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Abstract
In this paper, we introduce a new framework for deriving partitioned implicit-
exponential integrators for stiff systemsof ordinary differential equations and construct
several time integrators of this type. The new approach is suited for solving systems of
equations where the forcing term is comprised of several additive nonlinear terms. We
analyze the stability, convergence, and efficiency of the new integrators and compare
their performance with existing schemes for such systems using several numerical
examples. We also propose a novel approach to visualizing the linear stability of the
partitioned schemes, which provides a more intuitive way to understand and com-
pare the stability properties of various schemes. Our new integrators are A-stable,
second-order methods that require only one call to the linear system solver and one
exponential-like matrix function evaluation per time step.
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1 Introduction

Many scientific and engineering problems involve dynamics driven by several pro-
cesses of different natures. Often such systems are modeled by differential evolution
equations with a forcing term that is comprised of several additive components. These
additive terms can represent the influence of each of the driving mechanisms. A
well-known example of such a system is an advection–diffusion equation where the
evolution is governed by the advective and diffusive forces modeled by two additive
termswith first-order and second-order derivatives, respectively. In general, a two-term
forcing model can be written as an initial-value problem of the form

y′ = f1(y) + f2(y) (1a)

y(t0) = y0. (1b)

We only consider systems in the autonomous form as the non-autonomous case can
be reduced to the autonomous one by introducing the time variable as an additional
state variable. Frequently, the forcing terms fi (y) represent processes occurring over
a wide range of temporal scales. As a result, the differential equations modeling such a
system are stiff, with stiffness arising from either or both of the additive forcing terms.
Such additive forcing structure can be exploited in constructing an efficient temporal
numerical integrator to solve the model equations. This is often accomplished through
the use of a splitting [1, 2] or a partitioned approach [3, 4]. Both of these approaches
have advantages and disadvantages, and the construction of methods of either type,
particularly of higher order, is still an active area of research. In this paper, we focus
on the partitioning approach to develop new methods.

Some of the best-known partitioned integrators are implicit-explicit (IMEX) meth-
ods [5] which have been used for a wide range of applications [6–9]. IMEX techniques
treat one component of the forcing term implicitly and the other explicitly; thus, these
methods are appropriate for problems where one of the forcing terms is responsi-
ble for stiffness in the system. For problems with stiffness present in both forcing
terms, partitioning approach has been extended to implicit-implicit methods [10] and
implicit–exponential (IMEXP) integrators [11–13]. For IMEXP integrators, however,
more attention has been dedicated to systems where one of the forcing terms is linear.
Fewer options have been introduced for problems with nonlinear-nonlinear additive
stiff forcing structure [12, 13].

In this work, we present a novel way to construct implicit-exponential-type meth-
ods for precisely such systems. In other words, we develop a new way to construct
partitioned time integration schemes that treat f1 implicitly and f2 exponentially for
problems where both of these functions are nonlinear and their Jacobians around yn ,
J1,n = ∂ f1

∂ y (yn) and J2,n = ∂ f2
∂ y (yn) are stiff.

This approach is particularly advantageous when one of the forcing terms can be
treated implicitly in a very efficient way, e.g., when a fast preconditioner exists for this
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portion of the Jacobian. We extend the work in [14] to problems where both f1 and f2
are nonlinear and introduce a new ansatz for constructing such partitioned implicit-
exponential integrators which can potentially be extended to higher-order methods.
We also describe a convenient way to visualize and assess the stability of the methods
and choose schemes with favorable stability properties. The efficiency and accuracy
of the new techniques are demonstrated on a set of test problems in a numerical study
which also includes a thorough comparison of the performance of the new methods
with previously introduced partitioned schemes for such problems. In the following,
it is assumed that the partition into f1 and f2 is consistent with the problem to be
solved and the Jacobians corresponding to each of the forcing terms are well-defined
matrices such that their matrix exponentials or their inverses can be approximated in
a stable manner.

The article is organized as follows. The first section briefly reviews the exponential
and Rosenbrock methods, which serve as a building block of our new techniques.
Section3 introduces the novel ansatz for the partitioned implicit-exponential methods
and presents the construction of the new second-order schemes of this type. Linear
stability analysis of the new methods is included in Sect. 4 where we also show that
some of our schemes are A-stable. Finally, in Sect. 5, we validate and compare the
performance of ourmethods to other techniques using several numerical test problems.

2 Review of basic exponential and Rosenbrockmethods

The new partitioned methods which will be introduced in Sect. 3 use both exponential
and Rosenbrock-type integration to advance (1a) in time. Here, we present a brief
overview of these two approaches as the building blocks of our new schemes.

Consider the following (unpartitioned) system of ordinary differential equations
(ODEs)

dy

dt
= f (y), y(t0) = y0, y ∈ R

N , f : RN → R
N (2)

where y represents some unknown dynamically changing properties of the system,
and f describes all forces driving the system. Suppose we are interested in computing
the solution to this system over an interval t ∈ [t0, T ]. Letting h be the discretization
step size and yn = y(tn) denote the approximate solution at tn = t0 + hn, one can
expand (2) in a Taylor series to obtain

dy

dt
(t) = f (yn) + Jn · (y(t) − yn) + r(y(t)), (3)

where Jn = d f

dy
(yn) and

r(z) = f (z) − f (yn) − Jn · (z − yn). (4)
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Using the integrating factor e−Jn t on (3), we can write it in the form

d

dt

(
e−Jn t y(t)

)
= e−Jn t ( f (yn) − Jn yn) + e−Jn tr(y(t)). (5)

Integrating over the time interval [tn, tn + h] and multiplying by eJn(tn+h) leads to the
integral form

y(tn + h) = yn + ϕ1(h Jn)h f (yn) +
∫ tn+h

tn
eJn(tn+h−t)r(y(t))dt, (6)

where the matrix function ϕ1 is defined as ϕ1(A) = (eA − I )A−1 and I is the identity
matrix. This equation, called the Volterra equation among its other names, is the
starting point for the construction of different exponential integrators by introducing
approximations to the terms of the right-hand side to estimate yn+1 ≈ y(tn + h).

For instance, a second-order exponential Euler method (EPI2) [15] can be con-
structed by neglecting the nonlinear integral in (6), e.g.,

yn+1 = yn + ϕ1(h Jn)h f (yn). (7)

The action of the matrix function ϕ1 on a vector can be either evaluated exactly or
approximated depending on the properties of the matrix Jn . For example, ϕ1(h Jn) can
be calculated exactly if Jn is small or diagonal. When the Jacobian is large and sparse,
a variety of approximation techniques such as Taylor expansions [16], Krylov-based
algorithms [17], or Leja methods [18] can be used.

A one-stage second-order Rosenbrock scheme [19], denoted here ROS2, could be
derived by analogously neglecting the integral in (6) but also replacing the ϕ1 function
by its Padé approximant of order (0/1):

yn+1 = yn + h

(
I − h

2
Jn

)−1

f (yn) (8)

It is worth mentioning that the ROS2 scheme is very close in its formulation (differing
only by a factor 1

2 in front of the Jacobian) to the linearized Euler method

yn+1 = yn + h (I − h Jn)
−1 f (yn) (9)

However, the linearized Euler method is only first order.
Both EPI2 and ROS2 require evaluation of matrix functions of the full (unparti-

tioned) Jacobian Jn and share similar properties in terms of linear stability. The choice
between the two, therefore, depends on the nature of the problem to be solved. For
example, when an efficient solver for a linear system of equations is available (e.g.,
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a direct solver or a preconditioned iterative method), the ROS2 scheme may be a
judicious choice. Otherwise, exponential approximation of ϕ1(h Jn) fn might be more
efficient when used with a fast algorithm such as the KIOPS method [17]. The case
where an efficient linear solver is only available for a portion of the Jacobian will be
discussed in the next section.

3 New nonlinear-nonlinear partitioned Rosenbrock-exponential
(ROSEXP) methods

3.1 General framework

Below, we introduce a framework for developing efficient numerical schemes for
solving nonlinear-nonlinear partitioned problems of the form:

y′ = f (y) = f1(y) + f2(y), y(t0) = y0, (10)

where f1 and f2 are both stiff. To develop such schemes, we use the idea of generalized
EPI methods introduced in [20]. Specifically, in [20], it was proposed to construct
approximation to the solution of (10) in the form

yn+1 = yn +
∑
i

ψi (h Jn) f (zi ) (11)

where ψi (h Jn) are functions of a matrix Jn which in some way approximates the
Jacobian or a portion of the Jacobian, and zi are vectors approximating the solution on
some nodes. The functions ψi are chosen to construct integrators of a particular type.
For example, these functions can be exponential or rational depending on whether an
exponential, an implicit, or a hybrid method is being built.

We extend this idea to the case of a partitioned right-hand side and allow these
functions to be a product of exponential or rational functions, each applied to either
the Jacobian of f1 or f2. For low-order methods, this idea can be expressed using the
following ansatz:

yn+1 = yn + Q1,1(h J1,n)Q2,1(h J2,n)h f1(yn) + Q1,2(h J1,n)Q2,2(h J2,n)h f2(yn)
(12)

where Qi, j are analytic functions (rational or exponential-like functions), and J1,n
and J2,n are respectively the Jacobians of f1 and f2 evaluated at yn . Note that the
multiplication order of the functions Q1,i and Q2,i in the above ansatz can be changed
to derive different schemes. Since matrices J1,n and J2,n do not necessarily commute,
we can also consider the following flipped ansatz that reverses the order of application
of the functions:

yn+1 = yn + Q2,1(h J2,n)Q1,1(h J1,n)h f1(yn) + Q2,2(h J2,n)Q1,2(h J1,n)h f2(yn)
(13)
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Because the functions Qi, j are only applied to either J1,n or J2,n , availability of
efficient solvers that estimate Qi, j applied to each of these matrices separately for
some problems can result in significant computational savings compared to a method
which involves only the full Jacobian Jn = J1,n + J2,n . This ansatz is very general and
allows the construction of many methods. By analogy with splitting methods, it can be
expected that to construct methods of order greater than two, the ansatz above has to be
extended to include additional terms that will include more numerous products of Qi, j

functions. The number of options to extend the ansatz in such a way is quite extensive
and requires a separate systematic study. Additionally, the derivation presented above
uses classical order conditions. General stiff order theories were previously proposed
for nonpartitioned problems and partitioned systems with a linear term that was being
exponentiated (e.g., [21]). To our knowledge, however, due to the complexity of such
problems and their analysis, there are currently no general stiff arbitrary order theories
for partitioned problems with general nonlinear-nonlinear partitioning. Only linear-
nonlinear partitioned problems with methods of second order have been analyzed
from the stiff order perspective in [14]. In addition, it is not clear if the full stiff order
conditions are necessary to avoid order reduction for many problems [22]. Thus, both
the construction of higher-order methods and exploration of analogues of stiff order
conditions for generally partitioned problems are relegated to our future work. In this
paper, we focus on the proof-of-concept derivation and testing of several efficient
second-order schemes and will continue our work on extending these ideas to more
generally applicable methods to future publications.

3.2 Construction of second-order schemes

In this section, we derive the classical order conditions necessary for a scheme based
on the ansatz (12) to have second order of convergence. To do so, we assume that the
numerical solution at time tn is exact (y(tn) = yn) and match the numerical solution at
the next time step yn+1 to y(tn+1), the exact solution at time tn+1 up to and including
second-order terms. This will add some restrictions on the functions Qi, j that will be
used to derive second-order schemes.

First, we assume that the functions Qi, j are analytic, so that we have the following
Taylor series representation:

Qi, j (hA) = αi, j I + βi, j h A + O(h2)

Without loss of generality, we can assume that αi, j = 1. If it is not the case, the
function can be rescaled. Moreover, the product of the scaling coefficients must be
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equal to 1 for consistency. We use these expansions of Qi, j to obtain the following
form of the numerical solution:

yn+1 = yn + Q1,1
(
h J1,n

)
Q2,1

(
h J2,n

)
h f1 (yn) + Q2,1

(
h J1,n

)
Q2,2

(
h J2,n

)
h f2 (yn)

= yn + (
I + β1,1h J1,n

) (
I + β2,1h J2,n

)
h f1(yn)

+ (
I + β1,2h J1,n

) (
I + β2,2h J2,n

)
h f2(yn) + O

(
h3

)

= yn + h ( f1 (yn) + f2(yn))

+h2
[(

β1,1 J1,n + β2,1 J2,n
)
f1(yn) + (

β1,2 J1,n + β2,2 J2,n
)
f2(yn)

] + O
(
h3

)

On the other side, the exact solution at time tn+1 can be expanded as follows:

y(tn+1) = y(tn)+h( f1(yn)+ f2(yn))+ h2

2
(J1,n + J2,n)( f1(yn)+ f2(yn))+O

(
h3

)

After matching the terms up to thsecond order, we have the following conditions
on the functions Qi, j :

β1,1 = β2,1 = β1,2 = β2,2 = 1/2

Table 1 presents several schemes that satisfy these conditions. These methods were
obtained by choosing the functions Qi, j to be exponential or rational functions similar
to those found in formulas for the EPI2 and ROS2 schemes. For this reason, if we
consider the extreme case partitioning f1 = 0, f2 = f , then all the schemes from
Table 1 reduce to the EPI2 method. Likewise, if f1 = f , f2 = 0, then all the schemes

Table 1 Second-order Rosenbrock-exponential schemes

Coefficients Scheme

RosExp2 – ansatz (12)

Q1,1(z) = Q1,2(z) = (
I − z

2
)−1 yn+1 = yn +

(
I − h

2 J1,n
)−1

ϕ1(h J2,n)h f (yn)

Q2,1(z) = Q2,2(z) = ϕ1(z) ExpRos2 – ansatz (13)

yn+1 = yn + ϕ1(h J2,n)
(
I − h

2 J1,n
)−1

h f (yn)

PartRosExp2 – ansatz (12)

yn+1 = yn +
(
I − h

2 J1,n
)−1 1

2

(
eh J2,n + I

)
h f1(yn)

Q1,1(z) = Q1,2(z) = (
I − z

2
)−1 +

(
I − h

2 J1,n
)−1

ϕ1(h J2,n)h f2(yn)

Q2,1(z) = 1
2

(
ez + I

)
PartExpRos2 – ansatz (13)

Q2,2(z) = ϕ1(z) yn+1 = yn + 1
2

(
eh J2,n + I

) (
I − h

2 J1,n
)−1

h f1(yn)

+ϕ1(h J2,n)
(
I − h

2 J1,n
)−1

h f2(yn)
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simplify to the ROS2 scheme. It should be noted that we derived these methods using
classical order conditions theory. In our future research, we plan to investigate whether
stiffly accurate methods approach of [14] can be used to build similar partitioned
methods.

As mentioned previously, implicit-exponential (IMEXP) schemes for linear-
nonlinear partitioned problems were introduced in [14]. In particular, the scheme
HImExp2N (Eq. (4.2) in [14]) is derived for problems of the type y′ = Ly + N (y)
where L is a linear operator and N is a nonlinear operator. Interpreting this scheme in
the context of our ansatz and the derived order conditions, we can easily see that the
methodHImExp2N also satisfies the order conditions (14a). Thus,HImExp2N can also
be used for the nonlinear-nonlinear partitioned problems and is, in fact, a second-order
scheme for problems of the form (1a). Using the notation from this article,HImExp2N
can be written as follows:

Y1 = yn + h

2

(
I − h

2
J1,n

)−1

f (yn) (14a)
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yn+1 = yn + h

(
I − h

2
J1,n

)−1

f (yn) + 2hϕ2(h J2,n)( f2(Y1) − f2(yn)) (14b)

where ϕ2(A) = (eA − I − A/2)A−2.
Additional partitioned nonlinear-nonlinear schemes were also explored in [12, 13],

but both of themethods derived in these publications are limited to first-order accuracy.
We will include the SIERE and SBDF2ERE schemes derived in these papers in our
comparisons:

• SIERE [13]:

yn+1 = yn + h
(
I − h J1,n

)−1 (
f1(yn) + ϕ1(h J2,n) f2(yn)

)

• SBDF2ERE [12]:

yn+1 = yn + 1

3

(
I − 2 h

3
J1,n

)−1 (
yn − yn−1 + 2 h f1(yn) + 2 hϕ1(h J2,n) f2(yn)

)

Note that all the schemes are written so that the f1 partition is treated using the
rational function, while the f2 partition is treated exponentially.

4 Linear stability

As mentioned in the previous section, our work focuses on nonlinear-nonlinear par-
titioning where both f1 and f2 are stiff. In this context, it is important to have good
stability properties. In order to study the linear stability of partitioned integrators, we
assume that the partitioned Jacobian terms J1,n and J2,n are simultaneously diagonal-
izable and consider the following problem:

y′ = λ1y + λ2y where λ1, λ2 ∈ C. (15)

Note that this problem is not able to give a full picture of the linear stability of
additively partitioned problems. For example, it does not take into account the potential
coupling between the two partitions. However, based on our experiments, this problem
allows us to give a good description of the stability of the different methods.

Any one-step method applied to (15) reduces to the recurrence yn+1 = R(z1, z2)yn
where z1 = hλ1, z2 = hλ2 and R(z1, z2) is the stability function of the scheme.
The scheme is then stable if |R(z1, z2)| ≤ 1. The stability functions for all one-step
methods considered in this work are listed in Table 2.

Because the SBDF2ERE scheme is a multi-step method, we determine stability
differently. After applying the method to the linear problem (15), we obtain the recur-
rence

yn+1 + R1(z1, z2)yn + R0(z1, z2)yn−1 = 0
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Table 2 Stability functions for one-step methods

RosExp2 ExpRos2 HImExp2N PartRosExp2 PartExpRos2 SIERE

R(z1, z2) 1 + 2ϕ1(z2)
2−z1

(z1 + z2)
2+z1
2−z1

ez2 ez2
1−z1

where R1(z1, z2) = − 2
3−2z1

(1 + ez2) and R0(z1, z2) = 1
3−2z2

. The method will be

stable when w1 and w2, the roots of the polynomial w2 + R1(z1, z2)w + R0(z1, z2),
satisfy the root condition.

Because both z1 and z2 are complex-valued, the stability regions for both one-step
and multi-step methods are challenging to visualize. To simplify our presentation of
stability, we will use A(α)-stability. For a stability function R(z) of a single complex
variable, a method is said to be A(α)-stable if it includes a sector of an angle α in its
stability region with α defined as follows:

α = max{α : ∀z (z ∈ C
− ∧ | arg(z) − π | ≤ α) ⇒ |R(z)| ≤ 1}. (16)

For non-partitioned schemes,α is themaximumvalue of the angle such that themethod
is stable for all complex z values in the sector delimited by the lines with an angle −α

and +α with respect to the negative real axis. This value ranges from 0◦ if the method
is only stable on the negative real axis to 90◦ for a method that is stable in the entire
left half-plane. When the angle of the α-stability of a scheme is equal to 90◦, we say
that the method is A-stable.

By fixing either z1 or z2, we can reduce the stability function of a partitioned scheme
to a function of a single complex variable. We can then compute the stability angle α
in the remaining free variable. This can be expressed mathematically as

fixingz1 : α(z1) = max{α : ∀z2 (z2 ∈ C
− ∧ | arg(z2) − π | ≤ α) ⇒ |R(z1, z2)| ≤ 1}, (17a)

fixingz2 : α(z2) = max{α : ∀z1 (z1 ∈ C
− ∧ | arg(z1) − π | ≤ α) ⇒ |R(z1, z2)| ≤ 1}, (17b)

Fixing z1 or z2 over a grid of values and using color to represent the stability angle
makes it possible to easily visualize the stability of each method. Figure 1 shows the
α-stability for the schemes presented in the previous section. Note that ordinarily, due
to the high dimensionality of the stability function R(z1, z2), it is difficult to assess
the properties of the stability regions. Using the approach described above, it is easier
to visualize the stability regions. To our knowledge, this approach to visualizing the
linear stability of a method has not been used before. Plots like Fig. 1 provide a visual
guide to the overall shape of the stability regions. Additional visualization can be done
if one is interested in the geometric details of a subregion. For example, different types
of plots, such as graph of the angle value along the real axes, can be created to better
assess stability for eigenvalues on the real axes.

In Fig. 1a, we see that α = 90◦ for all values of z1 and z2. This implies that the
schemesPartRosExp2,PartExpRos2, and SIERE are all A-stable. This can be formally
proven by observing that the stability function for each of these methods is a product
of two A-stable functions in z1 and z2, respectively (e.g., the stability functions of
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Fig. 1 α-stability angles for the partitioned schemes when z1 is fixed (left column) or z2 is fixed (right
column). The x and y axis of the plots in the left and right columns, respectively, correspond to the real
and imaginary parts of z1 and z2. The color represents the stability angle α defined in (17a) and (17b).
The white regions correspond to parameter values where the stability region is bounded and therefore not
α-stable even for α = 0
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PartRosExp2 and PartExpRos2 are the products of the functions R1(z) = ez and
R2(z) = 2+z

2−z ). Since both of these functions are A-stable, the product must also be
A-stable.

Figure 1b shows that the stability of the schemesRosExp2, ExpRos2 andHImExp2N
is more restricted. Specifically, there are restrictions on stability in z1 if values of z2 are
close to the imaginary axes. However, for problems with spectrum lying sufficiently
away from the imaginary axes, stability is retained. Finally, the stability of the scheme
SBDF2ERE, presented in Fig. 1c, is good overall, with some limitations close to the
origin.

5 Numerical experiments

The stability properties of the new schemes for linear equations with constant coef-
ficients provide necessary but not sufficient conditions for the stability of variable
coefficients and nonlinear problems. In this section, we summarize numerical experi-
ments that confirm that the conclusions of our analysis also apply to more complicated
problems. Since we are interested in problems where it is known a priory that parti-
tioning will be beneficial, we compare the new schemes with other methods that can
take advantage of partitioning rather than general time integration schemes.

5.1 Advection–diffusion PDE (AdvDiff)

We consider the following 1D advection–diffusion PDE:

∂u

∂t
+ ∂

∂x

(
α0u + α1u

2
)

= ∂

∂x

[
(β0 + β1u)

∂u

∂x

]
, x ∈ [0, 1], t ∈ [0, 0.1], (18)

We use a Gaussian function as the initial condition u(x, 0) = e−5000(x−0.2)2 and
homogeneous Dirichlet boundary conditions u(0, t) = u(1, t) = 0. We also consider
two sets of parameters: the first corresponds to a linear problem with α0 = 5, α1 = 0,
β0 = 10−2, and β1 = 0, and the second represents a nonlinear problem with α0 = 5,
α1 = 5, β0 = 5× 10−4, and β1 = 10−1. Figure 2 shows the solution u of this PDE at
the initial and final time. Equation (18) is discretized in space using standard second-
order centered finite differences with 1000 grid points. This discretization leads to a
system of N ordinary differential equations that can be written as follows:

u′ = fadv(u) + fdiff(u)

where fadv(u) correspond to the discretized advection term ∂
∂x

(
α0u + α1u2

)
and

fdiff(u) correspond to the discretized diffusion term ∂
∂x

[
(β0 + β1u) ∂u

∂x

]
. In the

next section, we will explore the cases where f1 = fadv, f2 = fdiff (rational
advection/exponential diffusion) as well as f1 = fdiff, f2 = fadv (rational diffu-
sion/exponential advection).
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Fig. 2 Solution at initial and final time for the PDE (18) with both sets of parameters

5.2 Schnakenberg with non-linear diffusion (Schnakenberg_NL)

The following equations describe two reacting and diffusing chemical species (u and
v) evolving in two-dimensional space:

∂u

∂t
= γ (a − u + u2v) + ∇.(uβ1∇u), (19a)

∂v

∂t
= γ (b − u2v) + d ∇.(vβ2∇v), (x, y) ∈ [0, 1]2 (19b)

where a = 0.1, b = 0.9, d = 10, β1 = β2 = 10, tend = 10−2, and γ = 1000. As
in [23, Section 4.2], the initial condition is a perturbation of the stable equilibrium,
and the boundary conditions are periodic in both directions. The diffusion terms are
discretized using the standard second-order finite differences on a uniform grid with
Nx = Ny = 128. The reaction terms are treated exponentially, while the diffusion
terms are treated using the rational function.

5.3 1D semilinear parabolic problem (Semilinear_para)

Finally, we use the following one-dimensional semilinear parabolic problem described
in [24] (note that we use the term “semilinear parabolic problem” as it was named in
[24]):

∂u

∂t
(x, t) − ∂2u

∂x2
(x, t) =

∫ 1

0
u(x, t)dx + φ(x, t) x ∈ [0, 1], t ∈ [0, 1], (20)

with the homogeneous Dirichlet boundary conditions. The source function φ is cho-
sen so that u(x, t) = x(1 − x)et is the exact solution. This problem was originally
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designed to demonstrate the order reduction that some exponential integrators can
suffer when applied to stiff problems. It is therefore used here to validate that no such
order reduction is exhibited by our schemes. The diffusion term is discretized using
the standard second-order finite differences on a uniform grid with Nx = 400. The
nonlinear terms on the right-hand side are treated exponentially, while the diffusion
term is treated using the rational function.

5.4 Numerical results

Numerical examples presented below verify the order of convergence of the newly
derived methods and compare their performance with the existing methods described
above. The implementation of the integrators was done inMATLAB 2020b. For all the
schemes, we use the KIOPS method introduced in [17] to approximate the products of
exponential and ϕ−functions with vectors. This method allows us to approximate both
exponential functions in the schemesPartExpRos2 andPartRosExp2 at once as a single
computation. The rational functions are approximated using the GMRESmethod [25]
with an incomplete LU factorization with no fill preconditioner (ILU(0)). Because
the scheme BDF2ERE is a multi-step integrator where the solution at the current and
previous time step must be known, the initial step must be treated differently. In this
work, the initial time step is computed using the 2nd order EPI2 method. The error is
computed at the final time as the discrete 2−norm between the approximate solution

Fig. 3 Convergence plots (error vs. time step) for the linear and nonlinear AdvDiff, Schnakenberg_NL, and
Semilinear_para problems
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and a reference solution computed using MATLAB’s ode15s integrator with absolute
and relative tolerances set to 10−14.

In the first set of tests, we verify the order of convergence of all the methods on the
problems presented above. Figure 3 shows the convergence plot (error vs. time step
in log-log scale) on the linear and nonlinear advection–diffusion PDE, Schnakenberg
PDE, and the semilinear parabolic problems. Note that for the advection–diffusion
PDE, we used f1 = fadv and f2 = fdiff. We can see that, as expected, the methods
SBDF2ERE and SIERE both converge at first order, while the methods introduced in
Table 1 and the HImExp2N scheme converge at second order. We can also see that for
the advection–diffusion and the Schnakenberg PDE, the order of multiplication of the
functions Qi, j does not influence the accuracy of the solution (ansatz (12) vs. (13)).
However, for the semilinear parabolic problem, the order does affect the accuracy. For
this problem and this partitioning, applying the function of J2,n first leads to better
accuracy. This case illustrates that the accuracy of the method does depend on the
problem and the chosen partitioning.

Next, we want to validate the stability advantages of the new schemes that our
analysis of Sect. 4 predicted. We showed that for the schemes ExpRos2, RosExp2, and
HImExp2N, if z2 is close to the imaginary axis, then stability for z1 is either bounded or
restricted. Figure 4 shows the convergence diagram for the advection–diffusion PDE
problem. Figure 4a and b correspond to the problem with linear parameters while

Fig. 4 Stability comparison for the AdvDiff problem with different partitioning
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Fig. 4c and d correspond to the nonlinear parameters. The plots on the left (Fig. 4a
and c) are obtained using the partitioning f1 = fadv, f2 = fdiff, and the plots on the
right (Fig. 4b and d) are obtained using the partitioning f1 = fdiff, f2 = fadv. The
eigenvalues corresponding to the advection term fadv are expected to be close to the
imaginary axis, while the eigenvalues of the diffusion term are expected to be along
the negative real axis. Therefore, based on the stability analysis, we are expecting the
schemes ExpRos2, RosExp2, and HImExp2N to have worse stability for f2 = fadv
(right plots). For both the linear and nonlinear parameters, we see that this is indeed
the case, and these methods are stable only for a more restrictive range of time step
sizes.

We now compare the performance of the methods on the different test problems.
Figure 5 shows the precision diagrams (error vs. CPU time) for the linear and nonlinear
advection–diffusion PDE, Schnakenberg PDE, and the semilinear parabolic problems.
As expected, the precision diagrams clearly demonstrate that the first-order methods
SBDF2ERE andSIERE are less efficient than all of the second-order schemes.Also, for
cases where the linear solve is sufficiently more costly than the exponential functions
estimation, such as systems solved in Fig. 5a and c, method PartExpRos2 is less
efficient since unlike all other second-order schemes, it requires two linear systems to
be solved per iteration. Among the second-order methods, there is no clear winner in
terms of efficiency, and the choice of the best methods should depend on the particulars
of the operators f1 and f2 and the costs of evaluating these functions, their respective

Fig. 5 Precision diagram (error vs. CPU time) for the linear and nonlinear AdvDiff, Schnakenberg_NL,
and Semilinear_parabolic problems

123

1158 Numerical Algorithms (2024) 96:1143–1161



Jacobian contributions, and the corresponding costs of linear solves and exponential
function evaluations.

6 Conclusion

In this paper,wepresented a new framework for deriving partitioned integrators for stiff
systems of ODEs with nonlinear-nonlinear additive forcing terms. The new time inte-
grators constructed using this framework are particularly efficient for problems where
both nonlinear forcing terms are stiff, but one of them can be solved efficiently using
an implicit approach, and another can be integrated exponentially. The new ansatz
that allowed us to derive specific second-order schemes can potentially be extended
to construct higher-order methods, where the choice of the sequential order for the
operators is also very important. We intend to pursue this line of research in our future
work. We have used linear stability analysis and a novel way to visualize the proper-
ties of a stability function to demonstrate that several of the new methods are A-stable
and thus offer superior stability compared to existing schemes for similar problems.
Convergence and efficient performance of the new methods have been demonstrated
using several numerical examples. A thorough comparison of these schemes with inte-
grators proposed for such problems in previous publications has been performed. We
showed that the novel exponential-Rosenbrock-type methods are both more accurate
and more stable than previously published methods and can be effectively used for a
variety of applications.
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