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Abstract
It is common for mathematical models of physical systems to possess qualitative
properties such as positivity, monotonicity, or conservation of underlying physical
behavior. When these models consist of differential equations, it is also common
for them to be solved via splitting, i.e., splitting the differential equations into parts
that are integrated separately. All splitting strategies are not created equal; however,
in this work, we study the effect of two splitting strategies on qualitative property
preservation applied to the basic susceptible-infected-recovered (SIR) model from
epidemiology and the effect of backward integration of operator-splitting methods on
positivity preservation in the Robertson test problem.We find that qualitative property
preservation does depend on the splitting strategy even if the sub-integrations are
performed exactly. Accordingly, the specific choice of splitting strategy used may be
informed by requirements of qualitative property preservation. The choice of operator-
splitting method also depends on the specific properties of the exact solution of the
sub-systems.

Keywords Operator splitting · SIR model · Production-destruction system ·
Qualitative property preservation · High order

1 Introduction

The influence of mathematical models on modern daily life has increased in accor-
dance with the dramatic increase in modern computing power. Many of these models

Siqi Wei and Raymond J. Spiteri are contributed equally to this work.

B Siqi Wei
siqi.wei@usask.ca

Raymond J. Spiteri
spiteri@cs.usask.ca

1 Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK, Canada

2 Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-023-01730-7&domain=pdf


1392 Numerical Algorithms (2024) 96:1391–1421

are based on differential equations, e.g., numerical weather prediction, investment
portfolio behavior, and trajectory prediction of astronomical bodies. It is not hard to
imagine that thesemodels are often large and complex and accordingly have no analyt-
ical mathematical solution. Thus, not only do their solutions need to be approximated
numerically, but it is also often necessary for the model to be split into multiple parts
in order to facilitate their numerical solution. For example, splitting methods are used
to solve advection-diffusion-reaction problems [1] and large-scale chemical reaction
systems [2].

A production-destruction system (PDS) is a system of ordinary differential equa-
tions (ODEs) that is often used in biology and chemistry to describe the production
and destruction mechanism between variables.

Definition 1 A production-destruction system of N constituents can be written as a
system of differential equations of the form

d

dt
yi (t) =

N∑

j=1

pi j (y(t)) −
N∑

j=1

di j (y(t)), i = 1, 2, . . . , N , (1)

where y = [y1, y2, . . . , yN ]T is the vector of constituents. For solutions to be non-
negative, we assume that the production terms pi j and the destruction terms di j are
non-negative. The production term pi j is the rate at which constituent j transforms into
constituent i , and the destruction term di j is the rate at which constituent i transforms
into constituent j . We assume pi j (y), di j (y) ≥ 0 for yi (t) ≥ 0, i = 1, 2, . . . , N and
all t ≥ 0. A sufficient condition for y(t) to be non-negative is then lim

yi→0+ di j (y) = 0,

i = 1, 2, . . . , N.

Definition 2 A PDS (1) is called non-negative if non-negative initial values yi (0) ≥ 0
for i = 1, 2, . . . , N imply non-negative solutions yi (t) ≥ 0 for i = 1, 2, . . . , N for
all t > 0.

Definition 3 A PDS (1) is called conservative if pi j (y) = d ji (y) for all i, j =
1, 2, . . . , N. The system is called fully conservative if in addition pii (y) = dii (y) = 0
for all i = 1, 2, . . . , N.

For the purposes of this analysis and without loss of generality, we only consider fully
conservative PDSs.

Definition 4 Given a numerical method to solve (1), let yn denote the approximation
of y(tn) at a time step tn. The numerical method is called

• unconditionally conservative if the sum of all components of yn is constant for all
n ∈ N and all �t > 0.

• unconditionally non-negative if all components of yn+1 is non-negative for all
�t > 0 whenever all components of yn is non-negative.

In this paper, we are interested in two examples of PDSs: the susceptible-infected-
recovered (SIR) model [3] and the stiff Robertson test problem [4, 5].
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Models of PDSs have qualitative properties associated with their variables such
as positivity or conservation of underlying physical behavior. Models such as the
SIR model further requires monotonicity of certain variables based on the model
assumptions. Violation of such properties at best undermines confidence in the model
or its solution/predictions; at worst, the modelling process can be invalidated.

Real-world models of complex phenomena such as the spread of disease through-
out a population tend to also become complex themselves as the number of processes
includedor the demandson the predictions increase.Models basedondifferential equa-
tions must be solved numerically. Real-world problems quickly become too unwieldy
solve monolithically, either due to their complexity or size, and splitting is a divide-
and-conquer approach to obtain numerical solutions more efficiently (or at all) [1,
6–8].

It is well known that numerical solutions generally do not preserve known prop-
erties of the exact solution. There are some notable exceptions, however, such as the
preservation of linear invariants for linear multi-step and Runge–Kutta methods [9],
and a great deal of research has gone into preserving qualitative properties such as
positivity, monotonicity, and symplecticity, to name but a few; see, e.g., [1, 10, 11] and
references therein. Such methods are also referred to as structure-preservingmethods.

Many studies focus on the positivity-preserving property of a method. In [12], the
authors consider graph-Laplacian ODEs and propose some second-order methods that
unconditionally preserve positivity as well as a third-order method that preserves pos-
itivity under mild restrictions. These methods are based on Magnus integrators [13].
The authors of [12] propose a splitting strategy for the original system written in an
extended space that applies to stiff or non-separable problems and uses the Strang split-
ting method. The overall method is second order and unconditionally conserves mass
(akin to total population in theSIRmodel) andpositivity. Patankar–Runge–Kuttameth-
ods (and their modified versions) have been developed to solve production-destruction
systems (PDSs) monolithically while preserving the positivity and mass conserva-
tion [14, 15]. It turns out that such methods can be interpreted as approximations to
the methods proposed in [12].

Although methods that preserve qualitative properties may involve splitting,
e.g., [10, 16, 17], few studies systematically consider the effect of splitting strate-
gies used in practice on qualitative property preservation. Given that splitting is so
common due to its necessity or utility in practice, we systematically explore the effect
of the choice of splitting strategy on the preservation of qualitative properties of the
numerical solution of a differential equation. In this study, we limit the strategies
considered to the process-based splitting as well as dynamic linearization.

The importance of the choice of splitting strategy on qualitative property preser-
vation is shown indirectly in [12] in the context of insisting on writing the system
in graph-Laplacian form. The effect of the choice of splitting strategy on the solu-
tion itself is shown more directly and dramatically in [18], where it is shown that
two-dimensional rotations can be integrated exactly in time with the use of a splitting
strategy based on shear rotations but not with the use of standard directional splitting.

The remainder of this paper is organized as follows. In Section 2, we give a descrip-
tion of operator-splitting methods including Nop-additively split methods for Nop > 2
and relevant background, definitions, and the qualitative properties of interest on the
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SIR model and Robertson test problem. We describe two specific splitting strategies
applied to the SIRmodel in Section 2.2, a process-based splitting based on the produc-
tion and destruction terms and one based on dynamic linearization, which essentially
performs a local linearization at every step of a numerical method.We further describe
the generalization of process-based splitting to PDSs in Section 2.3. In Section 3, we
give the main theoretical results regarding qualitative property preservation from the
splitting strategies applied to the SIR model and the Robertson test problem. We find
that not all splitting strategies are created equal when it comes to qualitative property
preservation. How well an operator-splitting method preserves the desired qualitative
properties depends on the splitting strategy (process-based or dynamical linearization),
the operator-splitting method, and the form of the exact solution of the sub-systems.
In Section 4, we offer some numerical experiments to support the theoretical results
reported in the previous sections. Finally, in Section 5, we summarize our results and
offer some conclusions.

2 Theoretical background

In this section, we describe the relevant theoretical background for the study of
qualitative property preservation by operator splitting in the context of the production-
destruction systems (PDSs). Accordingly, we introduce the necessary background on
operator-splitting methods and the qualitative properties of interest. We examine two
ways to split the SIR model (process-based and dynamic linearization) and a process-
based splitting of the Robertson test problem in detail.

2.1 Operator-splittingmethods

In this section, we introduce the operator-splitting (OS) methods as presented in [10].
We consider the initial value problem (IVP) for a 2-additive ordinary differential
equation

dy
dt

= F(t, y) = F [1](t, y) + F [2](t, y), y(0) = y0. (2)

Let ϕ[�]
�t be the exact flow of the sub-system

dy[�]

dt
= F [�](t, y[�])

for � = 1, 2. Compositions of ϕ
[�]
�t can be used to construct numerical solutions to

(2). The most commonly known methods are the first-order Godunov (or Lie–Trotter)
splitting method,

�G
�t := ϕ

[2]
�t ◦ ϕ

[1]
�t ,

and the second-order Strang splitting method,

�S
�t := ϕ

[1]
�t/2 ◦ ϕ

[2]
�t ◦ ϕ

[1]
�t/2.
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To construct a general s-stage operator-splittingmethod, we consider splitting coef-
ficients α = [α1,α2, . . . ,αs], where αk = [α[1]

k , α
[2]
k ], k = 1, 2, . . . , s. An s-stage

operator-splitting method that solves (2) can be written as

��t :=
s∏

k=1

�
{k}
αk�t = �

{s}
αs�t ◦ �

{s−1}
αs−1�t ◦ · · · ◦ �

{1}
α1�t , (3)

where�
{k}
αk�t := ϕ

[2]

α
[k]
2 �t

◦ϕ
[1]

α
[k]
1 �t

. To achieve an order-pOS operator-splitting method,

the coefficients α must satisfy a system of polynomial equations derived from the
Baker–Campbell–Hausdorff (BCH) formula [10]. For method up to order pOS = 3,
the order conditions are:

pOS = 1 :
s∑

k=1
α

[1]
k = 1,

s∑
k=1

α
[2]
k = 1,

pOS = 2 :
s∑

i=1
α

[2]
i

(
i∑

k=1
α

[1]
k

)
= 1

2 ,

pOS = 3 :
s−1∑
i=1

α
[2]
i

(
s∑

k=i+1
α

[1]
k

)2

= 1
3 ,

s∑
i=1

α
[1]
i

(
s∑

k=i
α

[2]
k

)2

= 1
3 .

The application of OS methods is often limited to first- and second-order because
methods of order three or higher require backward-in-time sub-steps for each operator
during the integration [19]. In the case of the SIRmodel, backward-in-time integration
tends to add challenges to preserving monotonicity of the numerical solution.

The family of two-stage, second-order operator-splitting methods admits a one-
parameter set of solutions, of which the well-known Strang splitting method is a
member. This family can be described using a free parameter β �= 1. We denote such
a method as OS22β, whose coefficients are given in Table 1. By varying the values of
β, we can derive second-order OS methods with backward-in-time integration in only
one or both of the operators. For 0 ≤ β ≤ 0.5, both operators are integrated forward-
in-time only. For β > 0.5, operator 1 requires backward integration at one sub-step.
For β > 1 or β < 0, operator 2 requires backward integration at one sub-step. This
makes OS22β a good template to examine the effect of backward integration on the
properties (P1)–(P4).

We note that OS22β(1 − √
2/2) is the “best” two-stage, second-order OS method

in the sense that it has the minimum local error measure for this class of methods [20].
For the purposes of comparison with higher-order methods, we also present numerical
solutions from the third-order Ruth (R3) method, whose coefficients are given in

Table 1 Coefficients α
[i]
k for

OS22β k α
[1]
k α

[2]
k

1 2β−1
2(β−1) 1 − β

2 − 1
2(β−1) β
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Table 2 Coefficients α
[i]
k for the

R3 method k α
[1]
k α

[2]
k

1 7/24 2/3

2 3/4 −2/3

3 −1/24 1

Table 2, and the fourth-order Yoshida (Y4) method, whose coefficients are given in
Table 3.

2.1.1 Operator-splitting for Nop-additive problems

Consider the IVP for an Nop-additive ODE

dy
dt

= F(t, y) =
Nop∑

�=1

F [�](t, y), y(0) = y0. (4)

The IVP (4) can be solved using a generalized Godunov or Strang Nop-splitting
method,

�
G−Nop
�t := ϕ

[Nop]
�t ◦ · · ·ϕ[2]

�t ◦ ϕ
[1]
�t , (5)

�
S−Nop
�t := ϕ

[1]
�t/2 ◦ ϕ

[2]
�t/2 ◦ · · · ◦ ϕ

[Nop]
�t · · · ◦ ϕ

[2]
�t/2 ◦ ϕ

[1]
�t/2. (6)

Remark 1 We note that the Strang splitting method is a composition of the Godunov
splitting method with its adjoint over �t/2. One of the approaches to generate high-
order Nop-split operator-splitting methods is to use composition methods. We can
compose basic low order Nop-split operator-splitting methods with different step sizes
to generate high-order methods [10]. For example, let γ1 = γ3 = 1

2−21/3
, and γ2 =

− 21/3

2−21/3
. We can generate a Yoshida-like fourth-order Nop-split method by composing

the Strang splitting method (6):

�
Y−Nop
�t := �

S−Nop
γ3�t ◦ �

S−Nop
γ2�t ◦ �

S−Nop
γ1�t . (7)

Table 3 Coefficients α
[i]
k for the

Y4 method, where θ = 1
2−21/3

k α
[1]
k α

[2]
k

1 θ/2 θ

2 (1 − θ)/2 1 − 2θ

3 (1 − θ)/2 θ

4 θ/2 0
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Table 4 Coefficients α
[i]
k for the Nop-split Yoshida method, where θ = 1

2−21/3

k α
[1]
k α

[2]
k · · · α

[Nop−1]
k α

[Nop]
k

1 θ/2 θ/2 · · · θ/2 θ

2 0 0 · · · θ/2 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Nop − 1 0 θ/2 · · · 0 0

Nop (1 − θ)/2 (1 − 2θ)/2 · · · (1 − 2θ)/2 1 − 2θ

Nop + 1 0 0 · · · (1 − 2θ)/2 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2Nop − 1 (1 − θ)/2 θ/2 · · · θ/2 θ

2Nop 0 0 · · · θ/2 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

3Nop − 3 0 θ/2 · · · 0 0

3Nop − 2 θ/2 0 · · · 0 0

The explicit coefficients of the Nop-split Yoshida method can be found in Table 4.

2.2 The SIRmodel

The susceptible-infected-recovered (SIR) model is a basic compartmental model first
introduced by Kermack and McKendrick [3] in 1927. It is used for modeling of the
spread of infectious diseases. Each living member of a general population is assigned
to compartments susceptible (S), infectious (I), or recovered (R) according to whether
they have never had the disease, have the disease, or no longer have the disease. The
mathematical model can be described using the following differential equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d

dt
S(t) = −aS(t)I (t),

d

dt
I (t) = aS(t)I (t) − bI (t),

d

dt
R(t) = bI (t),

(8)

for all t > 0, a, b > 0 with the initial condition

S(0) = S0, I (0) = I0, R(0) = R0.
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Despite its simplicity, the SIR model can be used to demonstrate general trends in the
evolution of its constituent compartments in response to new data (e.g., suggesting
changes in parameter values) and potential interventions (e.g., mandatory masking,
limits on gathering sizes, or lockdowns).

2.2.1 Process-based splitting of the SIR model with exact sub-integration

We first solve the SIR model with an operator-splitting strategy that splits the right-
hand side of (8) according to the physical processes between the variables:

⎧
⎪⎨

⎪⎩

dS[1]
dt = 0,

dI [1]
dt = −bI [1](t),

dR[1]
dt = bI [1](t),

(9a)

⎧
⎪⎨

⎪⎩

dS[2]
dt = −aS[2](t)I [2](t),

dI [2]
dt = aS[2](t)I [2](t),

dR[2]
dt = 0.

(9b)

Remark 2 We note that (9a) describes the transformation of population between I and
R and (9b) describes the transformation of population between S and I . In this case,
the process-based splitting coincides with a linear-nonlinear splitting of the original
system of ODE. Linear-nonlinear splitting is a common splitting strategy for systems
such as reaction-diffusion systems [21].

At each OS stage k, sub-systems (9a) and (9b) are solved sequentially with time
step-sizes α

[1]
k �t and α

[2]
k �t . For such a splitting strategy, each sub-integration can

be performed exactly. The exact solutions to (9a) and (9b) at OS stage k are

⎧
⎪⎨

⎪⎩

S[1]
n,k = S[2]

n,k−1,

I [1]
n,k = e−bα[1]

k �t I [2]
n,k−1,

R[1]
n,k = R[2]

n,k−1 + (1 − e−bα[1]
k �t )I [2]

n,k−1,

(10a)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S[2]
n,k = [S[1]

n,k+I [1]
n,k ]S[1]

n,k

I [1]
n,k exp[a(S[1]

n,k+I [1]
n,k )(α

[2]
k �t)]+S[1]

n,k

,

I [2]
n,k = [S[1]

n,k+I [1]
n,k ]I [1]

n,k

S[1]
n,k exp[−a(S[1]

n,k+I [1]
n,k )(α

[2]
k �t)]+I [1]

n,k

,

R[2]
n,k = R[1]

n,k .

(10b)

The algorithm to advance the numerical solution of (9a) and (9b) using OS22β
with exact sub-integration (10) from given Sn, In, Rn values at time tn to values
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Sn+1, In+1, Rn+1 at time tn+1 = tn + �t has the following form.

⎧
⎪⎨

⎪⎩

S[1]
n,1 = Sn,

I [1]
n,1 = e−bα[1]

1 �t In,

R[1]
n,1 = Rn + (1 − e−bα[1]

1 �t )In,

(OS22β-process-based.1)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S[2]
n,1 = [S[1]

n,1+I [1]
n,1]S[1]

n,1

I [1]
n,1 exp[a(S[1]

n,1+I [1]
n,1)(α

[2]
1 �t)]+S[1]

n,1

,

I [2]
n,1 = [S[1]

n,1+I [1]
n,1]I [1]

n,1

S[1]
n,1 exp[−a(S[1]

n,1+I [1]
n,1)(α

[2]
1 �t)]+I [1]

n,1

,

R[2]
n,1 = R[1]

n,1,

(OS22β-process-based.2)

⎧
⎪⎨

⎪⎩

S[1]
n,2 = S[2]

n,1,

I [1]
n,2 = e−bα[1]

2 �t I [2]
n,1,

R[1]
n,2 = R[2]

n,1 + (1 − e−bα[1]
2 �t )I [2]

n,1,

(OS22β-process-based.3)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Sn+1 = S[2]
n,2 = [S[1]

n,2+I [1]
n,2]S[1]

n,2

I [1]
n,2 exp[a(S[1]

n,2+I [1]
n,2)(α

[2]
2 �t)]+S[1]

n,2

,

In+1 = I [2]
n,2 = [S[1]

n,2+I [1]
n,2]I [1]

n,2

S[1]
n,2 exp[−a(S[1]

n,2+I [1]
n,2)(α

[2]
2 �t)]+I [1]

n,2

,

Rn+1 = R[2]
n,2 = R[1]

n,2.

(OS22β-process-based.4)

2.2.2 Dynamic linearization of the SIR model with exact sub-integration

To solve an ODE dy
dt = f(t, y) using dynamic linearization, we first write the ODE as

dy
dt

= f(t, y) = Jy + (f(t, y) − Jy),

where J = ∂f/∂y is the Jacobian matrix. Then, the ODE is split as

dy[1]

dt
= Jy, and

dy[2]

dt
= f(t, y) − Jy.

Unless f(t, y) is linear and has constant coefficients, J is generally a function of t
and the solution y(t). In the method of dynamic linearization, J is evaluated and then
frozen at the beginning of each time step. Specifically, solving the SIR model using
dynamic linearization from tn to tn+1, we evaluate the Jacobian matrix at (tn, yn) as

Jn =
⎡

⎣
−aI (tn) −aS(tn) 0
aI (tn) aS(tn) − b 0

0 b 0

⎤

⎦ .
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For a splitting based on dynamic linearization of (8), the sub-systems

⎧
⎪⎨

⎪⎩

dS[1]
dt = −aI (tn)S[1](t) − aS(tn)I [1](t),

dI [1]
dt = aI (tn)S[1](t) + aS(tn)I [1](t) − bI [1](t),

dR[1]
dt = bI [1](t),

(11a)

⎧
⎪⎨

⎪⎩

dS[2]
dt = −aS[2](t)I [2](t) + aI (tn)S[2](t) + aS(tn)I [2](t),

dI [2]
dt = aS[2](t)I [2](t) − aI (tn)S[2](t) − aS(tn)I [2](t),

dR[2]
dt = 0,

(11b)

can again be integrated exactly and the solutions Xn+1 for X ∈ {S, I , R} are derived
using a desired OS method. The exact solutions to (11a) and (11b) can be generated
by using a computer algebra system such as Maple. Due to the complexity of these
solutions, we do not present them here.

2.3 Robertson test problem and general PDSs

The Robertson test problem is a stiff system of three non-linear ODEs that describes
the chemical reaction between three variables. It is given as follows

dX

dt
= aY (t)Z(t) − bX(t),

dY

dt
= bX(t) − aY (t)Z(t) − cY (t)2,

dZ

dt
= cY (t)2,

(12)

where a, b, c are positive constants and the initial conditions X(0) = X0, Y (0) = Y0,
Z(0) = Z0 are all positive.

2.3.1 Process-based splitting of the Robertson test problemwith exact
sub-integration

As proposed in (2.2.1), we split the Robertson problem according to processes into
the following two sub-systems:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dX [1]

dt
= aY [1](t)Z [1](t) − bX [1](t),

dY [1]

dt
= bX [1](t) − aY [1](t)Z [1](t),

dZ [1]

dt
= 0,

(13a)
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dX [2]

dt
= 0,

dY [2]

dt
= −c(Y [2](t))2,

dZ [2]

dt
= c(Y [2](t))2.

(13b)

Similar to the SIR problem, at each OS stage k, sub-systems (13a) and (13b) are solved
exactly with time step-sizes α

[1]
k �t and α

[2]
k �t . The exact solutions to (13a) and (13b)

at OS stage k are
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X [1]
n,k = − exp(−(aZ [2]

n,k−1+ b)α[1]
k �t)(aY [2]

n,k−1Z
[2]
n,k−1 − bX [2]

n,k−1)+ aZ [2]
n,k−1(X

[2]
n,k−1+Y [2]

n,k−1)

aZ [2]
n,k−1 + b

,

Y [1]
n,k = exp(−(aZ [2]

n,k−1 + b)α[1]
k �t)(aY [2]

n,k−1Z
[2]
n,k−1 − bX [2]

n,k−1) + b(X [2]
n,k−1 + Y [2]

n,k−1)

aZ [2]
n,k−1 + b

,

Z [1]
n,k = Z [2]

n,k−1,

(14a)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X [2]
n,k = X [1]

n,k ,

Y [2]
n,k = Y [1]

n,k

cY [1]
n,kα

[2]
k �t + 1

,

Z [2]
n,k = cY [1]

n,k (Y
[1]
n,k + Z [1]

n,k )α
[2]
k �t + Z [1]

n,k

cY [1]
n,kα

[2]
k �t + 1

,

(14b)

where {α�
k}�=1,2

k=1,2,...,s and Xn,Yn, Zn are the numerical approximations of the variables

X ,Y , Z at t = tn . We note that X [2]
n,0 = Xn , Y

[2]
n,0 = Yn , and Z [2]

n,0 = Zn . To advance
from tn to tn+1, apply (14a) and (14b) consecutively over all s stages of the operator-
splitting method, and let Xn+1 = X [2]

n,s,Yn+1 = Y [2]
n,s , Zn+1 = Z [2]

n,s .

2.3.2 Process-based splitting of the production-destruction systems

A natural way to solve a fully conservative PDS (1) with N constituents using operator
splitting is to split the system into N (N−1)

2 sub-systems,

⎧
⎪⎨

⎪⎩

dyi
dt = pi j (y) − di j (y),
dy j
dt = di j (y) − pi j (y),
dyk
dt = 0, for k �= i, j

(15)

for i = 1, 2, . . . , N − 1 and j = i + 1, i + 2, . . . , N .

Remark 3 1. We note that each sub-system describes the rate at which constituents i
and j are transformed fromone to the other. If all constituents i and j have two-way
connections, a process-based splitting strategy will have N (N − 1)/2 operators.
For example, a general PDS with three constituents would be split into three sub-
systems as depicted in Fig. 1. In the case of the SIR model, the transformations
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Fig. 1 Flowchart of a PDS with
three constituents

are unidirectional and only between S and I and I and R as shown in Fig. 2.
Therefore, the resulting split system consists of only two sub-systems (each treated
as one operator on two constituents at a time).

2. The choice on how to split a system of differential equations usually depends
on the goals of the simulation, e.g., on the properties to be preserved or the
physical or computational characteristics of the solution. Splitting the PDSs as
described in (15) produces much simpler sub-systems and generally increases the
chances of obtaining an exact solution for each sub-system (if desired). There are
several available high-order 2- and 3-split operator-splitting methods available,
e.g., [20, 22]. Nop-split operator-splitting methods include Godunov (5), Strang
(6), and Yoshida (7). We are unaware of general Nop-split operator-splitting meth-
ods beyond these.

2.4 Qualitative properties

2.4.1 Qualitative properties for the SIR model

Numerical solutions to the SIR model must share important properties with the true
solution in order for them to have physical interpretations. We denote the numerical
solutions Xn ≈ X(tn), X ∈ {S, I , R}, for tn = n�t , n ∈ N := {0, 1, . . . }.
1. The dynamics of an epidemic often dominate the dynamics of birth, death, and

population immigration. Accordingly, it is justified to omit the effects of births,
deaths, and immigration in a simple SIR model. Hence, the total population is

Fig. 2 Flowchart of the SIR
model
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conserved. The conservation of total population can be derived from the differential
equations. By adding the equations of system (8), it is easy to obtain

dS

dt
+ dI

dt
+ dR

dt
= 0 ⇒ S(t) + I (t) + R(t) = N0 for all t > 0.

We demand the same property from the numerical solutions; i.e., given initial
conditions S0 + I0 + R0 = N0, we have

Sn + In + Rn = N0 for all n ∈ N (P1)

Failure to satisfy (P1) would undermine the credibility of any results. That being
said, satisfaction of (P1) in itself does not guarantee reliable solutions; i.e., (P1)
is a necessary but not sufficient indicator of solution quality.

2. Because the functions S, I , R denote population densities, their values should
remain non-negative. Hence, we require the same from the numerical solution;
i.e., given initial condition X0 ≥ 0, we have

Xn ≥ 0, for all n ∈ N and X ∈ {S, I , R}. (P2)

3. We assume that infected or recovered individuals develop immunity; therefore,
the function S is non-increasing in time. We require that the numerical solution
satisfies

Sn ≥ Sn+1 for all n ∈ N. (P3)

4. We assume that recovered individuals do notmove to another compartment.Hence,
R must be an non-decreasing function in time. We require the same from the
numerical solution:

Rn ≤ Rn+1 for all n ∈ N. (P4)

2.4.2 Qualitative properties for general PDSs

General production-destruction systems do not require monotonicity in its variables.
We are interested in preserving the conservation and positivity properties in the numer-
ical solution as defined in (4). In the context of the Robertson test problem introduced
in Section 2.3.1, because the original ODE (12) is unconditionally conservative, there-
fore for all �t > 0, for each n ∈ N:

Xn + Yn + Zn = X0 + Y0 + Z0. (Robertson P1)

Because each variable X ,Y , Z represents a chemical concentration, for all �t > 0,
for each n ∈ N:

Xn,Yn, Zn ≥ 0. (Robertson P2)
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3 Main results: effect of splitting strategy on qualitative property
preservation of production-destruction systems

In this section, we give the main results on the qualitative property preservation of
the two different splitting strategies considered applied to the SIR model and process-
based splitting applied to the Robertson test problem.We also extend to the positivity-
preserving property of OS methods to general production-destruction systems.

3.1 Conservation property of operator-splittingmethods

In this section, we discuss the effect of operator-splitting methods in preserving the
conservation property of a production-destruction system.

Theorem 1 Assume that each sub-system (15) of a process-based splitting strategy of a
PDS (1) has an exact solution. Then, the numerical approximation obtained using the
operator-splitting methods and exact sub-integration is unconditionally conservative.

Proof When solving (1) using operator-splitting methods, let y[�]
n,k be the numerical

solution of solving the sub-system (15) exactly over a fraction of α
[�]
k �t . Because the

sum of the derivatives in (15) is equal to zero, the total sum of components of y[�]
n,k

does not change regardless of the value of α
[�]
k . Hence, the sum of the components of

numerical solution yn+1 at t = tn+1 is equal to the sum of the components of numer-
ical solution yn at t = tn . Hence, the operator-splitting methods are unconditionally
conservative. ��
Remark 4 We note that the conservation property relies on two facts: 1. each sub-
system is unconditionally conservative, i.e., the sum of the derivatives equals zero,
and 2. the underlying numerical method to solve the sub-systems is also uncondi-
tionally conservative. In this case, the operator-splitting methods do not affect the
conservation property. For the same reason, if the SIR model is split using dynamic
linearization (11a) and (11b) and solved using operator-splitting methods with exact
sub-integration, the numerical solution is still unconditionally conservative. In con-
clusion, property (P1) is satisfied for the SIR model with both process-based splitting
and dynamical linearization splitting, and property (Robertson P1) is satisfied for the
Robertson test problem.

Remark 5 Onemay contemplate eliminating one variable using the conservation prop-
erty of the system for the SIR model and solving a system with one less unknown.
However, it is unclear that such an approach would significantly simplify the solu-
tion of the SIR model or (even more so) other larger and more complex systems, e.g.,
production-destruction systems.

3.2 Process-based splitting of the SIRmodel

In this section, we focus on the effect of negative time-stepping on the qualitative prop-
erties (P2)–(P4). If we do not need to employ any backward stepping, the properties
(P2)–(P4) are satisfied trivially as stated in (2).
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Theorem 2 Assume that all α
[�]
k ≥ 0. Then, properties (P2)–(P4) are satisfied when

we solve the SIR model using (10).

Proof Property (P2) is satisfied because the exact solutions (10a) and (10b) are both
positive for all intermediate stages of S, I , R if �t ≥ 0 and α

[�]
k ≥ 0.

Property (P3) is satisfied because dS[1]
dt = 0 and dS[2]

dt ≤ 0 when all intermediate
variables of S, I , R are all positive. Hence, when the subsystems (9a) and (9b) are
solved exactly, the desired montonicity property (P3) is preserved.

Similarly, Property (P4) is satisfied because dR[1]
dt ≥ 0 and dR[2]

dt = 0 when all
intermediate variables of S, I , R are all positive. ��

3.2.1 Solving the SIR model using OS22ˇwith negative coefficients

Lemma 1 If Sn ≥ 0 and In ≥ 0, then Sn+1 ≥ 0 and In+1 ≥ 0 for all �t > 0 when
the SIR model is solved using (OS22β-process-based.1).

Proof Equation (10a) implies that at each stage k, after solving the first sub-system
(9a) over α

[1]
k �t , S[1]

n,k ≥ 0 and I [1]
n,k ≥ 0 if S[2]

n,k−1 ≥ 0 and I [2]
n,k−1 ≥ 0.

Equation (10b) implies that at each stage k, after solving the second sub-system
(9b) over α

[2]
k �t , S[2]

n,k ≥ 0 and I [2]
n,k ≥ 0 if S[1]

n,k ≥ 0 and I [1]
n,k ≥ 0 because exponential

functions are positive.
Therefore, if Sn ≥ 0 and In ≥ 0, we can recursively conclude that S[�]

n,k ≥ 0

and I [�]
n,k ≥ 0 for � = 1, 2 and all k = 1, 2, . . . , s. Hence, Sn+1 = S[2]

n,s ≥ 0 and

In+1 = I [2]
n,s ≥ 0. ��

Proposition 1 Property (P4) holds for the SIR model for all �t > 0 if Sn ≥ 0 and
In ≥ 0 in (OS22β-process-based.1).

Proof We consider the following two cases:

• β ∈ (−∞, 0.5].
When β ∈ (−∞, 0.5], α[1]

k ≥ 0 for k = 1, 2.

Hence, 1 − e−bα[1]
k �t ≥ 0 for k = 1, 2. Furthermore, the proof of (1) implies that

In ≥ 0 and I [2]
n,1 ≥ 0. Therefore,

Rn+1 − Rn = In(1 − e−bα[1]
1 �t ) + I [2]

n,1(1 − e−bα[1]
2 �t ) ≥ 0,

and so Rn+1 ≥ Rn for all n.
• β ∈ (0.5, 1) ∪ (1,∞).
When β ∈ (0.5, 1) ∪ (1,∞), solving the SIR model with (OS22β-process-based)
yields

Rn+1 − Rn = In(1− e−bα[1]
1 �t ) + In(1 − e−bα[1]

2 �t )(Sn + Ine−bα[1]
1 �t )e−bα[1]

1 �t

Sne−a(Sn+Ine
−bα[1]

1 �t
)α

[2]
1 �t + Ine−bα[1]

1 �t
.
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We first show that

Rn+1 − Rn ≥ In(1− e−bα[1]
1 �t ) + In(1 − e−bα[1]

2 �t )(Sn + Ine−bα[1]
1 �t )e−bα[1]

1 �t

Sn + Ine−bα[1]
1 �t

.

(16)
Whenβ ∈ (0.5, 1),α[1]

1 < 0,α[2]
1 > 0, andα

[1]
2 > 0, and the following inequalities

hold:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

In(1 − e−bα[1]
1 �t ) < 0, because α

[1]
1 < 0;

In(1−e−bα[1]
2 �t

)(Sn+Ine
−bα[1]

1 �t
)e−bα[1]

1 �t

Sne
−a(Sn+Ine

−bα[1]
1 �t

)α
[2]
1 �t+Ine

−bα[1]
1 �t

> 0, because α
[1]
2 > 0;

e−a(Sn+Ine
−bα[1]

1 �t
)α

[2]
1 �t ≤ 1, because α

[2]
1 > 0.

Hence, (16) holds.
When β ∈ (1,∞), α[1]

1 > 0, α[2]
1 < 0, and α

[1]
2 < 0, and the following inequalities

hold:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

In(1 − e−bα[1]
1 �t ) > 0, because α

[1]
1 > 0;

In(1−e−bα[1]
2 �t

)(Sn+Ine
−bα[1]

1 �t
)e−bα[1]

1 �t

Sne
−a(Sn+Ine

−bα[1]
1 �t

)α
[2]
1 �t+Ine

−bα[1]
1 �t

< 0, because α
[1]
2 < 0;

e−a(Sn+Ine
−bα[1]

1 �t
)α

[2]
1 �t ≥ 1, because α

[2]
1 < 0.

Hence, (16) holds.
Finally,

Rn+1 − Rn ≥ In(1 − e−bα[1]
1 �t ) + In(1 − e−bα[1]

2 �t )(Sn + Ine−bα[1]
1 �t )e−bα[1]

1 �t

Sn + Ine−bα[1]
1 �t

= In(1 − e−bα[1]
1 �t ) + In(1 − e−bα[1]

2 �t )e−bα[1]
1 �t

= In − Ine
−bα[1]

1 �t + Ine
−bα[1]

1 �t − Ine
−b(α[1]

1 +α
[1]
2 )�t

= In(1 − e−b(α[1]
1 +α

[1]
2 )�t ).

We note that α[1]
1 +α

[1]
2 = 1 from the order conditions. Therefore, Rn+1−Rn > 0.

In conclusion, Rn+1 ≥ Rn for all �t ≥ 0 when the SIR model is solved using
(OS22β-process-based). ��
Corollary 1 Property (P2) holds for all �t > 0 when the SIR model is solved using
(OS22β-process-based).

Proof Proposition 1 implies that, for all �t ≥ 0, Rn+1 ≥ 0 if Rn ≥ 0. Equation (1)
and the initial condition S0, I0, R0 ≥ 0 imply that Sn, In, Rn ≥ 0 for all n. ��
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Remark 6 We note that the intermediate stages R[�]
n,k may not all be positive, but all

solution values at t = tn+1 are non-negative.
Furthermore, the proof of Proposition 1 can be generalized to cases where α

[1]
k +

α
[1]
k+1 ≥ 0, which is a property both R3 and Y4 satisfy. In particular, it can easily be

verified that in R3, we have α
[1]
2 + α

[1]
3 > 0, and in Y4, we have α

[1]
1 + α

[1]
2 > 0 and

α
[1]
3 + α

[1]
4 > 0.

Proposition 2 Property (P3) is a result of property (P2) for the SIRmodel for all β �= 1
in (OS22β-process-based).

Proof

• If β ∈ [0, 1), then α
[2]
k ≥ 0 for k = 1, 2. Because all intermediate stages S[�]

n,k and

I [�]
n,k are non-negative,

dS[2]
dt = −aS[2] I [2] < 0. Therefore,

Sn+1 = S[2]
n,2 ≤ S[1]

n,2 = S[2]
n,1 ≤ S[1]

n,1 = Sn .

Hence, property (P3) holds for all �t ≥ 0.
• If β < 0, then α

[1]
1 , α

[1]
2 , α

[2]
1 > 0 and α

[2]
2 < 0.

To show that Sn+1 ≥ Sn , it is sufficient to show that Sn+1
Sn

≤ 1.

Sn+1

Sn
= S[2]

n,2

S[1]
n,1

= S[2]
n,2

S[1]
n,2

· S
[1]
n,2

S[1]
n,1

= S[2]
n,2

S[1]
n,2

· S
[2]
n,1

S[1]
n,1

= [S[1]
n,2 + I [1]

n,2]
I [1]
n,2 exp[a(S[1]

n,2 + I [1]
n,2)(α

[2]
2 �t)] + S[1]

n,2

· [S[1]
n,1 + I [1]

n,1]
I [1]
n,1 exp[a(S[1]

n,1 + I [1]
n,1)(α

[2]
1 �t)] + S[1]

n,1

.

To show that Sn+1
Sn

≤ 1, it is sufficient to show that

(I [1]
n,2 exp[a(S[1]

n,2 + I [1]
n,2)(α

[2]
2 �t)]+S[1]

n,2)(I
[1]
n,1 exp[a(S[1]

n,1+ I [1]
n,1)(α

[2]
1 �t)]+S[1]

n,1)

− (S[1]
n,2 + I [1]

n,2)(S
[1]
n,1 + I [1]

n,1) > 0. (18)

Expanding and simplifying the left-hand side of (18), we get

I [1]
n,2 I

[1]
n,1 exp[a(S[1]

n,2 + I [1]
n,2)(α

[2]
2 �t)] exp[a(S[1]

n,1 + I [1]
n,1)(α

[2]
1 �t)] − I [1]

n,2 I
[1]
n,1︸ ︷︷ ︸

part 1

+I [1]
n,2S

[1]
n,1 exp[a(S[1]

n,2 + I [1]
n,2)(α

[2]
2 �t)] − I [1]

n,2S
[1]
n,1

+I [1]
n,1S

[1]
n,2 exp[a(S[1]

n,1 + I [1]
n,1)(α

[2]
1 �t)] − I [1]

n,1S
[1]
n,2︸ ︷︷ ︸

part 2

. (19)

Beforewe show that both parts 1 and2 are positive,wederive someuseful equations
and inequalities:
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The order-1 condition is
α

[2]
1 + α

[2]
2 = 1. (20)

Because α
[1]
1 > 0 and α

[1]
2 > 0, R[1]

n,1 < R[1]
n,2. Therefore, (P1) implies that

S[1]
n,1 + I [1]

n,1 > S[1]
n,2 + I [1]

n,2 ≥ 0. (21)

Dividing the S and I terms in (10), we get

S[1]
n,2

I [1]
n,2

= S[1]
n,1

I [1]
n,1

exp[ b�t

2(1 − α
[2]
2 )

− a(S[1]
n,1 + I [1]

n,1)(1 − α
[2]
2 )�t].

Hence,

S[1]
n,2 I

[1]
n,1 = S[1]

n,1 I
[1]
n,2 exp[

b�t

2(1 − α
[2]
2 )

− a(S[1]
n,1 + I [1]

n,1)(1 − α
[2]
2 )�t]. (22)

We now consider the exponential terms in part 1:

exp[a(S[1]
n,2 + I [1]

n,2)(α
[2]
2 �t)] exp[a(S[1]

n,1 + I [1]
n,1)(α

[2]
1 �t)]

= exp[a�t(S[1]
n,2 + I [1]

n,2)α
[2]
2 + a�t(S[1]

n,1 + I [1]
n,1)(1 − α

[2]
2 )]

= exp[a�tα[2]
2 (S[1]

n,2 + I [1]
n,2 − (S[1]

n,1 + I [1]
n,1)) + a�t(S[1]

n,1 + I [1]
n,1)] > 1,

using (21) and α
[2]
2 < 0. Therefore, part 1 is positive.

We now consider part 2. First, we note that (21) and α
[2]
2 < 0 imply

exp[a(S[1]
n,2 + I [1]

n,2)α
[2]
2 �t] > exp[a(S[1]

n,1 + I [1]
n,1)α

[2]
2 �t] > 0. (23)

Substituting (20), (22), and (23) into part 2, we get

part 2 > I [1]
n,2S

[1]
n,1 exp[a(S[1]

n,1 + I [1]
n,1)(α

[2]
2 �t)] − I [1]

n,2S
[1]
n,1

+I [1]
n,1S

[1]
n,2 exp[a(S[1]

n,1 + I [1]
n,1)((1 − α

[2]
2 )�t)] − I [1]

n,1S
[1]
n,2

= I [1]
n,2S

[1]
n,1

[
exp[a(S[1]

n,1 + I [1]
n,1)(α

[2]
2 �t)] − 1

]

+I [1]
n,2S

[1]
n,1 exp

[
b�t

2(1 − α
[2]
2 )

− a(S[1]
n,1 + I [1]

n,1)(1 − α
[2]
2 )�t

]
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×
[
exp[a(S[1]

n,1 + I [1]
n,1)((1 − α

[2]
2 )�t)] − 1

]

= I [1]
n,2S

[1]
n,1

{
exp

[
b�t

2(1 − α
[2]
2 )

]
− exp

[
b�t

2(1 − α
[2]
2 )

− a(S[1]
n,1 + I [1]

n,1)(1 − α
[2]
2 )�t

]

+ exp[a(S[1]
n,1 + I [1]

n,1)(α
[2]
2 �t)] − 1

}

= I [1]
n,2S

[1]
n,1

{
exp

[
b�t

2(1 − α
[2]
2 )

] (
1 − exp[a(S[1]

n,1 + I [1]
n,1)(α

[2]
2 − 1)�t]

)

−
(
1 − exp[a(S[1]

n,1 + I [1]
n,1)(α

[2]
2 �t)]

)}

> I [1]
n,2S

[1]
n,1

{
exp[ b�t

2(1 − α
[2]
2 )

]
(
1 − exp[a(S[1]

n,1 + I [1]
n,1)(α

[2]
2 − 1)�t]

)

−
(
1 − exp[a(S[1]

n,1 + I [1]
n,1)(α

[2]
2 − 1)�t]

)}

= I [1]
n,2S

[1]
n,1

{(
exp[ b�t

2(1 − α
[2]
2 )

] − 1

) (
1 − exp[a(S[1]

n,1 + I [1]
n,1)(α

[2]
2 − 1)�t]

)}

> 0,

because α
[2]
2 < 0.

Now because parts 1 and 2 are both positive, Sn+1 ≤ Sn .
• If β > 1, then α

[1]
1 , α

[2]
2 > 0 and α

[2]
1 , α

[1]
2 < 0. Similar to the case where β < 0,

to show property (P3), it is enough to show that Sn+1
Sn

≤ 1, which is equivalent to
showing that (18) holds.
Equation (18) can be split into two parts as in (19), and again we show that both
parts 1 and 2 are positive.
We note that when β > 1, (20) and (22) still hold. Furthermore, because α

[1]
2 < 0,

I [1]
n,2 > I [2]

n,1. Hence,

S[1]
n,2 + I [1]

n,2 = S[2]
n,1 + I [1]

n,2 > S[2]
n,1 + I [2]

n,1 = S[1]
n,1 + I [1]

n,1 ≥ 0. (24)

Now the exponential terms in part 1 can be written as

exp[a�tα[2]
2 (S[1]

n,2 + I [1]
n,2 − (S[1]

n,1 + I [1]
n,1)) + a�t(S[1]

n,1 + I [1]
n,1)] > 1,

using (24) and α
[2]
2 > 0. Hence, part 1 is positive.

We now consider part 2. Using (20), (22), and (24), we get

part 2 = I [1]
n,2S

[1]
n,1

{
exp[ b�t

2(1 − α
[2]
2 )

] − exp[ b�t

2(1 − α
[2]
2 )

− a(S[1]
n,1 + I [1]

n,1)(1 − α
[2]
2 )�t]
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+ exp[a(S[1]
n,2 + I [1]

n,2)(α
[2]
2 �t)] − 1

}

> I [1]
n,2S

[1]
n,1

{
exp[ b�t

2(1 − α
[2]
2 )

] − exp[ b�t

2(1 − α
[2]
2 )

− a(S[1]
n,1 + I [1]

n,1)(1 − α
[2]
2 )�t]

+ exp[a(S[1]
n,1 + I [1]

n,1)(α
[2]
2 �t)] − 1

}

= I [1]
n,2S

[1]
n,1

{
− exp[ b�t

2(1 − α
[2]
2 )

]
(
exp[−a(S[1]

n,1 + I [1]
n,1)(1 − α

[2]
2 )�t] − 1

)

+
(
exp[a(S[1]

n,1 + I [1]
n,1)(α

[2]
2 �t)] − 1

)}

> I [1]
n,2S

[1]
n,1

{
− exp[ b�t

2(1 − α
[2]
2 )

]
(
exp[−a(S[1]

n,1 + I [1]
n,1)(1 − α

[2]
2 )�t] − 1

)

+
(
exp[−a(S[1]

n,1 + I [1]
n,1)(1 − α

[2]
2 )�t] − 1

)}

= I [1]
n,2S

[1]
n,1

(
exp[−a(S[1]

n,1 + I [1]
n,1)(1 − α

[2]
2 )�t] − 1

)(
1 − exp[ b�t

2(1 − α
[2]
2 )

]
)

> 0,

because α
[2]
2 > 1. Having shown parts 1 and 2 are both positive, we have the

desired property (P3).

��
Remark 7 Wenote that when the SIRmodel is solved usingOS22β and the sub-systems
(9a) and (9b) are solved exactly, all properties (P1)–(P4) are satisfied for all �t > 0.
As discussed in [17, 23], if the nonlinear sub-system (9b) is solved using aRunge–Kutta
method, properties (P2)–(P4) are only satisfied with a time-step restriction. This is due
to the fact that the Runge–Kutta method does not preserve positivity or monotonicity
of the sub-system.

3.3 Dynamic linearization of the SIRmodel

In this section, we show that property (P2) does not hold for the SIR model when
dynamic linearization is applied even when all α

[�]
k ≥ 0. Because (P3) and (P4) are

usually consequences of (P2) with potentially more restricted step-sizes, we do not
discuss step-size restriction on (P3) and (P4) in this section.

Due to the complexity of the exact solution of (11a) and (11b), we illustrate that
property (P2) does not hold for the following set of parameters {a = 0.0005, b =
0.05, S0 = 800, I0 = 200, R0 = 0}.
Proposition 3 There exists a step-size �t∗ > 0 such that (P2) does not hold for
t ≥ �t∗ when (11) is solved with an s-stage operator-splitting method with α

[1]
s ≥ 0.

Proof Using the parameter values {a = 0.0005, b = 0.05, S0 = 800, I0 = 200, R0 =
0}. It is enough to show that there is some �t∗ > 0 such that not all of S1, I1, R1 ≥ 0.
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We show that when �t is sufficiently large, R1 is either negative or greater than N0,
implying that one of S1 and I1 must be negative.

Solving (11a) exactly over α
[1]
s �t , we get

R1 = R[2]
0,s = R[1]

0,s

= (−1.348901771I [2]
0,s−1 − 1.10636S[2]

0,s−1)e
0.021922α[1]

s �t

+(0.348861832I [2]
0,s−1 + 0.106336S[2]

0,s−1)e
0.22808α[1]

s �t + S[2]
0,s−1 + I [2]

0,s−1 + R[2]
0,s−1

= (−1.348901771I [2]
0,s−1 − 1.10636S[2]

0,s−1)e
0.021922α[1]

s �t

+(0.348861832I [2]
0,s−1 + 0.106336S[2]

0,s−1)e
0.22808α[1]

s �t + N0,

where N0 = S0 + I0 + R0 is the conserved total population.
Regardless of the values of S[2]

0,s−1 and I
[2]
0,s−1, R1 → ∞ or R1 → −∞ as�t → ∞.

Hence, for sufficiently large �t , R1 > 1000 or R1 < 0, implying that (P2) fails
when �t is sufficiently large. ��
Remark 8 We note that when α

[�]
k ≥ 0, the property (P2) does not hold because the

exact sub-integration of R is no longer non-negative for all �t > 0. This is a critical
difference between the solution of the SIR model using process-based splitting and the
solution using dynamic linearization.

Finally, if α
[1]
s < 0, it can be shown from the graph of R1 that depending on the

values of S[2]
0,s−1 and I [2]

0,s−1, R1 < 0 for some choices of �t > 0.

3.4 Positivity-preservation for the Robertson test problem

Proposition 4 The numerical solution to the Robertson test problem (12) is uncondi-
tionally positive for all �t > 0 when process-based splitting is used provided that all
OS coefficients {α[�]

k }�=1,2
k=1,2,...,s are non-negative.

Proof Consider the exact solution (14a) to sub-system (13a). Assume that X [2]
n,k−1,

Y [2]
n,k−1, Z

[2]
n,k−1 ≥ 0. Because α

[�]
k ≥ 0, exp(−(aZ [2]

n,k−1 + b)α[1]
k �t) ≤ 1 for all

�t > 0. Now, we consider the following two cases:

• Case 1: If aY [2]
n,k−1Z

[2]
n,k−1 − bX [2]

n,k−1 > 0, then

X [1]
n,k >

−(aY [2]
n,k−1Z

[2]
n,k−1− bX [2]

n,k−1)+aZ [2]
n,k−1(X

[2]
n,k−1+Y [2]

n,k−1)

aZ [2]
n,k−1 + b

= X [2]
n,k−1≥0,

Y [1]
n,k = exp(−(aZ [2]

n,k−1+ b)α[1]
k �t)(aY [2]

n,k−1Z
[2]
n,k−1− bX [2]

n,k−1)+b(X [2]
n,k−1+ Y [2]

n,k−1)

aZ [2]
n,k−1 + b

≥0,

again because both the numerator and denominator are positive.
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• Case 2: If aY [2]
n,k−1Z

[2]
n,k−1 − bX [2]

n,k−1 < 0, then

X [1]
n,k ≥ 0,

because both the numerator and denominator are positive, and

Y [1]
n,k >

(aY [2]
n,k−1Z

[2]
n,k−1 − bX [2]

n,k−1) + b(X [2]
n,k−1 + Y [2]

n,k−1)

aZ [2]
n,k−1 + b

= Y [2]
n,k−1 ≥ 0,

because both the numerator and denominator are positive.

It is obvious that Z [1]
n,k = Z [2]

n,k−1 ≥ 0 in both cases. The exact solution (14b) of

sub-system (13b) is obviously non-negative if X [1]
n,k,Y

[1]
n,k, Z

[1]
n,k ≥ 0 and α

[2]
k ≥ 0.

Therefore, Xn+1,Yn+1, Zn+1 ≥ 0 if Xn,Yn, Zn ≥ 0. Because the initial conditions
X0,Y0, Z0 ≥ 0, we have Xn,Yn, Zn ≥ 0 for all n = 1, 2, . . . . ��

We now focus our attention on OS22β and study the effect of backward integration
on theRobertson test problem.Weuse theOS22β method for analysis because it admits
backward integration in either one or both of the sub-systems. The generalization of
the results to other operator-splitting methods can be done using similar argument.

Proposition 5 We solve the Robertson problem (12) usingOS22β with (13a) and (13b)
integrated exactly. If α[�]

k < 0 for some k and �, then one of X1,Y1, Z1 is negative for
�t sufficiently large.

Proof We note that for β ∈ [0, 0.5], all coefficients of OS22β are non-negative.
Therefore, we only need to discuss the following three cases:β ∈ (0.5, 1),β ∈ (1,∞),
and β ∈ (−∞, 0).

• β ∈ (0.5, 1)
For β ∈ (0.5, 1), α[1]

1 < 0 and α
[2]
1 , α

[1]
2 , α

[2]
2 ≥ 0, we show that if aY0Z0−bX0 <

0, then X1 < 0 for �t sufficiently large.

– If aY0Z0 − bX0 < 0, after integrating the first operator (13a) over α
[1]
1 �t ,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X [1]
0,1 = − exp(−(aZ0 + b)α[1]

1 �t)(aY0Z0 − bX0) + aZ0(X0 + Y0)

aZ0 + b
,

Y [1]
0,1 = exp(−(aZ0 + b)α[1]

1 �t)(aY0Z0 − bX0) + b(X0 + Y0)

aZ0 + b
,

Z [1]
0,1 = Z0.

(25)
We note that Y [1]

0,1 → −∞ as �t → ∞ because all initial conditions X0,Y0,

Z0 ≥ 0 and α
[1]
1 < 0. Hence, we can choose �t large enough such that
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Y [1]
0,1 < 0 and a(Y [1]

0,1 + Z [1]
0,1) + b < 0. After integrating the second operator

(13b) over α
[2]
1 �t ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

X [2]
0,1 = X [1]

0,1,

Y [2]
0,1 = Y [1]

0,1

cY [1]
0,1α

[2]
1 �t + 1

,

Z [2]
0,1 = cY [1]

0,1(Y
[1]
0,1+Z [1]

0,1)α
[2]
1 �t+Z [1]

0,1

cY [1]
0,1α

[2]
1 �t +1

=− Y [1]
0,1

cY [1]
0,1α

[2]
1 �t +1

+Y [1]
0,1+Z [1]

0,1.

(26)
We note that X [2]

0,1 > 0, and, for �t sufficiently large, Y [2]
0,1 > 0 and Z [2]

0,1 < 0.

Moreover, as �t → ∞, Y [2]
0,1 → 0 and aZ [2]

0,1 + b = a(− Y [1]
0,1

cY [1]
0,1α

[2]
1 �t+1

) +
a(Y [1]

0,1 + Z [1]
0,1) + b < 0. After integrating the first operator (13a) over α

[1]
2 �t ,

X [1]
0,2 = − exp(−(aZ [2]

0,1+b)α[1]
2 �t)(aY [2]

0,1Z
[2]
0,1−bX [2]

0,1)+aZ [2]
0,1(X

[2]
0,1+Y [2]

0,1)

aZ [2]
0,1+b

.

(27)
We note that (aY [2]

0,1Z
[2]
0,1 − bX [2]

0,1) < 0 and exp(−(aZ [2]
0,1 + b)α[1]

2 �t) → ∞
as �t → ∞. Hence, the numerator of X [1]

0,2 is positive for �t sufficiently

large. Because the denominator of X [1]
0,2 is negative, X [1]

0,2 < 0. Therefore,

X1 = X [2]
0,2 = X [1]

0,2 < 0.

– If aY0Z0 − bX0 > 0, because α
[1]
1 < 0, exp(−(aZ0 + b)α[1]

1 �t) → ∞ as

�t → ∞. Referring to the expression of X [1]
0,1 in (25), it is obvious that X

[1]
0,1 <

0 and Y [1]
0,1, Z

[1]
0,1 > 0 for�t sufficiently large. Referring to the expressions (26)

of integrating (13b) over α
[2]
1 �t , in this case X [2]

0,1 < 0 and Y [2]
0,1, Z

[2]
0,1 > 0.

Moreover Y [2]
0,1 → 0 as �t → ∞. Therefore, we can choose �t sufficiently

large such that X [2]
0,1+Y [2]

0,1 < 0. Now refer to (27) for the solution of X [1]
0,2 after

integrating (13a) over α[1]
2 �t . Because Z [2]

0,1 > 0 and α
[1]
2 > 0, exp(−(aZ [2]

0,1+
b)α[1]

2 �t) → 0 as �t → ∞. Because X [2]
0,1 + Y [2]

0,1 < 0, for �t sufficiently

large, X [1]
0,2 < 0. Therefore, X1 = X [2]

0,2 = X [1]
0,2 < 0.

• β ∈ (1,∞)

For β ∈ (1,∞), α
[1]
1 , α

[2]
2 ≥ 0 and α

[2]
1 , α

[1]
2 < 0. After integrating the first

operator (13a) over α
[1]
1 �t , the resulting intermediate values X [1]

0,1,Y
[1]
0,1, and Z [1]

0,1
are non-negative for any �t > 0. After integrating the second operator (13b) over
a negative time-step α

[1]
2 �t , X [2]

0,1 and Z [2]
0,1 are non-negative for all �t > 0, and

Y [2]
0,1 < 0 for �t sufficiently large. Therefore, aY [2]

0,1Z
[2]
0,1 − bX [2]

0,1 < 0. Because

α
[1]
2 < 0, exp(−(aZ [2]

0,1 + b)α[1]
2 �t) → ∞ as �t → ∞. Therefore, X [1]

0,2 → ∞,

Y [1]
0,2 → −∞, and Z [1]

0,2 > 0 when�t → ∞. Moreover, because X [1]
0,2+Y [1]

0,2+Z [1]
0,2
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remains constant, for �t sufficiently large, Y [1]
0,2 + Z [1]

0,2 < 0. Now consider Z1 =
Z [2]
0,2. Because α

[1]
2 > 0, Y [1]

0,2 < 0, Z [1]
0,2 > 0, Y [1]

0,2 + Z [1]
0,2 < 0, the numerator of Z1

is positive and the denominator of Z1 is negative for �t sufficiently large. Hence,
Z1 < 0.

• β ∈ (−∞, 0):
For β ∈ (−∞, 0), α[1]

1 , α
[2]
1 , α

[1]
2 ≥ 0 and α

[2]
2 < 0. As shown in the proof of (4),

because the initial conditions X0,Y0, Z0 ≥ 0, the intermediate values X [1]
0,2,Y

[1]
0,2,

and Z [1]
0,2 after integrating the first operator (13a) over α

[1]
2 �t are all non-negative

for any �t > 0. Because α
[2]
2 < 0, the exact solution of the second operator (14b)

indicate that Y1 = Y [2]
0,2 < 0 for �t sufficiently large.

��

Remark 9 We note that although the Robertson test problem has exact solutions (14a)
and (14b) for each of the sub-systems, the exact solutions are not always positive
when α

[�]
k < 0. In fact, the exact solutions blow up when α

[�]
k < 0 and �t → ∞.

This instability in the exact solution is a main difference between the Robertson test
problem and the SIR model. Moreover, although we only care about the positivity of
the variables at the end of each time-step tn, it is beneficial to keep the intermediate
variables X [�]

n,k,Y
[�]
n,k, Z

[�]
n,k positive because this would reduce the chance of blow up

in the next sub-step.

Remark 10 Assume that each sub-system (15) of a process-based splitting strategy of
a PDS (1) has a positive exact solution. Then, the numerical results obtained using
the Godunov or Strang splitting method with N (N − 1)/2 operators and exact sub-
integration is unconditionally positive because the exact solution of each sub-system
(15) is unconditionally positive. However, if we use a generalized Yoshida method
(7), the positivity is not guaranteed because the exact solution can be negative when
integrated backward in time, and this negativity might not be compensated by the
subsequent forward integration.

4 Numerical experiments

In this section, we give the results of some numerical experiments to support the
theoretical results reported in the previous sections.

We also performed experiments with the SIR model using the modified Patankar–
Runge–KuttamethodMPRK22 from [24] aswell as the splittingmethodES2 from [12]
for differential equations that are not split additively. True to the theory, both methods
produced results that satisfy (P1)–(P2). However, the resulting accuracies appeared to
be significantly worse than solving (9) using Strang splitting ((OS22β-process-based)
with β = 1/2) for a given time step-size.
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Fig. 3 Plots of the numerical solution for various operator-splitting methods applied to a process-based
splitting. Properties (P1)–(P4) all hold

4.1 Process-based splitting

The SIR model is solved using (OS22β-process-based). The splitting methods exam-
ined are Strang,OS22β(1−√

2/2) (“Best22”), R3,Y4,OS22β(−0.25), OS22β(0.75),
and OS22β(1.5). Figures3 and 4 display the numerical results for �t = 15. In agree-
ment with the theory, we see that properties (P1)–(P4) all hold. Of note, we see that
the presence of positive coefficients in the OS methods is neither necessary nor suf-
ficient for qualitative property preservation. We further note that the numerical result
for larger �t is similar the case when �t = 15, as proved in Section 3.2.

Fig. 4 Plots of the numerical solution for various OS22β operator-splitting methods applied to a process-
based splitting. Properties (P1)–(P4) all hold
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4.2 Dynamic linearization

The SIR model is now solved using dynamic linearization (11). The splitting methods
examined again are Strang, OS22β(1− √

2/2), R3, Y4, and OS22β(−0.25). Table 5
summarizes the smallest step-size such that each property fails for each method. In
agreement with the theoretical results, property (P1) holds for all step-sizes, and there
is a step-size �t beyond which each qualitative property (P2)–(P4) does not hold.

We note that both Strang and OS22β(1 − √
2/2) only have positive coefficients.

Nonetheless, properties (P2)–(P4) fail for �t sufficiently large. That is, the mere
absence of negative coefficients is not sufficient to guarantee the success of a splitting
method depending on the goals.

That being said, all of R3 and Y4 have negative coefficients in both operators,
and OS22β(−0.25) has a negative coefficient in only the second operator. Again the
properties (P2)–(P4) fail for sufficiently large �t , in agreement with the theory. It
seems, however, for this model, the presence of negative coefficients may lead to
qualitative property preservation breaking down sooner, i.e., for smaller �t , than for
the case where negative coefficients are absent.

OS22β(1−√
2/2) is the method with the smallest splitting error among all OS22β

methods. We see from Table 5 that it can take a step-size that is almost 50% larger
than Strang before any of the properties (P2)–(P4) cease to hold.

Finally, we note from the results of Strang, OS22β(1−√
2/2), and OS22β(−0.25)

that properties (P3) and (P4) are not a consequence of (P2). Any of the three properties
may cease to fail first.

4.3 Robertson test problem

In this section, we solve the Robertson test problem (12) using process-based splitting.
The operator-splitting methods examined here are OS22β(−0.2), OS22β(0.7), and
OS22β(1.2). The sub-systems (13a) and (13b) are solved exactly. For the numerical
experiments, we use the parameter values a = 1e4, b = 0.04, and c = 3e7 with initial
conditions X(0) = X0 = 1− 2eps, Y (0) = Y0 = eps, Z(0) = Z0 = eps. In Table
6, we present the stepsize �t when one of the three variables X1,Y1, Z1 false to be
positive. As proved in Section 3.4, when one of the α

[�]
k is negative, (Robertson P2)

false for �t sufficiently large.

Remark 11 We note that Table 6 indicates that when �t is sufficiently large, at least
one of X1,Y1, or Z1 is negative. However, the step sizes that preserve positivity of
X1,Y1, Z1 do not guarantee positivity of Xn,Yn, Zn for all n > 1. In the case of
OS22β(0.7), both step sizes�t = 0.12 and�t = 0.13 fail to produce a positive solu-
tion to the Robertson problem over the full interval [0, 1e + 10].

On the other hand, when process-based splitting is employed and all operator split-
ting coefficients are positive, positivity of the variables Xn,Yn, Zn for n ≥ 1 is satisfied
unconditionally, as claimed in Proposition 4. Figure 5 presents the numerical solution
of the Robertson problem solved using process-based splitting with OS22β(1−√

2/2)
for�t = 10. Positivity of all three variables and the conservation of the sumof X ,Y , Z
are satisfied as expected.We note that the numerical results for larger�t are similar to
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Table 6 In each case, for �t is sufficiently large, one of X1, Y1, Z1 < 0 when the Robertson test problem
is solved using process-based splitting

Method OS22β(−0.2) OS22β(0.7) OS22β(1.2)

Stepsize �t 0.0015 0.002 0.12 0.13 1e-7 2e-7

X1 ≥ 0 T T T F T T

Y1 ≥ 0 T T T T T T

Z1 ≥ 0 T F T T T F

the case when�t = 10. Although operator-splitting methods with positive coefficients
are unconditionally positive for the Robertson test problem, they are less accurate as
the MPRK22 method for a given step size for this problem.

Remark 12 Furthermore, the differential equations of the Robertson problem imply
that Z should be monotonically increasing. When using process-based splitting and
an operator-splitting method with positivie coefficients, the monotonicity of Z is sat-
isfied unconditionally for the same reason that R, in the SI R model, is monotonically
increasing as presented in Theorem 2. When using operator splitting method with
negative coefficients, this property fails for �t sufficiently large as shown in Fig. 6.

5 Summary and conclusions

Mathematical modelling is omni-present in modern daily life. These models are typi-
cally large, complex, and require solutions to be approximated by numerical methods.

Fig. 5 Positivity of all three variables and the conservation of the sum of X , Y , Z are satisfied when the
Robertson problem is solved using process-based splittingwith operator splittingmethodOS22β(1−√

2/2)
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Fig. 6 When solving the Robertson problem with operator-splitting methods with negative coefficients, Z
fails to be monotonically increasing for �t sufficiently large

Often, the problems are posed as differential equations that are so large that they
must be split into pieces that are solved separately. Furthermore, the numerical solu-
tions may be required to satisfy certain qualitative properties in order to be physically
meaningful.

The SIR model is a basic model of infectious disease spread that can be used to
illustrate how qualitative properties, such as positivity, monotonicity, or conservation
of total population, are affected by the choice of splitting strategy, i.e., despite the
fact that the sub-systems are integrated exactly. Accordingly, an analysis such as
this can inform which splitting strategies are most amenable to qualitative property
preservation.

We have demonstrated that a process-based splitting, which for the SIR model also
happens to correspond to a splitting based on linear/nonlinear terms, unconditionally
preserves positivity, monotonicity, and total population. This result has some applica-
bility to understanding qualitative property preservation of the more general class of
production-destruction systems. For PDSs, total population and positivity are uncon-
ditionally preserved under process-based splitting.

On the other hand, the popular and powerful dynamic linearization method is only
conditionally stable; i.e., there is a step-size beyond which at least one of the qualita-
tive properties (P1)–(P4) cease to hold. In practice, these step-sizes may be so large
as to yield inaccurate solutions, in which case smaller step-sizes would be required
anyway, and the conditional nature of qualitative property preservation may largely
be irrelevant. As usual, the impact of the presence or absence of restrictions due to
stability depends on the goals of the simulation.

Comparing the two splitting strategies applied to the SIR model, we conclude that
the process-based splitting is preferred over dynamic linearization because the exact
solutions of sub-systems of the process-based splitting are unconditionally positive
and conservative for all �t > 0. By comparing the results of the SIR model and the
Robertson test problem,we conclude thatwhen choosing a particular operator-splitting
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method, if the exact solution to the sub-systems preserves the desired qualitative
properties for �t < 0, then it is safe to use operator-splitting methods involving
backward integration. Otherwise, one should expect a step-size restriction to preserve
positivity when using operator-splitting methods with negative coefficients.
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