
https://doi.org/10.1007/s11075-023-01692-w

ORIG INAL PAPER

Iterative methods for solving tensor equations
based on exponential acceleration

Maolin Liang1 · Lifang Dai1 · Ruijuan Zhao2

Received: 18 January 2023 / Accepted: 17 October 2023 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
The tensor equationAxm−1 = bwith the tensorA of orderm and dimension n and the
vector b, has practical applications in several fields including signal processing, high-
dimensional PDEs, high-order statistics, and so on. In this paper, a class of exponential
accelerated iterative methods is proposed for solving the tensor equation mentioned
above in the sense that the coefficient tensor A is a symmetric and nonsingular or
singular M-tensor. The obtained iterative schemes involve the classical Newton’s
method as a special case. It is shown that the proposed method for nonsingular case
is superlinearly convergent, while for singular cases, it is linearly convergent. The
performed numerical experiments demonstrate that our methods outperform some
existing ones.

Keywords Tensor equations · Symmetric M-tensors · Newton method · Exponential
acceleration

Mathematics Subject Classification (2010) 15A69 · 65H10 · 90C30

1 Introduction

LetR be the set of all real numbers. For an orderm and dimension n1 ×n2 ×· · ·×nm
tensor A, it has n1n2 · · · nm entries Ai1...im indexed by i j satisfying 1 ≤ i j ≤ n j ,

B Maolin Liang
liangml2005@163.com

Lifang Dai
dailf2005@163.com

Ruijuan Zhao
zhaobin7755382@163.com

1 School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741001, People’s
Republic of China

2 School of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou
730101, People’s Republic of China

123

Published online: 13 November 2023

Numerical Algorithms (2024) 97:29–49

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-023-01692-w&domain=pdf

j = 1, 2, . . . ,m. The set of all orderm and dimension n1×n2×· · ·×nm tensors over
the real field is denoted by R

n1×n2×···×nm . Particularly, we denote this set by R
[m,n]

if n1 = · · · = nm = n. We say that A ∈ R
[m,n] is a symmetric tensor if its entries

Ai1...im are invariant under any permutation of their indices {i1, i2, . . . , im}. It is not
difficult to observe that the tensor A reduces to a vector of size n1 when m = 1, or
becomes a matrix of size n1 × n2 in the case that m = 2.

Although tensors are a generalized form of matrices, they have significant differ-
ences frommatrices, For example, unlikematrix situations, there are several definitions
of tensor ranks, eigenvalues, and tensor-tensormultiplications based on different appli-
cation backgrounds including chemometries, signal processing, high-dimensional
statistics, and so on, one can refer to the Refs. [1–3] for details.

It is worth mentioning that tensor equations are important models for describing
high-dimensional problems. In this paper, we consider the following tensor equation

Axm−1 = b, (1.1)

where A = (Ai1i2...im) ∈ R
[m,n], b ∈ R

n , and Axm−1 ∈ R
n defined by

(Axm−1)i =
∑

i2,i3,...,im

Ai i2...im x(i2)x(i3) . . . x(im),

herein x(i) stands for the i th-component of the vector x. The notation Axm−1 was
first exploited by Qi in [4] to define the eigenvalues of a tensor.

Let A ∈ R
[m,n]. We say that λ ∈ R is an eigenvalue of A if there exists a nonzero

x ∈ R
n such that

Axm−1 = λx[m−1],

here x[m−1] = (x(1)m−1, x(2)m−1, . . . , x(n)m−1)T. The spectral radius of A is the
maximummodulus of the eigenvalues, and is denoted by ρ(A). A tensorA ∈ R

[m,n] is
called a nonsingular (singular)M-tensor [5, 6], if it can be represented asA = sI−B
in which s > ρ(B) (s ≥ ρ(B)),B ∈ R

[m,n] is nonnegative, and I is the identity tensor,
that is, Ii i ...i = 1, and otherwise Ii1i2...im = 0.

The tensor equation (1.1) has important applications in many fields, such as infor-
mation retrieval [7], numerical solution of partial differential equations [8], tensor
complement problem [9], higher-order statistics [10], and so on. In recent years, it
has been researched deeply in the sense that the coefficient tensorA has some special
structures. For instance, Ding and Wei extended the classical Jacobian and Gauss-
Seidel methods for linear equations and the Newton method for nonlinear equations
to (1.1) when A is a nonsingular (symmetric) M-tensor and b is a positive vector
[8] (we call it M-tensor equation for ease of expression). After that the homotopy
method [11], the tensor method [12], splitting iterative methods [13–15], Newton-
type method [16], neural work method [17] were proposed for solving the M-tensor
equation mentioned above. Subsequently, the classical Levenberg-Marquardt (LM)
method was applied to (1.1) when the tensor A is a nonsingular semi-symmetric M-
tensor [18]. Very recently, the ADMM-type method and the two-step accelerated LM

123

30 Numerical Algorithms (2024) 97:29–49

method were established, respectively, in [19] and [20], for solving the tensor equation
(1.1) with a general tensor A.

In essence, the tensor equation under consideration is a nonlinear equation. The iter-
ative algorithms listed above fully considered the particularity of the corresponding
tensor equations, and possess better convergence. Nevertheless, no one is suitable for
all equations. It is our constant pursuit to establish more efficient iterative algorithms
for the tensor equation mentioned above. In present paper, we are interested in the
solution of the tensor equation (1.1) whose coefficient tensorA is a singular or a non-
singular M-tensor. This kind of tensor equations arises from the higher-dimensional
PDEs, and one can see [8] for more details. In addition, as is proved that, for any
A ∈ R

[m,n], there exists a symmetric tensor Â ∈ R
[m,n] such that Axm−1 = Âxm−1

[3]. Therefore, in this paper, we make the following assumptions:
� The tensor A in (1.1) is a symmetricM-tensor.
� The tensor equation (1.1) is solvable.
The approach to be established here is relying on the exponentially accelerated

technique for nonlinear equations, which is an extension of the classical Newton’s
method [21]. As is well-known, this method is quite efficient and has quadratic con-
vergence under some circumstances, but it relies heavily on initial values, and may
fail to converge in the case that the initial guess is far from zero or the derivative of
the function in the vicinity of the required root is small. Recently, Chen and Li in [22]
proposed a class of exponential iteration approaches (denoted by EAI for short) that
has quadratic convergence, and can be applied in the case where the Newton’s method
is not successful. The EAI method contains the Newton’s method as a special case by
taking the first order Taylor series expansion, see a short review in Sect. 2.

The under-considered tensor equation (1.1) is a nonlinear equation but possesses
special structure. So we attempt to search more efficient iterative methods in two
cases: the first case is that the coefficient tensor A is a symmetric and nonsingular
M-tensor, and the second one is that the coefficient tensor A is a symmetric and
singularM-tensor (see Sect. 3 for details).We shall apply the exponential acceleration
technique introduced in [22] to the tensor equation (1.1). For ease of expression, we
denote EAI-NS as the exponentially accelerated iterative method corresponding to
the nonsingular M-tensor A, and EAI-S as the exponentially accelerated iterative
method corresponding to the singularM-tensorA. Notably, in view of the singularity
of the differential matrix of the vector-valued function, the EAI-S method inherits the
characteristics of the LMmethod. It will be shown that both of them are also the high-
dimensional generalizations of the Newton’s method proposed in [8]. Moreover, we
can prove that the EAI-NS method is suplinearly convergent and the EAI-S method is
linearly convergent under the aforementioned hypotheses. Several numerical examples
derived from practical applications demonstrate that our methods are promising.

The remainder of this paper is organized as follows. In Sect. 2, we review some basic
definitions and conclusions related to tensors and nonlinear equations. In Sect. 3, we
present the exponentially accelerated iterative methods for solving the tensor equation
(1.1), and the convergence of them will also been analyzed there. In Sect. 4, some
numerical examples are given to illustrate the effectiveness of the proposed methods.
In Sect. 5, we conclude this paper with some remarks.

123

31Numerical Algorithms (2024) 97:29–49

2 Preliminaries

2.1 Notations and definitions

First of all, we introduce some necessary notations: scalars are denoted by lower-case
letters, e.g., a, b, c; vectors are denoted by boldface lower-case letters, e.g., a, b, c;
matrices are denoted by boldface capital letters, e.g., A, B,C; tensors are denoted by
calligraphic script letters, e.g., A,B, C.

Now, we introduce the following definition on the tensor-vector product (see, e.g.,
[1] for more details).

Definition 2.1 LetA = (Ai1i2...im) ∈ R
n1×n2×···×nm and x = (x(i)) ∈ R

nk . Then, the
k-mode (vector) product, denoted byA •k x, is an n1 × · · ·× nk−1 × nk+1 × · · ·× nm
tensor, elementwise,

(A •k x)i1...ik−1ik+1...im =
nk∑

ik=1

Ai1...ik ...im x(ik).

Using Definition 2.1, for a given tensor A ∈ R
[m,n] and vector x ∈ R

n , we denote
that

Axm−k = A •k+1 x •k+2 x · · · •m x ∈ R
[k,n], k = 1, 2, . . . ,m − 1.

2.2 Two classical iterative methods for nonlinear equations

In this subsection, we first give a brief review on the classical Newton’s method. Let
f be a real valued function over the closed and convex set � ⊆ R, and assume that
it is continuously differentiable in the domain of a root x∗ of f (x) = 0. Then, the
Newton’s method to solve this nonlinear equation can be expressed as follows:

xk+1 = xk − f (xk)

f ′(xk)
.

This method is quite efficient and has quadratic convergence under some circum-
stances. Nevertheless, it may fail to converge when the initial guess is far from zero
or the derivative of the function f in the vicinity of x∗ is small.

Due to the aforementioned shortcomings, Chen and Li [22] proposed the EAI
method for the nonlinear equation f (x) = 0, and the iterative scheme of which
consists of the following iteration step:

xk+1 = xk exp

(
− f (xk)

xk f ′(xk)

)
.

In particular, this iterative method reduces to the well-known Newton’s method by

taking the first order Taylor series expansion of exp
(
− f (xk)

xk f ′(xk)

)
. Recently, several

123

32 Numerical Algorithms (2024) 97:29–49

variants of the EAI method were proposed for solving nonlinear equations; see, e.g.,
[23–25].

Next, we recall the classical Levenberg-Marquardt (LM) method [26, 27]. To do
this, let F : Rn → R

n be a continuously differential function, then the LM method
consists of computing the trial step at each iteration

dLM
k = −(JTk Jk + τk In)−1 JTk Fk,

in which Fk = F(xk), Jk represents the value of the Jacobian J(x) := F ′(x) at xk ,
and the LM parameter τk > 0 is updated from iteration to iteration. Under the local
error bound condition which is weaker than nonsingularity [28], it has been proved
that this method has quadratic convergence, and several variants have been developed
in the literature; see, e.g., [18, 20, 29] and the references therein.

3 The exponentially accelerated iterativemethods

In this section, we shall establish the exponentially accelerated iterative methods to
solve the tensor equation (1.1) under the assumption that it is always solvable.

In the sequel, two kinds of exponentially accelerated approaches will be proposed
for (1.1) under the two scenarios: The first one is that the coefficient tensorA in (1.1)
is a symmetric and nonsingular M-tensor, and the second one is that the coefficient
tensor A is a symmetric and singularM-tensor. Furthermore, the convergence of the
proposed iterative methods will be discussed. We should emphasize that the conver-
gence analysis of the methods given in present paper as well as their iteration schemes
are similar but different from that of the iterative method presented in [25].

3.1 The EAI method for (1.1) with nonsingularM-tensorA
As shownbyDing andWei [8], the tensor equation (1.1) always has a solutionwhen the
coefficient tensor A is a nonsingular one. In order to derive the new iterative scheme,
denote

F(x) := Axm−1 − b = 0. (3.1)

Using (3.1) and Definition 2.1, it follows from the symmetry of the tensor A that the
gradient of F(x) is

J(x) := F ′(x) = (m − 1)Axm−2 ∈ R
n×n . (3.2)

For ease of expression, we shall use Fk , and Jk to represent the values of F(x) and
J(x) at xk , respectively.

Following the idea of the exponentially accelerated iterative method given in [22],
we obtain the following iterative scheme for (1.1).

⎧
⎨

⎩

Jk�xk = −Fk,

xk+1 = diag

(
exp

(
�xk(i)
xk(i)

))
xk,

(3.3)

123

33Numerical Algorithms (2024) 97:29–49

in which

diag

(
exp

(
�xk(i)
xk(i)

))
:=

⎛

⎜⎜⎜⎜⎜⎝

exp

(
�xk(1)
xk(1)

)

. . .

exp

(
�xk(n)

xk(n)

)

⎞

⎟⎟⎟⎟⎟⎠
.

Then, the exponentially accelerated iterative method for solving the tensor equation
(1.1) in the case that A is a symmetric and nonsingular M-tensor can be concretely
reported as follows:

Algorithm 1 The EAI-NS method for (1.1).
Step 1: Input symmetric tensor A ∈ R

[m,n], and b ∈ R
n .

Let x0 ∈ R
n be an initial guess.

Step 2: Compute Fk and Jk by (3.1), (3.2), respectively.
Step 3: Compute xk by (3.3).
Step 4: If ‖Fk‖ < ε, stop and output xk . Otherwise, goto Step 2.

We have some comments for this algorithm:
(1) Since A is a nonsingular M-tensor, the matrix Jk is a nonsingular M-matrix

[5]. In this case, the solution to the linear subproblem Jk�xk = −Fk in (3.3) can be
expressed explicitly, i.e., �xk = −J−1

k Fk .
(2) By the definitions of diag(·) and exp(·), the iterative scheme in (3.3) is equivalent

to
xk+1(i) = xk(i) exp

(
�xk(i)
xk(i)

)
, i = 1, 2, . . . , n. (3.4)

In the implementation of Algorithm 1, the matrices Jk may be singular or almost
singular due to the influence of computer errors, one can update xk by the following
format: ⎧

⎨

⎩

�xk = −J†kFk,

xk+1 = diag

(
exp

(
�xk(i)
xk(i)

))
xk .

(3.5)

Herein the superscript ′ † ′ denotes the Moore-Penrose inverse of a matrix [30].
Particularly, if xk(i) = 0 for some index i , let the corresponding xk+1(i) = 0.

(3) From Algorithm 1 and the definition of the tensor-vector product, we know
that the main tensor operations is to compute Fk and Jk at each iteration, and then
the amount of operations contained in this algorithm is estimated conservatively by
O(nm−1).

3.2 Convergence analysis of the EAI-NSmethod

Using the properties of the function F(x) and J(x), we can show under some assump-
tions that Algorithm 1 is superlinearly convergent.

We begin with the following lemmas.

123

34 Numerical Algorithms (2024) 97:29–49

Lemma 3.1 Let F(x) and J(x) be two functions defined in (3.1) and (3.2) respectively,
and � ⊂ R

n be a closed and convex set. Then, for any x, y ∈ �, there exist L1 > 0
and L2 > 0 such that

‖J(y) − J(x)‖ ≤L1‖y − x‖,
‖F(y) − F(x)‖ ≤L2‖y − x‖,

‖F(y) − F(x) − J(x)(y − x)‖ ≤L1‖y − x‖2.

Especially, ‖J(x)‖ ≤ L2.

Proof The proofs of the first two inequalities can be derived following the ones of
Corollary 3.1 in [18]. For the third one, because the function F is continuously dif-
ferential, then there exist one constant L1 > 0 and one vector x̂k between xk and x∗
such that

‖F(xk) − F(x∗) − J(x∗)(xk − x∗)‖ = ‖J(x̂k)(xk − x∗) − J(x∗)(xk − x∗)‖
= ‖[J(x̂k) − J(x∗)](xk − x∗)‖
≤ ‖J(x̂k) − J(x∗)‖‖xk − x∗‖
≤ L1‖xk − x∗‖2.

The last inequality can be found in [29]. ��
Lemma 3.2 ([12]) Suppose that x∗ is a solution of the tensor equation (1.1) with
nonsingular M-tensor A. Then, J(x) defined in (3.2) is a nonsingular M-matrix for
any x = 0, and there exist positive numbers δ and C such that ‖J(x)−1‖ ≤ C for all
x satisfying ‖x − x∗‖ ≤ δ.

By using Lemmas 3.1 and 3.2, we obtain the following theorem.

Theorem 3.3 LetA ∈ R
[m,n] be a symmetric and nonsingularM-tensor, and b ∈ R

n,
and assume that x∗ is a solution of the tensor equation (1.1). Then, Algorithm 1 is
superlinearly convergent.

Proof By Algorithm 1 and Lemma 3.1, we have

�xk = −J−1
k Fk = −J−1

k [Fk − F(x∗)],

and then
‖�xk‖ ≤ L2‖J−1

k ‖‖xk − x∗‖. (3.6)

By the Taylor theorem of the function exp(z) with the variable z ∈ R, i.e., exp(z) =
1 + z + o(z), the equality (3.4) can be concretely expressed as

xk+1(i) = xk(i) + �xk(i) + o(�xk(i)), (3.7)

123

35Numerical Algorithms (2024) 97:29–49

then the iterative scheme (3.3) is rewritten as

xk+1 =
⎛

⎜⎝
xk(1) + �xk(1) + o(�xk(1))

...

xk(n) + �xk(n) + o(�xk(n))

⎞

⎟⎠

=
⎛

⎜⎝
xk(1) − J−1

k (1, :)Fk + o(�xk(1))
...

xk(n) − J−1
k (n, :)Fk + o(�xk(n))

⎞

⎟⎠

= xk − J−1
k Fk + o(�xk).

At this time, we obtain

xk+1 − x∗ = xk − x∗ − J−1
k Fk + o(�xk)

= J−1
k Jk(xk − x∗) − J−1

k Fk + o(�xk)

= J−1
k [Jk(xk − x∗) − Fk] + o(�xk)

= J−1
k [Jk(xk − x∗) − Fk + F(x∗)] + o(�xk).

Using Lemma 3.1 again and noting that the tensor A is a nonsingular M-tensor,
one can derive

‖xk+1 − x∗‖ ≤ ‖J−1
k ‖‖Jk(xk − x∗) − Fk + F(x∗)‖ + o(‖xk − x∗‖)

≤ L1‖J−1
k ‖‖xk − x∗‖2 + o(‖xk − x∗‖)

= O(‖xk − x∗‖2) + o(‖xk − x∗‖)
= o(‖xk − x∗‖),

which indicates that Algorithm 1 converges suplinearly.

3.3 The EAI method for (1.1) with singularM-tensorA

In this subsection, we are going to establish the exponentially accelerated method
for solving the tensor equation (1.1) in the case that the coefficient tensor A is a
symmetric and singular M-tensor. Following the classical LM method [26, 27] and
the EAI method proposed in Section 3.1, the main iterative steps of the iteration is
constructed by

⎧
⎨

⎩

(JTk Jk + μk In)�xk = −JTk Fk,

xk+1 = diag

(
exp

(
�xk(i)
xk(i)

))
xk,

(3.8)

123

36 Numerical Algorithms (2024) 97:29–49

in which let the corresponding xk+1(i) = 0 if xk(i) = 0 for some index i . Then, the
new iterative method for solving the tensor equation (1.1) with symmetric and singular
M-tensor A (denoted by EAI-S for short) is described as follows:

Algorithm 2 The EAI-S method for (1.1).
Step 1: Input symmetric tensor A ∈ R

[m,n], and b ∈ R
n .

Let μ0 > 0 and x0 ∈ R
n be an initial guess.

Step 2: Compute Fk and Jk by (3.1), (3.2), respectively.
Step 3: Compute xk by (3.8).
Step 4: If ‖Fk‖ < ε, stop and output xk . Otherwise, goto Step 2.

In Algorithm 2, if let μk = 0 and Jk be nonsingular, then it reduces to
Algorithm 1, that is, it is an extension of the latter. In the case of μk = 0 and Jk
is singular, one can replace (3.8) with (3.5). Moreover, in the third step of Algorithm
2, we needs to calculate �xk by solving the equation system (JTk Jk + μk In)�xk =
−JTk Fk . The coefficient matrix here is symmetric and positive definite, so it can be
solved by using the classical iterative methods (e.g., the CG method [30]) when the
size n is large.

In the implementation of this algorithm, as in LM-type methods (e.g., [18]), we
can make the parameter μk change with iteration steps. Of course, it can also be an
invariant positive constant for simplicity. In addition, the computational complexity
of Algorithm 2 is the same as that of Algorithm 1.

3.4 Convergence analysis of the EAI-S method

In this subsection, we discuss the convergence of the EAI-S method. The line of the
mind to prove the convergence is similar to that of the EAI-NS method.

Theorem 3.4 Let A ∈ R
[m,n] be a symmetric and singular M-tensor, and b ∈ R

n,
and assume that x∗ is a solution of the tensor equation (1.1). Then, Algorithm 2 is
linearly convergent for μk > 0.

Proof Depending on the Algorithm 2 and the required assumptions, we have

�xk = −(JTk Jk + μk In)−1 JTk Fk = −(JTk Jk + μk In)−1 JTk (Fk − F(x∗)),

so it follows that

‖�xk‖ ≤ L2
2‖(JTk Jk + μk In)−1‖‖xk − x∗‖. (3.9)

The iterative scheme (3.8) can be componentwise written as the same form as (3.4).
Analogously, by the Taylor theorem of the function exp(z) with the variable z ∈ R,
we can rewrite the iterative scheme (3.8) as (3.7), that is,

xk+1(i) = xk(i) + �xk(i) + o(�xk(i)),

123

37Numerical Algorithms (2024) 97:29–49

and so the iterative scheme (3.8) is equivalent to

xk+1 = xk − (JTk Jk + μk In)−1 JTk Fk + o(�xk). (3.10)

Furthermore, we obtain

xk+1 − x∗ = xk − x∗ − (JTk Jk + μk In)−1 JTk Fk + o(�xk)

= (xk − x∗) − (JTk Jk + μk In)−1 JTk [Fk − F(x∗)] + o(�xk)

= (xk − x∗) − (JTk Jk + μk In)−1 JTk J(x̃k)(xk − x∗) + o(�xk)

= [In − (JTk Jk + μk In)−1 JTk J(x̃k)](xk − x∗) + o(�xk),

in which x̃k is the Mean Point between xk and x∗.
Noticing that (3.9) and taking the norm at both ends of the above equality, we have

‖xk+1 − x∗‖ ≤ ‖In − (JTk Jk + μk In)−1 JTk J(x̃k)‖‖xk − x∗‖ + o(‖xk − x∗‖)
≤ (1 + ‖(JTk Jk + μk In)−1‖‖JTk J(x̃k)‖)‖xk − x∗‖ + o(‖xk − x∗‖)
≤ c‖xk − x∗‖ + o(‖xk − x∗‖)
= O(‖xk − x∗‖),

(3.11)
where c := 1 + L2

2‖(JTk Jk + μk In)−1‖, which derives from Lemma 3.1 and the
continuity of J (x). The inequality (3.11) reflects that the Algorithm 2 is linearly
convergent.

Remark 3.5 Let the singular values of the matrix Jk be σ
(k)
i (i = 1, 2, . . . , n) which

satisfy σ
(k)
1 ≥ σ

(k)
2 ≥ . . . ≥ σ

(k)
n , then

c := 1 + L2
2‖(JTk Jk + μk In)−1‖ ≤ 1 + L2

2

μk + (σ
(k)
n)2

.

Suppose that x∗ is a solution of the tensor equation (1.1)with a singular and symmetric
M-tensorA, and we assume that the singular values σi of the Jacobian J(x∗) satisfy
the following unequal relationship:

σ1 ≥ σ2 ≥ . . . ≥ σr > 0 = σr+1 = · · · = σn,

then c → 1 + L2
2

μ
as k → ∞ and μk → μ.

4 Numerical experiments

In this section, several numerical experiments will be given to illustrate the efficiency
of the proposed iterative methods, i.e., Algorithms 1 and 2. All the codes were written

123

38 Numerical Algorithms (2024) 97:29–49

in MATLAB (version R2016a) and run on a personal computer whose specifications
are as follows: Intel(R) Core(TM) i7-10510U@1.80GHz and 8.00G memory. The
tensor operations appeared in our tests were carried out via the tensor toolbox (version
3.2) [31].

In the numerical results, the symbols “IT" and “CPU" represent the number of
iteration steps and the elapsed CPU time in seconds, respectively. The residual of the
tensor equation (1.1) at xk is denoted by “RES", i.e., RES = ‖Axm−1

k − b‖. The
stopping criteria is when the tolerance ε ≤ 1.0e− 08, or the iteration number exceeds
the prescribed iteration kmax = 10000. In the following tests, we let the parameter
μk be a positive constant chosen by rand for simplicity. Additionally, the number of
iteration steps, the CPU time, and the residual listed in the tables below are respectively
the average of 5 runs from different starting points unless otherwise stated.

Example 4.1 Let the tensor A ∈ R
[m,n] in (1.1) be A = sI − B, where B ∈ R

[m,n] is
a nonnegative tensor with nonnegative entries Bi1i2...im = | sin(i1 + i2 + · · · + im)|,
and choose the vector b such that x∗ = 8∗ ones(n, 1) ∈ R

n is a solution of the tensor
equation mentioned above.

In view of the definition of the tensor B, the coefficient tensor A given here is a sym-
metricM-tensor. In this numerical example, the following two cases were considered:

Case I. Let s = nm−1, then the tensorA is a symmetric and nonsingularM-tensor,
and the corresponding tensor equation (1.1) always has a solution [8].

For randomly chosen initial iterative vectors x0 and the parameter μ = rand (the
random function involved inMatlab) inAlgorithm1,we compared theEAI-NSmethod
with the promising iterative algorithms, that is, the steepest descent method (denoted
by “SD" for short) [32], the conjugate gradient method (denoted by “CG" for short)
[32], the SORmethod (denoted by “SOR" for short) [15], theNewtonmethod (denoted
by “NT" for short) [8], all those algorithms are feasible for the tensor equations with
symmetric coefficient tensors. The numerical results were reported in the Tables 1 and
2, in which the symbol “—" means that xk does not satisfy the terminated criterion
although the number of iteration steps reaches the maximum kmax.

From the Tables 1 and 2 one can observe that all the methods converge except the
SOR method for the cases m = 4, 5 and [m, n] = [3, 100], the reason may be that
the relaxation parameter ω there are selected randomly by the function ω = rand,
and so they are not optimal. Notably, the SD method and the CG method do have
very good convergence. The Newton’s method is superior to other methods in terms
of the number of iteration steps and the CPU time consumed, but the EAI-NS method
and the Newton’s method have similar convergence. In addition, the EAI-NS method
proposed in this article has better performance than the SD method, the CG method
as well as the SOR method.

Furthermore, in order to better show the convergence behavior of the algorithms
mentioned in the Table 1, we plotted their convergence curves v.s. the number of
iteration steps k in Fig. 1. These curves show that the SDmethod and the SORmethod

123

39Numerical Algorithms (2024) 97:29–49

Table 1 Nonsingular case (I): numerical results for the tensor equations in Example 4.1

Algs [m,n] [3, 10] [3, 30] [3, 50] [3, 100] [3, 200]
SD IT 55 60 65 39 41

CPU 0.1569 0.2311 0.5587 0.4724 2.1249

RES 7.46e−09 7.56e−09 6.41e−09 5.24e−09 8.59e−09

CG IT 29 31 40 24 27

CPU 0.0952 0.1442 0.3143 0.2963 1.4166

RES 2.29e−09 3.63e−09 5.48e−09 9.16e−09 7.13e−09

SOR IT 61 68 74 90 —

CPU 0.2480 0.4486 1.1308 2.5798 —

RES 8.18e−09 6.30e−09 5.55e−09 6.44e−09 —

NT IT 16 18 19 13 17

CPU 0.0409 0.0554 0.0898 0.1299 0.5190

RES 2.08e−12 7.61e−11 3.75e−10 9.14e−10 3.31e−09

EAI-NS IT 20 23 25 8 7

CPU 0.0754 0.1292 0.1750 0.1083 0.3567

RES 3.22e−12 7.94e−10 2.80e−10 2.45e−09 4.32e−09

have linear convergence, while the othermethods have superlinear convergence, which
is consistent with the theoretical results presented in Sect. 3.2.

Case II. Let the constant number s = ρ(B) in A = sI − B, which will be gained
by using the NQZ method [33]) (see Table 3 for details). At this time, the coefficient
tensors A is a singular and symmetric M-tensors.

Table 2 Nonsingular case (II): numerical results for the tensor equations in Example 4.1

Algs [m,n] [4, 10] [4, 30] [4, 50] [5, 10] [5, 20]
SD IT 75 45 52 66 50

CPU 0.6215 0.7563 5.1138 0.8060 3.6326

RES 2.59e−09 9.94e−09 0.00e+00 9.86e−09 0.00e+00

CG IT 49 14 43 33 39

CPU 0.4488 0.2258 4.4575 0.3718 2.9504

RES 5.95e−09 5.89e−09 0.00e+00 2.51e−08 0.00e+00

SOR IT 94 — — — —

CPU 0.6338 — — — —

RES 5.95e−09 — — — —

NT IT 34 9 — 19 —

CPU 0.2317 0.1176 — 0.2007 —

RES 3.05e−10 9.81e−09 — 9.31e−09 —

EAI-NS IT 40 8 11 16 9

CPU 0.3640 0.1312 1.1011 0.2074 0.6540

RES 4.69e−09 8.17e−09 0.00e+00 7.90e−09 0.00e+00

123

40 Numerical Algorithms (2024) 97:29–49

0 10 20 30 40 50 60

iteration k

-30

-25

-20

-15

-10

-5

0

5

10

15

lo
g(

re
s)

m=3,n=10

sd
cg
sor
newton
eai-ns

0 10 20 30 40 50 60 70

iteration k

-30

-20

-10

0

10

20

30

lo
g(

re
s)

m=4,n=10

sd
cg
sor
newton
eai-ns

0 10 20 30 40 50 60 70

iteration k

-20

-10

0

10

20

30

40

lo
g(

re
s)

m=5,n=10

sd
cg
sor
newton
eai-ns

Fig. 1 Nonsingular case: the convergence behavior of the proposed methods in Example 4.1

As is well-known, the Newton method is feasible for the tensor equations with
nonsingular coefficient tensors [8], In view of the singularity of the coefficient tensor
A, we compared the EAI-S method (i.e., Algorithm 2) with the LM-type method
(denoted by “LM" for short) [18], the TALM method (denoted by “TALM" for short)
[20] starting from the initial iterative vector x0 and the parameterμk chosen randomly,
and listed the numerical results in Table 4.

This table reflects that the EAI-S method has the best performance compared with
the LM-type method and the TALM method both in the number of iteration steps
and the elapsed CPU time. It is worth mentioning that the EAI-S method spends
less CPU time when the iterative steps of the two methods are similar. Certainly, the
TALM method outperforms the LM method under the environments presented in this
example.

In addition, we described the curves of the logarithm of the residual RES of the
three methods versus the iteration k in Fig. 2, which displays that the EAI-S method
proposed in present paper has better performance. It should be pointed out that we only
prove the linear convergence of the EAI-S method in Section 3.4, but from the figures
one can observe that this method seems superlinearly convergent. This is an issue
that we need to further consider in our future work. Additionally, the TALM method
converges cubically [20], and the EAI-S method possesses analogous convergence
behavior, so how to prove the convergent rate of this iterative method is an interesting
thing.

Moreover, as stated in Sect. 3, the parameter μk appeared in Algorithm 2 could
be chosen as an arbitrary positive number for simplicity. To numerically verify the
influence of the parameter μk on the convergence of this algorithm, let the initial
vector x0 = ones(n, 1).

We respectively display the convergence behavior of Algorithm 2 when choosing
variable μk = ‖Fk‖, μk = ‖Fk‖1.5 and μk = ‖Fk‖2 v.s. invariant μk = 0.05 (see
Fig. 3 for [m, n] = [3, 10], and Fig. 4 for [m, n] = [5, 10]). From those figures we can
observe that the variable parameter μk are beneficial for improving the convergence

Table 3 The spectral radius of the tensor B in Example 4.1

[m,n] [3, 10] [3, 20] [3, 30] [3, 40] [4, 10] [4, 20] [4, 30] [5, 10]
ρ(B) 63.6688 254.409 572.9008 1018.3 626.8249 5089.7 17184.0 6355.9

123

41Numerical Algorithms (2024) 97:29–49

Table 4 Singular case: numerical results for the tensor equations in Example 4.1

Algorithms LM TALM EAI-S
[m, n] IT CPU RES IT CPU RES IT CPU RES

[3, 10] 189 0.8758 2.47e−12 22 0.1244 1.53e−12 16 0.0495 1.20e−12

[3, 20] 269 1.7454 8.33e−12 55 0.4546 5.68e−12 32 0.1463 3.78e−10

[3, 30] 349 2.2546 8.96e−09 106 0.9705 4.66e−11 106 0.5230 9.86e−09

[3, 40] 502 4.9578 2.41e−09 17 0.1082 5.60e−09 41 0.9984 9.97e−09

[4, 10] 144 1.3208 2.32e−10 21 0.2314 2.22e−10 31 0.2150 3.75e−10

[4, 20] 197 2.8867 2.64e−09 37 0.7102 2.74e−09 39 0.4686 2.44e−09

[4, 30] 467 12.6084 9.73e−09 86 2.8206 9.87e−09 38 0.7855 9.92e−09

[5, 10] 112 1.6761 9.76e−09 32 0.5574 9.72e−09 47 0.7368 8.68e−09

0 20 40 60 80 100 120

iteration k

-30

-25

-20

-15

-10

-5

0

5

10

lo
g(

re
s)

m=3,n=10

lm
talm
eai-s

0 20 40 60 80 100 120 140

iteration k

-30

-20

-10

0

10

20

30

lo
g(

re
s)

m=4,n=10

lm
talm
eai-s

0 50 100 150 200 250 300 350 400

iteration k

-20

-15

-10

-5

0

5

10

15

20

25

30

lo
g(

re
s)

m=5,n=10

lm
talm
eai-s

Fig. 2 Singular case: the convergence behavior of the proposed methods in Example 4.1

0 5 10 15 20 25 30 35 40

iteration k

-30

-25

-20

-15

-10

-5

0

5

10

lo
g(

re
s)

µ
k
=||F

k
|| v.s. µ=0.05

eai-s-µ
eai-s-µ

k

0 5 10 15 20 25 30 35 40

iteration k

-30

-25

-20

-15

-10

-5

0

5

10

lo
g(

re
s)

µ
k
=||F

k
||1.5 v.s. µ=0.05

eai-s-µ
eai-s-µ

k

0 5 10 15 20 25 30 35 40

iteration k

-20

-15

-10

-5

0

5

10

lo
g(

re
s)

µ
k
=||F

k
||2 v.s. µ=0.05

eai-s-µ
eai-s-µ

k

Fig. 3 Comparison for the variable and immutable parameter μk when [m, n] = [3, 10]

0 20 40 60 80 100 120

iteration k

-20

-15

-10

-5

0

5

10

15

20

lo
g(

re
s)

µ
k
=||F

k
|| v.s. µ=0.05

eai-s-µ
eai-s-µ

k

0 10 20 30 40 50 60 70 8

iteration k

-20

-15

-10

-5

0

5

10

15

20

lo
g(

re
s)

µ
k
=||F

k
||1.5 v.s. µ=0.05

eai-s-µ
eai-s-µ

k

0 10 20 30 40 50 60 70 80 90 0 90

iteration k

-20

-15

-10

-5

0

5

10

15

20

lo
g(

re
s)

µ
k
=||F

k
||2 v.s. µ=0.05

eai-s-µ
eai-s-µ

k

Fig. 4 Comparison for the variable and immutable parameter μk when [m, n] = [5, 10]

123

42 Numerical Algorithms (2024) 97:29–49

of the algorithm. It is a considerable problem to establish the corresponding theory
for seeking the optimal parameter, which will be studied in the further work.

The following two numerical examples are derived from practical application prob-
lems.

Example 4.2 Consider the numerical solution of the following differential equation

⎧
⎨

⎩
− max

(γ,λ)∈(,�)
{LλU − ηU − 1

2
αγ 2U + βγ } = 0, on �,

U = g, on ∂�,

in which LλU (x) = 1

2
σ(x, λ)2U ′′(x) + μ(x, λ)U ′(x), � = (0, 1), = [0,+∞),

and � is a compact metric space.

Applying “optimize then discretize" approach to the above differential equation, it
can be discretized as the 3rd-order Bellman equation [10]

max
λ∈��x

A(λ)u2 = b,

where u = (ui) ∈ R
n+1, ui ≈ U (i�x) with �x = 1

n
for i = 0, 1, 2, . . . , n, A(λ) is

a 3rd-order and (n + 1)-dimensional parameterized tensor whose entries are defined
as follows:

Ai,i−1,i (λ) = Ai,i,i−1(λ),

2Ai,i,i−1(λ) = −1

2
σ 2
i (λi)

1

(�x)2
+ μi (λi)

1

�x
1(−∞,0)(μi (λi)),

Ai,i,i (λ) = 1

2
σ 2
i (λi)

2

(�x)2
+ |μi (λi)| 1

�x
+ ηi ,

2Ai,i,i+1(λ) = −1

2
σ 2
i (λi)

1

(�x)2
− μi (λi)

1

�x
1(0,+∞)(μi (λi)),

Ai,i+1,i (λ) = Ai,i,i+1(λ),

i = 1, 2, . . . , n − 1,

here 1S stands for the indicator function over the set S, σi (λ) = σ(i�x, λ), ηi =
η(i�x), and Ai,i,i (λ) = 1 with i = 0, n. The vector b = (bi) is given by

bi =
⎧
⎨

⎩

1

2

β2
i

αi
, if i = 1, 2, . . . , n − 1,

g2i , if i = 0, n,

in which αi = α(i�x), βi = β(i�x), gi = g(i�x).
In our tests, let σ(x, λ) = 0.2, α(x) = 2 − x , η(x) = 0.04, u(x, λ) = 0.04λ,

β(x) = 1 + x , g(x) = 1, and λ = −1. The coefficient tensor A is a non-symmetric

123

43Numerical Algorithms (2024) 97:29–49

and nonsingular M-tensor, and thus the derived tensor equation has a nonnegative
solution [8].

Although the Newton method mentioned above is very effective as shown in
Example 4.1, it is theoretically infeasible for asymmetric cases. Therefore, we com-
pared the EAI-NS method with the SD method [32], the CG method [32], and the
SOR method [15] starting from different initial vectors being chosen as the same as
in Example 4.1, and displayed the corresponding results in Table 5.

From Table 5, one can see that the number of iteration steps and the correspond-
ing CPU time increase as the n increases from 10 to 60, and all the tested iterative
algorithms are convergent for the 3rd-order Bellman tensor equation, in which the CG
method takes less iterations and CPU time than the SDmethod and the SORmethod in
the majority of cases. Nevertheless, the EAI-NS method has better performance than
the CG method.

It should point out that when n = 70, except for the EAI-NSmethod, the other ones
fail to stop before reaching the maximum number kmax of iteration steps. Particularly,
a large number of unlisted numerical results also reflect similar phenomena, so our
algorithm can effectively solve such problems. Moreover, in Fig. 5, we drew the con-
vergence curves of the logarithm of the residual RES of the aforementioned algorithms
versus the iteration k. These images also demonstrate the superlinear convergence of
Algorithm 1.

Example 4.3 Consider the numerical solution of the Klein-Gordon equation [34, 35]

{
u(x)m−2 · �u(x) = − f (x), in �,

u(x) = g(x), on ∂�,

in which f (x) is a constant function, � =
d∑

k=0

∂2

∂x2k
, � = [0, 1]d and m = 3, 4,

Table 5 Comparison of the proposed methods for the tensor equations in Example 4.2

Algs [m,n] [3, 10] [3, 20] [3, 30] [3, 40] [3, 50] [3, 60] [3, 70]
SD IT 179 905 2473 3535 6003 7839 —

CPU 1.1862 5.9266 18.8378 11.9631 29.3062 42.0809 —

RES 8.36e−09 9.83e−09 9.87e−09 9.93e−09 9.95e−09 9.97e−09 —

CG IT 233 699 1476 479 2639 874 —

CPU 1.5609 4.6013 11.4889 1.6369 14.5399 4.5512 —

RES 5.42e−09 8.82e−09 7.10e−09 9.07e−09 9.96e−09 9.44e−09 —

SOR IT 274 1161 2797 4463 6677 9371 —

CPU 1.8038 7.6930 26.0691 17.5678 36.6196 49.0069 —

RES 9.40e−09 9.83e−09 9.99e−09 9.96e−09 9.99e−09 9.99e−09 —

EAI IT 10 11 12 13 13 14 14

CPU 0.0584 0.0709 0.1056 0.0596 0.0710 0.0734 0.1021

RES 8.64e−14 3.46e−10 2.59e−11 2.61e−13 9.56e−11 6.52e−13 9.61e−13

123

44 Numerical Algorithms (2024) 97:29–49

0 50 100 150 200 250 300 350

iteration k

-35

-30

-25

-20

-15

-10

-5

0

5

10

lo
g(

re
s)

m=3,n=10

sd
cg
sor
eai-ns

0 200 400 600 800 1000

iteration k

-25

-20

-15

-10

-5

0

5

10

15

lo
g(

re
s)

m=3,n=20

sd
cg
sor
eai-ns

0 200 400 600 800 1000

iteration k

-25

-20

-15

-10

-5

0

5

10

lo
g(

re
s)

m=3,n=30

sd
cg
sor
eai-ns

0 200 400 600 800 1000

iteration k

-30

-25

-20

-15

-10

-5

0

5

10

15

20

lo
g(

re
s)

m=3,n=40

sd
cg
sor
eai-ns

Fig. 5 The convergence behavior of the proposed methods in Example 4.2

When d = 1, the above Klein-Gordon equation is discretized as the tensor equa-
tion Lhum−1 = f, where h = 1/(n − 1), and Lh ∈ R

[m,n] is a nonsymmetric and
nonsingular M-tensor, i.e.,

(Lh)11...1 =(Lh)nn...n = 1/h2, (Lh)i i ...i = 2/h2, i = 2, 3, . . . , n − 1,

(Lh)i i−1i ...i =(Lh)i i i−1i ...i = · · · = (Lh)i ...i i−1 = −1/h2(m − 1), i = 2, 3, . . . , n − 1,

(Lh)i i+1i ...i =(Lh)i i i+1i ...i = · · · = (Lh)i ...i i+1 = −1/h2(m − 1), i = 2, 3, . . . , n − 1.

In the following tests, we choose the vector f as the vector such thatLh(u∗)m−1 = f
for u∗ = 8 ∗ ones(n, 1) for simplicity.

Starting from the randomly initial iterative vectors chosen as the same as in Example
4.1, we performed the EAI-NS method, the SDmethod [32], the CGmethod [32], and
the SOR method [15], and reported the numerical results in the Table 6.

From this table, we can observe that the CG method has better performance than
the SD method and the SOR method for the convergent cases. Moreover, both the CG
method and the EAI-NS method converge before the numbers of iteration steps reach
the maximum value kmax, and especially, our method takes less iteration steps as well
as the CPU time.

123

45Numerical Algorithms (2024) 97:29–49

Table 6 Comparison of the proposed methods for the tensor equations in Example 4.3

Algorithms SD CG SOR EAI

IT 255 96 658 28

[3, 10] CPU 0.6464 0.2439 1.6520 0.0698

RES 9.41e−09 7.69e−09 9.83e−09 9.25e−09

IT 3437 290 6324 32

[3, 30] CPU 12.9520 1.1527 24.9951 0.1272

RES 9.92e−09 9.14e−09 9.98e−09 4.53e−09

IT — 588 — 33

[3, 50] CPU — 2.6803 — 0.2125

RES — 9.98e−09 — 8.60e−09

IT — 928 — 36

[3, 100] CPU — 10.0644 — 0.3845

RES — 9.63e−09 — 9.05e−09

IT 442 128 995 46

[4, 10] CPU 2.4791 0.7214 4.0046 0.2529

RES 9.26e−09 8.25e−09 9.87e−09 8.96e−09

IT 4227 444 8692 57

[4, 30] CPU 79.9428 8.3941 110.1621 1.1408

RES 9.93e−09 9.95e−09 9.97e−09 8.02e−09

IT 6516 774 — 42

[4, 50] CPU 285.9569 33.5275 — 5.1963

RES 9.72e−09 8.75e−09 — 7.07e−09

IT 338 97 1197 76

[5, 10] CPU 5.3420 1.5261 9.9394 1.2232

RES 9.15e−09 9.20e−09 9.78e−09 7.48e−09

IT 546 151 — 43

[6, 10] CPU 26.3843 7.3154 — 2.1273

RES 7.90e−09 7.79e−09 — 2.61e−09

Additionally, we also described the convergence curves of the logarithm of the
residual RES corresponding to the four iterative approaches versus the iteration k in
Fig. 6, from which we can see that the EAI-NS method has the best convergent.

5 Conclusions and remarks

Based on the exponential acceleration, in present paper, we develop the exponential
accelerated iterative methods for the tensor equation (1.1) under two different cases:
One is that the coefficient tensorA is a symmetric and nonsingularM-tensor, and the
other one is that the coefficient tensor A is a symmetric and singular M-tensor, that
is, Algorithms 1 and 2. These two iterative methods are extension of the Newton’s

123

46 Numerical Algorithms (2024) 97:29–49

0 100 200 300 400 500 600 700 800

iteration k

-20

-15

-10

-5

0

5

10

15

lo
g(

re
s)

m=3,n=10

sd
cg
sor
eai-ns

0 200 400 600 800 1000

iteration k

-20

-15

-10

-5

0

5

10

15

lo
g(

re
s)

m=4,n=10

sd
cg
sor
eai-ns

0 200 400 600 800 1000

iteration k

-20

-15

-10

-5

0

5

10

15

20

lo
g(

re
s)

m=5,n=10

sd
cg
sor
eai-ns

Fig. 6 The convergence behavior of the proposed methods in Example 4.3

method, and Algorithm 1 possesses superlinear convergence, while Algorithm 2 is
linearly convergent. The provided numerical results and many other trials that did not
list in present paper demonstrate that the proposed methods are effective for solving
tensor equationswith the formof (1.1), and have better performance than some existing
ones.

We should mention that since the key operations in those two algorithms contain
the tensor-vector multiplications, which means that the computational amount of the
proposed methods grow exponentially as the increasing dimension, that is, they suffer
from the so-called “curse-of-dimensionality” [36]. So it is an interesting but important
theme to overcome the curse.

Acknowledgements The authors are thankful to the handling editor and the referees for their constructive
comments and suggestions, which greatly improve the quality of this paper.

Author contribution M. Liang provided the methodology along with the problem under consideration and
re-editing and correcting the manuscript, L. Dai implemented the scheme and edited the manuscript, and
R. Zhao completed the numerical experiments of the related algorithms.

Funding This work was supported by National Natural Science Foundation of China (Nos. 11961057,
12201267, 12361081), the Natural Science Foundation of Gansu Province (Nos. 21JR1RE287, 22JR5RA559) the
Innovation Foundation of Education Department of Gansu Province (Nos. 2021B-221, 2023B-135), and
the Science Foundation of Tianshui Normal University (No. CXJ2021-01).

Data availability Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.

Declarations

Ethical approval Not applicable

Conflict of interest The authors declare no competing interests.

References

1. Kolda, T., Bader, B.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)
2. Lathauwer, L., Castaing, J., Cardoso, J.: Fourth-order cumulant-based blind identification of underde-

termined mixtures. IEEE Trans. Sig. Proc. 55, 2965–2973 (2007)
3. Qi, L., Luo, Z.: Tensor analysis: spectral theory and special tensors. SIAM, Philadelphia (2017)

123

47Numerical Algorithms (2024) 97:29–49

4. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)
5. Ding, W., Qi, L., Wei, Y.: M-tensors and nonsingular M-tensors. Linear Algebra Appl. 439(10),

3264–3278 (2013)
6. Zhang, L., Qi, L., Zhou, G.: M-tensors and some applications. SIAM J. Matrix Anal. Appl. 35(2),

437–452 (2014)
7. Li, X., Ng,M.: Solving sparse non-negative tensor equations: algorithms and applications. Front.Math.

China 10(3), 649–680 (2015)
8. Ding, W., Wei, Y.: Solving multi-linear systems with M-tensors. J. Sci. Comput. 68(2), 689–715

(2016)
9. Luo, Z., Qi, L., Xiu, N.: The sparsest solutions to Z-tensor complementarity problems. Optim. Lett.

11, 471–482 (2017)
10. Azimzadeh, P., Bayraktar, E.: High order Bellman equations and weakly chained diagonally dominant

tensors. SIAM J. Matrix Anal. Appl. 40(1), 276–298 (2019)
11. Han, L.: A homotopy method for solving multilinear systems with M-tensors. Appl. Math. Lett. 69,

49–54 (2017)
12. Xie, Z., Jin, X., Wei, Y.: Tensor methods for solving symmetric M-tensor systems. J Sci Comput 74,

412–425 (2018)
13. Li, D., Xie, S., Xu, H.: Splitting methods for tensor equations. Numer. Linear Algebra Appl. 24(5),

e2102 (2017)
14. Cui, L., Li, M., Song, Y.: Preconditioned tensor splitting iterations method for solving multi-linear

systems. Appl. Math. Lett. 96, 89–94 (2019)
15. Liu, D., Li, W., Vong, S.: The tensor splitting with application to solve multi-linear systems. J. Comput.

Appl. Math. 330(1), 75–94 (2018)
16. He, H., Ling, C., Qi, L., Zhou, G.: A globally and quadratically convergent algorithm for solving

multilinear systems with M-tensors. J. Sci. Comput. 73(3), 1718–1741 (2018)
17. Wang, X., Che, M., Wei, Y.: Neural networks based approach solving multi-linear systems with M-

tensors. Appl. Math. Lett. 351, 33–42 (2019)
18. Lv, C., Ma, C.: A Levenberg-Marquardt method for solving semi-symmetric tensor equations. J. Com-

put. Appl. Math. 332, 13–25 (2018)
19. Liang, M., Zheng, B., Zhao, R.: Alternating iterative methods for solving tensor equations with appli-

cations. Numer. Algor. 80, 1437–1465 (2019)
20. Liang, M., Zheng, B., Zheng, Y., Zhao, R.: A two-step accelerated Levenberg-Marquardt method for

solving multlinear systems in tensor-train format. J. Comput. Appl. Math. 382, 113069 (2021)
21. Ortega, J., Rheinboldt, W.: Iterative solution of nonlinear equations in several variables. Academic

Press, New York (1970)
22. Chen, J., Li,W.: On new exponential quadratically convergent iterative formulae. Appl. Math. Comput.

180, 242–246 (2006)
23. Chen, J., Li, W.: An exponential regula falsi method for solving nonlinear equations. Numer. Algor.

41, 327–338 (2006)
24. Kahya, E.: A class of exponential quadratically convergent iterative formulae for unconstrained opti-

mization. Appl. Math. Comput. 186, 1010–1017 (2007)
25. Smietanski, M.: On a new exponential iterative method for solving nonsmooth equations. Numer.

Linear Algebra Appl. 26(5), e2255 (2019)
26. Levenberg, K.: A method for the solution of certain nonlinear problems in least squares. Quarterly

Appl. Math. 2, 164–168 (1944)
27. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl.

Math. 11, 431–441 (1963)
28. Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg-Marquardt method.

Computing 15, 239–249 (2001)
29. Zhou, W.: On the convergence of the modified Levenberg-Marquardt method with a nonmonotone

second order Armijo type line search. J. Comput. Appl. Math. 239, 152–161 (2013)
30. Golub, G., Van Loan, C.: Matrix computations, 4th edn. Johns Hopkins University Press, Baltimore

(2013)
31. Bader, B., Kolda, T., et al.: Tensor toolbox for MATLAB, Version 3.2. (2021). http://www.

tensortoolbox.org
32. Li, T., Wang, Q., Zhang, X.: Gradient based iterative methods for solving symmetric tensor equations.

Numer. Linear Algebra Appl. 29(2), e2414 (2022)

123

48 Numerical Algorithms (2024) 97:29–49

http://www.tensortoolbox.org
http://www.tensortoolbox.org

33. Ng, M., Qi, L., Zhou, G.: Finding the largest eigenvalue of a nonnegative tensor. SIAM J. Matrix Anal.
Appl. 31(3), 1090–1099 (2009)

34. Matsuno, Y.: Exact solutions for the nonlinear Klein-Gordon and Liouville equations in four-
dimensional Euclidean space. J. Math. Phys. 28(10), 2317–2322 (1987)

35. Zwillinger, D.: Handbook of differential equations, 3rd edn. Academic Press Inc, Boston (1997)
36. Oseledets, I.: Tensor train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

49Numerical Algorithms (2024) 97:29–49

	Iterative methods for solving tensor equations based on exponential acceleration
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations and definitions
	2.2 Two classical iterative methods for nonlinear equations

	3 The exponentially accelerated iterative methods
	3.1 The EAI method for (1.1) with nonsingular mathcalM-tensor mathcalA
	3.2 Convergence analysis of the EAI-NS method
	3.3 The EAI method for (1.1) with singular mathcalM-tensor mathcalA
	3.4 Convergence analysis of the EAI-S method

	4 Numerical experiments
	5 Conclusions and remarks
	Acknowledgements
	References

