
Numerical Algorithms (2024) 96:1109–1141
https://doi.org/10.1007/s11075-023-01738-z

ORIG INAL PAPER

An Hermite–Obreshkov method for 2nd-order linear
initial-value problems for ODE

with special attention paid to the Mathieu equation.

Robert M. Corless1,2

Received: 22 August 2023 / Accepted: 21 December 2023 / Published online: 9 January 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
The numerical solution of initial-value problems (IVP) for ordinary differential equa-
tions (ODE) is at this time a mature subject, with many high-quality codes freely
available. Second-order linear equations without singularities are an especially sim-
ple class of problems to solve, even more so if only a single scalar equation such as
the Mathieu equation y′′ + (a − 2q cos 2x)y = 0 is being considered. Nonetheless,
the topic is not yet exhausted, and this paper considers the case of writing an efficient
arbitrary-precision code for the solution of such equations. For this purpose, an implicit
Hermite–Obreshkovmethod attains nearly spectral accuracy at a cost only polynomial
in the number of bits of accuracy requested. This is interesting for the Mathieu equa-
tion in particular because the solutions can be highly oscillatory of variable frequency
and be highly ill-conditioned. This paper reports on the details of the prototype Maple
implementation of the method and summarizes the approximation theoretic results
justifying the choice of a balanced Hermite–Obreshkov method including its back-
ward stability and decent Lebesgue constants. This method may be of especial interest
for the solution of so-called D-finite equations, for which Taylor series coefficients up
to degree m are available at cost only O(m), instead of the more usual O(m2). This
paper celebrates the happy occasion of the 90th birthday of John C. Butcher.

Keywords Hermite–Obreshkov · Arbitrary-precision ·
Initial-value problems for ordinary differential equations

Mathematics Subject Classification (2010) 65L04 · 33F05 · 65D15

B Robert M. Corless
rcorless@uwo.ca

1 The Ontario Research Center for Computer Algebra, Department of Computer Science, and the
Rotman Institute of Philosophy, Western University, London, ON, Canada

2 Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-023-01738-z&domain=pdf

1110 Numerical Algorithms (2024) 96:1109–1141

1 Introduction

I give here a detailed description of an implicit method using piecewise high-order
Hermite interpolants for high precision, in fact, arbitrary precision, numerical solu-
tion of certain smooth initial-value problems (IVPs) for ordinary differential equations
(ODEs). These methods are known in the literature as Hermite–Obreshkov methods,
in honor of the nineteenth-century French mathematician Charles Hermite who first
described osculatory interpolational polynomials, and for the twentieth-century Bul-
garian mathematician Nikola Obreshkov who developed a quadrature formula using
them. A significant potential advantage to this implicit approach compared to explicit
Taylor series methods usingm terms at each step is that, for only modestly more com-
putation on linear problems, the implicit method is O(h2m) accurate instead of being
only O(hm) accurate. This can result in significantly better efficiency even for some
nonstiff problems.

The idea is that if one has gone to the trouble of generating Taylor coefficients at
both ends of the interval, one might as well use both sets of Taylor coefficients to
approximate the solution over the step.

Similar methods using Taylor series, including implicit methods, have already
been implemented and described for general-purpose use for the interval solution
of IVP [35] and (in standard precision point arithmetic) of differential-algebraic equa-
tions (DAEs) in [36], and moreover those authors have made their DAETS code freely
available. Then, there is the recent paper [47] which even solves nonlinear problems
using a Hermite–Obreshkov method. See also [41] which uses projection, optimiza-
tion, and implicit methods (also for DAE). Since those codes and their methods are
much more general than the code that I will describe, the reader may wonder why they
should read further here.

More, in a sequence of papers, namely [8, 14, 15, 18] I and co-authors have already
sketched a great deal about this nichemethod and its applications to the computation of
Mathieu functions and thereby to the blood flow application that originally motivated
us. A reader “skilled in the art” could instead read all those papers instead of this one
and glean or deduce many of the things that I will discuss here.

There are several novel points about this algorithm, however, which this present
paper brings out. For one, unlike the methods in the cited papers, the method I describe
uses collocation for the direct solution of (linear) higher-order equations without con-
version to a first-order system. Although direct collocation for higher-order equations
is not itself new, it is novel in this context. This direct use of collocation for higher-
order equations enables the use of the residual (also called the defect) for error control,
which makes error analysis in the context of the original problem simpler, especially
for the non-specialist. In Sect. 3.5, I will explain this further.

I use a new and numerically stable version of the explicit form of the two-point
Hermite interpolational polynomial described in 1873 by Hermite, unlike [47] which
uses a divided-difference formulation. I give here full details of the stability analysis,
which was only sketched in one of the previous papers, namely [15]. I also give a
wholly new and numerically stable version of Obreshkov’s quadrature formula.

Finally, I describe the use of the method on so-called D-finite differential equations,
which are explained below and forwhich themethod ought to be particularly attractive.

123

Numerical Algorithms (2024) 96:1109–1141 1111

1.1 Arbitrary-precision computation

Something else that might be novel to this audience is the genuine need for arbitrary-
precision computation. This is becoming increasingly important in certain modern
applications [4]. The main point of [4] is that for some problems, it is simply more
efficient to use brute force and high precision to overcome numerical difficulties such
as that the problem is ill-conditioned or that the available algorithm is numerically
unstable. Some scientists are unable or unwilling to develop new and more stable
algorithms, even if such exist for the problem at hand. In some cases, it is simply more
efficient in terms of human time to use arbitrary-precision computation, even if it is
vastly more expensive in terms of computing time than (say) double precision. Admit-
tedly this is not that common yet; all that those authors are saying is that sometimes
this is useful, and may be more useful in the future.

For the case of the modified Mathieu equation y′′ − (a − 2q cosh 2x)y = 0,
some solutions grow doubly exponentially with x , and oscillate with exponentially
increasing frequency as well. The most numerically stable algorithm available will
still demand high precision even if one only wants to know (say) the correct sign of
the real part of the function for large x .

Some numerical notions change in this context, while others remain valid. For
instance, one might happily use a mildly unstable polynomial as an approximant for
a function, and simply add a few more guard digits in the computation. This typically
increases the cost of computation only by a negligible marginal amount. But, if the
approximant is exponentially unstable, then that is a different matter and even in
an arbitrary-precision environment, one must take care. I will show in this paper
that we may use Hermite interpolational polynomials of degrees up to a thousand
or so—which is usually far more than enough—with very little numerical instability
even just in ordinary double precision, in some situations, by using the right method.
Using a naive method instead would cause problems already by degree 30 or so. In
other situations, the numerical instabilities are unavoidable. Some recent results in the
approximation theory of piecewise Hermite interpolation are helpful here [14, 18].
One thing omitted in those references is a discussion of the rate of convergence of
these approximations, and we sketch this in Sect. 2.6.

In the context of arbitrary-precision computation for smooth functions, very high-
order methods are the most useful. This is because, technically speaking, fixed-order
methods are of cost exponential in the number of bits of accuracy requested. Indeed
the lowest-order methods are the most expensive. In contrast, arbitrary order methods
are of cost polynomial in the number of bits of accuracy requested [32].

1.2 This method uses derivatives (Taylor coefficients)

One dominant viewpoint of numerical methods for IVP is that using function values
(the f in the ODE y′ = f(y)) is cheaper than using derivatives or Taylor coefficients.
This viewpoint drives multistep methods, Runge–Kutta methods, and general linear
methods. The reasoning goes that the computation of derivatives, especially for high-
dimension f , gets expensive very quickly.

123

1112 Numerical Algorithms (2024) 96:1109–1141

This is not the only viewpoint, and there has been significant research on the value of
using even just one more derivative, e.g., [11, 21]. In addition to the previously cited
papers on Hermite–Obreshkov methods there is also a thriving literature on Taylor
series methods. See, for instance, [19] or more recently [1].

These methods all work well for smooth problems. Discontinuities, even discon-
tinuities in the derivatives, require special handling. The methods are also typically
harder to code because the automatic generation of Taylor coefficients is somewhat
involved. In compensation, the generation of those coefficients gives free interpolants
of high quality, which we will use to advantage here.

Finally, we call attention here to what are called D-finite functions or holonomic
functions [31, 33, 34]. These are defined to be the solutions of linear homogeneous
differential equations with polynomial coefficients. They are simple, but they occur
surprisingly frequently. Such an ODE has a linear recurrence relation for its Taylor
coefficients of afixed length, unlike the normal casewhere the recurrence for the degree
m coefficient involves all m of the previous coefficients. Of course, the length of the
recurrence depends on the degrees of the polynomial coefficients. If the differential
equation is D-finite, then the Taylor coefficients at an arbitrary point can be generated
with O(m) cost instead of O(m2) cost. For such problems, Taylor series methods and
Hermite–Obreshkov methods become even more attractive.

I point out for clarity that the usual metric for the cost of a method, namely to count
the number of function evaluations it requires, does not obtain for these methods,
and does not obtain for the methods discussed here. Instead, one tries to measure the
cost of the construction of the Taylor coefficients at each node, which is typically the
dominant cost of a step and replaces the idea of the cost of the function evaluations. For
a general system, this is (as stated previously) O(m2), because the cost of computing
the Cauchy products involved is O(m2) (unless one uses the FFT, which most codes
do not do, but see [6] for a possible approach). This construction has to be done for
each component (typically all at once), so for a problem of dimension d the cost
will be O(dm2). Larger m will generally allow larger stepsizes because the problems
are smooth, and as usual, we will want to equidistribute the error by choosing the
stepsizes to make the error, however measured, approximately equal to (no greater
than) the user’s tolerance.

The question of variable order will be discussed briefly in the concluding remarks.
I do not use variable order here, because it was not needed for the applications I had
in mind.

1.3 Outline of the paper

In Sect. 2, I give the basic formula, known already to Hermite, for a smooth interpola-
tional polynomial given Taylor coefficients at either end of an interval—called here a
“blend”—and discuss its rapid and numerically stable evaluation, differentiation, and
integration using exact quadrature. In Sect. 2.6, I summarize the convergence theory
for these approximations. In Sect. 2.5, I describe the construction of a piecewise spline-
like interpolant using blends. Blends need Taylor series coefficients, which limits their
use to smooth functions, and I discuss automatic generation fromdifferential equations

123

Numerical Algorithms (2024) 96:1109–1141 1113

including so-called D-finite equations in Sect. 3.1. The solution of stiff or oscillatory
differential equations benefits from some degree of implicitness, and I discuss the use
of collocation for this, giving a variable stepsize method that approximately equidis-
tributes the residual or “defect,” in Sect. 3.4. The numerical stability of the resulting
implicit method—in short, it’s not A-stable but it’s not bad either—is discussed in
detail in Sect. 4. I give the results from some numerical experiments in Sect. 5 and
conclude in Sect. 6.

2 Blends, aka two-point Hermite interpolational polynomials

Much of this section is based on [18]; an open version of that paper is available
at https://arxiv.org/abs/2007.05041, if the reader wishes more detail.

Approximation of a function f (z) by its Taylor polynomials at a single point z = a,
namely PN (z) = ∑N

j=0 p j (z − a) j where each p j = f (j)(a)/ j !, is a staple part of
every undergraduate course in approximation theory. The Lagrange form of the error

f (z) − PN (z) = f (N+1)(θ)

(N + 1)! (z − a)N+1 (1)

where θ is some number between z and a is part of many first-year calculus courses.
On an interval of width h this gives an error of O(hN+1) with an error of O(hN) in
the derivative: f ′(z) − PN ′(z) = O(hN).

It is less well-known that one can use the Taylor coefficients at a second point
z = b, namely q j = f (j)(b)/ j !, to give a much-improved approximation on the
interval a ≤ z ≤ b. Without loss of generality, we assume a < b, and later we will
consider the case of a line segment joining two complex points a and b. For now, we
assume the variables are real. For ease of notation, we make a change of variables to
s = (z−a)/(b−a) so that z = a+ s(b−a). Then, the following formula was known
already to Hermite [29]:

Hm,n(s) =
m∑

j=0

⎡

⎣
m− j∑

k=0

(
n + k

k

)

sk+ j (1 − s)n+1

⎤

⎦ p j

+
n∑

j=0

⎡

⎣
n− j∑

k=0

(
m + k

k

)

sm+1 (1 − s)k+ j

⎤

⎦ (−1) j q j (2)

We say that a polynomial has grade m if its degree is at most m. This is convenient in
cases, as here, where the leading coefficient is hidden and might be zero. The formula
above is of grade m + n + 1 and has Taylor coefficients (in the s variable—one has
to be careful to use the chain rule to change coefficients to and from the original z
variable) p j = f (j)(0)/ j ! and q j = f (j)(1)/ j !.

Definition of a blend. Hm,n(s) is a two-point Hermite interpolational polynomial
in that it satisfies the given Hermite interpolational data at either end. This term is

123

https://arxiv.org/abs/2007.05041

1114 Numerical Algorithms (2024) 96:1109–1141

too complicated to say easily, and so I use the word “blend” instead. This seems apt
because the polynomial “blends” together the Taylor coefficients at either end.

The Lagrange form of the error in a blend is analogous to the Lagrange form of the
error in Taylor approximation:

f (s) − Hm,n(s) = f (m+n+2)(θ)

(m + n + 2)! s
m+1(s − 1)n+1 (3)

for some θ = θ(s) between 0 and 1. On the interval 0 ≤ s ≤ 1 the polynomial
sm+1(1 − s)m+1 is 22m+1 times smaller than the polynomial s2m+1, which is the
corresponding term in the Lagrange form of the error for Taylor approximation. Two-
pointHermite interpolation can therefore be substantiallymore accurate on the interval
than Taylor approximation of equivalent grade. On an interval of width h this gives
an O(hm+n+2) error, with one less power of h for every derivative taken.

A complex-valued version of this error formula (due to Hermite) is available:

f (s) − Hm,n(s) = 1

2π i

∮
sm+1(1 − s)n+1 f (ζ)

ζm+1(1 − ζ)n+1(ζ − s)
dζ , (4)

where the counterclockwise integration takes place on a closed contour that encloses
s, 0, and 1, and no singularities of f . We give more details about this in Sect. 2.6.

There is also the principle of economy: if you are going to generate Taylor series
of grade m at every point in a numerical solution of a differential equation, you might
as well use those at either end of the interval to interpolate with.

The numbers
(n+k

k

)
, for 0 ≤ k ≤ m, and identically

(m+k
k

)
, 0 ≤ k ≤ n, which appear

in formula (2), grow large rather quickly. This may (should!) alarm numerical analysts
because their exponential growth may cause instability in the numerical evaluation of
the formula.

2.1 Evaluation by Horner’s method is fast and stable

However, by rewriting the formula in Horner form, noting that the basis functions can
be constructed in a single loop, and simultaneously using the recurrence relation

(
n + k

k

)

= n + k

k

(
n + k − 1

k − 1

)

(5)

we can defuse the potential instability. Using this method, Algorithm 1 implements
this idea. Both of the sums in the Hermite formula can be evaluated by interchanging
s and 1− s andm and n and inserting the correct signs, as necessary. The total cost for
the evaluation, measured in flops, is O(m+n). In an arbitrary-precision floating-point
environment, each of those “flops” might be more expensive than a double-precision
flop, but (for instance)Maple is IEEE-854 compliant and at least the results are reliable,
and of a cost more or less fixed once the precision has been chosen.

123

Numerical Algorithms (2024) 96:1109–1141 1115

Algorithm 1 Half Sum, without derivatives.
1: procedure Halfsum(σ , m, n, w) � m,n nonnegative integers, w Array(0,m)
2: a0 ← 1 � Accumulator loop
3: for k from 1 to m do � n gets used in the sum
4: ak ← (n + k) · σ · ak−1/k � 0 ≤ σ ≤ 1
5: end for
6: s0 ← a0 � sk are partial sums of nonnegative numbers
7: for k from 1 to m do
8: sk ← sk−1 + ak
9: end for
10: U ← 0
11: for j from m by −1 to 0 do � Coefficients w j used here
12: U ← sm− j · w j + σ ·U
13: end for
14: C ← 1
15: for j from 1 to n + 1 do � The complementary factor is (1 − σ)n+1

16: C ← (1 − σ) · C
17: end for
18: S ← C ·U
19: return S � The half sum is S
20: end procedure

We then have the following numerical stability theorem [14]:

Theorem 1 For 0 ≤ s ≤ 1 and with real Taylor coefficients p j and q j , Algorithm 1
produces the exact sum for slightly different Taylor coefficients, namely fl(p j) =
p j (1+θ3m− j+n+4) and fl(q j) = q j (1+θ3n− j+m+4). This implies that this algorithm
applied to a blend produces the exact value of a blend with coefficients differing at
most by a factor 1 + γmax(3m+n,3n+m)+4 from their inputs.

We use the notation of Lemma 3.1 of [30], where γ j = ju/(1− ju) with u being the
unit roundoff. Theorem 1 guarantees an extremely strong backward stability result,
namely that the algorithm gives the exact value of a blend where the coefficients are
changed componentwise only by a tiny relative amount: essentially only a linear num-
ber of rounding errors, and zero coefficients are undisturbed. This is quite comparable
to similar componentwise stability results for Chebyshev polynomial expansion [44].
One could hardly ask better, and it is a relief that the potentially large binomial coef-
ficients are not a problem after all.

2.2 Approximation by balanced blends is accurate

One then has to worry about whether these interpolational polynomials are at all
sensitive to changes in their coefficients. The answer to that depends on just where the
polynomial is being evaluated. To explain this most simply, we use the notion of the
Lebesgue function and Lebesgue constant. If

f (s) =
N∑

j=0

c jφ j (s) (6)

123

1116 Numerical Algorithms (2024) 96:1109–1141

is a polynomial expanded in some basis φ j (s), and has coefficients perturbed to c j (1+
ε j) with all |ε j | ≤ ε, then

|	 f (s)| =
∣
∣
∣
∣
∣
∣

N∑

j=0

c jε jφ j (s)

∣
∣
∣
∣
∣
∣

≤
N∑

j=0

|c j |
∣
∣φ j (s)

∣
∣ ‖ε j‖∞

≤ L(s)‖c j‖∞ε (7)

where L(s) = ∑N
j=0 |φ j (s)| is the Lebesgue function and the Lebesgue constant is

(for us, with our doubly-indexed expansion)

Lm,n := max
0≤s≤1

Lm,n(s) . (8)

For blends, the Lebesgue function turns out to itself be a blend, where all the coef-
ficients p j = 1 and all the coefficients q j = (−1) j , because each basis function is
a sum of nonnegative terms and is therefore itself nonnegative, on 0 ≤ s ≤ 1. This
allows one to prove that for balanced blends Lm,m < 2 if 0 ≤ s ≤ 1.

Therefore, the forward error is at most twice the backward error, which we have
shown to be small. See [14] for details.

One important point is that grossly unbalanced blends can have exponentially-
growing Lebesgue constants, ifm and n are very different, saym < n/4 or vice-versa.
Another is that the error grows very rapidly (like |s|m+n+1) if s is at all distant from
the interval [0, 1].

2.3 Semi-automatic differentiation of a blend

Derivatives of the interpolant are always useful. To this purpose it is straightforward
to differentiate Algorithm 1; that is, to code it in such a fashion that it supplies not
only Hm,n(s) but also as many derivatives as are needed. The cost per derivative is
essentially the same as the cost of evaluating the blend, O(m+n). The same backward
error theorem applies, and the resulting computed derivatives are the exact derivatives
of a blend with relatively tiny numerical perturbations.

2.4 Exact quadrature of a blend

The following beautiful exact quadrature of a blend is very useful. Obreshkov has
this formula written in terms of ratios of binomial coefficients in [37]. I think that
the formula must have been known to Hermite, and seems to be in the writings of
Darboux: see [20]. I proved it for myself using the contour integral method that John
Butcher uses (see, e.g., [10]). The following is taken from [14, 18].

123

Numerical Algorithms (2024) 96:1109–1141 1117

Computing the definite integral of a blend over the entire interval will allow us to
construct a new blend whose value at any point is the indefinite integral of the original
blend up to that point, namely

I (x) =
∫ x

s=0
Hm,n(s) ds . (9)

The definite integral that we need is

I (1) =
∫ 1

s=0
Hm,n(s) ds = (m + 1)!

(m + n + 2)!
m∑

j=0

(n + m − j + 1)!
(j + 1) (m − j)! p j

+ (n + 1)!
(m + n + 2)!

n∑

j=0

(n + m − j + 1)!
(j + 1) (n − j)! (−1) j q j . (10)

This is an exact complete integral across the subinterval if the coefficients are known
exactly, but the main use of this routine is when the coefficients are floating-point
numbers, in which case this becomes a kind of numerical quadrature.

The definite integral (10) allows one to (trivially) compute the Taylor coefficients
for I (s) = ∫ s

0 H(σ) dσ at s = 1: the zeroth order coefficient is now known (it’s

just the definite integral
∫ 1
0 H(σ) dσ) and all the derivatives are simply related to the

(known) derivatives of H(s) at s = 1:

I ′(s) = H(s) =
m∑

j=0

q j (s − 1) j + O((s − 1)m+1)

I (s) = I (1) +
m∑

j=0

q j

j + 1
(s − 1) j+1 + O((s − 1)m+2) . (11)

Likewise, I (0) = 0 is known, and all its derivatives at s = 0 are related in the same
way.

In [14], I showed that the error in approximating the integral of f (s) by the integral
of Hm,n(s) is small if the error in approximating f (s) by Hm,n(s) is small. In particular,
the use of balanced blends with m nearly equal to n is strongly recommended.

In detail, we have the following theorem.

Theorem 2 If the coefficients of the blend are in error by at most 	p j for 0 ≤ j ≤ m
and 	q j for 0 ≤ j ≤ n, then the error in the integral of the blend is bounded

by
∫ 1
0 Lm,n(s) dsmax |	p j |, |	q j | where Lm,n(s) is the Lebesgue function for the

blend.

Further, this bounding integral can be explicitly computed. We find

∫ 1

0
Lm,n(s) ds = 2
(n+m+3)−
(m+3)−
(n+3)+ n + m + 4

(n + 2)(m + 2)
. (12)

123

1118 Numerical Algorithms (2024) 96:1109–1141

Here,
(n + 1) = −γ + ∑n
k=1 1/k is the logarithmic derivative of the factorial

function.
If either n or m goes to infinity while the other remains fixed, this integral grows

like ln n or lnm. If both n = m go to infinity together the integral is asymptotic to
2 ln 2 − 1/(2m) + O(1/m2).

This shows that for balanced blends, the computation of the integral by using this
formula is numerically stable, and that is certainly what is observed in practice.

2.4.1 Computational version

Put c0 = (m + 1)/(m + n + 2) and d0 = (n + 1)/(m + n + 2) and define

c j = j(m − j + 1)

(j + 1)(m + n + 2 − j)
c j−1 for 1 ≤ j ≤ m (13)

d j = − j(n − j + 1)

(j + 1)(m + n + 2 − j)
d j−1 for 1 ≤ j ≤ n . (14)

Notice the sign alternation in the d j s. Then,

I (1) =
m∑

j=0

c j p j +
n∑

j=0

d jq j . (15)

If m = n then |d j | = c j and the formula becomes

I (1) =
m∑

j=0

c j
(
p j + (−1) j q j

)

= 1

2
(p0 + q0) + m

4(2m + 1)
(p1 − q1) + · · · + cm

(
pm + (−1)mqm

)
. (16)

The final coefficient cm = 1/((m+1)
(2m+2
m+1

)
) is asymptotic to 2−2m−2√π/m. A short

analysis shows that his method is beautifully stable numerically: the componentwise
backward error using IEEE 854 standard floats is bounded by γm+n+2.

The method is not very accurate if m and n are greatly different, but if m ≈ n
it’s wonderfully accurate when the underlying function has no nearby singularities.
Notice also that if m = n = 1 then this is the well-known corrected trapezoidal rule.

2.5 Blendstrings

Given a sequence of distinct points (or “knots”) z0, z1, . . ., zN in the complex plane, at
whichTaylor coefficients up to grademk are known, it is obviously possible to construct
blends on each line segment zk + s(zk+1 − zk). Since the Taylor coefficients at each
interior knot are specified, this piecewise polynomial interpolant is very smooth; if all
mk are the same, say m, then the interpolant is m-times continuously differentiable.

123

Numerical Algorithms (2024) 96:1109–1141 1119

This smoothness has some desirable properties for approximation. For the Mathieu
equation, we only needed to take the knots in a straight line; either on one of the real
intervals [0, π] or [0, 2π], or on a purely imaginary line [0, i x f] for some real number
x f . But one can imagine other applications needing more complicated paths.

Given two compatible “blendstrings” as I call them (they are really just a high-order
kind of piecewise polynomial Hermite interpolant, but that’s a mouthful) one can add,
subtract, multiply, or even divide them (so long as the dividend isn’t zero at a knot; even
if the denominator is zero only between knots division can be problematic, though).
One can differentiate a blendstring, although it’s probably best not to construct a new
blendstring for the derivative. One can integrate a blendstring, using the quadrature
formula on each piece. In this case, it is quite useful to construct a new blendstring for
the indefinite integral. Producing a numerical solution to an ODE that one can treat as
a first-class function in this way is very convenient.

One important feature is that the order of each blend will be compatible, as we
shall see, with the order of the numerical method for solving the differential equation.
Looking ahead, we will use the differential equation and the Taylor series coefficients
we generate in a way that allows us to choose the knots so that the residual will be
bounded by the user’s tolerance; this essentially equidistributes the error along the
path of integration.

2.6 Convergence of blendstrings

As described in [46, Chap. 11], the convergence of an (m,m) blend to the underlying
function f (s) is—as with all polynomial approximations using data on the interval—
exponential inm if the distance to the nearest singularity is large enough. Specifically,
if the contour in (4) can be taken so that every point ζ on it has

∣
∣
∣
∣
s(1 − s)

ζ(1 − ζ)

∣
∣
∣
∣ ≤ 1

ρ
(17)

for some ρ > 1 and any s ∈ [0, 1], then the convergence is O(ρ−m) for a balanced
(m,m) blend. This is because

∣
∣ f (s) − Hm,m(s)

∣
∣ ≤ 1

2π

∮ ∣
∣
∣
∣
sm+1(1 − s)m+1

ζm+1(1 − ζ)m+1

∣
∣
∣
∣

∣
∣
∣
∣

f (ζ)

(ζ − s)

∣
∣
∣
∣ |dζ | , (18)

≤ M

ρm+1 (19)

for some constant M independent of m.
We can guarantee that (17) holds by insisting that |ζ(1 − ζ)| ≥ ρ/4, because

1/4 ≥ s(1 − s) for any s ∈ [0, 1]. Regions where this is true are shown in Fig. 1.
In particular, a pole close to either evaluation point (s = 0 or s = 1) gives more

trouble than a pole close to s = 1/2 does. We find by experiment (not shown here)
that the largest error appears in the middle, however, not near the ends.

If f (z) is entire, then the convergence is even faster.

123

1120 Numerical Algorithms (2024) 96:1109–1141

Fig. 1 Contours of 4|ζ(1−ζ)|. The contours are, from the inside out, 1, 21/4, 21/2, 2, 4, and 8. The contour
that intersects itself is at 4|ζ(1 − ζ)| = 1, and if f (ζ) has a pole inside that figure 8 then the balanced
blends Hm,m (s) will not converge to f (s) on 0 ≤ s ≤ 1 as m → ∞. If all poles are outside a contour with
value ρ > 1, then Hm,m (s) − f (s) goes to zero at least as fast as O(ρ−m) as m → ∞

If, however, there is a singularity of f (s) near to either end of the interval, then the
sequence of blends might not converge at all.

The cure for this of course is to use blendstrings. If we subdivide the interval up
with a small enough mesh, then the relative distance to the singularity becomes large
enough so that exponential convergence is recovered.

For blendstringswith subintervals of uniformwidth h, the error can be considered to
be O(h2m+2) as h → 0. If the mesh is not uniform but the error is equidistributed, the

error can be considered to be O(h
2m+2

) where h is the arithmetic mean stepsize [13].
This error model may not be terribly useful, because we normally want to have quite
large mesh widths, and perhaps we will even want a large mean mesh width.

As discussed in [46, Chapter 11], blends are not as accurate as Chebyshev poly-
nomial interpolation by a factor of 2m+n ; still, they are better than plain Taylor
approximation, also by a factor of 2m+n . In some sense, then, they aremid-waybetween
the two, in terms of accuracy.

123

Numerical Algorithms (2024) 96:1109–1141 1121

2.6.1 Indefinite integration: blendstring quadrature

Following the discussion of (11), we can immediately find a blend for I (s) on 0 ≤
s ≤ 1.

By propagating information from the previous subinterval (essentially adding the
necessary constant of integration), this gives us a blendstring for the integral of the
function being approximated by the blendstring.

Since integrals of expressions containing the solution to the IVP are frequently
needed in applications, this feature is quite convenient.

3 A collocationmethod for solving IVP

3.1 Automatic generation of Taylor coefficients

“It’s just code generation.”

—Y.F. Chang, some time around 1990

Automatic differentiation is by now a fairly mature field. Early work includes [39]
and by the 1990s effective and general-purpose codes were available [26]. For the
scalar problems discussed here, a much simpler tool suffices, namely the routine
diffeqtorec (for “differential equation to recurrence relation”) from the gfun
package in Maple [40].

For example, consider the Mathieu differential equation:

d2

dx2
y(x) + (a − 2q cos(2x)) y(x) = 0 . (20)

If we change variables to v where x = arccos(c+ v)/2, the equation becomes (appar-
ently) much simpler. This transformation, or, rather, ones like it, was known already
to Mathieu.

4
(
1 − (c + v)2

) (
d2

dv2
y(v)

)

− 4 (c + v)

(
d

dv
y(v)

)

+ (a − 2q(c + v)) y(v) = 0 .

(21)
This equation is in D-finite form because the variable v only appears polynomially
in the coefficients. Calling diffeqtorec on this equation results in the fixed-order
recurrence relation

uk+3 = − quk
2 (k + 3) (k + 2)

(
c2 − 1

) +
(
2qc − 4k2 + a − 8k − 4

)
uk+1

4 (k + 3) (k + 2)
(
c2 − 1

) + (2k + 3) cuk+2
(
c2 − 1

)
(k + 3)

.

(22)
The solution to this recurrence relation gives the Taylor coefficients uk for y(v) around
v = 0:

y(v) =
∑

k≥0

ukv
k . (23)

123

1122 Numerical Algorithms (2024) 96:1109–1141

Since I had transformed the differential equation to a new variable c + v about a
symbolic point c, this in fact gives the general recurrence relation for the Taylor
coefficients of y(v) about an arbitrary point, so long as c2 = 1, which are branch
points. If we know u0 (the function value at v = 0) and u1 (the derivative value), we
can compute u2 directly from the differential equation; from there on the recurrence
relation gives the Taylor coefficients.

If the degree of the polynomials in the coefficients is larger, then the order of the
recurrence relation is likewise larger. This means that special code must be generated
to start the recurrence relation. For instance, if we instead transformed more like
Mathieu originally did, with x = arccos(c + v) (without the factor 1/2), then we get
a fourth-order recurrence relation because the function cos 2x transforms to a degree
2 polynomial, namely the 2nd degree Chebyshev polynomial, instead of to a linear
polynomial. In that case, we not only need u2, which we can get from the differential
equation, but we also need u3. Explicitly written out for that case,

u3 = 1

6(c2 − 1)2

(
2

(
c
(
2c2 + 1

)
q − 3ac

)
u0

+
(
2
(
c2 − 1

) (
1 − 2c2

)
q + a c2 + 2c2 − a + 1

)
u1

)
. (24)

This formula was automatically generated in Maple by letting diffeqtorec know
about the initial conditions y(c) = u0 and y′(c) = u1. The output was tidied up
manually for inclusion in this paper.

The only important point about this section is that the recurrence relations for the
Taylor series coefficients of the unknown solution to the differential equation about an
arbitrary point can be generated automatically. We, therefore, regard this as a “solved
problem” for our purposes,1.

3.2 D-finite or holonomic functions

D-finite functions, also called holonomic functions, have been attracting significant
interest in the computer algebra community for about two decades now.Many elemen-
tary and special functions are D-finite functions: the exponential function of course,
sine and cosine, Bessel functions, hypergeometric functions, and the Airy functions
are D-finite. Neither the tangent function nor the secant function are D-finite (although
they are ratios of such) and of course, the Gamma function is not, so this classification
does have some important exclusions.

One key property of D-finite functions is that because the recurrence relation for
their Taylor coefficients is of fixed finite order, the Taylor coefficients can be computed
quickly about any point where we know enough information to get the recurrence rela-
tion started. In ordinary floating-point arithmetic such as IEEE-754 double precision,
this may not be as useful as it seems because some recurrence relations can be unsta-
ble. But in arbitrary-precision environments, many of the milder instabilities can be

1 Still not easy though, and I have a lot of respect for people who can write code that does this.

123

Numerical Algorithms (2024) 96:1109–1141 1123

handled more easily than one might think, merely by adding a few guard digits to
the computation. For instance, if we are working to one hundred digits of precision,
adding ten more to deal with the instability is only a small marginal cost.

The presence of nearby singularities, of course, introduces the potential for
exponentially-growing instabilities in the recurrence relation. To manage this requires
the use of a small stepsize.

Another important feature of the solution to these recurrence relations is that the
Taylor coefficients might initially grow very large before they eventually decay, which
they must do if the sequence of partial sums is to be convergent. This phenomenon,
typically called “the hump” or something similar, also requires the use of guard digits
to allow large steps to be taken in the solution of the differential equation. This is true
for all functions, not just D-finite functions.

Some functions, such as the Mathieu function, are not themselves D-finite because
their defining differential equation does not have polynomial coefficients. However, by
a change of variable, one can find a D-finite formulation, as I showed above and which
Mathieu himself used in order to simplify hand computation of the Taylor coefficients.
On the other hand, it is not quite as simple as it might seem. The transformations
v = cos(x) and u = sin(x) which Mathieu used have places in their range where
dv/dx is zero; indeed the first one has such a point right at x = 0 which is where
the initial conditions for the Mathieu equation are given. These flat spots mean that
the change of variable is not locally invertible. The transformations v = sin(x/A) for
integer A ≥ 2 at least make the first flat spot appear for x ≥ 2π , ensuring that the
important interval 0 ≤ x < 2π has no such spots; but the larger A is, the higher the
degree of cos 2A arcsin(v) (these are Chebyshev polynomials, up to sign). And this
means that the recurrence relation is longer, and more work has to be done to get the
recurrence relations started.

There are solutions to this—for instance, one could use more than one D-finite
formulation and “patch” them together—but it’s not straightforward. Indeed for the
papers [8, 9], we simply used the O(m2) cost Cauchy products and the original dif-
ferential equation, because we were not interested in the method per se but rather in
the accurate computation of Mathieu functions and generalizations in order to solve
the hemodynamics problem.

3.3 Implicitness

“Some degree of implicitness seems to be necessary.”

— C. William “Bill” Gear, at a 1991 conference in Los Alamos

Knowing the initial conditions, one can expand the solution in Taylor series at the
initial point. To take a step, one could use an explicit Taylor series method; however,
for the Mathieu equation, which is (highly) oscillatory even if not actually stiff [45],
this is not completely satisfactory. I chose instead to use an implicit method, which
also seems natural because one uses the Taylor coefficients at both ends of the step,
which increases accuracy andmight be useful even for nonstiff problems. This requires
expanding the solution about the tentative next knot.

123

1124 Numerical Algorithms (2024) 96:1109–1141

For a d-dimensional system or a dth-order equation, this means computing d
linearly independent solutions at that point, and later we must find some method
of identifying the constants combining those independent solution to give us what
we want. That is, we want to compute the fundamental solution Y(x) that satisfies
Y(xn+1) = Id , the d by d identity matrix.

Once we have used these d linearly independent solutions to identify the Taylor
series at the next knot, and the step has been accepted, then we have the desired Taylor
series for the left half of the new blend needed for the next step; this is analogous
to the economy of FSAL (First Same as Last) in some Runge–Kutta methods. This
means that solving a dth-order equation by this implicit method requires d Taylor
series generations per step; if the problem is D-finite then the cost will be O(dm)

flops, while for general problems the cost will be O(dm2). One therefore wants to be
able to take a timestep at least d times larger using this implicit method than would
be permitted by an explicit Taylor series method.2

For a simple scalar 2nd-order equation like theMathieu equation, I chose to compute
the two independent solutions satisfying first y(xn+1) = 1 and y′(xn+1) = 0 and
second y(xn+1) = 0 and y′(xn+1) = 1.

Once we have Taylor coefficients for y(x) at x = xn and an approximation to the
fundamental solutionY(x), wemay conceptually form the blend H(x) thatmatches the
Taylor coefficients at x = xn andY(x)a at x = xn+1 with as-yet unknown coefficients
a. We now wish to find a method to set up equations to solve for the unknowns a.

3.4 Collocation for 2nd-order equations and higher

Because one main application of the method in this paper is the computation of func-
tions that are the solution of second-order equations, and because the sensitivity of
such functions is frequently itself of interest, I decided to implement direct control of
the residual (defect) instead of local error control as is more usual and to estimate the
forward error by using Green’s functions. This is effective because accurate approxi-
mations to integrals (and hence Green’s functions) of the solution are directly available
by the exact quadrature of the blendstring used to represent the solution.

The residual r(x) is defined for the differential equation a2(x)y′′ + a1(x)y′ +
a0(x)y = 0 by simply substituting the computed solution z(x)back into the differential
equation:

r(x) := a2(x)z
′′(x) + a1(x)z

′(x) + a0(x)z(x) . (25)

The derivatives of the blendstring representing z(x) are available by (semi)-automatic
differentiation, and are exact derivatives of the blendstring, up to rounding errors,
which are a small multiple of the unit roundoff μ, which itself is controlled by setting
the precision at which we are working.

2 In my experiments this always occurred, and the savings are usually dramatic. Even in just ordinary
double precision, a typical result is that the Taylor series method might take (say) 15 steps whereas the
Hermite–Obreshkov method takes just 4, using the same gradem = 22 Taylor series at each end. Moreover,
the Hermite–Obreshkov method is usually orders of magnitude more accurate, even with that much lower
cost. However, a detailed study is needed because the work-precision relationship is not really captured by
the O(hm) versus O(h2m) asymptotic error estimates.

123

Numerical Algorithms (2024) 96:1109–1141 1125

To take a step from x = xk to x = xk+1, we set up a blend L(x) which has all
its Taylor coefficients given by the known Taylor coefficients at the left end, blended
with all zero Taylor coefficients at the right endpoint. This is a polynomial of grade
2m + 1 and is not simply the Taylor polynomial at the left; its values and derivatives
at xk+1 are all zero. We next blend zero coefficients at xk with the Taylor series
of each of the d linearly independent computed solutions Y j (x) at xk+1. We write
y(x) = L(x) + ∑d

j=1 c jY j (x) and seek to determine the unknown coefficients c j .
We set the residual to be zero at d collocation points, namely the Chebyshev–

Lobatto points, in the interval (xk, xk+1). This gives us d linear equations in the d
unknowns. For the Mathieu equation, d = 2 and the linear system was observed to be
well-conditioned in practice. An analysis along the lines of [2] needs to be carried out
to determine under what conditions this happens in general.

To be precise, denote the d collocation points by xk,i = xk + ηi (xk+1 − xk) with
0 < η1 < η2 < · · · < ηd < 1, and let Vi, j = a2(xk,i)Y′′

j (xk,i) + a1(xk,i)Y′
j (xk,i) +

a0(xk,i)Y j (xk,i). Here Y j (x) is the j th fundamental solution satisfying Y j (1) = e j .
Set the vector b to be

b = −

⎡

⎢
⎢
⎢
⎣

a2(xk,1)L ′′(xk,1) + a1(xk,1)L ′(xk,1) + a0(xk,1)L(xk,1)
a2(xk,2)L ′′(xk,2) + a1(xk,2)L ′(xk,2) + a0(xk,2)L(xk,2)

...

a2(xk,d)L ′′(xk,d) + a1(xk,d)L ′(xk,d) + a0(xk,d)L(xk,d)

⎤

⎥
⎥
⎥
⎦

. (26)

Then, solving the linear systemVc = bwill identify the coefficients in the approximate
solution y(x)L(x) + ∑d

j=1 c jY j (x) on xk ≤ x ≤ xk+1.
Thus each step requires the computation of d sets of Taylor coefficients at the

tentative knot xn+1 together with the evaluation of the residual (which requires d
derivatives of the d + 1 blends) and finally the solution of a d × d linear system of
equations. This cost is higher than simply using explicit Taylor series, but as could
have been expected for stiff or oscillatory systems this extra cost pays off with the
ability to take considerably larger stepsizes.

For nonlinear problems, one may use quasilinearization as usual. Again, as usual,
this requires a good initial estimate of the solution.

3.5 Defect control (Residual control)

I wanted to control the residual in the original second-order formulation of theMathieu
equation, instead of using themore usualmathematically equivalent first-order system.
The boundary-value problem code COLSYS is the only other solver that I have used
which does this [3]. I have several reasons for doing it this way, which I hope to
discuss in detail in a future paper. For now, I’ll just give two reasons. First, doing
it this way instead of reformulating to a first-order system allows direct use of the
Green’s function and makes analysis of the quality of the solution easier. Second, one
can give a direct computation of the optimal backward error in this context, not just the
backward error of the computed interpolant. This idea has some interesting subtleties;
for the beginning of this analysis, see [16, 17].

123

1126 Numerical Algorithms (2024) 96:1109–1141

As a practical matter, to keep the residual small I imposed (for a second-order
equation) r(x) = 0 at two collocation points on the interval. For approximation
theoretic reasons, I chose the Chebyshev–Lobatto points xn +h/4 and xn +3h/4. For
higher-order systems, one would choose the higher-order Chebyshev–Lobatto points
for similar reasons.3 Since the Hermite–Obreshkov method that I use uses Taylor
approximation of grade m at each end of the interval, this ensures automatically that
r(x) and all its derivatives up to the (m − 1)st are zero at either end of the interval.
This means that the form of the leading term of the residual error is (in terms of the
unit interval variable s)

r(s) = Ksm−1(s − 1/4)(s − 3/4)(1 − s)m−1 . (27)

This is O(h2m) in the x variable. As is usual, equidistribution of the error ensures that

the error for the whole integration will be O(h
2m

) where h is the arithmetic mean
stepsize taken [12]. See also [13, 32]. Use ofm = 20 is not uncommon, so the method
would then be of 40th order. At this high an order, the method behaves more like a
spectral method, and the number of steps taken is usually quite small, sometimes only
two or three across [0, 2π]. This means that what is making the error small is not the
order per se because even h might be larger than 1, but rather the smallness of the error
coefficients. I have used the code with m as high as 100, but usually, the efficiency
returns are diminishing by that high an order.

For the Mathieu equation, I chose to solve for both linearly independent solutions
at once, and imposed the error control on both components at once; I measured the
residual at the maximum of the polynomial, namely s = 1/2, and relied on the fact
that the error coefficient K—which is different for each component—cannot be zero
for both components at once. This gave quite a reliable test for the maximum residual
on the step, albeit one that came at a slightly increased cost per step, namely the cost
of computing one extra pair of residuals per step, and the cost of solving one more
linear system. These costs are normally shadowed completely by the cost of generating
d = 2 sets of Taylor coefficients at the putative next knot.

An alternative would be to measure the residual at more than just one point. Doing
so is cheap because the Taylor coefficients do not need to be recomputed: all that needs
to be done is to evaluate y(x) and its derivatives at more points. In practice, I did this
afterwards, to give an a posteriori reassurance that the residual was everywhere small.
Indeed I frequently evaluated the residual at hundreds of points in each subinterval,
which was overkill.

For a general residual control strategies that are more efficient than this in a Runge–
Kutta setting, see [22, 23].

I chose the smooth error control heuristics of [27] in order to use the information
provided by sampling the maximum residual to control the stepsize of the integration.
These heuristics require a starting method, and I used an extrapolated estimate from a
simple Taylor series method for the first step. To be specific, I chose an initial stepsize

3 For odd-order equations, even for just third-order equations, this introduces a difficulty: the location of
the maximum of the residual no longer occurs at s = 1/2 and indeed the first term of the residual error is
zero there. For even-order equations, this is not a problem.

123

Numerical Algorithms (2024) 96:1109–1141 1127

h1 = x1 − x0 on the first interval for which the Taylor coefficients at x = x0 predicted
an error small enough to satisfy the tolerance but extrapolated so that Kh2m1 was equal
to the tolerance, not Khm1 . This seemed to work well in practice, though more testing
and refinement of the heuristic may be necessary to make it work in general.

3.6 Forward error and Green’s functions

The usual connectionmade between the residual r(x) and the forward error y(x)−z(x)
in the numerical solution z(x) of (nonlinear) IVP for ODE uses the Gröbner–Alexeev
nonlinear variation-of-constants formula

y(x) − z(x) =
∫ x

ξ=0
G(x, ξ)r(ξ) dξ . (28)

Here, y(x) is the reference solution of the original equation and we assume that no
further errors are introduced in the initial conditions. See [28] for more details.

But for second-order linear problems a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = r(x),
the theory of Green’s functions is all we need, exactly as it is taught in undergraduate
courses in ODE. By finding two independent solutions y1(x) and y2(x) and computing
the Wronskian4 W (x) = y1(x)y′

2(x) − y′
1(x)y2(x) one can explicitly construct the

Green’s function

G(x, ξ) = y1(ξ)y2(x) − y1(x)y2(ξ)

a(ξ)W (ξ)
(29)

Then, an expression for the forward error is

z(x) − y(x) =
∫ x

ξ=0
G(x, ξ)r(ξ) dξ . (30)

Notice that if we have blendstrings for y1(x) and y2(x) and if (as is true for theMathieu
equation) a(x) = 1 and the Wronskian is constant, then we may explicitly construct
theGreen’s function as a blendstring, because blendstrings can be explicitly integrated,
generating another blendstring. Once constructed, it can be plotted and bounded or
otherwise used to understand the connection between backward and forward errors.

4 Not A-stable, but decently stable

Consider the oscillatory test problem5

ÿ + ω2y = 0 (31)

4 By using Abel’s identity W ′ = −b(x)W (x)/a(x) we could construct the Wronskian even if we didn’t
know the independent solutions; this generalizes to higher-order linear equations as well. See any ODE
textbook, but the Wikipedia article on the subject is both correct and convenient.
5 Some of the material in this section appeared in abbreviated form in [15]. The analysis is along standard
lines. I include these details for comprehensibility and convenience.

123

1128 Numerical Algorithms (2024) 96:1109–1141

with initial conditions y(0) = y0 and ẏ(0) = y1. Here the dot . means differentiation
with respect to t , which we think of as time. This has the reference solution y(t) =
y0 cos(ωt) + y1 sin(ωt)/ω. The frequency parameter ω can be absorbed into the time
variable t but it is worthwhile to leave it explicitly present for the moment.

Now, taking a single step of size h with the exact solution finds the exact solution
value Y0 and derivative value Y1 at t = h, with the vector of initial conditions being
multiplied by a certain matrix, which I will call A.

[
Y0
Y1

]

=
[

cosωh sinωh
ω−ω sinωh cosωh

] [
y0
y1

]

. (32)

This can be written more intelligibly as

[
Y0
Y1/ω

]

=
[
cos ν sin ν

− sin ν cos ν

] [
y0
y1/ω

]

. (33)

but this will make no difference to the analysis below.
Because the equation is autonomous, this step from t = 0 to t = h is exactly

the same as the same width step from t = tk to t = tk + h. Timesteps with this
exact solution therefore satisfy y(k) = Aky(0). The eigenvalues of this matrix satisfy
the characteristic equation λ2 − 2 cosωhλ + 1 = 0 and are exp(±iωh), which both
have magnitude 1, implying that the length of the vector of initial conditions does not
grow or decay exponentially. One would like this property to hold with the numerical
method, if possible. Applying the collocation method just described gives, at every
balanced order (grade m Taylor polynomials at each end), an analogous matrix, but
with rational functions Cm(ν) and Sm(ν) and Ŝm(ν) (easily computed6 for any fixed
m) of ν = ωh in place of cos ν and sin ν:

Am :=
[

Cm(ν)
Ŝm (ν)

ω−ωSm(ν) Cm(ν)

]

. (34)

Because it turned out (at least for allm ≤ 100, which I computed) that the determinant
C2
m + Sm Ŝm = 1 exactly, the matrix has characteristic polynomial λ2 − 2Cm(ν)λ+ 1,

implying that the product of its two eigenvalues is 1 and the map is thus exactly area-
preserving. The eigenvalues are Cm(ν) ± i

√
1 − C2

m(ν). However, the eigenvalues
both have magnitude 1 if and only if |Cm(ν)| ≤ 1.

Note that both h and ω, hence ν = ωh, are real. This suggests investigating the
real zeros of the equation C2

m(ν) − 1 = 0. The first few rational functions Cm(ν) are
tabulated in Table 1. They are some kind of rational approximation to cos ν, but I do
not recognize them (they are not (m,m) Padé approximants, for instance).

Once the value of Cm(ν) becomes larger than 1 in magnitude, the eigenvalues of
Am are no longer of unit modulus, and λ1 = Cm(ν) + signum(Cm(ν))

√
Cm(ν)2 − 1

will be larger than 1 in modulus and therefore the lengths of the vectors [yk, y′
k] will

6 But nonetheless I made a blunder in [15], in thinking that Sm (ν) and Ŝm (ν) were the same. They are not.
Luckily that blunder was of no consequence because we only need to work with Cm (ν).

123

Numerical Algorithms (2024) 96:1109–1141 1129

Ta
bl
e
1

C
ol
lo
ca
tio

n
at

C
he
by

sh
ev
–L

ob
at
to

po
in
ts
:
T
he

fir
st
fe
w

ra
tio

na
l
ap
pr
ox

im
at
io
ns

to
co
si
ne

an
d
th
e
fir
st
po

si
tiv

e
ze
ro

of
C
2 m

−
1
as

a
fr
ac
tio

n
of

π
.T

he
ne
xt

en
tr
y

is
to
o
w
id
e
fo
r
th
is
ta
bl
e
bu
t
ha
s

ν
∗ /

π
≈

1
+

1.
25

×
10

−1
0
.
T
he

se
qu

en
ce

of
th
e
ne
xt

la
rg
er

ze
ro
s
is
,
st
ar
tin

g
at

m
=

1:
ν̂
/
π

=
1

+
0.
03

96
,
1

+
0.
01

19
,
1

+
0.
00

11
0,

1
+

5.
11

×
10

−5
,1

+
1.
42

×
10

−6
,a
nd

1
+

2.
65

×
10

−8
.S

ee
th
e
w
or
ks
he
et
ht
tp
s:
//
gi
th
ub
.c
om

/r
co
rl
es
s/
B
le
nd
s-
in
-M

ap
le
/b
lo
b/
m
ai
n/
co
llo

ca
tio

na
na
ly
si
sH

O
m
et
ho
d.
m
w

m
C
m

(ν
)

ν
∗ /

π

1
57

ν
4
−1

40
8ν

2
+3

07
2

9ν
4
+1

28
ν
2
+3

07
2

0.
94

03
5

2
−

2(
11

ν
6
−1

35
3ν

4
+2

81
60

ν
2
−6

14
40

)

3ν
6
+1

46
ν
4
+5

12
0ν

2
+1

22
88
0

0.
99

81
7

3
25

ν
8
−9

01
6ν

6
+6

76
56
0ν

4
−1

20
72
96
0ν

2
+2

58
04
80
0

3ν
8
+3

04
ν
6
+1

60
80

ν
4
+8

29
44
0ν

2
+2

58
04
80
0

0.
99

99
7

4
−

4(
21

ν
10

−1
72
15

ν
8
+3

25
15
20

ν
6
−1

89
56
07
00

ν
4
+3

08
36
73
60
0ν

2
−6

50
28
09
60
0)

9ν
10

+1
55
0ν

8
+1

17
24
0ν

6
+9

90
36
00

ν
4
+6

70
92
48
00

ν
2
+2

60
11
23
84
00

1
−

9.
99

×
10

−8

5
31

ν
12

−4
95
60

ν
10

+1
93
97
39
2ν

8
−2

66
20
20
48
0ν

6
+1

33
86
47
38
56
0ν

4
−2

05
38
04
03
20
00

ν
2
+4

29
18
54
33
60
00

3ν
12

+7
84

ν
10

+8
07
52

ν
8
+9

94
56
00

ν
6
+1

09
90
42
56
0ν

4
+9

21
23
13
60
00

ν
2
+4

29
18
54
33
60
00

1
+

5.
03

×
10

−9

123

https://github.com/rcorless/Blends-in-Maple/blob/main/collocationanalysisHOmethod.mw

1130 Numerical Algorithms (2024) 96:1109–1141

start to grow exponentially, like λk1. This is a numerical instability of the method. To
ensure that this does not happen, one must take ν < ν∗, or (approximately) h < π/ω.
For high frequencies ω one would thus seem to have to take very small timesteps.

So it would seem that there is a stability restriction h < π/ω akin to the stepsize
restrictions on explicit methods for stiff problems [7, 45].

But this is not the complete story, here, and the situation is better than it seems at
first: C2

m − 1 has another zero very nearby: for m = 3, at 1.0011π . The maximum
value that C2

m −1 attains, on the tiny interval it is positive, is less than 3.13 ·10−6. The
magnitude of the largest eigenvalue is thus 1+ O(10−3). This does cause growth but,
while it is technically exponential, it would not be visible in the numerical solution of
the simple harmonic oscillator unless on the order of a thousand steps7 were taken!

For larger m, the maximum λ1 is even smaller. For the simple harmonic oscillator
at least, this method is actually quite stable. There are other zeros, near 2π and 3π
and so on, for larger m, and the maxima on the small positive intervals get larger
and larger until the method actually fails for large enough ν, no matter how large one
takes m. This is because the method is not A-stable [45], of course. But, A-stability is
not wholly appropriate for oscillatory problems, and the current analysis gives more
information.

For instance,withm = 20, the first interval is from1−4.29·10−45 to 1+3.65·10−42

and the next is 2 + 3.2 · 10−32 to 2 + 6.8 · 10−32, with intervals growing larger and
larger up to 10 + 1.6 · 10−5 to 10 + 9.2 · 10−4. Thus for about a hundred steps of the
method, one should be able to take any h < 10π/ω; this is a stability restriction,8 but
is ten times better than the technically correct one of h < (1−4.29 ·10−45)π/ω. And,
in any case, one will want stepsizes small enough to resolve the actual oscillations.

If instead,wehad chosen to reformulate theMathieu equation as afirst-order system,
it would have been possible to construct an A-stable method, not using collocation.
But even if we choose collocation at s = 1/2 in a symmetric fashion, this method is
not A-stable.

Leading error coefficient The leading term of the residual is

Em = y0ω
2 × 1

(2m)! s
m−1(s − 1

4
)(s − 3

4
)(1 − s)m−1ω2mh2m + O(h2m+1) . (35)

Because in the code we take steps to avoid the difficulty if y0 = 0, we ignore the issue
here. Since one term in the equation is of the form ω2y we regard the term y0ω2 as
a proper scaling. The error will thus be small for large m because we are dividing by
(2m)! and because the maximum value of the polynomial in s occurs at s = 1/2 and
is thus 2−(2m+2). If ν = ωh is as large as π then the size of the ν2m factor can degrade
the accuracy considerably. This makes the extremely weak stability restriction above
even less important.

7 Another blunder in [15] was not to convert back from the maximum of C2
m − 1 to the maximum of λ1,

which takes a square root. Again (luckily) this blunder was of little consequence.
8 A referee points out that this is comparable to the stability restriction of the Strang splitting, an explicit
method that has the stability restriction h < 2/ω. Since the Hermite–Obreshkov method is implicit, we
would expect better behavior, and indeed it is by at least a factor π/2 and in practice more.

123

Numerical Algorithms (2024) 96:1109–1141 1131

For instance, the first term in the residual series expansion when m = 20 is y0ω2

times

ν40
s19(s − 1/4)(s − 3/4)(1 − s)19

40! . (36)

Keeping this term of the residual smaller than ε with m = 20 requires ν < (242 ·
40!ε)1/40 ≈ 32ε1/40; if ε is about 10−40 (otherwise such a high-order method is not
really justified) this gives ν < 3.2, roughly the same restriction on h as the strictest
stability restriction above. When we increase ν by allowing λ1 to be as large as, say,
1 + O(10−3) at this order, we can have ν as large as 9π , so ν < 30 approximately.
But at this size, the leading term of the residual error is O(1), and so the computation
would likely be worthless anyway.

We therefore conclude that while this method can be unstable by a strict accounting,
the instability is of no real importance.

Collocation at other points
Collocation at the Chebyshev–Lobatto points is not the only choice. One might collo-
cate instead at s = 1/2, and get two equations by insisting not only that the residual
should be zero but also the derivative of the residual. This is simple enough in practice.
However, if one looks closely at the results in Table 2, one sees that the stability behav-
ior is very similar, perhaps slightly worse. The error coefficients (not shown here) are
a factor of m smaller, which is an advantage, but the location of the maxima are at
(1±m−1/2)/2, which makes them narrow (given the location of the zero at 1/2) and
possibly awkward to sample at. Choosing instead the points s = 0 and s = 1, which
would require generating one more term in the Taylor series at each end, gives an error
about 4 times worse than the Chebyshev–Lobatto points. This makes the choice of
Chebyshev–Lobatto points reasonable.

As previously noted, there are difficulties that arise for odd-order equations, even
just for third order, in that the location of the maximum residual is no longer just
at s = 1/2. I believe that these difficulties can be overcome, just as they have been
overcome for defect-controlled Runge–Kutta methods [22].

5 Experimental results

In this section, I will report several experiments using my Maple code to solve the
Mathieu equation and the modified Mathieu equation, at various precisions. I point
out that Maple is an interpreted language, with a compiled kernel and some features

Table 2 Collocation at s = 1/2:
The first few rational
approximations to cosine and the
first positive zero of C2

m − 1 as a
fraction of π . The next entry is
too wide for this table but has
ν∗/π = 0.99997

m Cm (ν) ν∗/π

1 5ν4−96ν2+192
ν4+192

0.90032

2 − 2
(
3ν6−291ν4+5376ν2−11520

)

ν6+6ν4+768ν2+23040
0.98625

3 21ν8−6072ν6+403920ν4−6842880ν2+14515200
3ν8+48ν6+6480ν4+414720ν2+14515200

0.99916

123

1132 Numerical Algorithms (2024) 96:1109–1141

for relatively rapid evaluation of some floating-point tasks in double precision. For
numerical linear algebra and the numerical solution of differential equations [43] it’s
comparable in speed to Matlab [42], when working in double precision with standard
methods. Execution in a fast language like C, Fortran, or Julia can be a hundred or
even a thousand times faster [38].

When working in software floating-point, even in just 20 decimal digits, the code
is vastly slower.9 Computing times at 100 decimal digits of precision are simply not
comparable to those at hardware precision. Finally, my code has not been optimized
for speed at all; the first and most important of those would be to rewrite it in a
performant language. The second would be to use the D-finite formulation for the
Mathieu equation. So I am not going to report computing times for any of these
experiments. My code is available, though, so you can see for yourself that in spite of
my remarks above, it’s not too bad. One can get an accurate and reliable solution in
“reasonable time,” meaning that you usually won’t get too impatient waiting for the
solution. TheMathieu code is available at https://github.com/rcorless/Puiseux-series-
Mathieu-double-points in the file MathieuCodeDemo.maple.

What this code really does is give “proof of concept.” Given the experience withmy
laboratory code, it seems quite likely that robust and efficient code could be written
that uses this method.

5.1 A typical test

We first have a look at what the code does at low precision (IEEE double precision,
corresponding to Digits:= 15 in Maple). We choose m = 10, so we will be using
an O(h20) method. We use a tolerance of 10−14 for these integrations, to start with.

We look at solving theMathieu equation y′′+(a−2q cos 2x)y = 0 and themodified
Mathieu equation y′′ − (a − 2q cosh 2x)y = 0, which are related by a rotation in the
complex plane so I can use the same code to solve either equation merely by choosing
a different path in the complex plane. For this first test, we choose

q = 1.468768613785141992307293089861963568477i (37)

(reporting this here to 32 Digits even though we’ll only use 15 in this test) and

a = 2.088698902749695407422107050047312490659 . (38)

9 One referee pointed out a speed comparison among competing software systems that claimed an advantage
for one particular package. I do not reproduce that link here because I do not think the comparison there
was fair. Maple uses MPFR [25] and GMP https://gmplib.org/ and is quite competitive at high precision,
given that it works in a variable precision environment and precision can change at any moment, which
makes memory usage unpredictable. It has been known for a long time that fixing the (high) precision ahead
of time allows much more rapid computation; see, e.g., [4]. But to do that, one should not use a Problem
Solving Environment like Maple or Matlab, but something designed with efficiency instead of convenience
as the prime consideration. See David Bailey’s web page https://www.davidhbailey.com/dhbsoftware/ for
Fortran code and see also Fredrik Johansson’s web page https://fredrikj.net/ for a description of his packages
FLINT and Arb; note that as of 2022 Arb is now available in Maple.

123

https://github.com/rcorless/Puiseux-series-Mathieu-double-points
https://github.com/rcorless/Puiseux-series-Mathieu-double-points
https://gmplib.org/
https://www.davidhbailey.com/dhbsoftware/
https://fredrikj.net/

Numerical Algorithms (2024) 96:1109–1141 1133

These are the parameter q and eigenvalue a values for the Mulholland–Goldstein
double eigenvalue; no other existing Mathieu function code that I know of is set up to
cope with this double eigenvalue.

We compute the Mathieu function ce0(x; q) on 0 ≤ x ≤ π , which satisfies
ce0(0; q) = 1 and has flat slope at x = 0, and simultaneously compute the sec-
ond solution of the Mathieu equation which has y(0) = 0 and y′(0) = 1. Both of
these functions are complex-valued.

We then increase the precision to 30 decimal digits so that the residual can be
accurately computed for ce0(x; q). When we plot the absolute value of the residual,
see Fig. 2, we see that the integration at this tolerance took eight timesteps to cross the
interval [0, π], and that the measured residual is maximal near the midpoint of each
step, and that themaximum residual is smaller than the tolerance.We also see that after
the initial step, the residual decreases as the integration proceeds, which suggests that
the constants in the control heuristic are slightly too conservative; we could perhaps
save a timestep by tweaking them. That the residual on the initial step is too small
suggests that heuristic, also, can be improved. There is a smaller residual on the final
step because the end of the interval occurs some time inside the final step.

Fig. 2 The absolute value of the residual |y′′ + (a − 2q cos x)y| for the solution computed using double
precision, m = 10 and tolerance 10−14. Residual computed in 30 digit precision

123

1134 Numerical Algorithms (2024) 96:1109–1141

This graph is quite typical. I have performed many residual tests like this (perhaps
hundreds) and once the code was debugged the graphs all looked like this in general,
differing only in the particulars such as the number of time steps.

If we change m = 10 to m = 15 and repeat the computation, we find that the
integration takes only four timesteps to cross the interval [0, π] (and takes about half
the CPU time, but I said I wasn’t going to report on that).

If we instead decrease m to m = 5 (so the method is now only tenth order) and
repeat the computation, we find that the integration takes 65 steps and considerably
more time (although each step is cheaper). Again, however, the measured residual is
always less than 10−16 and decreases as the integration proceeds.

If instead, we increase the precision of the computation to 30 decimal digits, and
the precision of the computation of the residual to 60 digits, and use a tolerance of
10−29 and m = 15, we find that the code takes 13 steps to cross the interval [0, π].
It does so in less time than the double-precision code with m = 5 does. The residual
is uniformly less than 10−31 and again decreases as the integration proceeds, to a
maximum of 10−35 on the penultimate step.

Fig. 3 The residual (computed at twice 90 decimal digits) for a 90th order method applied to the Mathieu
equation using 90 digit precision during the computation, in honor of John Butcher’s 90th birthday. We see
that the method takes nine steps, one per decade, to solve the problem, and everywhere has more than 95
digits of accuracy in the answer

123

Numerical Algorithms (2024) 96:1109–1141 1135

If we now increase m to m = 40, so we are using an 80th-order method, the code
takes just three steps to cross the interval and the residual is less than 10−38. This high
an order code is overkill for this precision.

In honor of John Butcher’s 90th birthday, though, we ask for 90 digit precision
and solve with m = 45, giving a 90th-order method. This takes just 9 steps, and the
residual is uniformly less than 10−95. This seems to be just about the right amount of
effort for this much accuracy: one step per decade! See Fig. 3.

Now, we try the same thing but with integration along the straight line from the
origin to 2i . I will denote this interval by [0, 2]i . This gives access to the modified
Mathieu functions. We see in Fig. 4 that the residual increases over the course of the
integration (but still stays within tolerance). This is because the solution itself is not
purely oscillatory, but rather is increasing. The code actually uses relative residual, by
the way: it accepts or rejects steps depending on whether the error is small compared
to the tolerance times an estimate of the magnitude of the solution. It’s still somewhat
conservative, though, as can be seen in the figure.

In fact, the solution increases doubly exponentially with x increasing along the
imaginary axis. If we plot the residual not on [0, 2]i but rather (after redoing the

Fig. 4 The absolute value of the residual |y′′ + (a − 2q cos x)y| for the solution computed using double
precision,m = 10 and tolerance 10−14.Residual computed in 30 digit precision.Unlike in Fig. 2, integration
proceeds vertically up the imaginary axis to 2i

123

1136 Numerical Algorithms (2024) 96:1109–1141

integration) on the interval [0, 3]i , the magnitude of the solution at x = 3i is already
106. By 3.5i , the magnitude is O(1010). By 4i it is O(1018). In Fig. 5, which only
goes to x = 3i , we see that the code is working considerably harder to ensure that the
residual error stays within tolerance; instead of just 8 steps to get to x = 2i , it needs
25 to get to x = 3i . That is, more than twice as many steps to get half again as far.

The frequency is also increasing exponentially.
The increasing difficulty of integrating this equation accurately as x goes farther

up the imaginary axis is one reason that I wrote this code in the first place. Standard
codes have a hard time, although they do better than one might think. The real prob-
lem is in verifying how good a job they might have done. The Hermite–Obreshkov
method automatically supplies high-quality interpolants with which one can compute
the residual (anywhere) and verify that the solver has done a good job.

Fig. 5 The absolute value of the residual |y′′ + (a − 2q cos x)y| for the solution computed using double
precision, m = 10 and tolerance 10−14. Residual computed in 30 digit precision. The integration proceeds
vertically up the imaginary axis to 3i , farther than in Fig. 4

123

Numerical Algorithms (2024) 96:1109–1141 1137

6 Concluding remarks

The Maple prototype implementation I constructed shows that this method can be
useful for the niche application of high-precision computation of mathematical func-
tions. This method could be of particular interest for D-finite functions, for which
the computation of Taylor series coefficients is particularly inexpensive in computing
time.

The Mathieu functions are of some practical interest, and they are difficult to com-
pute for certain parameter values. This method proved to be a useful way to compute
them, especially for solving the Helmholtz equation in the paradoxically difficult case
of nearly-circular ellipses, which is numerically difficult because the coordinate trans-
formation that gives rise to the Mathieu functions is nearly singular there [9]. This
requires computing theMathieu equations for large imaginary values of x , which aswe
have seen involves doubly exponential growth and exponentially increasing frequency.

Fast and robust code for the Mathieu functions which includes the case of the
generalized eigenfunctions needed at double eigenvalues has yet to be developed; this
present code can be used by someone willing to adjust parameters such as tolerance
and the grade of approximation and the number of digits of precision, but a general
scientist would prefer something more bulletproof and automatic (not to mention with
a better user interface).

6.1 On variable order

There are some publications that discuss heuristics for changing the order of the Taylor
series as the integrationproceeds, such as [5].Variable-ordermethods haveproved tobe
useful for standard solvers, especially variable-order multistep methods; one suspects
that the same would be true for Taylor series-based methods, especially because the
change in order is so simple: just compute one more (or one fewer) Taylor coefficient,
if the heuristics indicate that higher (or lower) order would be beneficial. One thing to
be aware of is that noticeably unbalanced blends have poor approximation-theoretic
properties, and so one would want only gradual changes in order as the integration
proceeded.

6.2 Incorporating discontinuities

A discontinuity of any sort inside the interval 0 < s < 1 is a difficulty for this method,
and there’s no getting around that. If, however, one has a jump discontinuity in a value
or a derivative exactly at a knot—and why would you not place a knot at a known
discontinuity—then a blendstring can be perfectly accurate if the code is set up to have
“two-sided” Taylor coefficients at such a knot. Currently, my code does not have such
a feature, but I foresee no difficulty in adding it.

Extending the code so that poles or branch points can be dealt with will be more
work. Hermite interpolational polynomials will not work near such points, and so the
underlying interpolation scheme would have to be extended to rational or logarithmic
interpolational schemes. This would certainly be worthwhile on its own.

123

1138 Numerical Algorithms (2024) 96:1109–1141

6.3 Nonlinear problems

Nonlinear problems are typically handledbyquasilinearization [3]; that is, by replacing
the nonlinear ODE by a sequence of linear ODEs obtained by Fréchet differentiation
about an approximate solution. This is a well-known technique with reasonably well-
understood advantages anddisadvantages. Preliminary experiments (not reportedhere)
suggest that it can work well. As usual, the success or failure of the technique depends
strongly on the quality of the initial approximation.

For nonlinear problems, though, explicit methods (including explicit Taylor series
methods) become more competitive: the penalty of small stepsizes for mildly stiff
problems can be outweighed by the cost of iteration to deal with nonlinearities. Still,
I think that for some problems the Hermite–Obreshkov approach could be a good
choice.

6.4 Detection and location of singularities

Linear problems tend to have singularities at known locations, but nonlinear ones
can have them appear anywhere. The usual adaptive stepsize control heuristics are
actually quite good at locating singularities in the path of integration (at which point
the integration stops) but we have the potential for an even better approach, given that
we are computing Taylor coefficients. Taylor coefficients can be used, in a technique
originally due to Daniel Bernoulli but often attributed to Darboux, both to detect when
singularities are near and to locate them [19]. Once located, the path of integration
can be altered in a technique known as “pole vaulting” in order to avoid them.

Adding code to use the Taylor series about the tentative next step xn+1 to detect
and locate nearby singularities would add significantly to the robustness of this code,
and one potential application for this would be homotopy continuation methods for
solving nonlinear algebraic equations.

One may also use Padé methods, as was done in [24]. This seems, indeed, to be the
best approach.

6.5 The next step for future work

Writing a robust and efficient general-purpose solver for holonomic (D-finite) systems
of arbitrary order and dimension using this method is a grand goal. Towards that end,
extending the current code to handle scalar problems of arbitrary order seems a logical
first step. So that is what I will try to do next.

Acknowledgements I thank my colleague Mair Zamir for getting me interested in the Mathieu equation,
and Chris Brimacombe for his enthusiasm for the subject and for searching out various methods. I thank
Erik Postma for teaching me some interesting Maple programming tidbits which made the code both faster
and more maintainable. I thank my friends George Corliss, Ned Nedialkov, and John Pryce for teaching me
about Taylor series methods and Hermite–Obreshkov methods, and for comments on an earlier draft of this
paper. I thank Nick Trefethen for encouraging remarks about the theory of blendstrings. I haven’t forgotten
Y.F. Chang, either, and I wish him well, wherever he is. I thankWayne Enright for teaching me about defect
control, and Larry Shampine for teaching me about the importance of solution “quality.” I especially thank
Silvana Ilie for her proof that Taylor series methods (including Hermite–Obreshkov methods) are of cost

123

Numerical Algorithms (2024) 96:1109–1141 1139

polynomial in the number of bits of residual accuracy requested. That result is foundational for this whole
approach.
But most of all I thank John Butcher for teaching me so very many things about the numerical solution of
ordinary differential equations and about interpolation of those solutions. In particular, the contour integral
method has become my go-to method and makes such short work of many of the problems we encounter.
In particular, it was of central use for this paper. Thank you very much, John, for everything.

Funding This work was partially supported by NSERC under RGPIN-2020-06438 and by the grant
PID2020-113192GB-I00 (Mathematical Visualization: Foundations, Algorithms and Applications) from
the Spanish MICINN.

Data availability Not applicable

Declarations

Ethical approval Not applicable

Consent to participate Not applicable

Consent for publication Not applicable

Conflict of interest The author declares no competing interests.

References

1. Abad, A., Barrio, R., Blesa, F., Rodríguez, M.: Algorithm 924: TIDES, a Taylor series integrator for
differential equations. ACM Trans. Math. Softw. (TOMS) 39(1), 1–28 (2012)

2. Ascher,U., Bader,G.: Stability of collocation atGaussian points. SIAMJ.Numer.Anal. 23(2), 412–422
(1986)

3. Ascher, U., Christiansen, J., Russell, R.D.: COLSYS–a collocation code for boundary-value problems.
In: Codes for Boundary-Value problems in ordinary differential equations, pp. 164–185. Springer
(1979)

4. Bailey,D.H.,Barrio,R.,Borwein, J.M.:High-precision computation:mathematical physics anddynam-
ics. Appl. Math. Comput. 218(20), 10106–10121 (2012)

5. Barrio, R., Blesa, F., Lara, M.: VSVO formulation of the Taylor method for the numerical solution of
ODEs. Comput. Math. Appl. 50(1–2), 93–111 (2005). https://doi.org/10.1016/j.camwa.2005.02.010

6. Bornemann, F.: Accuracy and stability of computing high-order derivatives of analytic functions by
Cauchy integrals. Found.Comut.Math.11(1), 1–63 (2010). https://doi.org/10.1007/s10208-010-9075-
z

7. Bou-Rabee, N., Sanz-Serna, J.M.: Geometric integrators and the Hamiltonian Monte Carlo method.
Acta Numer. 27, 113–206 (2018)

8. Brimacombe, C., Corless, R.M., Zamir, M.: Computation and applications of Mathieu functions: a
historical perspective. SIAM Rev. 63(4), 653–720 (2021). https://doi.org/10.1137/20m135786x

9. Brimacombe, C., Corless, R.M., Zamir, M.: Elliptic cross sections in blood flow regulation.
arXiv:2304.01356 (2023)

10. Butcher, J.C.: A multistep generalization of Runge-Kutta methods with four or five stages. J. ACM
(JACM) 14(1), 84–99 (1967)

11. Butcher, J.C., Hojjati, G.: Second derivative methods with RK stability. Numer. Algorithms 40, 415–
429 (2005)

12. Corless, R.M.: An elementary solution of a minimax problem arising in algorithms for automatic mesh
selection. ACM SIGSAM Bull. 34(4), 7–15 (2000)

13. Corless, R.M.: A new view of the computational complexity of IVP for ODE. Numer. Algorithms 31,
115–124 (2002)

123

https://doi.org/10.1016/j.camwa.2005.02.010
https://doi.org/10.1007/s10208-010-9075-z
https://doi.org/10.1007/s10208-010-9075-z
https://doi.org/10.1137/20m135786x
http://arxiv.org/abs/2304.01356

1140 Numerical Algorithms (2024) 96:1109–1141

14. Corless, R.M.: Blends have decent numerical properties. Maple Trans. 3(1) (2023). https://doi.org/10.
5206/mt.v3i1.15890

15. Corless, R.M.: Blendstrings: an environment for computing with smooth functions. In: Proceedings
of the 2023 International Symposium on Symbolic and Algebraic Computation. ACM (2023). https://
doi.org/10.1145/3597066.3597117

16. Corless, R.M., Jankowski, J.E.: Variations on a theme of Euler. SIAM Rev. 58(4), 775–792 (2016).
https://doi.org/10.1137/15M1032351

17. Corless, R.M., Kaya, C.Y., Moir, R.H.: Optimal residuals and the Dahlquist test problem. Numer.
Algorithms 81(4), 1253–1274 (2019)

18. Corless, R.M., Postma, E.J.: Blends in Maple. In: Maple in Mathematics Education and Research:
4th Maple Conference, MC 2020, Waterloo, Ontario, Canada, November 2–6, 2020, Revised Selected
Papers 4, pp. 167–184. Springer (2021)

19. Corliss, G., Chang, Y.: Solving ordinary differential equations using Taylor series. ACM Trans. Math.
Softw. (TOMS) 8(2), 114–144 (1982)

20. Darboux, G.: Sur les développements en série des fonctions d’une seule variable. J. Math. Pures Appl.
2, 291–312 (1876)

21. Enright, W.H.: Second derivative multistep methods for stiff ordinary differential equations. SIAM J.
Numer. Anal. 11(2), 321–331 (1974). https://doi.org/10.1137/0711029

22. Enright, W.H., Hayes, W.B.: Robust and reliable defect control for Runge-Kutta methods. ACMTrans.
Math. Softw. (TOMS) 33(1), 1–es (2007)

23. Enright, W.H., Higham, D.J.: Parallel defect control. BIT Numer. Math. 31(4), 647–663 (1991)
24. Fornberg, B., Weideman, J.: A numerical methodology for the Painlevé equations. J. Comput. Phys.

230(15), 5957–5973 (2011). https://doi.org/10.1016/j.jcp.2011.04.007
25. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a multiple-precision binary

floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13–es (2007). https://
doi.org/10.1145/1236463.1236468

26. Griewank,A., Juedes, D., Utke, J.: Algorithm755:ADOL-C.ACMTrans.Math. Softw. 22(2), 131–167
(1996). https://doi.org/10.1145/229473.229474

27. Gustafsson, K., Lundh, M., Söderlind, G.: A PI stepsize control for the numerical solution of ordinary
differential equations. BIT Numer. Math. 28(2), 270–287 (1988)

28. Hairer, E., Nørsett, S.P., Wanner, G.: Solving ordinary differential equations I. Nonstiff problems.
Springer series in computational mathematics (1993)

29. Hermite, C.: Cours d’analyse de l’École polytechnique, vol. 1. Gauthier-Villars (1873)
30. Higham, N.J.: Accuracy and stability of numerical algorithms. SIAM (2002)
31. van der Hoeven, J.: Fast evaluation of holonomic functions near and in regular singularities. J. Symb.

Comput. 31(6), 717–744 (2001)
32. Ilie, S., Söderlind, G., Corless, R.M.: Adaptivity and computational complexity in the numerical solu-

tion of ODEs. J. Complex. 24(3), 341–361 (2008)
33. Mezzarobba,M.: NumGfun: a package for numerical and analytic computation with D-finite functions.

In: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, pp.
139–145 (2010)

34. Mezzarobba, M.: A note on the space complexity of fast D-finite function evaluation. In: Int. Workshop
on Computer Algebra in Scientific Computing, pp. 212–223. Springer (2012)

35. Nedialkov, N.S., Jackson, K.R.: An interval Hermite-Obreschkoff method for computing rigorous
bounds on the solution of an initial value problem for an ordinary differential equation. Reliab. Comput.
5(3), 289–310 (1999). https://doi.org/10.1023/a:1009936607335

36. Nedialkov, N.S., Pryce, J.D.: Solving differential-algebraic equations by Taylor series (i): computing
Taylor coefficients. BIT Numer. Math. 45(3), 561–591 (2005)

37. Obreshkov, N.: Neue quadraturforme. ln: Preussische Akademie der Wissenschaften zu Berlin (1–4),
116–127 (1940)

38. Rackauckas, C., Nie, Q.: DifferentialEquations.jl – a performant and feature-rich ecosystem for solving
differential equations in Julia. J. Open Res. Softw. 5(1), 15–6 (2017). https://doi.org/10.5334/jors.151

39. Rall, L.B.: Automatic differentiation: techniques and applications. Springer (1981)
40. Salvy, B., Zimmermann, P.: Gfun: a Maple package for the manipulation of generating and holonomic

functions in one variable. ACM Trans. Math. Softw. (TOMS) 20(2), 163–177 (1994)
41. Schwarz, D.E., Lamour, R.: Projected explicit and implicit Taylor series methods for DAEs. Numer.

Algorithms 88(2), 615–646 (2021). https://doi.org/10.1007/s11075-020-01051-z

123

https://doi.org/10.5206/mt.v3i1.15890
https://doi.org/10.5206/mt.v3i1.15890
https://doi.org/10.1145/3597066.3597117
https://doi.org/10.1145/3597066.3597117
https://doi.org/10.1137/15M1032351
https://doi.org/10.1137/0711029
https://doi.org/10.1016/j.jcp.2011.04.007
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/229473.229474
https://doi.org/10.1023/a:1009936607335
https://doi.org/10.5334/jors.151
https://doi.org/10.1007/s11075-020-01051-z

Numerical Algorithms (2024) 96:1109–1141 1141

42. Shampine, L., Reichelt, M.: The Matlab ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)
43. Shampine, L.F., Corless, R.M.: Initial value problems for ODEs in problem solving environments. J.

Comput. Appl. Math. 125(1), 31–40 (2000)
44. Smoktunowicz, A.: Backward stability of Clenshaw’s algorithm. BIT Numer. Math. 42(3), 600–610

(2002)
45. Söderlind, G., Jay, L., Calvo,M.: Stiffness 1952–2012: sixty years in search of a definition. BITNumer.

Math. 55(2), 531–558 (2015)
46. Trefethen, L.N.: Approximation theory and approximation practice. SIAM (2019)
47. Zolfaghari,R.,Nedialkov,N.S.:AnHermite-Obreschkoffmethod for stiff high-indexDAE.BITNumer.

Math. 63(1), (2023). https://doi.org/10.1007/s10543-023-00955-1

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1007/s10543-023-00955-1

	An Hermite–Obreshkov method for 2nd-order linear initial-value problems for ODE
	with special attention paid to the Mathieu equation.
	Abstract
	1 Introduction
	1.1 Arbitrary-precision computation
	1.2 This method uses derivatives (Taylor coefficients)
	1.3 Outline of the paper

	2 Blends, aka two-point Hermite interpolational polynomials
	2.1 Evaluation by Horner's method is fast and stable
	2.2 Approximation by balanced blends is accurate
	2.3 Semi-automatic differentiation of a blend
	2.4 Exact quadrature of a blend
	2.4.1 Computational version

	2.5 Blendstrings
	2.6 Convergence of blendstrings
	2.6.1 Indefinite integration: blendstring quadrature

	3 A collocation method for solving IVP
	3.1 Automatic generation of Taylor coefficients
	3.2 D-finite or holonomic functions
	3.3 Implicitness
	3.4 Collocation for 2nd-order equations and higher
	3.5 Defect control (Residual control)
	3.6 Forward error and Green's functions

	4 Not A-stable, but decently stable
	5 Experimental results
	5.1 A typical test

	6 Concluding remarks
	6.1 On variable order
	6.2 Incorporating discontinuities
	6.3 Nonlinear problems
	6.4 Detection and location of singularities
	6.5 The next step for future work

	Acknowledgements
	References

