ∈ H(div;�) :

∫

�

tr(τ ) = 0
}

.

Now, we are ready to extract the pseudostress formulation for Problem 1. This
involves multiplying the second equation by τ , integrating by parts, and utilizing the
fact that tr(τd) = 0. Through these steps, we arrive at

1

ν

∫

�

σd : τd +
∫

�

u · div(τ ) =
∫

∂�

g · τn ∀ τ ∈ H(div;�) . (1.6)

Hence, replacing u by the first equation of Problem 1, that is,

u = 1

λ
(div(σ ) + f) , (1.7)

in the (1.6) leads to the following pseudostress formulation.
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Problem 2 (Variational problem) Find the tensor σ ∈ H0(div;�) such that

A(σ , τ ) = L(τ ) for all τ ∈ H0(div;�) ,

where

A(·, ·) : H(div;�) × H(div;�) → R , A(ζ , τ ) := 1

ν

∫

�

ζd : τd

+1

λ

∫

�

div(ζ ) · div(τ ) , (1.8)

L(·) : H(div;�) → R , L(τ ) := −1

λ

∫

�

f · div(τ ) +
∫

∂�

g · τn , (1.9)

The continuity and coercivity properties of the bilinear form that appeared in
Problem 2 are briefly listed below. Before delving into that discussion, let us recall
the following lemma.

Lemma 1.1 (A consequence of the Poincaré–Friedrichs inequality [26]) There exists
c� > 0 depends on �, such that

c�‖τ‖20,� ≤ ‖τd‖20,� + ‖div(τ )‖20,� ∀ τ ∈ H(div;�) .

• The bilinear form A(·, ·) is continuous due to the Cauchy–Schwarz inequality:

∣∣A(ζ , τ )
∣∣ ≤ max

{
1

ν
,
1

λ

}
‖ζ‖div;� ‖τ‖div;� ∀ ζ , τ ∈ H(div;�) .

• The bilinear form A(·, ·) is coercive on H(div;�) due to Lemma 1.1:

A(ζ , ζ ) ≥ min

{
c�ν0,

1

2λ

}
‖ζ‖2div;� , with ν0 = min

{
1

ν
,
1

2λ

}
.

The standard results for the existence, uniqueness, and stability of the solution to
Problem 2 can be stated as follows. The proof is a straightforward application of the
Lax–Milgram lemma.

Theorem 1.2 Let f and g belong to spaces L2(�) and H1/2(∂�), respectively. Then,
there exists a unique solution σ ∈ X for the dual-mixed formulation Problem 2, and
there holds

‖σ‖div;� ≤ Cstab
(‖f‖0 + ‖g‖1/2,∂�

)
,

where Cstab is a positive constant, depending on c�, ν, λ.

2 Weak Galerkin approximation

The chief target of this section is to present theweakGalerkin spaces and discrete bilin-
ear form that is required for creating aWG scheme. For simplicity of the presentation,
we restrict the construction to the 2D case.
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2.1 Various tools in weak Galerkinmethod

A key feature of the weak Galerkin method is the use of specifically defined weak
derivatives instead of classical derivative operators. Here, our focuswill be on theweak
divergence operator, which is a fundamental step in introducing our WG technique.
For this purpose, we first provide an overview of the mesh structure.

Mesh notation Let Kh = {K } be a shape regular mesh of domain � that consists of
arbitrary polygon elements, where the mesh size h = max{hK }, hK is the diameter of
element K . The interior and the boundary of any element K ∈ Kh are represented by
K 0 and ∂K , respectively. Denote by Eh the set of all edges inKh , and let E0

h = Eh\∂�

be the set of all interior edges. Here is a set of normal directions on Eh :

Dh :=
{
ne : ne is unit and outward normal to e for all e ∈ Eh

}
.

Weak divergence operator and weak Galerkin space It is well known that the weak
divergence operator is well-defined for weak functions τ = {τ 0, τ b} on the element
K such that τ 0 ∈ L

2(K ) and τ bne ∈ H−1/2(∂K ), where ne ∈ Dh |K . Components τ 0
and τ b can be understood as the values of function τ in K 0 and on ∂K , respectively.
We follow [32], and introduce for each K ∈ Kh the local weak tensor space

Xw(K ) :=
{
τ ={τ 0, τ b} : τ 0 ∈ L

2(K ) and τ bne ∈ H−1/2(∂K ) ∀ne ∈ Dh |K

}
.

(2.1)
The global space Xw is defined by gluing together all local spaces Xw(K ) for any
K ∈ Kh .

Definition 2.1 [31] For any weak matrix-valued function τ ∈ Xw(K ) and element
K ∈ Kh , the weak divergence operator, denoted by divw, is defined as the unique
vector-valued function divw(τ ) ∈ H1(K ) satisfying

(divw(τ ), ζ )0,K := −(τ 0, ∇ζ )0,K 0 + < τ bne, ζ >0,∂K , (2.2)

for all ζ ∈ H1(K ).

Our focus will be on a subspace ofXw in which (τ b|e) = (τ |ene)ne. On the other hand,
discrete weak divergence operator can be introduced using a finite-dimensional space
Xh ⊂ Xw, which will be stated in the next. First, for any mesh object 	 ∈ Kh ∪ Eh

and for any r ∈ N, let us introduce the space Pr (	) to be the space of polynomials
defined on 	 of degree ≤ r , with the extended notation P−1(	) = {0}. Similarly, we
let Pr (	) and Pr (	) be the vectorial and tensorial versions of Pr (	). Then, given
k ∈ N0, we define for any K ∈ Kh the local weak Galerkin space

Xh(K ) :=
{
τ h = {τ 0h, τ bh} ∈ Xw(K ) : τ 0h|K ∈ Pk(K ) and

τ bh|e = τb ⊗ ne , τb ∈ Pk(e) ∀ e ⊂ ∂K , ∀ne ∈ Dh

}
,

(2.3)
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In addition, the global finite-dimensional space Xh , associated with the partition Kh ,
is defined so that the restriction of every weak function τ h to the mesh element K
belongs to Xh(K ).

Definition 2.2 [31] For any τ h ∈ Xh(K ) and element K ∈ Kh , the discrete weak
divergence operator, denoted by divw,h, is defined as the unique vector-valued poly-
nomial divw,h(τ h) ∈ Pk+1(K ) satisfying

(divw,h(τ h), ζ h)0,K := −(τ 0h, ∇ζ h)0,K 0 + < τ bhne, ζ h >0,∂K , (2.4)

for all ζ h ∈ Pk+1(K ).

L2-orthogonal projections and approximation properties For any r ∈ N, we intro-
duce L2-projection operators PPK

0 : L2(K ) → Pr (K ) and PK
b : L2(∂K ) → Pr (∂K )

which are type of interior and boundary, and are given by

∫

K
PPK

0 (τ ) : q̂r =
∫

K
τ : q̂r and

∫

∂K
PK

b (v) · qr =
∫

∂K
v · qr , (2.5)

for all {τ , v} ∈ L
2(K ) × L2(∂K ) and {̂qr ,qr } ∈ Pr (K ) × Pr (∂K ).

Now, we introduce projection operator PPK
h into the tensorial weak space Xh(K )

as follows:

PPK
h τ := {PPK

0 τ 0,PK
b (τb) ⊗ ne

}
, for all τ ∈ Xh(K ) .

Also, for any element K ∈ Kh and function τ ∈ Xh , the global projection operator
PPh on the global space Xh is defined by

PPh(τ )|K = PPK
h (τ |K ) ∀ τ ∈ Xh .

It can be seen (see, e.g., [32]) that operator PPh satisfies the following identity:

Ph(div(τ )) = divw,h(PPhτ ) , (2.6)

where Ph |K := PK
k+1 denotes the L

2-projection from L2(K ) onto Pk+1(K ).
The approximation properties of PP0 and Ph are stated as follows.

Lemma 2.3 Let Kh be a finite element partition of � satisfying the shape regularity
assumptions A1-A4 stated in [32]. Then, for k, s, m ∈ N0 such that m ∈ {0, 1}, there
exist constants C1, C2, independent of the mesh size h, such that

∑

K∈Kh

‖τ − PPK
0 (τ )‖2m,0;K ≤ C1 h2(s−m)|τ |2s ∀ s ≤ k + 1 , (2.7)

∑

K∈Kh

‖v − PK
k+1(v)‖20;K ≤ C2 h2s |v|2s ∀ s ≤ k + 2 . (2.8)
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2.2 Weak Galerkin scheme

In order to define our weak Galerkin scheme for Problem 2, we now introduce, when
necessary, the discrete versions of the bilinear forms and functionals involving the
weak spaces. Following the usual procedure in the WG setting, the construction of
them is based on the weak derivatives to ensure computability for all weak functions.

Notice that, for arbitrary weak function in Xh , the bilinear form A(·, ·) and the
functional L(·) are not computable because they involve the divergence operator
which cannot be evaluated for weak functions. To overcome this matter, employing
Definition 2.2 for any ζ h, τ h ∈ Xh(K ), we define the discrete bilinear form

AK
h (ζ h, τ h) := 1

ν

∫

K
ζd
0h : τd

0h + 1

λ

∫

K
divw,h(ζ h) · divw,h(τ h) + ρ SK (ζ h, τ h) ,

(2.9)
and the discrete linear functional

LK
h (τ h) := −1

λ

∫

K
f · divw,h(τ h) + 〈g, τ bhne〉0,(∂K∩∂�) , (2.10)

where ρ is a piecewise constant on Kh and the stabilization term SK (·, ·) : Xh(K ) ×
Xh(K ) → R is given by

SK (ζ h, τ h) := hK

〈
PPK

b (ζ 0hn) − ζ bhn, PPK
b (τ 0hn) − τ bhn

〉

0,∂K
.

In addition, the global bilinear form Ah(·, ·) and the global linear functional Lh(·)
can be derived by adding the local contributions, that is,

Ah(·, ·) :=
∑

K∈Kh

AK
h (·, ·) and Lh(·) :=

∑

K∈Kh

LK
h (·) .

Let us introduce the discrete norm

‖τ h‖2h :=
∑

K∈Kh

[
‖τ 0 h‖20,K + ‖divw,h(τ h)‖20,K + SK (τ h, τ h)

]
for all τ h ∈ Xh ,

and the subspace of Xh as follows:

X0,h :=
{
τ h = {τ 0 h, τ bh} ∈ Xh :

∫

�

tr(τ 0 h) = 0 in �
}

.

Finally, referring to the above space, the discrete bilinear form (2.9) and the discrete
linear functional (2.10), the discrete weak Galerkin problem reads as follows.

Problem 3 (WG problem) Find σ h ∈ X0,h such that

Ah(σ h, τ h) = Lh(τ h) for all τ h ∈ X0,h .
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3 Solvability and a priori error analysis

The goal of this section is to investigate the solvability of the discrete weak Galerkin
scheme stated in Problem 3 and derive an optimal order error estimate for the weak
Galerkin approximation σ h . First, we turn to discuss the stability properties of the
discrete form in Problem 3. For this purpose, we begin with the following lemma a
counterpart of Lemma 1.1 for the weak functions.

Lemma 3.1 There exists ĉ� > 0 depends on � but independent of mesh size h, such
that

ĉ�‖τ 0h‖20,� ≤ ‖τd
0h‖20,� + ‖divw,h(τ h)‖20,� ∀ τ h ∈ Xh . (3.1)

Proof Given τ h = {τ 0h, τ bh} ∈ Xh , we know from [38, Corollary 2.4 in Chapter I]
that there is a unique z ∈ H1

0(�) such that div(z) = tr(τ 0h) and

‖z‖1,� ≤ c1‖ tr(τ 0h)‖0,� , (3.2)

where c1 > 0 is a constant independent of z. Now, utilizing that fact div(z) = ∇z : I
and the definition of deviatoric, we have that

‖ tr(τ 0h)‖20,� =
∑

K∈Kh

∫

K
tr(τ 0h) div(z) =

∑

K∈Kh

∫

K
tr(τ 0h)I : ∇z

= 2
∑

K∈Kh

∫

K
(τ 0h − τd

0h) : ∇z

= 2
∑

K∈Kh

{ ∫

∂K\∂�

τ bhn · z −
∫

K
divw,h(τ h) · z −

∫

K
τd
0h : ∇z

}
,

where in the last step, we have used the definition of discrete weak divergence (cf.
(2.4)) and z ∈ H1

0(�). Note here that the first term on the right-hand side of the above
equation vanishes since the weak functions are continuous across each interior edge
e in the normal direction. Hence, applying Cauchy–Schwarz and Hölder inequalities,
Sobolev embedding H1 ⊂ L4, and then inequality (3.2), we find that

‖ tr(τ 0h)‖20,� ≤
∑

K∈Kh

{
‖divw,h(τ h)‖0,4/3,K ‖z‖0,4,K + ‖τd

0h‖0,K ‖∇z‖0,K
}

≤ 2max{cem, 1}‖z‖1
⎛

⎝
∑

K∈Kh

(‖divw,h(τ h)‖0,4/3,K + ‖τd
0h‖0,K

)2
⎞

⎠
1/2

≤ 2max{cem, 1}c1‖ tr(τ 0h)‖0,�
⎛

⎝
∑

K∈Kh

(‖divw,h(τ h)‖0,4/3,K +‖τd
0h‖0,K

)2
⎞

⎠
1/2

,
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which gives

‖ tr(τ 0h)‖20,� ≤ 4c1 max{cem, 1}
∑

K∈Kh

{
‖divw,h(τ h)‖20,4/3,K + ‖τd

0h‖20,K
}

.

This inequality and the fact that

‖τ 0h‖20,� = ‖τd
h‖20,� + 1

2
‖ tr(τ 0h)‖20,�,

complete the proof by letting ĉ� := 2c1 max{cem, 1} + 1. ��
The below lemma confirms the continuity and the coercivity properties of Ah(·, ·).
Lemma 3.2 There exist positive constants α1 and α2 (independent of K and h) veri-
fying ∣∣Ah(ζ h, τ h)

∣∣ ≤ α1 ‖ζ h‖h ‖τ h‖h , (3.3)

and
Ah(τ h, τ h) ≥ α2 ‖τ h‖2h , (3.4)

for all ζ h ∈ Xh and τ h ∈ Xh.

Proof Let us first notice that, by applying the Cauchy–Schwarz inequality and virtue
of

‖τd
0 h‖20,K = ‖τ 0 h‖20,K − 1

2
‖ tr(τ 0 h)‖20,K ≤ ‖τ 0 h‖20,K ,

the bilinear form Ah(·, ·) is bounded:

∣∣Ah(ζ h, τ h)
∣∣ =

∣∣∣∣
∑

K∈Kh

[ 1
ν

∫

K
ζd
0h : τd

0h + 1

λ

∫

K
divw,h(ζ h) · divw,h(τ h) + ρ SK (ζ h, τ h)

]∣∣∣∣

≤
∑

K∈Kh

[ 1
ν
‖ζ 0h‖0,K ‖τ 0h‖0,K + 1

λ
‖divw,h(ζ h)‖0,K ‖divw,h(τ h)‖0,K

]

+ ρ
∑

K∈Kh

(
SK (ζ h, ζ h)

)1/2 (
SK (τ h, τ h)

)1/2

≤ max
{ 1
ν

,
1

λ
, ρ

} ‖ζ h‖h ‖τ h‖h .

Moreover, as a consequence of Lemma 3.1, we have

Ah(τ h, τ h) =
∑

K∈Kh

(
1

ν
‖τd

0h‖20,K + 1

λ
‖divw,h(τ h)‖20,K + ρ SK (τ h, τ h)

)

≥
∑

K∈Kh

(
min

{1
ν
,
1

2λ

} (
‖τd

0h‖20,K + ‖divw,h(τ h)‖20,K
)
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+ 1

2λ
‖divw,h(τ h)‖20,K + ρ SK (τ h, τ h)

)

≥ min
{

ĉ� min{1
ν
,
1

2λ
}, 1

2λ
, ρ

}
‖τ h‖2h ,

which together with setting

α1 := max{1
ν
,
1

λ
, ρ} and α2 := min

{
ĉ� min{1

ν
,
1

2λ
}, 1

2λ
, ρ

}
,

complete the proof. ��
Moreover, we can easily conclude the boundedness of the linear functional form
Lh on Xh by using the Cauchy–Schwarz inequality, adding zero in the form
±〈g,PK

b (τ 0hne)〉0,∂�, the continuity of the projection PK
b and the definition of dis-

crete norm given in Section2.2 as follows:

∣∣Lh(τ h)
∣∣ =

∣∣∣∣ −
∑

K∈Kh

1

λ

∫

K
f · divw,h(τ h) + 〈g, τ bhne〉0,∂�

∣∣∣∣

=
∣∣∣∣ −

∑

K∈Kh

1

λ

∫

K
f · divw,h(τ h) + 〈g, τ bhne − PK

b (τ 0hne)〉0,∂� (3.5)

+ 〈g,PK
b (τ 0hne)〉0,∂�

∣∣∣∣

≤ max
{1
λ

, 1
}(‖f‖0 + ‖g‖1/2,∂�

)
‖τ‖h .

We are now in a position to establish the well-posedness of Problem 3.

Theorem 3.3 Let f and g belong to spaces L2(�) and H1/2(∂�), respectively. Then,
there exists a unique solution σ h ∈ X0,h to Problem 3. In addition, there exists a
constant Ĉstab > 0 independent of mesh size, such that

‖σ h‖h ≤ Ĉstab
(‖f‖0 + ‖g‖1/2,∂�

)
. (3.6)

Proof It deduces straightly fromLemma 3.2, the boundedness (3.5), and Lax-Milgram
lemma. ��
Our next step is to derive the corresponding a priori error estimate for Prolems 2 and 3.
To this end, we first state the following lemma.

Lemma 3.4 For ζ ∈ H
r+1(�) and r ∈ N such that r ≤ k, there exists a positive

constant CS such that

SK (PPhζ , τ h) ≤ CS hr+1‖ζ‖r+1‖τ h‖h , (3.7)

for all τ h ∈ Xh.
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Proof The proof of vector version can be found in [36] and by following the similar
arguments can easily conclude (3.7). ��
Thanks to the projection error estimate stated in Lemma 2.3, we only analyze the error
function defined by

θ := PPhσ − σ h = {PPK
0 σ − σ 0h,PK

b ((σ − σ h)n)
}
.

Lemma 3.5 Let σ ∈ H(div;�) ∩ H
k+1(�) such that div(σ ) ∈ Hk+2(�) and σ h ∈

X0,h be solutions of Problems 1 and 3, respectively. Then, there hold

∣∣Ah(θ, τ h)
∣∣ ≤ CA hk+1

(
‖σ‖k+2 + ‖div(σ )‖k+2

)
‖τ h‖h , ∀ τ h ∈ Xh .

Proof For any τ h ∈ Xh from Problem 3, we deduce

Ah(θ , τ h) = Ah(PPhσ , τ h) − Ah(σ h, τ h)

=
∑

K∈Kh

[1
ν

∫

K
PP0hσ

d : τd
0h + 1

λ

∫

K
divw,h(PPhσ ) · divw,h(τ h)

]
(3.8)

+ ρ
∑

K∈Kh

SK (PPhσ , τ h) − Lh(τ h) .

By testing the first and second equations of Problem 1 against τ 0h and divw,h(τ h),
respectively, one can have

1

ν

∫

K
σd : τ 0h =

∫

K
∇u : τ 0h , (3.9)

and
∫

K
u · divw,hτ h − 1

λ

∫

K
div(σ ) · divw,h(τ h) = 1

λ

∫

K
f · divw,h(τ h) . (3.10)

First, we note that by employing the definition of the discrete divergence operator
divw,h (cf. Definition 2.2) and fact u ∈ H2(�), the right-hand of (3.9) can be rewritten
as

1

ν

∫

K
σd : τ 0 h = −

∫

K
u · divw,h(τ h) − 〈g, τ bhne〉∂� ,

from which, substituted back in (3.10) yields

−1

ν

∫

K
σd : τ 0h − 1

λ

∫

K
div(σ ) · divw,h(τ h)

= 1

λ

∫

K
f · divw,h(τ h) − 〈g, τ bhne〉∂� = −Lh(τ h) .
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Now, substituting the above expression back into (3.8) and employing the commutative
property (2.6), we arrive at

Ah(θ , τ h) =
∑

K∈Kh

[ 1
ν

∫

K
PP0hσ

d : τd
0h + 1

λ

∫

K
divw,h(PPhσ ) · divw,h(τ h) + ρ SK (PPhσ , τ h)

]

−
∑

K∈Kh

[ 1
ν

∫

K
σd : τ 0h + 1

λ

∫

K
div(σ ) · divw,h(τ h)

]

=
∑

K∈Kh

[ 1
ν

∫

K
(PP0hσ

d − σd) : τ 0h + 1

λ

∫

K
(divw,h(PPhσ ) − div(σ )) · divw,h(τ h)

]

+
∑

K∈Kh

ρ SK (PPhσ , τ h) .

A direct application of the Cauchy–Schwarz inequality, the orthogonality and approx-
imation properties of projections PP0h and Pk (cf. Lemma 2.3), respectively, and the
estimate of stabilizer SK (cf. Lemma 3.4), yields

∣∣Ah(θ , τ h)
∣∣ ≤

∑

K∈Kh

(
1

λ

∥∥Pk+1(div(σ ))−div(σ )
∥∥
0,K

∥∥divw,h(τ h)
∥∥
0,K +ρ CS hk+1‖σ‖k+1 ‖τ h‖h

)

≤
(

C2

λ
+ ρ CS

)
hk+1

(
‖σ‖k+1 + ‖div(σ )‖k+2

)
‖τ h‖h ,

which ends the proof by setting CA := max

{
C1

ν
,

C2

λ

}
+ ρ CS . ��

The main result of this section is summarized in the following theorem.

Theorem 3.6 Let σ ∈ H(div;�) ∩ H
k+1(�) and σ h ∈ Hh be solutions of

Problems 1 and 3, respectively. Then, the following estimate holds

‖σ − σ h‖h ≤ Ĉ1 hk+1
(
‖σ‖k+1 + ‖div(σ )‖k+2

)
. (3.11)

Proof It follows straightforwardly from the coercivity of Ah (cf. Lemma 3.2) and
Lemmas 2.3 and 3.5. ��
We end this section by remarking that (1.4) and (1.7) suggest the following post-
processed approximation for the pressure p and u

ph := −1

2
tr(σ 0h) and uh := 1

λ

(
divw,h(σ h) + Ph(f)

)
. (3.12)

The rates of convergence for the above post-processed approximations are now pro-
vided by the following theorem.
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Theorem 3.7 In addition to the hypothesis of Theorem 3.6, let f ∈ Hk+2(�). Then,
there exist positive constants Ĉ2 and Ĉ3, independent of h, such that

‖u − uh‖0 ≤ Ĉ2hk+1
(
‖σ‖k+1 + ‖div(σ )‖k+2 + ‖f‖k+2

)
, (3.13)

and
‖p − ph‖0 ≤ Ĉ3hk+1

(
‖σ‖k+1 + ‖div(σ )‖k+2

)
. (3.14)

Proof To derive (3.13), first, we subtract (1.7) from the second column of (3.12), and
then add zero in form ±divw,h(PPhσ ) and use the commutative property (2.6):

u − uh = 1

λ

{
(div(σ ) − divw,h(σ h)) + (f − Pk+1(f))

}

= 1

λ

{ (
div(σ ) − divw,h(PPhσ )

) + divw,h(PPhσ − σ h) + (f − Pk+1(f))
}

= 1

λ

{
(div(σ ) − Pk+1(div(σ ))) + divw,h(θ) + (f − Pk+1(f))

}
,

Fig. 1 Example 1, samples of the kind of meshes utilized
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A straightforward application of the approximation property of Pk and the estimate
of θ stated in Lemmas 2.3 and 3.5, respectively, gives

‖u − uh‖0 = 1

λ

{
‖div(σ ) − Pk+1(div(σ ))‖0 + ‖f − Pk+1(f)‖0 + ‖divw,h(θ)‖0

}

≤ 1

λ

{
C2hk+2 (‖div(σ )‖k+2 + ‖f‖k+2) + ‖θ‖h

}

≤ 1

λ
max

{
C2, α

−1
2 CA

}
hk+2

(
‖σ‖k+1 + ‖div(σ )‖k+2 + ‖f‖k+2

)
,

which completes the proof (3.13) with constant Ĉ2 := 1

λ
max

{
c2, α

−1
2 Ĉ

}
. Next, in

order to deal with (3.14), we observe from (1.4) and (3.12) that

p − ph = −1

2
tr(σ − σ 0h) , (3.15)

Fig. 2 Example 1, snapshots of the first and second components of numerical stress (first row, left to right)
and velocity magnitude and pressure (second row, left to right), computed with r = 0 in the mesh made of
hexagons with h = 3.030e-2
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which, together with Theorem 3.6, yields

‖p − ph‖0 ≤ 1√
2
‖σ − σ 0h‖0 ≤ 1√

2
Ĉ1hk+1

(
‖σ‖k+1 + ‖div(σ )‖k+2

)
.

Hence by setting Ĉ3 := 1√
2

Ĉ1, the relation (3.14) is proved. ��

4 Numerical results

The purpose of this section is to illustrate the efficiency of theWG pseudostress-based
mixed FEM for solving the Brinkman problem. In first example, we consider the
WG subspace Xh given in Section2 with k ∈ {0, 1}. Like in Ref. [20], we use a real
Lagrange multiplier to impose the zero integral mean condition for the only variable
of the discrete scheme, that is, tensor in space Xh . As a result, Problem 3 is rewritten
as follows: Find (σ h, η) ∈ Xh × R such that

Ah(σ h, τ h)+ η

∫

�

tr(τ 0h) = Lh(τ h) ,

ξ

∫

�

tr(σ 0h) = 0 ,

for all (τ h, ξ) ∈ Xh × R. Example 2 is utilized to evaluate the effectiveness of the
discrete scheme by simulation of practical problems with different contrast permeabil-
ity for which no analytical solutions. Also, for simplicity, we take � = (0, 1)2. We
performed our computations using the MATLAB 2020 b software on an Intel Core i7
machine with 32 GB of memory.

4.1 Example 1: accuracy assessment

We turn first to the numerical verification of the rates of convergence anticipated by
Theorems 3.6 and 3.7. To this end, we consider parameters ν = λ = 0.1 and design

Fig. 3 Example 2, profiles for κ
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the exact solution as follows:

u(x1, x2) =
(

sin(3πx1)(cos(3πx2)−1)
− sin(3πx2)(cos(3πx1)−1)

)
, p(x1, x2) = sin(2πx1)−sin(2πx2),

for all (x1, x2)t ∈ �. The model problem is then complemented with the appropriate
Dirichlet boundary condition.

Fig. 4 Example 2 with the first profile κ; from left to right κ =1e-1,1e-3,1e-6: comparison of numerical
velocity {u1, u2} (the first and second rows) and numerical stress {σ11, σ12} (the third and fourth rows)
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Using the weak Galerkin spaces given in Section2 with polynomial degree k = 0,
1, we solve Problem 3 and obtain the approximated stress on a sequence of four
successively refined polygonal meshes made of hexagons, non-convex, and triangular
elements (seeFig. 1). In addition, the discrete velocity field and the discrete pressure are
computed using the post-processing approach stated in Section3. At each refinement
level, we compute errors between approximate and smooth exact solutions in L2-norm.
The results of this convergence study are collected in Tables 1, 2 and 3. One can see that
the rate of convergence of individual stress and pressure variables is O(hk+1), whereas

Fig. 5 Example 2 with the second profile κ; from left to right κ =1e-2,1e-4: comparison of numerical
velocity {u1, u2} (the first and second rows) and numerical stress {σ11, σ12} (the third and fourth rows)
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it is O(hk+2) for the velocity, which both are in agreement with the theoretical analysis
stated in Theorems 3.6 and 3.7. Moreover, in Fig. 2, we display some components of
the approximate solution obtained with the polynomial degree k=0 in a hexagonal
mesh to show the accuracy of the discrete scheme.

Fig. 6 Example 2 with the third profile κ; from left to right κ =1e-2,1e-4: comparison of numerical velocity
{u1, u2} (the first and second rows) and numerical stress {σ11, σ12} (the third and fourth rows)
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4.2 Example 2: flow through porousmedia with discontinuous permeability

In our second example, inspired by [39], we focus on flows through porous media
with the different profiles for permeability as shown in Fig. 3. In order to do that, we
consider the permeability parameter in three cases: (i) κ=1e−1 in the orange circle
area and κ =1 elsewhere; (ii) κ=1e−3 in the orange square area and κ =1 elsewhere;
(iii) κ=1e−6 in the orange rectangular area and κ =1 elsewhere. Moreover, the body
force and boundary condition are set as f = 0 and g = (1, 0)t, respectively.

For different values κ , two components of the velocity and three components of
stress for three different profiles of κ obtained by WG mixed FEM with mesh size
h = 1/32 are presented in Figs. 4, 5 and 6. In Figs. 4, 5 and 6, we display the computed
velocity and three components of stress for different profiles of κ displayed in Fig. 3
on polygonal mesh with mesh size h = 0.0213. As expected, because there is a greater
increase in permeability in the blue region, the velocity of the fluid in the blue region
is faster than in the orange region. This example illustrates the ability of our new
mixed weak Galerkin method to fluid in complex porous media with a permeability
coefficient highly varying.
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