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Abstract
In this paper, for solving a broad class of large-scale nonconvex and nons-
mooth optimization problems, we propose a stochastic two-step inertial Bregman
proximal alternating linearized minimization (STiBPALM) algorithm with variance-
reduced stochastic gradient estimators. And we show that SAGA and SARAH
are variance-reduced gradient estimators. Under expectation conditions with the
Kurdyka–Łojasiewicz property and some suitable conditions on the parameters, we
obtain that the sequence generated by the proposed algorithm converges to a critical
point. And the general convergence rate is also provided. Numerical experiments on
sparse nonnegative matrix factorization and blind image-deblurring are presented to
demonstrate the performance of the proposed algorithm.
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1 Introduction

In this paper, we are interested in solving the following composite optimization prob-
lem:

min
x l y m

x y f x H x y g y (1.1)
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where f l and g m are proper lower semicon-
tinuous. H x y 1

n
n
i 1 Hi x y has a finite-sum structure, Hi

l m

is continuously differentiable, and Hi is Lipschitz continuous on bounded subsets.
Note that here and throughout the paper, no convexity is imposed on . In practi-
cal application, numerous problems can be formulated into the form of (1.1), such
as signal and image processing [1, 2], nonnegative matrix factorization [3–5], blind
image-deblurring [5, 6], sparse principal component analysis [7, 8], and compressed
sensing [9, 10]. Here, we list two applications of (1.1), which will also be used in the
numerical experiments.

(1) Sparse nonnegative matrix factorization (S-NMF). The S-NMF has important
applications in image processing (face recognition) and bioinformatics (clustering of
gene expressions) (see [4] for details). Given a matrix A l m and an integer
r 0, we want to seek a factorization A XY , where X l r and Y r m are
nonnegative with r min l m and X is sparse. One way to solve this problem is by
finding a solution for the nonnegative least squares model given by

min
X Y 2

A XY 2
F X Y 0 Xi 0 s i 1 2 r (1.2)

where 0, Xi denotes the i th column of X , and Xi 0 denotes the number of
nonzero elements of the i th column of X . In this formulation, the sparsity on X is
strictly enforced using the nonconvex l0 constraint. Let H X Y 2 A XY 2

F
l
i 1 2 Ai Xi Y 2

F , f X X 0 X X1 0 s X Xr 0 s X , g Y
Y 0 Y , where Ai denotes the i th low of A, and C is the indicator function on C .
Then, this model (1.2) can be converted to (1.1).

(2) Blind image deconvolution (BID). Let A be the observed blurred image, and let
X be the unknown sharp image of the same size. Furthermore, let Y denote a small
unknown blur kernel, and a typical variational formulation of the blind deconvolution
problem is given by the following:

min
X Y

1

2
A X Y 2

F

2d

r 1

R D X r 0 X 1 0 Y 1 Y 1 1

(1.3)
where 0, is the two-dimensional convolution operator, X is the image to recover,
and Y is the blur kernel to estimate. Here, R is an image regularization term, that
imposes sparsity on the image gradient and hence favors sharp images. D is the
differential operator, computing the horizontal and vertical gradients for each pixel.
This model (1.3) can be converted to (1.1), where H X Y 1

2 A X Y 2
F

2d
r 1 R D X r , f X 0 X 1 X , g Y Y 1 1 Y 0 Y 1 Y . See [6]

for details.
For solving problem (1.1), a frequently applied algorithm is the following proximal

alternating linearized minimization algorithm (PALM) by Bolte et al. [11] based on
results in [12, 13]:

xk 1 argminx l f x x x H xk yk
1

2 k
x xk

2
2

yk 1 argminy m g y y y H xk 1 yk
1

2 k
y yk

2
2

(1.4)
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where k k and k k are positive sequences. To further improve the perfor-
mance of PALM, Pock and Sabach [6] introduced an inertial step to PALM and
proposed the following inertial proximal alternating linearized minimization (iPALM)
algorithm:

u1k xk 1k xk xk 1 1k xk 1k xk xk 1

xk 1 argminx l f x x x H 1k yk
1

2 k
x u1k

2
2

u2k yk 2k yk yk 1 2k yk 2k yk yk 1

yk 1 argminy m g y y y H xk 1 2k
1

2 k
y u2k

2
2

(1.5)

where 1k 2k 1k 2k [0 1]. Then, Gao et al. [14] presented a Gauss–Seidel type
inertial proximal alternating linearized minimization (GiPALM) algorithm, in which
the inertial step is performed whenever the x or y-subproblem is updated. In order
to use the existing information as much as possible to further improve the numerical
performance, Wang et al. [15] proposed a new inertial version of proximal alternat-
ing linearized minimization (NiPALM) algorithm, which inherits both advantages of
iPALM and GiPALM.

The Bregman distance regularization is an effective way to improve the numerical
results of the algorithm. In [16], the authors constructed the following two-step inertial
Bregman alternating minimization (TiBAM) algorithm using the information of the
previous three iterates:

xk 1 argminx l x yk D 1 x xk 1k x xk 1 xk 2k x xk 2 xk 1

yk 1 argminy m xk 1 y D 2 y yk 1k y yk 1 yk 2k y yk 2 yk 1

(1.6)
where D i i 1 2 denotes the Bregman distance with respect to i i 1 2 .
By linearizing H x y in TiBAM algorithm, the authors [17] proposed the following
two-step inertial Bregman proximal alternating linearized minimization (TiBPALM)
algorithm:

xk 1 argminx l f x x x H xk yk D 1 x xk 1k x xk 1 xk

2k x xk 2 xk 1

yk 1 argminy m g y y y H xk 1 yk D 2 y yk 1k y yk 1 yk

2k y yk 2 yk 1
(1.7)

If we take 1 x 1
2 x 2

2 and 2 y 1
2 y 2

2 for all x l and y m ,
then (1.7) becomes two-step inertial proximal alternating linearized minimization
(TiPALM) algorithm. Then, based on alternating minimization algorithm, Chao et al.
[18] proposed inertial alternating minimization with the Bregman distance (BIAM)
algorithm. Other related work can be found in [19, 20] and their references.

It should be noted that all these works are obtained for deterministic methods, i.e.,
no randomness involved. But when the dimension of data is very large, the computing
cost of the full gradient of the function H x y is often prohibitively expensive. In
order to overcome this difficulty, stochastic gradient approximationswere applied (see,
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e.g., [21] and the references therein). A block stochastic gradient iteration combining
a simple stochastic gradient descent (SGD) estimator with PALM was first proposed
by Xu and Yin [22]. To weaken the assumptions on the objective function in [22] and
improve the estimates on the convergence rate of a stochastic PALM algorithm, Driggs
et al. [23] used more sophisticated so-called variance-reduced gradient estimators
instead of the simple stochastic gradient descent estimators and proposed the following
stochastic proximal alternating linearized minimization (SPRING) algorithm:

xk 1 argminx l f x x x xk yk
1

2 k
x xk

2
2

yk 1 argminy m g y y y xk 1 yk
1

2 k
y yk

2
2

(1.8)

The key of SPRINGalgorithm is replacing the full gradient computations x H xk yk

and y H xk 1 yk with stochastic estimations x xk yk and y xk 1 yk , respec-
tively. Then, Hertrich et al. [24] introduced the following inertial variant of a stochastic
PALM algorithm with a variance-reduced gradient estimator, called SiPALM:

u1k xk 1k xk xk 1 1k xk 1k xk xk 1

xk 1 argminx l f x x x 1k yk
1

2 k
x u1k

2
2

u2k yk 2k yk yk 1 2k yk 2k yk yk 1

yk 1 argminy m g y y y xk 1 2k
1

2 k
y u2k

2
2

(1.9)

where 1k 2k 1k 2k [0 1]. Also, some variance-reduced gradient estimators
are proposed to solve the nonconvex optimization problem. The classical stochastic
gradient direction is modified in various ways so as to drive the variance of the gradient
estimator towards zero, such as SAG [25], SVRG [26, 27], SAGA [28], and SARAH
[29, 30].

In this paper, we combine the inertial technique, Bregman distance, and stochas-
tic gradient estimators to develop a stochastic two-step inertial Bregman proximal
alternating linearized minimization (STiBPALM) algorithm to solve the nonconvex
optimization problem (1.1). Our contributions are listed as follows:

(1) We propose the STiBPALM algorithm with variance-reduced stochastic gradient
estimators to solve the nonconvex optimization problem (1.1). And we show that
SAGA and SARAH are variance-reduced gradient estimators (Definition 3.4) in
the appendix.

(2) We provide theoretical analysis to show that the proposed algorithm with the
variance-reduced stochastic gradient estimator has global convergence under
expectation conditions. Under the expectation version of Kurdyka–Łojasiewicz
(KŁ) property, the sequence generated by the proposed algorithm converges to a
critical point and the general convergence rate is also obtained.

(3) We use several well-studied stochastic gradient estimators (e.g., SGD, SAGA, and
SARAH) to test the performance of STiBPALM for sparse nonnegative matrix
factorization and blind image-deblurring problems. And compared with some
existing algorithms (e.g., PALM, iPALM, SPRING, and SiPALM) in the literature,
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we report some preliminary numerical results to demonstrate the effectiveness of
the proposed algorithm.

This paper is organized as follows. In Sect. 2,we recall some concepts and important
lemmas which will be used in the proof of main results. Section 3 introduces our
STiBPALM algorithm in detail. We discuss the convergence behavior of STiBPALM
in Sect. 4. In Sect. 5, we perform some numerical experiments and compare the results
with other algorithms. We give the specific theoretical analysis to show that SAGA
and SARAH have variance-reduced stochastic gradient estimators in the appendix.

2 Preliminaries

In this section, we summarize some useful definitions and lemmas.

Definition 2.1 Let F d be a proper and lower semicontinuous
function. For x domF , the Fréchet subdifferential of F at x , written F x , is the
set of vectors d which satisfy

lim inf
y x

1

x y 2
F y F x y x 0

If x domF , then F x . The limiting-subdifferential, or simply the subdiffer-
ential for short, of F at x domF , written F x , is defined as follows:

F x d xk x F xk F x k F xk k

Remark 2.1 (a) The above definition implies that F x F x for each x d ,
where the first set is convex and closed while the second one is closed. (see [31]).

(b) (Closedness of F) Let xk k and k k be sequences in d such that k

F xk for all k . If xk k x and F xk F x as k , then
F x .

(c) If F d be a proper and lower semicontinuous and H d

is a continuously differentiable function, then F H x F x H x
for all x d .

(d) A necessary (but not sufficient) condition for x d to be a minimizer of F is

0 F x

A point satisfying 0 F x is called limiting-critical or simply critical. The set
of critical points of F is denoted by critF .

Definition 2.2 (Kurdyka–Łojasiewicz property [12]) Let F d be a
proper and lower semicontinuous function.

(i) The function F d is said to have the Kurdyka–Łojasiewicz
(KŁ) property at x domF if there exist 0 , a neighborhood U of x
and a continuous concave function 0 such that 0 0, is C1
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on 0 , for all s 0 , it is s 0, and for all x in U F x F
F x , the Kurdyka–Łojasiewicz inequality holds

F x F x dist 0 F x 1

(ii) Proper lower semicontinuous functions which satisfy the Kurdyka–Łojasiewicz
inequality at each point of the domain of its subdifferential are called Kurdyka–
Łojasiewicz (KŁ) functions.

Roughly speaking, KŁ functions become sharp up to reparameterization via , a
desingularizing function for F . TypicalKŁ functions include the class of semialgebraic
functions [32, 33]. For instance, the l0 pseudonorm and the rank function are KŁ.
Semialgebraic functions admit desingularizing functions of the form r ar1

for a 0, and 0 1 is known as the KŁ exponent of the function [11, 32]. For
these functions, the KŁ inequality reads

F x F x C F x (2.1)

for some C 0.

Definition 2.3 A function F is said convex if domF is a convex set and if, for all x ,
y domF , 0 1 ,

F x 1 y F x 1 F y

F is said -strongly convex with 0 if F 2
2 is convex, i.e.,

F x 1 y F x 1 F y
1

2
1 x y 2

for all x , y domF and 0 1 .

Suppose that the function F is differentiable. Then, F is convex if and only if domF
is a convex set and

F x F y F y x y

holds for all x , y domF . Moreover, F is -strongly convex with 0 if and only if

F x F y F y x y
2

x y 2

for all x , y domF .

Definition 2.4 Let d be a convex and Gâteaux differentiable
function. The function D dom intdom 0 , defined by

D x y x y y x y

is called the Bregman distance with respect to .
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From the above definition, it follows that

D x y
2

x y 2 (2.2)

if is -strongly convex.

Lemma 2.1 (Descent lemma[34]) Let F d be a continuously differentiable
function with gradient F assumed L-Lipschitz continuous. Then,

F y F x y x F x
L

2
x y 2 x y d (2.3)

Lemma 2.2 Let F d be a function with L-Lipschitz continuous gradient,
G d a proper lower semicontinuous function, and z argmin d G
d x D x u , where D denotes the Bregman distance

with respect to , and x, d, u, d . Then, for all y d ,

F z G z F y G y F x d z y
L

2
x y 2 D y x

L

2
z x 2 D z x y z u y z (2.4)

Proof By Lemma 2.1, we have the inequalities

F x F y F x x y
L

2
x y 2

F z F x F x z x
L

2
z x 2

which implies that

F z F y F x z y
L

2
x y 2 L

2
z x 2 (2.5)

Furthermore, by the definition of z, taking y, we obtain

G z d z x D z x z u z

G y d y x D y x y u y

which implies that

G z G y d y z D y x D z x y z u y z (2.6)

Adding (2.5) and (2.6) completes the proof.
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Lemma 2.3 (sufficient decrease property) Let F, G, and z be defined as in Lemma 2.2,
where x, d, u, d . Assume that is -strongly convex. Then, the following
inequality holds, for any 0,

F z G z F x G x
1

2L
d F x 2 L 1

2
x z 2

x z u x z (2.7)

Proof From Lemma 2.2 with y x , we have

F z G z F x G x F x d z x
L

2
x z 2

D z x x z u x z

Using Young’s inequality F x d z x 1
2L d F x 2 L

2 x z 2

and (2.2), we can obtain

F z G z F x G x
1

2L
d F x 2 L

2
x z 2 L

2
x z 2

2
z x 2 x z u x z

which can be abbreviated as the desired result.

3 Stochastic two-step inertial Bregman proximal alternating
linearizedminimization algorithm

Throughout this paper, we impose the following assumptions.

Assumption 3.1 (i) The function is bounded from below, i.e., x y
(ii) For any fixed y, the partial gradient x Hi y is globally Lipschitz with module

L y for all i 1 n , that is,

x Hi x1 y x Hi x2 y L y x1 x2 x1 x2
l

Likewise, for any fixed x , the partial gradient y Hi x is globally Lipschitz
with module Lx ,

y Hi x y1 y Hi x y2 Lx y1 y2 y1 y2
m

(iii) H is Lipschitz continuous on bounded subsets of l m . In other words, for
each bounded subset B1 B2 of l m , there exists MB1 B2 0 such that

x H x1 y1 x H x2 y2 y H x1 y1 y H x2 y2 MB1 B2 x1 x2 y1 y2

for all x1 y1 x2 y2 B1 B2.
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(iv) i i 1 2 is i -strongly convex differentiable function. And the gradient
i is i -Lipschitz continuous, i.e.,

1 x1 1 x2 1 x1 x2 x1 x2
l

2 y1 2 y2 2 y1 y2 y1 y2
m

We now introduce a stochastic version of the two-step inertial Bregman proximal
alternating linearized minimization algorithm. The key of our algorithm is replacing
the full gradient computations x H uk yk and y xk 1 k with stochastic estima-
tions x uk yk and y xk 1 k , respectively. We describe the resulting algorithm
as follows.

Algorithm 3.1 Choose x0 y0 dom and set x i y i x0 y0 , i 1 2. Take
the sequences 1k , 1k 0 1 , 2k , 2k 0 2 , 1k , 1k 0 1
and 2k , 2k 0 2 , where 1 0, 2 0, 1 0 and 2 0. For k 0, let

uk xk 1k xk xk 1 2k xk 1 xk 2

xk 1 argminx l f x x x uk yk D 1 x xk 1k x xk 1 xk

2k x xk 2 xk 1

k yk 1k yk yk 1 2k yk 1 yk 2

yk 1 argminy m g y y y xk 1 k D 2 y yk 1k y yk 1 yk

2k y yk 2 yk 1

(3.1)

where D 1 and D 2 denote the Bregman distance with respect to 1 and 2, respec-
tively.

Stochastic gradients x uk yk and y xk 1 k use the gradients of only a few
indices x Hi uk yk and y Hi xk 1 k for i Bk 1 2 n . The minibatch
Bk is chosen uniformly at random from all subsets of 1 2 n with cardinality
b. The simplest one is the stochastic gradient descent (SGD) estimator [35]. While
the SGD estimator is not variance-reduced, many popular gradient estimators as the
SAGA[28] andSARAH[29, 30] estimators have this property. In this paper,wemainly
consider SAGA (Appendix A) and SARAH (Appendix B) gradient estimators.

Definition 3.1 (SGD [35]) The SGD gradient estimator SG D
x xk yk is defined as

follows:
SG D
x xk yk

1

b
i Bk

x Hi xk yk

where Bk are mini-batches containing b indices.

The SGD gradient estimator uses the gradient of a randomly sampled batch to
represent the full gradient.
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Definition 3.2 (SAGA [28]) The SAGA gradient estimator S AG A
x xk yk is defined

as follows:

S AG A
x xk yk

1

b
i Bk

x Hi xk yk x Hi
i
k yk

1

n

n

j 1

x Hj
j
k yk

where Bk are mini-batches containing b indices. The variables i
k follow the update

rules i
k 1 xk if i Bk and i

k 1
i
k otherwise.

Definition 3.3 (SARAH [29, 30]) The SARAH gradient estimator reads for k 0 as

S AR AH
x x0 y0 x H x0 y0

For k 1 2 , we define random variables pk 0 1 with P pk 0 1
p

and P pk 1 1 1
p , where p 1 is a fixed chosen parameter. Let Bk

be a random subset uniformly drawn from 1 n of fixed batch size b. Then, for
k 1 2 , the SARAH gradient estimator reads as

S AR AH
x xk yk

x H xk yk if pk 0
1
b i Bk x Hi xk yk x Hi xk 1 yk 1

S AR AH
x xk 1 yk 1 if pk 1

In our analysis, we assume that stochastic gradient estimator used in Algorithm 3.1
is variance-reduced, which is a quite general assumption in stochastic gradient algo-
rithms [23, 24]. The following definition is analogous to Definition 2.1 in [23].

Definition 3.4 (Variance-reduced gradient estimator) Let zk k xk yk k be
the sequencegeneratedbyAlgorithm3.1with somegradient estimator . This gradient
estimator is called variance-reduced with constants V1 V2 V 0, and 0 1 if
it satisfies the following conditions:

(i) (MSE bound) There exists a sequence of random variables k k of the form
k

s
i 1

i
k

2 for some nonnegative random variables i
k such that

k x uk yk x H uk yk
2

y xk 1 k y H xk 1 k
2

k V1 k zk 1 zk
2 zk zk 1

2 zk 1 zk 2
2 zk 2 zk 3

2

(3.2)

and, with k
s
i 1

i
k

k x uk yk x H uk yk y xk 1 k y H xk 1 k

k V2 k zk 1 zk zk zk 1 zk 1 zk 2 zk 2 zk 3
(3.3)
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(ii) (Geometric decay) The sequence k k decays geometrically:

k k 1 1 k V k zk 1 zk
2 zk zk 1

2 zk 1 zk 2
2

zk 2 zk 3
2 (3.4)

(iii) (Convergence of estimator) If zk k satisfies limk zk zk 1
2 0, then

k 0 and k 0.

In the following, if zk k xk yk k is the bounded sequence generated by
Algorithm 3.1, we assume H is M-Lipschitz continuous on xk yk k .

Assumption 3.2 For the sequences xk k and yk k generated by Algorithm 3.1,
there exists L 0 such that

sup L yk k L and sup Lxk k L

where L yk and Lxk are the Lipschitz constants for x Hi yk and y Hi xk , respec-
tively.

Proposition 3.1 Let zk k xk yk k be the bounded sequence generated by
Algorithm 3.1. Then, the SAGA gradient estimator is variance-reduced with param-

eters V1
16N2 2

b , V2
4N

b
, V

408nN2 1 2 2
1

2
2

b2
and b

2n , where

N max M L , max 1 2 . The SARAH estimator is variance-reduced with

parameters V1 6 1 1
p M2 1 2 2

1
2
2 , V2 M 6 1 1

p 1 2 2
1

2
2 ,

V 6 1 1
p M2 1 2 2

1
2
2 and 1

p .

See the detailed proof of Proposition 3.1 in Appendix A and B. And the conclusion
that SVRG gradient estimator is variance-reduced can be obtained similarly.

Below, we give the supermartingale convergence theorem that will be applied to
obtain almost sure convergence of sequences generated bySTiBPALM(Algorithm 3.1).

Lemma 3.1 (Supermartingale convergence) Let Xk k and Yk k be sequences
of bounded nonnegative random variables such that Xk and Yk depend only on the
first k iterations of Algorithm 3.1. If

k Xk 1 Yk Xk (3.5)

for all k, then k 0 Yk a.s. and Xk converges a.s.

4 Convergence analysis under the KŁ property

In this section, under Assumptions 3.1 and 3.2, we prove convergence of the sequence
and extend the convergence rates of SPRING to Algorithm 3.1, for semialgebraic
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function . Given k , define the quantity

k zk
1

L
k

V1 V

L
1 2

2

2L 2
1

2
2 3Z zk zk 1

2

V1 V

L
2

2

2L 2
2 2Z zk 1 zk 2

2 V1 V

L
Z zk 2 zk 3

2

(4.1)

where
10 V1 V 4L2 2

1
2
2

L2 , Z V1 V

10 V1 V 4L2 2
1

2
2

0, 0

is small enough. Our first result guarantees that k is decreasing in expectation.

Lemma 4.1 (l2 summability) Suppose Assumptions 3.1 and 3.2 hold. Let zk k be
the sequence generated by Algorithm 3.1 with variance-reduced gradient estimator,
and let

min 1 2 L 2 1 2 2 2 10 V1 V 4L2 2
1

2
2 6

then the following conclusions hold.

(i) k satisfies

k k 1 zk 1 zk
2 zk zk 1

2 zk 1 zk 2
2 Z zk 2 zk 3

2
k

(4.2)

where L
2 1 2 10 V1 V 4L2 2

1
2
2 3 0.

(ii) The expectation of the squared distance between the iterates is summable:

k 0

xk 1 xk
2 yk 1 yk

2

k 0

zk 1 zk
2

Proof (i) Applying Lemma 2.3 with F H yk , G f , z xk 1, x xk ,
d x uk yk , u xk 1 xk and xk 2 xk 1, for any 0, we have

H xk 1 yk f xk 1

H xk yk f xk
1

2L
x uk yk x H xk yk

2 L 1 1

2
xk 1 xk

2

1k xk 1 xk xk xk 1 2k xk 1 xk xk 1 xk 2

1
H xk yk f xk

1

L
x uk yk x H uk yk

2 1

L
x H uk yk x H xk yk

2

L 1 1

2
xk 1 xk

2 1k

2
xk 1 xk

2 xk xk 1
2

2k

2
xk 1 xk

2 xk 1 xk 2
2
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2
H xk yk f xk

1

L
x uk yk x H uk yk

2 L
uk xk

2

L 1 1

2
1 2

2
xk 1 xk

2 1

2
xk xk 1

2 2

2
xk 1 xk 2

2

H xk yk f xk
1

L
x uk yk x H uk yk

2 2L 2
1k 1

2
xk xk 1

2

2L 2
2k 2

2
xk 1 xk 2

2 L 1 1

2
1 2

2
xk 1 xk

2 (4.3)

Inequality (1) is the standard inequality a c 2 2 a b 2 2 b c 2, and
(2) uses Assumption 3.1 (ii) and Assumption 3.2. Analogously, for the updates in
yk , we use Lemma 2.3 with F H xk 1 , G g , z yk 1, x yk ,
d y xk 1 k , u yk 1 yk and yk 2 yk 1, we have

H xk 1 yk 1 g yk 1

H xk 1 yk g yk
1

L
y xk 1 k y H xk 1 k

2 2L 2
1k 1

2
yk yk 1

2

2L 2
2k 2

2
yk 1 yk 2

2 L 1 2

2
1 2

2
yk 1 yk

2 (4.4)

Adding (4.3) and (4.4), we have

xk 1 yk 1

xk yk
1

L
x uk yk x H uk yk

2
y xk 1 k y H xk 1 k

2

L 1

2
1 2

2
zk 1 zk

2 2L 2
1 1

2
zk zk 1

2

2L 2
2 2

2
zk 1 zk 2

2

where min 1 2 . Applying the conditional expectation operator k , we can
bound the MSE terms using (3.2). This gives

k zk 1
L 1

2
1 2

2

V1

L
zk 1 zk

2

zk
1

L
k

V1

L

2L 2
1 1

2
zk zk 1

2 V1

L

2L 2
2 2

2
zk 1 zk 2

2

V1

L
zk 2 zk 3

2 (4.5)

Next, we use (3.4) to say that

1

L
k

1

L
k k 1 k V k zk 1 zk

2 zk zk 1
2
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zk 1 zk 2
2 zk 2 zk 3

2

Combining these inequalities, we have

k zk 1
1

L
k 1

L 1

2
1 2

2

V1 V

L
zk 1 zk

2

zk
1

L
k

V1 V

L

2L 2
1 1

2
zk zk 1

2

V1 V

L

2L 2
2 2

2
zk 1 zk 2

2 V1 V

L
zk 2 zk 3

2

This is equivalent to

k zk 1
1

L
k 1

V1 V

L
1 2

2

2L 2
1

2
2 3Z zk 1 zk

2

V1 V

L
2

2

2L 2
2 2Z zk zk 1

2 V1 V

L
Z zk 1 zk 2

2

L 1

2

2 V1 V

L
1 2

2L 2
1

2
2 3Z zk 1 zk

2

zk
1

L
k

V1 V

L
1 2

2

2L 2
1

2
2 3Z zk zk 1

2

V1 V

L
2

2

2L 2
2 2Z zk 1 zk 2

2 V1 V

L
Z zk 2 zk 3

2

Z
V1 V

L
zk zk 1

2 Z
V1 V

L
zk 1 zk 2

2 Z zk 2 zk 3
2

(4.6)

We have

k k 1
L 1

2

2 V1 V

L
1 2

2L 2
1

2
2 3Z zk 1 zk

2

k Z
V1 V

L
zk zk 1

2 Z
V1 V

L
zk 1 zk 2

2 Z zk 2 zk 3
2

(4.7)

By
10 V1 V 4L2 2

1
2
2

L2 , we have L 1
2

2 V1 V
L 1 2

2L 2
1

2
2 3Z L

2 1 2 10 V1 V 4L2 2
1

2
2 3 .

Hence, (4.7) becomes

k k 1 zk 1 zk
2 zk zk 1

2 zk 1 zk 2
2 Z zk 2 zk 3

2
k

(4.8)
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According to L 2 1 2 2 2 10 V1 V 4L2 2
1

2
2 6 , we

have 0. So we prove the first claim.
(ii) We apply the full expectation operator to (4.8) and sum the resulting inequality

from k 0 to k T 1,

T

T 1

k 0

zk 1 zk
2

T 1

k 0

zk zk 1
2

T 1

k 0

zk 1 zk 2
2

Z
T 1

k 0

zk 2 zk 3
2

0

Using the fact that T ,

T 1

k 0

zk 1 zk
2

T 1

k 0

zk zk 1
2

T 1

k 0

zk 1 zk 2
2

Z
T 1

k 0

zk 2 zk 3
2

0 (4.9)

Taking the limit T , we have the sequence zk 1 zk
2 is summable.

The next lemma establishes a bound on the norm of the subgradients of zk .

Lemma 4.2 (Subgradient bound) Suppose Assumptions 3.1 and 3.2 hold. Let zk k
be a bounded sequence, which is generated by Algorithm 3.1 with variance-reduced
gradient estimator. For k 0, define

Ak
x x H xk yk x uk 1 yk 1 1 xk 1 1 xk 1 k 1 xk 1 xk 2

2 k 1 xk 2 xk 3

Ak
y y H xk yk y xk k 1 2 yk 1 2 yk 1 k 1 yk 1 yk 2

2 k 1 yk 2 yk 3

Then, Ak
x Ak

y xk yk and

k 1 Ak
x Ak

y (4.10)

p k 1 zk zk 1 zk 1 zk 2 zk 2 zk 3 zk 3 zk 4 k 1

where p 2 2N N 1 N 2 1 2 V2, N max M L ,
max 1 2 .
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Proof By the definition of xk , we have that 0 must lie in the subdifferential at point xk

of the function

x f x x x uk 1 yk 1 D 1 x xk 1 1 k 1 x xk 2 xk 1 2 k 1 x xk 3 xk 2

Since are differential, we have

0 f xk x uk 1 yk 1 1 xk 1 xk 1 1 k 1 xk 2 xk 1

2 k 1 xk 3 xk 2

which implies that

x H xk yk x uk 1 yk 1 1 xk 1 1 xk

1 k 1 xk 1 xk 2 2 k 1 xk 2 xk 3

x H xk yk f xk (4.11)

Similarly, we have

y H xk yk y xk k 1 2 yk 1 2 yk

1 k 1 yk 1 yk 2 2 k 1 yk 2 yk 3

y H xk yk g yk (4.12)

Because of the structure of , from (4.11) and (4.12), we have Ak
x Ak

y xk yk

All that remains is to bound the norms of Ak
x and Ak

y . Because H is M-Lipschitz
continuous on bounded sets, then from Assumption 3.1 (iii) and (iv), we have

Ak
x

x H xk yk x uk 1 yk 1 1 xk 1 1 xk

1 k 1 xk 1 xk 2 2 k 1 xk 2 xk 3

x H xk yk x H uk 1 yk 1 x H uk 1 yk 1 x uk 1 yk 1

1 xk 1 xk 1 k 1 xk 1 xk 2 2 k 1 xk 2 xk 3

x H uk 1 yk 1 x uk 1 yk 1 M xk uk 1 M yk yk 1

1 xk 1 xk 1 k 1 xk 1 xk 2 2 k 1 xk 2 xk 3

x H uk 1 yk 1 x uk 1 yk 1 M 1 xk xk 1 M yk yk 1

M 1 1 xk 1 xk 2 M 2 2 xk 2 xk 3 (4.13)

A similar argument holds for Ak
y :

Ak
y

y H xk yk y H xk k 1 y H xk k 1 y xk k 1

2 yk 1 yk 1 k 1 yk 1 yk 2 2 k 1 yk 2 yk 3
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y H xk k 1 y xk k 1 L 2 yk yk 1

L 1 1 yk 1 yk 2 L 2 2 yk 2 yk 3 (4.14)

Adding (4.13) and (4.14), we get

Ak
x Ak

y

x H uk 1 yk 1 x uk 1 yk 1 y H xk k 1 y xk k 1

2 2N zk zk 1 2 N 1 1 zk 1 zk 2 2 N 2 2 zk 2 zk 3

where N max M L , max 1 2 . Applying the conditional expectation
operator and using (3.3) to bound the MSE terms, we can obtain

k 1 Ak
x Ak

y k 1 Ak
x Ak

y

4N 2 V2 k 1 zk zk 1 2N 1 2 1 V2 zk 1 zk 2

2N 2 2 2 V2 zk 2 zk 3 V2 zk 3 zk 4 k 1

p k 1 zk zk 1 zk 1 zk 2 zk 2 zk 3 zk 3 zk 4 k 1

where p 2 2N N 1 N 2 1 2 V2.

Define the set of limit points of zk k as

z there exists a subsequence zkl of zk such that zkl z as l

The following lemma describes properties of .

Lemma 4.3 (Limit points of zk k ) Suppose Assumptions 3.1 and 3.2 hold. Let
zk k be a bounded sequence, which is generated by Algorithm 3.1 with variance-

reduced gradient estimator, and let

L 2 1 2 2 2 10 V1 V 4L2 2
1

2
2 6

where 0 is small enough. Then,

(1) k 1 zk zk 1
2 a.s., and zk zk 1 0 a.s.;

(2) zk , where ;
(3) dist 0 zk 0;
(4) the set is nonempty, and for all z , dist 0 z 0;
(5) dist zk 0 a.s.;
(6) is a.s. compact and connected;
(7) z for all z .

Proof By Lemma 4.1, we have claim (1) holds.
According to (4.2), the supermartingale convergence theorem ensures k con-

verges to a finite, positive random variable. Because zk zk 1 0 a.s.,
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zk 1 zk 2 0 a.s., zk 2 zk 3 0 a.s. and is variance-reduced so
k 0, we can say

lim
k

k lim
k

zk

which implys claim (2).
Claim (3) holds because, by Lemma 4.2,

Ak
x Ak

y

p zk zk 1 zk 1 zk 2 zk 2 zk 3 zk 3 zk 4 k 1

We have that zk zk 1 0 and k 1 0. This ensures that Ak
x Ak

y

0. Since Ak
x Ak

y is one element of zk , we obtain dist 0 zk

Ak
x Ak

y 0.

To prove claim (4), suppose z x y is a limit point of the sequence
zk k (a limit point must exist because we suppose the sequence zk k is
bounded). This means there exists a subsequence zk j satisfying lim j zk j

z . Furthermore, by the variance-reduced property of uk j 1 yk j 1 , we have

x uk j 1 yk j 1 x H uk j 1 yk j 1
2

0.
Because f and g are lower semicontinuous, we have

lim inf
j

f xk j f x

lim inf
j

g yk j g y (4.15)

By the update rule for xk j , letting x x , we have

f xk j xk j x uk j 1 yk j 1 D 1 xk j xk j 1 1 k j 1 xk j xk j 2 xk j 1

2 k j 1 xk j xk j 3 xk j 2

f x x x uk j 1 yk j 1 D 1 x xk j 1 1 k j 1 x xk j 2 xk j 1

2 k j 1 x xk j 3 xk j 2

Taking the expectation and taking the limit j ,

lim sup
j

f xk j

lim sup
j

f x x xk j x H uk j 1 yk j 1 x xk j x uk j 1 yk j 1

x H uk j 1 yk j 1 1 x 1 xk j 1 xk j 1 x xk j 1
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1 k j 1 x xk j xk j 2 xk j 1 2 k j 1 x xk j xk j 3 xk j 2

The second termon the right goes to zero because xk j x and x H uk j 1 yk j 1
is bounded. The thrid term is zero almost surely because it is bounded above by

x xk j

2, and x uk j 1 yk j 1 x H uk j 1 yk j 1 0 a.s. Noting that 1
is differentiable, so lim sup j f xk j f x a.s., which, together with (4.15),
implies that lim j f xk j f x a.s. Similarly, we have lim j g yk j g y
a.s., and hence

lim
j

xk j yk j x y a s (4.16)

Claim (3) ensures that dist 0 zk 0. Combining (4.16) and the fact that the
subdifferential of is closed, we have dist 0 z 0.

Claims (5) and (6) hold for any sequence satisfying zk zk 1 0 a.s. (this fact
is used in the same context in [11, 36]).

Finally, we must show that has constant expectation over . From claim (2), we
have zk , which implies zk j for every subsequence zk j j
converging to some z . In the proof of claim (4), we show that zk j z
a.s., so z for all z .

The following lemma is analogous to the uniformized Kurdyka–Łojasiewicz prop-
erty [11]. It is a slight generalization of the KŁ property showing that zk eventually
enters a region of z for some z satisfying z z , and in this region, the KŁ
inequality holds.

Lemma 4.4 Assume that the conditions of Lemma 4.3 hold and that zk is not a critical
point of after a finite number of iterations. Let be a semialgebraic function with
KŁ exponent . Then, there exists an index m and a desingularizing function so that
the following bound holds:

zk k dist 0 zk 1 k m

where k is a nondecreasing sequence converging to z for all z .

The proof is almost the same as that of Lemma 4.5 in [23]. We omit the proof here.
We now show that the iterates of Algorithm 3.1 have finite length in expectation.

Theorem 4.1 (Finite length) Assume that the conditions of Lemma 4.3 hold and
is a semialgebraic function with KŁ exponent 0 1 . Let zk k be a bounded
sequence, which is generated by Algorithm 3.1 with variance-reduced gradient esti-
mator.

(i) Either zk is a critical point after a finite number of iterations or zk k satisfies
the finite length property in expectation:

k 0

zk 1 zk
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and there exists an integer m so that, for all i m,

i

k m

zk 1 zk

i

k m

zk zk 1

i

k m

zk 1 zk 2

i

k m

zk 2 zk 3

zm zm 1
2 zm 1 zm 2

2 zm 2 zm 3
2

zm 3 zm 4
2 2 s

K1
m 1 K3 m i 1 (4.17)

where

K1 p
2 sV

K3
4K1

K2
K2 min Z

p is as in Lemma 4.2, and p q p p q q .
(ii) zk k generated by Algorithm 3.1 converge to a critical point of in expectation.

Proof (i) If 0 1
2 , then satisfies the KŁ property with exponent 1

2 , so we
consider only the case 1

2 1 . By Lemma 4.4, there exists a function 0 r
ar1 such that

0 zk k dist 0 zk 1 k m

Lemma 4.2 provides a bound on dist 0 zk .

dist 0 zk Ak
x Ak

y

p zk zk 1 zk 1 zk 2 zk 2 zk 3 zk 3 zk 4 k 1

p zk zk 1
2 zk 1 zk 2

2 zk 2 zk 3
2

zk 3 zk 4
2 s k 1 (4.18)

The final inequality is Jensen’s inequality. Because k
s
i 1

i
k for some non-

negative random variables i
k , we can say k

s
i 1

i
k s s

i 1
i
k

2

s k . We can bound the term k using (3.4):

k

1 k 1 V zk zk 1
2 zk 1 zk 2

2 zk 2 zk 3
2 zk 3 zk 4

2

1 k 1 V zk zk 1
2 zk 1 zk 2

2 zk 2 zk 3
2

zk 3 zk 4
2

1
2

k 1 V zk zk 1
2 zk 1 zk 2

2 zk 2 zk 3
2
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zk 3 zk 4
2 (4.19)

The final inequality uses the fact that 1 1 2

2

8 . This implies that

s k 1

2 s
k 1 k

2 sV
zk zk 1

2 zk 1 zk 2
2

zk 2 zk 3
2 zk 3 zk 4

2 (4.20)

Then, from (4.18) and (4.20), we have

dist 0 zk

p
2 sV

zk zk 1
2 zk 1 zk 2

2 zk 2 zk 3
2

zk 3 zk 4
2 2 s

k 1 k

K1 zk zk 1
2 zk 1 zk 2

2 zk 2 zk 3
2

zk 3 zk 4
2 2 s

k 1 k

where K1 p 2 sV . Define Ck to be the right side of this inequality:

Ck K1 zk zk 1
2 K1 zk 1 zk 2

2 K1 zk 2 zk 3
2

K1 zk 3 zk 4
2 2 s

k 1 k

We then have

0 zk k Ck 1 k m (4.21)

By the definition of 0, this is equivalent to

a 1 Ck

zk k
1 k m (4.22)

We would like to hold the inequality above for k rather than zk . Replace
zk with k by introducing a term of zk zk 1

2 zk 1 zk 2
2

zk 2 zk 3
2

k in the denominator. We show that inequality (4.22) still
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holds after this adjustment because these terms are small compared to Ck . Indeed, the
quantity

Ck c1 zk zk 1
2 zk 1 zk 2

2 zk 2 zk 3
2

zk 3 zk 4
2

k 1

for some constant c1 0. And because zk zk 1
2 0, k 0, and 1

2 ,
there exists an index m and constants c2 c3 0 such that

k zk

1

L
k

V1 V

L
1 2

2

2L 2
1

2
2 3Z zk zk 1

2 V1 V

L

2

2

2L 2
2 2Z zk 1 zk 2

2 V1 V

L
Z zk 2 zk 3

2

c2 k 1 zk zk 1
2 zk 1 zk 2

2 zk 2 zk 3
2 zk 3 zk 4

2

c3Ck k m

The first inequality uses (3.4). Because the terms above are small compared to Ck ,
there exists a constant d such that c3 d and

ad 1 Ck

zk k k zk
1 k m

For 1
2 1 , using the fact that a b a b for all a b 0, we have

ad 1 Ck

k k

ad 1 Ck

zk k k zk

ad 1 Ck

zk k k zk

1 k m

Therefore, with r adr1 ,

k k Ck 1 k m (4.23)

By the concavity of ,

k k k 1 k 1 k k k k k 1 k 1

k k k k 1

123

72



Numerical Algorithms (2024) 97:51–100

where the last inequality follows from the fact that k is nondecreasing. With p q

p p q q , we have shown

k k 1Ck k k 1 k m

Using Lemma 4.1, we can bound k k 1 below by both zk 1 zk
2,

zk zk 1
2, zk 1 zk 2

2 and zk 2 zk 3
2. Specifically,

k k 1Ck zk 1 zk
2 zk zk 1

2 zk 1 zk 2
2 Z zk 2 zk 3

2

K2 zk 1 zk
2 K2 zk zk 1

2 K2 zk 1 zk 2
2 K2 zk 2 zk 3

2

(4.24)

where K2 min Z 0, , , and Z are set as in Lemma 4.1. Let us use the
first of these inequalities to begin. Applying Young’s inequality to (4.24) yields

zk 1 zk
2 zk zk 1

2 zk 1 zk 2
2 zk 2 zk 3

2

2 zk 1 zk
2 zk zk 1

2 zk 1 zk 2
2 zk 2 zk 3

2

2 K 1
2 Ck k k 1

Ck

2K1

2K1 k k 1

K2

1

2
zk zk 1

2 1

2
zk 1 zk 2

2 1

2
zk 2 zk 3

2

1

2
zk 3 zk 4

2 s

K1
k 1 k

2K1 k k 1

K2
(4.25)

Summing inequality (4.25) from k m to k i , set

T i
m

i

k m

zk 1 zk
2

i

k m

zk zk 1
2

i

k m

zk 1 zk 2
2

i

k m

zk 2 zk 3
2 (4.26)

Then,

T i
m

1

2
T i 1

m 1
s

K1
m 1 i

2K1

K2
m i 1

which implies that

1

2
T i

m
1

2
zm zm 1

2 1

2
zm 1 zm 2

2 1

2
zm 2 zm 3

2

1

2
zm 3 zm 4

2 s

K1
m 1 i

2K1

K2
m i 1
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Dropping the nonpositive term i , this shows that

T i
m zm zm 1

2 zm 1 zm 2
2 zm 2 zm 3

2

zm 3 zm 4
2 2 s

K1
m 1 K3 m i 1 (4.27)

where K3
4K1
K2

. Applying Jensen’s inequality to the terms on the left gives

i

k m

zk 1 zk

i

k m

zk zk 1

i

k m

zk 1 zk 2

i

k m

zk 2 zk 3 T i
m

zm zm 1
2 zm 1 zm 2

2 zm 2 zm 3
2 zm 3 zm 4

2

2 s

K1
m 1 K3 m i 1

The term limi m i 1 is bounded because k is bounded due to Lemma 4.1.
Letting i , we prove the assertion.

(ii) An immediate consequence of claim (i) is that the sequence zk k converges
in expectation to a critical point. This is because, for any p q with p q,

z p zq
p 1
k q zk 1 zk

p 1
k q zk 1 zk , and the finite length

property implies this final sum converges to zero. This proves claim (ii).

Theorem 4.2 Assume that the conditions of Lemma 4.3 hold and is a semialgebraic
function with KŁ exponent 0 1 . Let zk k be a bounded sequence, which is
generated by Algorithm 3.1 with variance-reduced gradient estimator. The following
convergence rates hold:

(i) If 0 1
2 , then there exist d1 0 and 1 1 such that zk z

d1 k .
(ii) If 1

2 1 , then there exists a constant d2 0 such that zk z

d2k
1
2 1 .

(iii) If 0, then there exists an m such that zk z for all k m.

Proof As in the proof of Theorem 4.1, if 0 1
2 , then satisfies the KŁ property

with exponent 1
2 , so we consider only the case 1

2 1 .
Let

Tm

k m

zk 1 zk
2

k m

zk zk 1
2

k m

zk 1 zk 2
2

k m

zk 2 zk 3
2
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Substituting the desingularizing function r ar1 into (4.27), let i , then
we have

Tm zm zm 1
2 zm 1 zm 2

2 zm 2 zm 3
2

zm 3 zm 4
2 2 s

K1
m 1 aK3 m m

1 (4.28)

Because m zm zm zm 1
2 zm 1 zm 2

2 zm 2 zm 3
2

m , we can rewrite the final term as zm m .

m m
1

zm m
1

L
k

V1 V

L
1 2

2

2L 2
1

2
2 3Z zm zm 1

2

V1 V

L
2

2

2L 2
2 2Z zm 1 zm 2

2 V1 V

L
Z

zm 2 zm 3
2 1

1
zm m

1 1

L
m

1 V1 V

L
1 2

2

2L 2
1

2
2 3Z

zm zm 1
2 1 V1 V

L
2

2

2L 2
2 2Z zm 1 zm 2

2
1

V1 V

L
Z zm 2 zm 3

2
1

(4.29)

Inequality (1) is due to the fact that a b 1 a1 b1 . Applying the KŁ
inequality (2.1),

aK3 zm m
1

aK4 m
1

(4.30)

for all m zm and we have absorbed the constant C into K4. Inequality (4.18)
provides a bound on the norm of the subgradient:

m
1

p zm zm 1
2 zm 1 zm 2

2 zm 2 zm 3
2

zm 3 zm 4
2 s m 1

1

Let

m p zm zm 1
2 zm 1 zm 2

2 zm 2 zm 3
2

zm 3 zm 4
2 s m 1
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Therefore, it follows from (4.28) to (4.30) that

Tm zm zm 1
2 zm 1 zm 2

2 zm 2 zm 3
2

zm 3 zm 4
2 2 s

K1
m 1 aK4

1

m aK3
1

L
m

1

aK3
V1 V

L
1 2

2

2L 2
1

2
2 3Z zm zm 1

2
1

aK3
V1 V

L
2

2

2L 2
2 2Z zm 1 zm 2

2
1

aK3
V1 V

L
Z zm 2 zm 3

2
1

(4.31)

(i) If 1
2 , then m

1

m . Equation (4.31) then gives

Tm zm zm 1
2 zm 1 zm 2

2 zm 2 zm 3
2 zm 3 zm 4

2

2 s

K1
m 1 aK4 p zm zm 1

2 zm 1 zm 2
2

zm 2 zm 3
2 zm 3 zm 4

2 s m 1 aK3
1

L
m

aK3
V1 V

L
1 2

2

2L 2
1

2
2 3Z zm zm 1

2

aK3
V1 V

L
2

2

2L 2
2 2Z zm 1 zm 2

2

aK3
V1 V

L
Z zm 2 zm 3

2

1 aK5 p
V1 V

L
1 2

2

2L 2
1

2
2 3Z zm zm 1

2

zm 1 zm 2
2 zm 2 zm 3

2 zm 3 zm 4
2

2 s

K1
aK5 s m 1 aK5

1

L
m (4.32)

where K5 max K3 K4 . Using (4.19), we have that, for any constant c 0,

0 c k c 1
2

k 1 c V zk zk 1
2 zk 1 zk 2

2
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zk 2 zk 3
2 zk 3 zk 4

2

Combining this inequality with (4.32),

Tm 1 aK5 p
V1 V

L
1 2

2

2L 2
1

2
2 3Z c V zm zm 1

2

zm 1 zm 2
2 zm 2 zm 3

2 zm 3 zm 4
2

c 1
2

2 s

K1 c

aK5 s

c
m 1 c 1

aK5

c

1

L
m

Defining A 1 aK5 p V1 V
L

1 2
2

2L 2
1

2
2 3Z c V , we

have shown

Tm c 1
aK5

c

1

L
m

A Tm 1 Tm c 1
2

2 s

K1 c

aK5 s

c
m 1

Then, we get

1 A Tm c 1
aK5

c

1

L
m

ATm 1 c 1
2

2 s

K1 c

aK5 s

c
m 1

This implies

Tm m

max
A

1 A
1

2

2 s

K1 c

aK5 s

c
1

aK5

c

1

L

1

Tm 1 m 1

For large c, the second coefficient in the above expression approaches 1 2 . So there
exist 1 1 such that

k m

zk zk 1
2 k T0 0 d1

k
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for some constant d1. Then, using the fact that zm z k m 1 zk zk 1

k m zk zk 1 , we prove claim (i).
(ii) Suppose 1

2 1 . Each term on the right side of (4.31) converges to zero,
but at different rates. Because

m zm zm 1
2 zm 1 zm 2

2 zm 2 zm 3
2

zm 3 zm 4
2 s m 1

and satisfies 1 1, the term
1

m dominates the first five terms on the right

side of (4.31) for large m. Also, because 1
2 1 ,

1

m dominates the final four
terms as well. Combining these facts, there exists a natural number M1 such that for
all m M1,

Tm P m (4.33)

for some constant P aK3 1 . The bound of (4.20) implies

2 s m 1

4 s
m 1 m V zm zm 1

2 zm 1 zm 2
2

zm 2 zm 3
2 zm 3 zm 4

2

Therefore,

m p zm zm 1
2 zm 1 zm 2

2 zm 2 zm 3
2

zm 3 zm 4
2 2 s m 1 s m 1

p
4 sV

zm zm 1
2 zm 1 zm 2

2 zm 2 zm 3
2

zm 3 zm 4
2 4 s

m 1 m s m 1 (4.34)

Furthermore, because 1 1 and m 0, for large enough m, we have

m
1

m . This ensures that there exists a natural number M2 such
that for every m M2,

4 s 1 4

p 4 sV
m

1

P s m (4.35)
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The constant appearing on the left was chosen to simplify later arguments. Therefore,
(4.33) implies

Tm
4 s 1 4

p 4 sV
m

1

1 2 1

2
Tm 1

2 1

2

4 s 1 4

p 4 sV
m

1 2 2 1

2
Tm 1

2 1

2
P s m

3 2 1

2
P p

4 sV
zm zm 1

2 zm 1 zm 2
2 zm 2 zm 3

2

zm 3 zm 4
2 4 s P

m 1 m P s m 1
2 1

2
P s m

2 1

2
P p

4 sV
zm zm 1

2 zm 1 zm 2
2 zm 2 zm 3

2

zm 3 zm 4
2 4 s P 1 4

m 1 m

Here, (1) follows by convexity of the function x 1 for 1 2 1 and x 0, (2)

is (4.35), and (3) is (4.33) combined with (4.34). We absorb the constant 2 1

2 into P .
Define

Sm Tm
4 s 1 4

p 4 sV
m

Sm is bounded for allm because k m zk 1 zk
2 is bounded by (4.28). Hence,

we have shown

S 1
m P p

4 sV
Sm 1 Sm (4.36)

The rest of the proof is almost the same as what was mentioned in [23, 37]. We omit
the proof here. (iii) When 0, the KŁ property (2.1) implies that exactly one of
the following two scenarios holds: either zk k and

0 C k k zk (4.37)

or zk k . We show that the above inequality can hold only for a finite number
of iterations.

Using the subgradient bound (4.10), the first scenario implies

C2
k

2

p zk zk 1 zk 1 zk 2 zk 2 zk 3 zk 3 zk 4 k 1
2

5p2 zk zk 1
2 5p2 zk 1 zk 2

2 5p2 zk 2 zk 3
2

5p2 zk 3 zk 4
2 5 k 1

2

5p2 zk zk 1
2 5p2 zk 1 zk 2

2 5p2 zk 2 zk 3
2

5p2 zk 3 zk 4
2 5s k 1
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where we have used the inequality a1 a2 as
2 s a2

1 a2
2 a2

s and
Jensen’s inequality. Applying this inequality to the decrease of k (4.2), we obtain

k k

k k 1 zk 1 zk
2 zk zk 1

2 zk 1 zk 2
2 Z zk 2 zk 3

2

k k 1 C2 zk 1 zk
2 zk zk 1

2 zk 1 zk 2
2

zk 2 zk 3
2

k 1

for some constant C2. Because the final five terms go to zero as k , there exists
an index M4 so that the sum of these five terms is bounded above by C2

2 for all k M4.
Therefore,

k k k
C2

2
k M4

Because k is bounded below for all k, this inequality can only hold for N steps.
After N steps, it is no longer possible for the bound (4.37) to hold, so it must be that

zk k . Because k z , k zk , and both zk , k converge
to z , we must have k zk z .

5 Numerical experiments

In this section, to demonstrate the advantages of STiBPALM (Algorithm 3.1),
we present our numerical study on the practical performance of the proposed
STiBPALM with three different stochastic gradient estimators, i.e., SGD estima-
tor [35] (STiBPALM-SGD), SAGA gradient [28] estimator (STiBPALM-SAGA),
and SARAH gradient [29] estimator (STiBPALM-SARAH), compared with PALM
[11], iPALM [6], TiPALM [17], SPRING [23], and SiPALM [24] algorithms. We
refer to SPRING with SGD, SAGA, and SARAH gradient estimators as SPRING-
SGD, SPRING-SAGA, and SPRING-SARAH; and SiPALM using the SGD, SAGA,
and SARAH gradient estimators as SiPALM-SGD, SiPALM-SAGA, and SiPALM-
SARAH, respectively. Two applications are considered here for comparison: sparse
nonnegative matrix factorization (S-NMF) and blind image-deblurring (BID).

Since the proposed algorithm is based on the stochastic gradient estimator,we report
the average results (over 10 independent runs) of objective values for all algorithms.
The initial point is also the same for all algorithms. In addition, we choose step size
which is suggested in [11] for PALM and in [6] for iPALM, respectively, and the same
step size based on [23] for all stochastic algorithms for simplicity.
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Fig. 1 ORL face database which includes 400 normalized cropped frontal faces which we used in our
S-NMF example

5.1 Sparse nonnegativematrix factorization

Given a matrix A, sparse nonnegative matrix factorization (S-NMF) [38–40] problem
can be formulated as the following model:

min
X Y 2

A XY 2
F X Y 0 Xi 0 s i 1 2 r (5.1)

In dictionary learning and sparse coding, X is called the learned dictionary with coef-
ficients Y . In this formulation, the sparsity on X is restricted 75% of the entries to be 0.

We use the extended Yale-B dataset and the ORL dataset, which are standard facial
recognition benchmarks consisting of human face images.1 For solving this S-NMF
problem (5.1), [6, 14] gave the details on how to solve the X -subproblems and Y -
subproblems. The extended Yale-B dataset contains 2414 cropped images of size
32 32, while the ORL dataset contains 400 images sized 64 64 (see Fig. 1). In the
experiment for the Yale dataset, we extract 49 sparse basis images for the dataset. For
the ORL dataset, we extract 25 sparse basis images. In each iteration of the stochastic
algorithms, we randomly subsample 5% of the full batch as a minibatch. Here, for
SARAH gradient estimator, we set p 1

20 .
InSTiBPALM, let 1 X 1

2 X 2, 2 Y 2
2 Y 2. In a numerical experiment,

we choose 3 and calculate 1 and 2 by computing the largest eigenvalues of Y Y T

and X T X at k-th iteration, respectively. We choose 1k 1k 1k 1k
k 1
k 2 ,

2k 2k 2k 2k
k 1
k 2 in TiPALM and STiBPALM and 1k 1k 1k

1k
k 1
k 2 in iPALM and SiPALM. We use BTiPALM and BSTiPALM to denote

TiPALM and STiBPALM with 1 X
2
1
4 X 4, 2 Y 2

2 Y 2, respectively.
We refer to BSTiPALM using the SGD, SAGA, and SARAH gradient estimators as
BSTiPALM-SGD, BSTiPALM-SAGA, and BSTiPALM-SARAH, respectively.

In Figs. 2 and 3, we report the numerical results for Yale-B dataset. A similar result
for the ORL dataset is plotted in Figs. 4 and 5. One can observe from these four
figures that the STiBPALM can get slightly lower values than the other algorithms
within almost the same computation time. In addition, STiBPALM can get better per-
formance than the SPRING and SiPALM stochastic algorithms with epoch changes.

1 http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.
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Fig. 2 Objective decrease comparison of S-NMF with s 25% on Yale dataset. From the left column to
the right column are the results of SGD, SAGA, and SARAH, respectively

The stochastic algorithms can improve the numerical results compared with the corre-
sponding deterministic method. Furthermore, compared with the stochastic gradient
algorithmwithout variance reduction (SGD), the variance-reduced stochastic gradient
(SAGA, SARAH) algorithm can get better numerical results.

The numerical results applying different Bregman distances under the Yale-B
dataset andORL dataset are reported in Figs. 6 and 7, respectively.We can observe that
BSTiPALM algorithm can obtain better numerical results compared to STiBPALM
algorithm, where SARAH gradient estimator can get the best performance with epoch
changes.

We also compare STiBPALMwith SGD, SAGA, and SARAH for different sparsity
settings (the value of s). The results of the basis images are shown in Fig. 8. One can
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Fig. 3 Objective decrease comparison of S-NMF with s 25% on Yale dataset
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Fig. 4 Objective decrease comparison of S-NMF with s 25% on ORL dataset. From the left column to
the right column are the results of SGD, SAGA, and SARAH, respectively

observe from Fig. 8 that for smaller values of s, the four algorithms lead to more
compact representations. This might improve the generalization capabilities of the
representation.

5.2 Blind image-deblurring

Let A be a blurred image, the problem of blind deconvolution is given by

min
X Y

1

2
A X Y 2

F

2d

r 1

R D X r 0 X 1 0 Y 1 Y 1 1

(5.2)
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Fig. 5 Objective decrease comparison of S-NMF with s 25% on ORL dataset
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Fig. 6 Objective decrease comparison of S-NMF with s 25% on Yale dataset with different Brengman
distance
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Fig. 7 Objective decrease comparison of S-NMF with s 25% on ORL dataset with different Brengman
distance

Fig. 8 The results for 25 basis faces using different sparsity settings. From the left column to the right column
are the results of TiPALM, STiBPALM-SGD, STiBPALM-SAGA, and STiBPALM-SARAH, respectively.
From top row to bottom row are the result of s 25% and s 50%, respectively
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Fig. 9 Objective decrease comparison (epoch counts) of blind image-deconvolution experiment onKodim08
image using an 11 11 motion blur kernel

In numerical experiment, we choose R log 1 2 as in [6], where 103

and 5 10 5.
We consider two images, Kodim08 and Kodim15, of size 256 256 for testing.

For each image, two blur kernels—linear motion blur and out-of-focus blur—are
considered with additional additive Gaussian noise. In this numerical experiment, we
mainly use SARAH gradient estimator and set p 1

64 . We take 1k 1k 1k

1k
k 1
k 2 , 2k 2k 2k 2k

k 1
k 2 in TiPALM and STiBPALM and

1k 1k 1k 1k
k 1
k 2 in iPALM.

The convergence comparisons of the algorithms for both images with motion blur
are provided in Figs. 9 and 10, from which we observe STiBPALM-SARAH is faster
than the other methods. Figures11 and 12 provide comparisons of the recovered
image and blur kernel. We observe superior performance of stochastic algorithms
over deterministic algorithms in these figures as well. In particular, when comparing
the estimated blur kernels of the two algorithms every 20 epochs, we clearly see that
STiBPALM-SARAH more quickly recovers more accurate solutions than TiPALM.
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Fig. 10 Objective decrease comparison (epoch counts) of blind image-deconvolution experiment on
Kodim15 image using an 11 11 motion blur kernel
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Fig. 11 Image and kernel reconstructions from the blind image-deconvolution experiment on the Kodim08
image using an 11 11 motion blur kernel

0 40 80 120 160 200 0 40 80 120 160 200

Fig. 12 Image and kernel reconstructions from the blind image-deconvolution experiment on the Kodim08
image using an 11 11 motion blur kernel
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6 Conclusion

In this paper, we propose a stochastic two-step inertial Bregman proximal alternating
linearized minimization (STiBPALM) algorithm with the variance-reduced gradient
estimator to solve a class of nonconvex nonsmooth optimization problems.Under some
mild conditions, we analyze the convergence properties of STiBPALM when using a
variety of variance-reduced gradient estimators and prove specific convergence rates
using the SAGA and SARAH estimators. We also implement the STiBPALM algo-
rithm to sparse nonnegative matrix factorization and blind image-deblurring problems
and perform some numerical experiments to demonstrate the effectiveness of the pro-
posed algorithm.

Appendix

A SAGA variance bound

We define the SAGA gradient estimators x uk yk and y xk 1 k as follows:

x uk yk
1

b
i I x

k

x Hi uk yk x Hi
i
k yk

1

n

n

j 1

x Hj
j
k yk

(A.1)

y xk 1 k
1

b
i I y

k

y Hi xk 1 k y Hi xk 1
i
k

1

n

n

j 1

y Hj xk 1
j

k

where I x
k and I y

k are mini-batches containing b indices. The variables i
k and

i
k follow

the update rules i
k 1 uk if i I x

k and i
k 1

i
k otherwise, and i

k 1 k if
i I y

k and i
k 1

i
k otherwise.

To prove our variance bounds, we require the following lemma.

Lemma A.1 Suppose X1 Xt are independent random variables satisfying k Xi

0 for 1 i t . Then

k X1 Xt
2

k X1
2 Xt

2 (A.2)

Proof Our hypotheses on these random variables imply k Xi X j 0 for i j .
Therefore,

k X1 Xt
2

k

t

i j 1

Xi X j k X1
2 Xt

2

Weare nowprepared to prove that the SAGAgradient estimator is variance-reduced.
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Lemma A.2 The SAGA gradient estimator satisfies

k x uk yk x H uk yk
2 1

bn

n

j 1

x Hj uk yk x Hj
j
k yk

2

k y xk 1 k y H xk 1 k
2 4

bn

n

j 1

y Hj xk k y Hj xk
j

k

2

16N 2 2

b
k zk 1 zk

2 zk zk 1
2 zk 1 zk 2

2 (A.3)

as well as

k x uk yk x H uk yk
1

bn

n

j 1

x Hj uk yk x Hj
j
k yk

k y xk 1 k y H xk 1 k
2

bn

n

j 1

y Hj xk k y Hj xk
j

k

4N

b
k zk 1 zk zk zk 1 zk 1 zk 2 (A.4)

where N max M L , max 1 2 .

Proof According to (A.1), we have

k x uk yk x H uk yk
2 (A.5)

k
1

b
i I x

k

x Hi uk yk x Hi
i
k yk x H uk yk

1

n

n

j 1

x Hj
j
k yk

2

1 1

b2
k

i I x
k

x Hi uk yk x Hi
i
k yk

2

1

bn

n

j 1

x Hj uk yk x Hj
j
k yk

2

Inequality (1) follows from Lemma A.1. By the Jensen’s inequality, we can say that

k x uk yk x H uk yk k x uk yk x H uk yk
2

(A.6)

1

bn

n

j 1

x Hj uk yk x Hj
j
k yk

2
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1

bn

n

j 1

x Hj uk yk x Hj
j
k yk

We use an analogous argument for y xk 1 k . Let k x denote the expectation
conditional on the first k iterations and I x

k . By the same reasoning as in (A.5), applying
the Lipschitz continuity of y Hj , we obtain that

k x y xk 1 k y H xk 1 k
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2 zk zk 1
2

zk 1 zk 2
2 (A.7)

where N max M L , max 1 2 . Also, by the same reasoning as in (A.6),

k x y xk 1 k y H xk 1 k (A.8)

k x y xk 1 k y H xk 1 k
2

2

bn

n

j 1

y Hj xk k y Hj xk
j

k
4N

b
zk 1 zk zk zk 1

zk 1 zk 2

Applying the operator k to (A.7) and (A.8), we get the desired result.
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Now, define

k 1
1

bn

n

j 1

x Hj uk 1 yk 1 x Hj
j
k 1 yk 1

2
(A.9)

4 y Hj xk 1 k 1 y Hj xk 1
j

k 1

2

k 1
1

bn

n

j 1

x Hj uk 1 yk 1 x Hj
j
k 1 yk 1

2

2 y Hj xk 1 k 1 y Hj xk 1
j

k 1

2

By Lemma A.2, we have

k x uk yk x H uk yk
2

y xk 1 k y H xk 1 k
2

k V1 k zk 1 zk
2 zk zk 1

2 zk 1 zk 2
2

and

k x uk yk x H uk yk y xk 1 k y H xk 1 k

k V2 k zk 1 zk zk zk 1 zk 1 zk 2

This is exactly the MSE bound, where V1
16N2 2

b and V2
4N

b
.

Lemma A.3 (Geometric decay) Let k be defined as in (A.9), then we can establish
the geometric decay property:

k k 1 1 k V k zk 1 zk
2 zk zk 1

2 zk 1 zk 2
2

(A.10)

where b
2n , V

408nN2 1 2 2
1

2
2

b2
.

Proof Weshow that k k 1 is decreasing at a geometric rate. By applying the inequal-
ity a c 2 1 a b 2 1 1 b c 2 twice, it follows that

1

bn

n

j 1

k x Hj uk 1 yk 1 x Hj
j
k 1 yk 1

2

1

bn

n

j 1

k x Hj uk yk x Hj
j
k 1 yk 1

2 1 1

bn

n

j 1

k x Hj uk 1 yk 1

x Hj uk yk
2
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1 2

bn

n

j 1

k x Hj uk yk x Hj
j
k 1 yk

2

1 1 1

bn

n

j 1

k x Hj
j
k 1 yk x Hj

j
k 1 yk 1

2

1 1

bn

n

j 1

k x Hj uk 1 yk 1 x Hj uk yk
2

1 2 1 b n

bn

n

j 1

x Hj uk yk x Hj
j
k yk

2 1 1 1 M2

b
k yk yk 1

2

1 1 M2

b
k uk 1 uk

2 yk 1 yk
2

1 2 1 b n

bn

n

j 1

x Hj uk yk x Hj
j
k yk

2 2 1 1 M2

b
k yk 1 yk

2

1 1 M2

b
k 3 uk 1 xk 1

2 3 xk 1 xk
2 3 xk uk

2

1 2 1 b n

bn

n

j 1

x Hj uk yk x Hj
j
k yk

2 2 1 1 M2

b
k yk 1 yk

2

3M2 1 1 1 2 2
1

b
k xk 1 xk

2 6M2 1 1 2
1

2
2

b
xk xk 1

2

6M2 1 1 2
2

b
xk 1 xk 2

2 (A.11)

Similarly,

1

bn

n

j 1

k y Hj xk 1 k 1 y Hj xk 1
j

k 1

2

1

bn

n

j 1

k y Hj xk 1 k y Hj xk 1
j

k 1

2

1 1

bn

n

j 1

k y Hj xk 1 k 1 y Hj xk 1 k
2

1 2 1 b n

bn

n

j 1

k y Hj xk k y Hj xk 1
j

k

2

1 1 1 1 b n

bn

n

j 1

k y Hj xk 1 k y Hj xk k
2

1 1

bn

n

j 1

k y Hj xk 1 k 1 y Hj xk 1 k
2

1 3 1 b n

bn

n

j 1

y Hj xk k y Hj xk
j

k

2
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1 2 1 1 1 b n

bn

n

j 1

k y Hj xk
j

k y Hj xk 1
j

k

2

1 1 1 1 b n

bn

n

j 1

k y Hj xk 1 k y Hj xk k
2

1 1

bn

n

j 1

k y Hj xk 1 k 1 y Hj xk 1 k
2

1 3 1 b n

bn

n

j 1

y Hj xk k y Hj xk
j

k

2 1 2 1 1 1 b n M2

b

k xk 1 xk
2 1 1 1 1 b n M2

b
k xk 1 xk

2 1 1 L2

b
k k 1 k

2

1 3 1 b n

bn

n

j 1

y Hj xk k y Hj xk
j

k

2 2 1 1 1 1 b n M2

b

k xk 1 xk
2 1 1 L2

b
k 3 k 1 yk 1

2 3 yk 1 yk
2 3 yk k

2

1 3 1 b n

bn

n

j 1

y Hj xk k y Hj xk
j

k

2 2 1 1 1 1 b n M2

b

k xk 1 xk
2 3L2 1 1 1 2 2

1

b
k yk 1 yk

2 6L2 1 1 2
1

2
2

b

yk yk 1
2 6L2 1 1 2

2

b
yk 1 yk 2

2 (A.12)

With

k 1
1

bn

n

j 1

x Hj uk 1 yk 1 x Hj
j
k 1 yk 1

2

4 y Hj xk 1 k 1 y Hj xk 1
j

k 1

2

adding (A.11) and (A.12), we can obtain

k k 1

1 3 1 b n k
2 1 1 M2

b
k yk 1 yk

2 3M2 1 1 1 2 2
1

b

k xk 1 xk
2 6M2 1 1 2

1
2
2

b
xk xk 1

2 6M2 1 1 2
2

b

xk 1 xk 2
2 4 1 1 1 1 b n M2 2

b
k xk 1 xk

2

12L2 1 1 1 2 2
1

b
k yk 1 yk

2 24L2 1 1 2
1

2
2

b
yk yk 1

2
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24L2 1 1 2
2

b
yk 1 yk 2

2

1 3 1 b n k
13N 2 1 2 1 1 1 2 2

1

b
k zk 1 zk

2

24N 2 1 1 2
1

2
2

b
zk zk 1

2 24N 2 2
2 1 1

b
zk 1 zk 2

2

1 3 1 b n k
24N 2 1 2 1 1 1 2 2

1
2
2

b
k zk 1 zk

2

zk zk 1
2 zk 1 zk 2

2

where N max M L . Choosing b
6n , we have 1 3 1 b

n 1 b
2n ,

producing the inequality

k k 1 1
b

2n
k

24N 2 1 b
6n 2 b

6n 1 6n
b 1 2 2

1
2
2

b
k zk 1 zk

2

zk zk 1
2 zk 1 zk 2

2

1
b

2n
k

408nN 2 1 2 2
1

2
2

b2
k zk 1 zk

2 zk zk 1
2 zk 1 zk 2

2

(A.13)

This completes the proof.

Lemma A.4 (Convergence of estimator) If zk k satisfies limk zk zk 1
2

0, then k 0 and k 0 as k .

Proof Wefrist show that n
j 1 x Hj uk yk x Hj

j
k yk

2
0 as k .

Indeed,

n

j 1

x Hj uk yk x Hj
j
k yk

2
L2

n

j 1

uk
j
k

2

nL2 1
2n

b
uk uk 1

2 L2 1
b

2n

n

j 1

uk 1
j
k

2

nL2 1
2n

b
uk uk 1

2 L2 1
b

2n
1

b

n

n

j 1

uk 1
j
k 1

2

nL2 1
2n

b
uk uk 1

2 L2 1
b

2n

n

j 1

uk 1
j
k 1

2

nL2 1
2n

b

k

l 1

1
b

2n
k l ul ul 1

2 (A.14)
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As zk zk 1
2 0, so uk uk 1

2 0, it is clear that k
l 1 1

b
2n

k l ul ul 1
2 0, and hence n

j 1 x Hj uk yk x Hj
j
k yk

2
0

as k . An analogous argument shows that n
j 1 y Hj xk k y Hj xk

j
k

2

0 as k . So k 0 as k . Similarly, we can get k 0 as k .
Indeed,

n

j 1

x Hj uk yk x Hj
j
k yk L

n

j 1

uk
j
k

nL uk uk 1 L
n

j 1

uk 1
j
k

nL uk uk 1 L 1
b

n

n

j 1

uk 1
j
k 1

nL
k

l 1

1
b

n
k l ul ul 1 (A.15)

Because zk zk 1
2 0, it follows that zk zk 1 0 (because Jensen’s

inequality implies zk zk 1 zk zk 1
2 0). So uk uk 1

0, then it follows that the bound on the right goes to zero as k , hence k 0.

B SARAH variance bound

As in the previous section, we use I x
k and I y

k to denote the mini-batches used to
approximate x H uk yk and y H xk 1 k , respectively.

Lemma B.1 The SARAH gradient estimator satisfies

k x uk yk x H uk yk
2

y xk 1 k y H xk 1 k
2

1
1

p
x uk 1 yk 1 x H uk 1 yk 1

2
y xk k 1 y H xk k 1

2

V1 k zk 1 zk
2 zk zk 1

2 zk 1 zk 2
2 zk 2 zk 3

2

as well as

k x uk yk x H uk yk y xk 1 k y H xk 1 k

1
1

p
x uk yk x H uk yk y xk 1 k y H xk 1 k

V2 k zk 1 zk zk zk 1 zk 1 zk 2 zk 2 zk 3
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where V1 6 1 1
p M2 1 2 2

1
2
2 and V2 M 6 1 1

p 1 2 2
1

2
2 .

Proof Let k p denote the expectation conditional on the first k iterations and the event
that we do not compute the full gradient at iteration k. The conditional expectation of
the SARAH gradient estimator in this case is

k p x uk yk
1

b
k p

i I x
k

x Hi uk yk x Hi uk 1 yk 1 x uk 1 yk 1

x H uk yk x H uk 1 yk 1 x uk 1 yk 1 (B.1)

and further

k p x uk yk x H uk yk
2

k p x uk 1 yk 1 x H uk 1 yk 1 x H uk 1 yk 1 x H uk yk

x uk yk x uk 1 yk 1
2

x uk 1 yk 1 x H uk 1 yk 1
2

x H uk 1 yk 1 x H uk yk
2

k p x uk yk x uk 1 yk 1
2

2 x uk 1 yk 1 x H uk 1 yk 1 x H uk 1 yk 1 x H uk yk

2 x H uk 1 yk 1 x uk 1 yk 1 k p x uk yk x uk 1 yk 1

2 x H uk yk x H uk 1 yk 1 k p x uk yk x uk 1 yk 1
(B.2)

By (B.1), we see that

k p x uk yk x uk 1 yk 1 x H uk yk x H uk 1 yk 1

Thus, the first two inner products in (B.2) sum to zero and the third one is equal to

2 x H uk yk x H uk 1 yk 1 k p x uk yk x uk 1 yk 1

2 x H uk yk x H uk 1 yk 1 x H uk yk x H uk 1 yk 1

2 x H uk yk x H uk 1 yk 1
2

This yields

k p x uk yk x H uk yk
2

x uk 1 yk 1 x H uk 1 yk 1
2

x H uk 1 yk 1 x H uk yk
2

k p x uk yk x uk 1 yk 1
2

x uk 1 yk 1 x H uk 1 yk 1
2

k p x uk yk x uk 1 yk 1
2
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We can bound the second term by computing the expectation.

k p x uk yk x uk 1 yk 1
2

k p
1

b
i I x

k

x Hi uk yk x Hi uk 1 yk 1

2

1

b
k p

i I x
k

x Hi uk yk x Hi uk 1 yk 1
2

1

n

n

j 1

x Hj uk yk x Hj uk 1 yk 1
2

The inequality is due to the convexity of the function x x 2. This results in the
recursive inequality

k p x uk yk x H uk yk
2

x uk 1 yk 1 x H uk 1 yk 1
2 1

n

n

j 1

x Hj uk yk x Hj uk 1 yk 1
2

This bounds theMSE under the condition that the full gradient is not computed.When
the full gradient is computed, the MSE is equal to zero, so taking the M-Lipschitz
continuity of the gradients of the Hj into account, we get

k x uk yk x H uk yk
2

1
1

p
x uk 1 yk 1 x H uk 1 yk 1

2 1

n

n

j 1

x Hj uk yk x Hj uk 1 yk 1
2

1
1

p
x uk 1 yk 1 x H uk 1 yk 1

2
M2 uk yk uk 1 yk 1

2

Using a b c 2 3 a2 b2 c2 , we can estimate

uk yk uk 1 yk 1
2 uk uk 1

2 yk yk 1
2

3 uk xk
2 3 xk xk 1

2 3 xk 1 uk 1
2 yk yk 1

2

3 1 2 2
1 xk xk 1

2 6 2
1

2
2 xk 1 xk 2

2 6 2
2 xk 2 xk 3

2 yk yk 1
2

Substituting the above inequality, we can obtain

k x uk yk x H uk yk
2

1
1

p
x uk 1 yk 1 x H uk 1 yk 1

2
3M2 1 2 2

1 xk xk 1
2
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6M2 2
1

2
2 xk 1 xk 2

2 6M2 2
2 xk 2 xk 3

2 M2 yk yk 1
2

(B.3)

By symmetric arguments, it holds

k y xk 1 k y H xk 1 k
2

1
1

p
y xk k 1 y H xk k 1

2 M2
k xk 1 k xk k 1

2

1
1

p
y xk k 1 y H xk k 1

2 M2
k xk 1 xk

2 3M2 1 2 2
1k

yk yk 1
2 6M2 2

1 k 1
2
2k yk 1 yk 2

2 6M2 2
2 k 1 yk 2 yk 3

2

1
1

p
y xk k 1 y H xk k 1

2 M2
k xk 1 xk

2 3M2 1 2 2
1

yk yk 1
2 6M2 2

1
2
2 yk 1 yk 2

2 6M2 2
2 yk 2 yk 3

2 (B.4)

Combining (B.3) and (B.4), we can obtain

k x uk yk x H uk yk
2

y xk 1 k y H xk 1 k
2

1
1

p
x uk 1 yk 1 x H uk 1 yk 1

2
y xk k 1 y H xk k 1

2

M2
k xk 1 xk

2 M2 yk yk 1
2 3M2 1 2 2

1 zk zk 1
2

6M2 2
1

2
2 zk 1 zk 2

2 6M2 2
2 zk 2 zk 3

2

1
1

p k 6 1
1

p
M2 1 2 2

1
2
2 k zk 1 zk

2 zk zk 1
2

zk 1 zk 2
2 zk 2 zk 3

2

Similar bounds hold for k due to Jensen’s inequality:

k x uk yk x H uk yk y xk 1 k y H xk 1 k

1
1

p
x uk yk x H uk yk y xk 1 k y H xk 1 k

M 6 1
1

p
1 2 2

1
2
2 k zk 1 zk zk zk 1 zk 1 zk 2 zk 2 zk 3

This completes the proof.

Now, define

k 1 x uk yk x H uk yk
2

y xk 1 k y H xk 1 k
2

k 1 x uk yk x H uk yk y xk 1 k y H xk 1 k (B.5)
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By Lemma B.1, we have

k x uk yk x H uk yk
2

y xk 1 k y H xk 1 k
2

k V1 k zk 1 zk
2 zk zk 1

2 zk 1 zk 2
2 zk 2 zk 3

2

and

k x uk yk x H uk yk y xk 1 k y H xk 1 k

k V2 k zk 1 zk zk zk 1 zk 1 zk 2 zk 2 zk 3

This is exactly the MSE bound, where V1 6 1 1
p M2 1 2 2

1
2
2 and

V2 M 6 1 1
p 1 2 2

1
2
2 .

Lemma B.2 (Geometric decay) Let k be defined as in (B.5), then we can establish
the geometric decay property:

k k 1 1 k V k zk 1 zk
2 zk zk 1

2 zk 1 zk 2
2 zk 2 zk 3

2

(B.6)

where 1
p , V 6 1 1

p M2 1 2 2
1

2
2 .

Proof This is a direct result of Lemma B.1.

Lemma B.3 (Convergence of estimator) If zk k satisfies limk zk zk 1
2

0, then k 0 and k 0 as k .

Proof By (B.6), we have

k

1 k 1 V zk zk 1
2 zk 1 zk 2

2 zk 2 zk 3
2 zk 3 zk 4

2

V
k

l 1

1 k l zl zl 1
2 zl 1 zl 2

2 zl 2 zl 3
2 zl 3 zl 4

2

which implies k 0 as k . By Jensen’s inequality, we have k 0 as
k .
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